
NOTE: this guide is currently undergoing a rewrite after a long time
without much work. It is work in progress, much is missing, and what exists
is a bit rough.



Introduction
This book is a guide to asynchronous programming in Rust. It is

designed to help you take your first steps and to discover more about
advanced topics. We don't assume any experience with asynchronous
programming (in Rust or another language), but we do assume you're
familiar with Rust already. If you want to learn about Rust, you could start
with The Rust Programming Language.

This book has two main parts: part one is a beginners guide, it is
designed to be read in-order and to take you from total beginner to
intermediate level. Part two is a collection of stand-alone chapters on more
advanced topics. It should be useful once you've worked through part one or
if you already have some experience with async Rust.

You can navigate this book in multiple ways:

You can read it front to back, in order. This is the recommend path for
newcomers to async Rust, at least for part one of the book.
There is a summary contents on the left-hand side of the webpage.
If you want information about a broad topic, you could start with the
topic index.
If you want to find all discussion about a specific topic, you could start
with the detailed index.
You could see if your question is answered in the FAQs.

https://doc.rust-lang.org/stable/book/
clbr://internal.invalid/book/OEBPS/part-guide/intro.md
clbr://internal.invalid/book/OEBPS/part-guide/intro.md


What is Async Programming and why would you
do it?

In concurrent programming, the program does multiple things at the
same time (or at least appears to). Programming with threads is one form of
concurrent programming. Code within a thread is written in sequential style
and the operating system executes threads concurrently. With async
programming, concurrency happens entirely within your program (the
operating system is not involved). An async runtime (which is just another
crate in Rust) manages async tasks in conjunction with the programmer
explicitly yielding control by using the await  keyword.

Because the operating system is not involved, context switching in the
async world is very fast. Furthermore, async tasks have much lower
memory overhead than operating system threads. This makes async
programming a good fit for systems which need to handle very many
concurrent tasks and where those tasks spend a lot of time waiting (for
example, for client responses or for IO). It also makes async programming a
good fit for microcontrollers with very limited amounts of memory and no
operating system that provides threads.

Async programming also offers the programmer fine-grained control
over how tasks are executed (levels of parallelism and concurrency, control
flow, scheduling, and so forth). This means that async programming can be
expressive as well as ergonomic for many uses. In particular, async
programming in Rust has a powerful concept of cancellation and supports
many different flavours of concurrency (expressed using constructs
including spawn  and its variations, join , select , for_each_concurrent ,
etc.). These allow composable and reusable implementations of concepts
like timeouts, pausing, and throttling.



Hello, world!
Just to give you a taste of what async Rust looks like, here is a 'hello,

world' example. There is no concurrency, and it doesn't really take
advantage of being async. It does define and use an async function, and it
does print "hello, world!":
// Define an async function. 
async fn say_hello() { 
    println!("hello, world!"); 
} 
 
#[tokio::main] // Boilerplate which lets us write `async fn 
main`, we'll explain it later. 
async fn main() { 
    // Call an async function and await its result. 
    say_hello().await; 
} 

We'll explain everything in detail later. For now, note how we define an
asynchronous function using async fn  and call it using .await  - an async
function in Rust doesn't do anything unless it is await ed1.

Like all examples in this book, if you want to see the full example
(including Cargo.toml , for example) or to run it yourself locally, you can
find them in the book's GitHub repo: e.g., examples/hello-world.

https://github.com/rust-lang/async-book/tree/master/examples/hello-world


Development of Async Rust
The async features of Rust have been in development for a while, but it

is not a 'finished' part of the language. Async Rust (at least the parts
available in the stable compiler and standard libraries) is reliable and
performant. It is used in production in some of the most demanding
situations at the largest tech companies. However, there are some missing
parts and rough edges (rough in the sense of ergonomics rather than
reliability). You are likely to stumble upon some of these parts during your
journey with async Rust. For most missing parts, there are workarounds and
these are covered in this book.

Currently, working with async iterators (also known as streams) is where
most users find some rough parts. Some uses of async in traits are not yet
well-supported. There is not a good solution for async destruction.

Async Rust is being actively worked on. If you want to follow
development, you can check out the Async Working Group's home page
which includes their roadmap. Or you could read the async project goal
within the Rust Project.

Rust is an open source project. If you'd like to contribute to development
of async Rust, start at the contributing docs in the main Rust repo.
1

This is actually a bad example because println  is blocking IO and it is
generally a bad idea to do blocking IO in async functions. We'll explain
what blocking IO is in chapter TODO and why you shouldn't do blocking
IO in an async function in chapter TODO.

https://rust-lang.github.io/wg-async/meetings.html
https://rust-lang.github.io/wg-async/vision/roadmap.html
https://github.com/rust-lang/rust-project-goals/issues/105
https://github.com/rust-lang/rust/blob/master/CONTRIBUTING.md
clbr://internal.invalid/book/OEBPS/intro.html
clbr://internal.invalid/book/OEBPS/intro.html


Navigation
TODO Intro to navigation
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FAQs
Index

clbr://internal.invalid/book/OEBPS/navigation/topics.md
clbr://internal.invalid/book/OEBPS/navigation/intro.html
clbr://internal.invalid/book/OEBPS/navigation/index.md


Topic index



Concurrency and parallelism

Introduction
Running async tasks in parallel using spawn
Running futures concurrently using join  and select

clbr://internal.invalid/book/OEBPS/part-guide/concurrency.md#concurrency-and-parallelism
clbr://internal.invalid/book/OEBPS/part-guide/async-await.md#spawning-tasks
clbr://internal.invalid/book/OEBPS/part-guide/concurrency-primitives.md


Correctness and safety

Cancellation

Introduction
In select  and try_join

clbr://internal.invalid/book/OEBPS/part-guide/more-async-await.md#cancellation
clbr://internal.invalid/book/OEBPS/part-guide/concurrency-primitives.md
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clbr://internal.invalid/book/OEBPS/part-guide/more-async-await.md#blocking-and-cancellation
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clbr://internal.invalid/book/OEBPS/part-guide/more-async-await.md#unit-tests
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Part 1: A guide to asynchronous
programming in Rust

This part of the book is a tutorial-style guide to async Rust. It is aimed at
newcomers to async programming in Rust. It should be useful whether or
not you've done async programming in other languages. If you have, you
might skip the first section or skim it as a refresher. You might also want to
read this comparison to async in other languages sooner rather than later.

clbr://internal.invalid/book/OEBPS/part-guide/intro.html


Core concepts
We'll start by discussing different models of concurrent programming,

using processes, threads, or async tasks. The first chapter will cover the
essential parts of Rust's async model before we get into the nitty-gritty of
async programming in the second chapter where we introduce the async and
await programming paradigm. We cover some more async programming
concepts in the following chapter.

One of the main motivations for async programming is more performant
IO, which we cover in the next chapter. We also cover blocking in detail in
the same chapter. Blocking is a major hazard in async programming where
a thread is blocked from making progress by an operation (often IO) which
synchronously waits.

Another motivation for async programming is that it facilitates new
models for abstraction and composition of concurrent code. After covering
that, we move on to synchronization between concurrent tasks.

There is a chapter on tools for async programming.
The last few chapters cover some more specialised topics, starting with

async destruction and clean-up (which is a common requirement, but since
there is currently not a good built-in solution, is a bit of a specialist topic).

The next two chapters in the guide go into detail on futures and
runtimes, two fundamental building blocks for async programming.

Finally, we cover timers and signal handling and async iterators (aka
streams). The latter are how we program with sequences of async events
(c.f., individual async events which are represented using futures or async
functions). This is an area where the language is being actively developed
and can be a little rough around the edges.

clbr://internal.invalid/book/OEBPS/part-guide/concurrency.md
clbr://internal.invalid/book/OEBPS/part-guide/async-await.md
clbr://internal.invalid/book/OEBPS/part-guide/more-async-await.md
clbr://internal.invalid/book/OEBPS/part-guide/io.md
clbr://internal.invalid/book/OEBPS/part-guide/concurrency-primitives.md
clbr://internal.invalid/book/OEBPS/part-guide/sync.md
clbr://internal.invalid/book/OEBPS/part-guide/tools.md
clbr://internal.invalid/book/OEBPS/part-guide/dtors.md
clbr://internal.invalid/book/OEBPS/part-guide/futures.md
clbr://internal.invalid/book/OEBPS/part-guide/runtimes.md
clbr://internal.invalid/book/OEBPS/part-guide/timers-signals.md
clbr://internal.invalid/book/OEBPS/part-guide/streams.md


Concurrent programming
The goal of this chapter is to give you a high-level idea of how async

concurrency works and how it is different from concurrency with threads. I
think it is important to have a good mental model of what is going on before
getting in to the practicalities, but if you're the kind of person who likes to
see some real code first, you might like to read the next chapter or two and
then come back to this one.

We'll start with some motivation, then cover sequential programming,
programming with threads or processes, and then async programming. The
chapter finishes with a section on concurrency and parallelism.

Users want their computers to do multiple things. Sometimes users want
to do those things at the same time (e.g., be listening to a music app at the
same time as typing in their editor). Sometimes doing multiple tasks at the
same time is more efficient (e.g., getting some work done in the editor
while a large file downloads). Sometimes there are multiple users wanting
to use a single computer at the same time (e.g., multiple clients connected
to a server).

To give a lower-level example, a music program might need to keep
playing music while the user interacts with the user interface (UI). To 'keep
playing music', it might need to stream music data from the server, process
that data from one format to another, and send the processed data to the
computer's audio system via the operating system (OS). For the user, it
might need to send and receive data or commands to the server in response
to the user instructions, it might need to send signals to the subsystem
playing music (e.g., if the user changes track or pauses), it might need to
update the graphical display (e.g., highlighting a button or changing the
track name), and it must keep the mouse cursor or text inputs responsive
while doing all of the above.

Doing multiple things at once (or appearing to do so) is called
concurrency. Programs (in conjunction with the OS) must manage their
concurrency and there are many ways to do that. We'll describe some of
those ways in this chapter, but we'll start with purely sequential code, i.e.,
no concurrency at all.



Sequential execution
The default mode of execution in most programming languages

(including Rust) is sequential execution.
do_a_thing(); 
println!("hello!"); 
do_another_thing(); 

Each statement is completed before the next one starts1. Nothing
happens in between those statements2. This might sound trivial but it is a
really useful property for reasoning about our code. However, it also means
we waste a lot of time. In the above example, while we're waiting for 
println!("hello!")  to happen, we could have executed 
do_another_thing() . Perhaps we could even have executed all three
statements at the same time.

Whenever IO3 happens (printing using println!  is IO - it is outputting
text to the console via a call to the OS), the program will wait for the IO to
complete4 before executing the next statement. Waiting for IO to complete
before continuing with execution blocks the program from making other
progress. Blocking IO is the easiest kind of IO to use, implement, and
reason about, but it is also the least efficient - in a sequential world, the
program can do nothing while it waits for the IO to complete.
1

This isn't really true: modern compilers and CPUs will reorganize your
code and run it any order they like. Sequential statements are likely to
overlap in many different ways. However, this should never be observable
to the program itself or its users.
2

This isn't true either: even when one program is purely sequential, other
programs might be running at the same time; more on this in the next
section.
3

IO is an acronym of input/output. It means any communication from the
program to the world outside the program. That might be reading or writing



to disk or the network, writing to the terminal, getting user input from a
keyboard or mouse, or communicating with the OS or another program
running in the system. IO is interesting in the context of concurrency
because it takes several orders of magnitude longer to happen than nearly
any task a program might do internally. That typically means lots of
waiting, and that waiting time is an opportunity to do other work.
4

Exactly when IO is complete is actually rather complicated. From the
program's perspective a single IO call is complete when control is returned
from the OS. This usually indicates that data has been sent to some
hardware or other program, but it doesn't necessarily mean that the data has
actually been written to disk or displayed to the user, etc. That might require
more work in the hardware or periodic flushing of caches, or for another
program to read the data. Mostly we don't need to worry about this, but it's
good to be aware of.



Processes and threads
Processes and threads are concepts which are provided by the operating

system to provide concurrency. There is one process per executable, so
supporting multiple processes means a computer can run multiple
programs5 concurrently; there can be multiple threads per process, which
means there can also be concurrency within a process.

There are many small differences in the way that processes and threads
are handled. The most important difference is that memory is shared
between threads but not between processes6. That means that
communication between processes happens by some kind of message
passing, similar to communicating between programs running on different
computers. From a program's perspective, the single process is their whole
world; creating new processes means running new programs. Creating new
threads, however, is just part of the program's regular execution.

Because of these distinctions between processes and threads, they feel
very different to a programmer. But from the OS's perspective they are very
similar and we'll discuss their properties as if they were a single concept.
We'll talk about threads, but unless we note otherwise, you should
understand that to mean 'threads or processes'.

The OS is responsible for scheduling threads, which means it decides
when threads run and for how long. Most modern computers have multiple
cores, so they can run multiple threads at literally the same time. However,
it is common to have many more threads than cores, so the OS will run each
thread for a small amount of time and then pause it and run a different
thread for some time7. When multiple threads are run on a single core in
this fashion, it is called interleaving or time-slicing. Since the OS chooses
when to pause a thread's execution, it is called pre-emptive multitasking
(multitasking here just means running multiple threads at the same time);
the OS pre-empts execution of a thread (or more verbosely, the OS pre-
emptively pauses execution. It is pre-emptive because the OS is pausing the
thread to make time for another thread, before the first thread would
otherwise pause, to ensure that the second thread can execute before it
becomes a problem that it can't).



Let's look at IO again. What happens when a thread blocks waiting for
IO? In a system with threads, then the OS will pause the thread (it's just
going to be waiting in any case) and wake it up again when the IO is
complete8. Depending on the scheduling algorithm, it might take some time
after the IO completes until the OS wakes up the thread waiting for IO,
since the OS might wait for other threads to get some work done. So now
things are much more efficient: while one thread waits for IO, another
thread (or more likely, many threads due to multitasking) can make
progress. But, from the perspective of the thread doing IO, things are still
sequential - it waits for the IO to finish before starting the next operation.

A thread can also choose to pause itself by calling a sleep  function,
usually with a timeout. In this case the OS pauses the thread at the threads
own request. Similar to pausing due to pre-emption or IO, the OS will wake
the thread up again later (after the timeout) to continue execution.

When an OS pauses one thread and starts another (for any reason), it is
called context switching. The context being switched includes the registers,
operating system records, and the contents of many caches. That's a non-
trivial amount of work. Together with the transfer of control to the OS and
back to a thread, and the costs of working with stale caches, context
switching is an expensive operation.

Finally, note that some hardware or OSs do not support processes or
threads, this is more likely in the embedded world.
5

from the user's perspective, a single program may include multiple
processes, but from the OS's perspective each process is a separate program.
6

Some OSs do support sharing memory between processes, but using it
requires special treatment and most memory is not shared.
7

Exactly how the OS chooses which thread to run and for how long (and
on which core), is a key part of scheduling. There are many options, both
high-level strategies and options to configure those strategies. Making good
choices here is crucial for good performance, but it is complicated and we
won't dig into it here.



8

There's another option which is that the thread can busy wait by just
spinning in a loop until the IO is finished. This is not very efficient since
other threads won't get to run and is uncommon in most modern systems.
You may come across it in the implementations of locks or in very simple
embedded systems.



Async programming
Async programming is a kind of concurrency with the same high-level

goals as concurrency with threads (do many things at the same time), but a
different implementation. The two big differences between async
concurrency and concurrency with threads, is that async concurrency is
managed entirely within the program with no help from the OS9, and that
multitasking is cooperative rather than pre-emptive10 (we'll explain that in a
minute). There are many different models of async concurrency, we'll
compare them later on in the guide, but for now we'll focus only on Rust's
model.

To distinguish them from threads, we'll call a sequence of executions in
async concurrency a task (they're also called green threads, but this
sometimes has connotations of pre-emptive scheduling and implementation
details like one stack per task). The way a task is executed, scheduled, and
represented in memory is very different to a thread, but for a high-level
intuition, it can be useful to think of tasks as just like threads, but managed
entirely within the program, rather than by the OS.

In an async system, there is still a scheduler which decides which task to
run next (it's part of the program, not part of the OS). However, the
scheduler cannot pre-empt a task. Instead a task must voluntarily give up
control and allow another task to be scheduled. Because tasks must
cooperate (by giving up control), this is called cooperative multitasking.

Using cooperative rather than pre-emptive multitasking has many
implications:

between points where control might be yielded, you can guarantee that
code will be executed sequentially - you'll never be unexpectedly
paused,
if a task takes a long time between yield points (e.g., by doing
blocking IO or performing long-running computation), other tasks will
not be able to make progress,
implementing a scheduler is much simpler and scheduling (and context
switching) has fewer overheads.



Async concurrency is much more efficient than concurrency with
threads. The memory overheads are much lower and context switching is a
much cheaper operation - it doesn't require handing control to the OS and
back to the program and there is much less data to switch. However, there
can still be some cache effects - although the OS's caches such as the TLB
don't need to be changed, tasks are likely to operate on different parts of
memory, so data required by the newly scheduled task may not be in a
memory cache.

Asynchronous IO is an alternative to blocking IO (it's sometimes called
non-blocking IO). Async IO is not directly tied to async concurrency, but
the two are often used together. In async IO, a program initiates IO with one
system call and then can either check or be notified when the IO completes.
That means the program is free to get other work done while the IO takes
place. In Rust, the mechanics of async IO are handled by the async runtime
(the scheduler is also part of the runtime, we'll discuss runtimes in more
detail later in this book, but essentially the runtime is just a library which
takes care of some of the fundamental async stuff).

From the perspective of the whole system, blocking IO in a concurrent
system with threads and non-blocking IO in an async concurrent system are
similar. In both cases, IO takes time and other work gets done while the IO
is happening:

With threads, the thread doing IO requests IO from the OS, the thread
is paused by the OS, other threads get work done, and when the IO is
done, the OS wakes up the thread so it can continue execution with the
result of the IO.
With async, the task doing IO requests IO from the runtime, the
runtime requests IO from the OS but the OS returns control to the
runtime. The runtime pauses the IO task and schedules other tasks to
get work done. When the IO is done, the runtime wakes up the IO task
so it can continue execution with the result of the IO.

The advantage of using async IO, is that the overheads are much lower
so a system can support orders of magnitude more tasks than threads. That
makes async concurrency particularly well-suited for tasks with lots of
users which spend a lot of time waiting for IO (if they don't spend a lot of

https://en.wikipedia.org/wiki/Translation_lookaside_buffer


time waiting and instead do lots of CPU-bound work, then there is not so
much advantage to the low-overheads because the bottleneck will be CPU
and memory resources).

Threads and async are not mutually exclusive: many programs use both.
Some programs have parts which are better implemented using threads and
parts which are better implemented using async. For example, a database
server may use async techniques to manage network communication with
clients, but use OS threads for computation on data. Alternatively, a
program may be written only using async concurrency, but the runtime will
execute tasks on multiple threads. This is necessary for a program to make
use of multiple CPU cores. We'll cover the intersection of threads and async
tasks in a number of places later in the book.
9

We'll start our explanation assuming a program only has a single thread,
but expand on that later. There will probably be other processes running on
the system, but they don't really affect how async concurrency works.
10

There are some programming languages (or even libraries) which have
concurrency which is managed within the program (without the OS), but
with a pre-emptive scheduler rather than relying on cooperation between
threads. Go is a well-known example. These systems don't require async
and await  notation, but have other downsides including making interop
with other languages or the OS much more difficult, and having a
heavyweight runtime. Very early versions of Rust had such a system, but no
traces of it remained by 1.0.



Concurrency and Parallelism
So far we've been talking about concurrency (doing, or appearing to do,

many things at the same time), and we've hinted at parallelism (the presence
of multiple CPU cores which facilitates literally doing many things at the
same time). These terms are sometimes used interchangeably, but they are
distinct concepts. In this section, we'll try to precisely define these terms
and the difference between them. I'll use simple pseudo-code to illustrate
things.

Imagine a single task broken into a bunch of sub-tasks:
task1 { 
  subTask1-1() 
  subTask1-2() 
  ... 
  subTask1-100() 
} 

Let's pretend to be a processor which executes such pseudocode. The
obvious way to do so is to first do subTask1-1  then do subTask1-2  and so
on until we've completed all sub-tasks. This is sequential execution.

Now consider multiple tasks. How might we execute them? We might
start one task, do all the sub-tasks until the whole task is complete, then
start on the next. The two tasks are being executed sequentially (and the
sub-tasks within each task are also being executed sequentially). Looking at
just the sub-tasks, you'd execute them like this:
subTask1-1() 
subTask1-2() 
... 
subTask1-100() 
subTask2-1() 
subTask2-2() 
... 
subTask2-100() 
 



Alternatively, you could do subTask1 , then put task1  aside
(remembering how far you got) and pick up the next task and do the first
sub-task from that one, then go back to task1  to do a sub-task. The two
tasks would be interleaved, we call this concurrent execution of the two
tasks. It might look like:
subTask1-1() 
subTask2-1() 
subTask1-2() 
subTask2-2() 
... 
subTask1-100() 
subTask2-100() 
 

Unless one task can observe the results or side-effects of a different task,
then from the task's perspective, the sub-tasks are still being executed
sequentially.

There's no reason we have to limit ourselves to two tasks, we could
interleave any number and do so in any order.

Note that no matter how much concurrency we add, the whole job takes
the same amount of time to complete (in fact it might take longer with more
concurrency due to the overheads of context switching between them).
However, for a given sub-task, we might get it finished earlier than in the
purely sequential execution (for a user, this might feel more responsive).

Now, imagine it's not just you processing the tasks, you've got some
processor friends to help you out. You can work on tasks at the same time
and get the work done faster! This is parallel execution (which is also
concurrent). You might execute the sub-tasks like:
Processor 1           Processor 2 
==============        ============== 
subTask1-1()          subTask2-1() 
subTask1-2()          subTask2-2() 
...                   ... 
subTask1-100()        subTask2-100() 



If there are more than two processors, we can process even more tasks in
parallel. We could also do some interleaving of tasks on each processor or
sharing of tasks between processors.

In real code, things are a bit more complicated. Some sub-tasks (e.g., IO)
don't require a processor to actively participate, they just need starting and
some time later collecting the results. And some sub-tasks might require the
results (or side-effects) of a sub-task from a different task in order to make
progress (synchronization). Both these scenarios limit the effective ways
that tasks can be concurrently executed and that, together with ensuring
some concept of fairness, is why scheduling is important.

Enough silly examples, let's try to define things
properly

Concurrency is about ordering of computations and parallelism is about
the mode of execution.

Given two computations, we say they are sequential (i.e., not concurrent)
if we can observe that one happens before the other, or that they are
concurrent if we cannot observe (or alternatively, it does not matter) that
one happens before the other.

Two computations happen in parallel if they are literally happening at
the same time. We can think of parallelism as a resource: the more
parallelism is available, the more computations can happen in a fixed period
of time (assuming that computation happens at the same speed). Increasing
the concurrency of a system without increasing parallelism can never make
it faster (although it can make the system more responsive and it may make
it feasible to implement optimizations which would otherwise be
impractical).

To restate, two computations may happen one after the other (neither
concurrent nor parallel), their execution may be interleaved on a single
CPU core (concurrent, but not parallel), or they may be executed at the
same time on two cores (concurrent and parallel)11.

Another useful framing12 is that concurrency is a way of organizing code
and parallelism is a resource. This is a powerful statement! That
concurrency is about organising code rather than executing code is



important because from the perspective of the processor, concurrency
without parallelism simply doesn't exist. It's particularly relevant for async
concurrency because that is implemented entirely in user-side code - not
only is it 'just' about organizing code, but you can easily prove that to
yourself by just reading the source code. That parallelism is a resource is
also useful because it reminds us that for parallelism and performance, only
the number of processor cores is important, not how the code is organized
with respect to concurrency (e.g., how many threads there are).

Both threaded and async systems can offer both concurrency and
parallelism. In both cases, concurrency is controlled by code (spawning
threads or tasks) and parallelism is controlled by the scheduler, which is
part of the OS for threads (configured by the OS's API), and part of the
runtime library for async (configured by choice of runtime, how the runtime
is implemented, and options that the runtime provides to client code). There
is however, a practical difference due to convention and common defaults.
In threaded systems, each concurrent thread is executed in parallel using as
much parallelism as possible. In async systems, there is no strong default: a
system may run all tasks in a single thread, it may assign multiple tasks to a
single thread and lock that thread to a core (so groups of tasks execute in
parallel, but within a group each task executes concurrently, but never in
parallel with other tasks within the group), or tasks may be run in parallel
with or without limits. For the first part of this guide, we will use the Tokio
runtime which primarily supports the last model. I.e., the behavior
regarding parallelism is similar to concurrency with threads. Furthermore,
we'll see features in async Rust which explicitly support concurrency but
not parallelism, independent of the runtime.
11

Can computation be parallel but not concurrent? Sort of but not really.
Imagine two tasks (a and b) which consist of one sub-task each (1 and 2
belonging to a and b, respectively). By the use of synchronisation, we can't
start sub-task 2 until sub-task 1 is complete and task a has to wait for sub-
task 2 to complete until it is complete. Now a and b run on different
processors. If we look at the tasks as black boxes, we can say they are
running in parallel, but in a sense they are not concurrent because their



ordering is fully determined. However, if we look at the sub-tasks we can
see that they are neither parallel or concurrent.
12

Which I think is due to Aaron Turon and is reflected in some of the
design of Rust's standard library, e.g., in the available_parallelism function.

https://doc.rust-lang.org/std/thread/fn.available_parallelism.html


Summary

There are many models of execution. We described sequential
execution, threads and processes, and asynchronous programming.

Threads are an abstraction provided (and scheduled) by the OS.
They usually involve pre-emptive multitasking, are parallel by
default, and have fairly high overheads of management and
context switching.
Asynchronous programming is managed by a user-space runtime.
Multi-tasking is cooperative. It has lower overheads than threads,
but feels a bit different to programming with threads since it uses
different programming primitives ( async  and await , and
futures, rather than first-class threads).

Concurrency and parallelism are different but closely related concepts.

Concurrency is about ordering of computation (operations are
concurrent if their order of execution cannot be observed).
Parallelism is about computing on multiple processors (operations
are parallel if they are literally happening at the same time).

Both OS threads and async programming provide concurrency and
parallelism; async programming can also offer constructs for flexible
or fine-grained concurrency which are not part of most operating
systems' threads API.



Async and Await
In this chapter we'll get started doing some async programming in Rust

and we'll introduce the async  and await  keywords.
async  is an annotation on functions (and other items, such as traits,

which we'll get to later); await  is an operator used in expressions. But
before we jump into those keywords, we need to cover a few core concepts
of async programming in Rust, this follows from the discussion in the
previous chapter, here we'll relate things directly to Rust programming.



Rust async concepts
The runtime

Async tasks must be managed and scheduled. There are typically more
tasks than cores available so they can't all be run at once. When one stops
executing another must be picked to execute. If a task is waiting on IO or
some other event, it should not be scheduled, but when that completes, it
should be scheduled. That requires interacting with the OS and managing
IO work.

Many programming languages provide a runtime. Commonly, this
runtime does a lot more than manage async tasks - it might manage memory
(including garbage collection), have a role in exception handling, provide
an abstraction layer over the OS, or even be a full virtual machine. Rust is a
low-level language and strives towards minimal runtime overhead. The
async runtime therefore has a much more limited scope than many other
languages' runtimes. There are also many ways to design and implement an
async runtime, so Rust lets you choose one depending on your
requirements, rather than providing one. This does mean that getting started
with async programming requires an extra step.

As well as running and scheduling tasks, a runtime must interact with
the OS to manage async IO. It must also provide timer functionality to tasks
(which intersects with IO management). There are no strong rules about
how a runtime must be structured, but some terms and division of
responsibilities are common:

reactor or event loop or driver (equivalent terms): dispatches IO and
timer events, interacts with the OS, and does the lowest-level driving
forward of execution,
scheduler: determines when tasks can execute and on which OS
threads,
executor or runtime: combines the reactor and scheduler, and is the
user-facing API for running async tasks; runtime is also used to mean
the whole library of functionality (e.g., everything in the Tokio crate,
not just the Tokio executor which is represented by the Runtime  type).

https://docs.rs/tokio/latest/tokio/runtime/struct.Runtime.html


As well as the executor as described above, a runtime crate typically
includes many utility traits and functions. These might include traits (e.g., 
AsyncRead ) and implementations for IO, functionality for common IO
tasks such as networking or accessing the file system, locks, channels, and
other synchronisation primitives, utilities for timing, utilities for working
with the OS (e.g., signal handling), utility functions for working with
futures and streams (async iterators), or monitoring and observation tools.
We'll cover many of those in this guide.

There are many async runtimes to choose from. Some have very
different scheduling policies, or are optimised for a specific task or domain.
For most of this guide we'll use the Tokio runtime. It's a general purpose
runtime and is the most popular runtime in the ecosystem. It's a great choice
for getting started and for production work. In some circumstances, you
might get better performance or be able to write simpler code with a
different runtime. Later in this guide we'll discuss some of the other
available runtimes and why you might choose one or another, or even write
your own.

To get up and running as quickly as possible, you need just a little
boilerplate. You'll need to include the Tokio crate as a dependency in your
Cargo.toml (just like any other crate):
[dependencies] 
tokio = { version = "1", features = ["full"] } 

And you'll use the tokio::main  annotation on your main  function so
that it can be an async function (which is otherwise not permitted in Rust):
#[tokio::main] 
async fn main() { ... } 

That's it! You're ready to write some asynchronous code!
The #[tokio::main]  annotation initializes the Tokio runtime and starts

an async task for running the code in main . Later in this guide we'll explain
in more detail what that annotation is doing and how to use async code
without it (which will give you more flexibility).

Futures-rs and the ecosystem

https://tokio.rs/


TODO context and history, what futures-rs is for - was used a lot,
probably don't need it now, overlap with Tokio and other runtimes
(sometimes with subtle semantic differences), why you might need it
(working with futures directly, esp writing your own, streams, some utils)

Other ecosystem stuff - Yosh's crates, alt runtimes, experimental stuff,
other?

Futures and tasks
The basic unit of async concurrency in Rust is the future. A future is just

a regular old Rust object (a struct or enum, usually) which implements the
'Future' trait. A future represents a deferred computation. That is, a
computation that will be ready at some point in the future.

We'll talk a lot about futures in this guide, but it's easiest to get started
without worrying too much about them. We'll mention them quite a bit in
the next few sections, but we won't really define them or use them directly
until later. One important aspect of futures is that they can be combined to
make new, 'bigger' futures (we'll talk a lot more about how they can be
combined later).

I've used the term 'async task' quite a bit in an informal way in the
previous chapter and this one. I've used the term to mean a logical sequence
of execution; analogous to a thread but managed within a program rather
than externally by the OS. It is often useful to think in terms of tasks,
however, Rust itself has no concept of a task and the term is used to mean
different things! It is confusing! To make it worse, runtimes do have a
concept of a task and different runtimes have slightly different concepts of
tasks.

From here on in, I'm going to try to be precise about the terminology
around tasks. When I use just 'task' I mean the abstract concept of a
sequence of computation that may occur concurrently with other tasks. I'll
use 'async task' to mean exactly the same thing, but in contrast to a task
which is implemented as an OS thread. I'll use 'runtime's task' to mean
whatever kind of task a runtime imagines, and 'tokio task' (or some other
specific runtime) to mean Tokio's idea of a task.

An async task in Rust is just a future (usually a 'big' future made by
combining many others). In other words, a task is a future which is

https://doc.rust-lang.org/std/future/trait.Future.html


executed. However, there are times when a future is 'executed' without
being a runtime's task. This kind of a future is intuitively a task but not a
runtime's task. I'll spell this out more when we get to an example of it.



Async functions
The async  keyword is a modifier on function declarations. E.g., we can

write pub async fn send_to_server(...) . An async function is simply a
function declared using the async  keyword, and what that means is that it
is a function which can be executed asynchronously, in other words the
caller can choose not to wait for the function to complete before doing
something else.

In more mechanical terms, when an async function is called, the body is
not executed as it would be for a regular function. Instead the function body
and its arguments are packaged into a future which is returned in lieu of a
real result. The caller can then decide what to do with that future (if the
caller wants the result 'straight away', then it will await  the future, see the
next section).

Within an async function, code is executed in the usual, sequential way1,
being async makes no difference. You can call synchronous functions from
async functions, and execution proceeds as usual. One extra thing you can
do within an async function is use await  to await other async functions (or
futures), which may cause yielding of control so that another task can
execute.
1

like any other thread, the thread the async function is running on may be
pre-empted by the operating system and paused so another thread can get
some work done. However, from the function's point of view this is not
observable without inspecting data which may have been modified by other
threads (and which could have been modified by another thread executing
in parallel without the current thread being paused).



await
We stated above that a future is a computation that will be ready at some

point in the future. To get the result of that computation, we use the await
keyword. If the result is ready immediately or can be computed without
waiting, then await  simply does that computation to produce the result.
However, if the result is not ready, then await  hands control over to the
scheduler so that another task can proceed (this is cooperative multitasking
mentioned in the previous chapter).

The syntax for using await is some_future.await , i.e., it is a postfix
keyword used with the .  operator. That means it can be used ergonomically
in chains of method calls and field accesses.

Consider the following functions:
// An async function, but it doesn't need to wait for anything. 
async fn add(a: u32, b: u32) -> u32 { 
  a + b 
} 
 
async fn wait_to_add(a: u32, b: u32) -> u32 { 
  sleep(1000).await; 
  a + b 
} 

If we call add(15, 3).await  then it will return immediately with the
result 18 . If we call wait_to_add(15, 3).await , we will eventually get
the same answer, but while we wait another task will get an opportunity to
run.

In this silly example, the call to sleep  is a stand-in for doing some
long-running task where we have to wait for the result. This is usually an IO
operation where the result is data read from an external source or
confirmation that writing to an external destination succeeded. Reading
looks something like let data = read(...).await? . In this case await
will cause the current task to wait while the read happens. The task will
resume once reading is completed (other tasks could get some work done



while the reading task waits). The result of reading could be data
successfully read or an error (handled by the ? ).

Note that if we call add  or wait_to_add  or read  without using 
.await  we won't get any answer!

What?
Calling an async function returns a future, it doesn't immediately execute

the code in the function. Furthermore, a future does not do any work until it
is awaited2. This is in contrast to some other languages where an async
function returns a future which begins executing immediately.

This is an important point about async programming in Rust. After a
while it will be second nature, but it often trips up beginners, especially
those who have experience with async programming in other languages.

An important intuition about futures in Rust is that they are inert objects.
To get any work done they must be driven forward by an external force
(usually an async runtime).

We've described await  quite operationally (it runs a future, producing a
result), but we talked in the previous chapter about async tasks and
concurrency, how does await  fit into that mental model? First, let's
consider pure sequential code: logically, calling a function simply executes
the code in the function (with some assignment of variables). In other
words, the current task continues executing the next 'chunk' of code which
is defined by the function. Similarly, in an async context, calling a non-
async function simply continues execution with that function. Calling an
async function finds the code to run, but doesn't run it. await  is an operator
which continues execution of the current task, or if the current task can't
continue right now, gives another task an opportunity to continue.

await  can only be used inside an async context, for now that means
inside an async function (we'll see more kinds of async contexts later). To
understand why, remember that await  might hand over control to the
runtime so that another task can execute. There is only a runtime to hand
control to in an async context. For now, you can imagine the runtime like a
global variable which is only accessible in async functions, we'll explain
later how it really works.



Finally, for one more perspective on await : we mentioned earlier that
futures can be combined together to make 'bigger' futures. async  functions
are one way to define a future, and await  is one way to combine futures.
Using await  on a future combines that future into the future produced by
the async function it's used inside. We'll talk in more detail about this
perspective and other ways to combine futures later.
2

Or polled, which is a lower-level operation than await  and happens
behind the scenes when using await . We'll talk about polling later when
we talk about futures in detail.



Some async/await examples
Let's start by revisiting our 'hello, world!' example:

// Define an async function. 
async fn say_hello() { 
    println!("hello, world!"); 
} 
 
#[tokio::main] // Boilerplate which lets us write `async fn 
main`, we'll explain it later. 
async fn main() { 
    // Call an async function and await its result. 
    say_hello().await; 
} 

You should now recognise the boilerplate around main . It's for
initializing the Tokio runtime and creating an initial task to run the async 
main  function.

say_hello  is an async function, when we call it, we have to follow the
call with .await  to run it as part of the current task. Note that if you
remove the .await , then running the program does nothing! Calling 
say_hello  returns a future, but it is never executed so println  is never
called (the compiler will warn you, at least).

Here's a slightly more realistic example, taken from the Tokio tutorial.
#[tokio::main] 
async fn main() -> Result<()> { 
    // Open a connection to the mini-redis address. 
    let mut client = client::connect("127.0.0.1:6379").await?; 
 
    // Set the key "hello" with value "world" 
    client.set("hello", "world".into()).await?; 
 
    // Get key "hello" 
    let result = client.get("hello").await?; 
 

https://tokio.rs/tokio/tutorial/hello-tokio


    println!("got value from the server; result={:?}", result); 
 
    Ok(()) 
} 

The code is a bit more interesting, but we're essentially doing the same
thing - calling async functions and then awaiting to execute the result. This
time we're using ?  for error handling - it works just like in synchronous
Rust.

For all the talk so far about concurrency, parallelism, and asynchrony,
both these examples are 100% sequential. Just calling and awaiting async
functions does not introduce any concurrency unless there are other tasks to
schedule while the awaiting task is waiting. To prove this to ourselves, lets
look at another simple (but contrived) example:
use std::io::{stdout, Write}; 
use tokio::time::{sleep, Duration}; 
 
async fn say_hello() { 
    print!("hello, "); 
    // Flush stdout so we see the effect of the above `print` 
immediately. 
    stdout().flush().unwrap(); 
} 
 
async fn say_world() { 
    println!("world!"); 
} 
 
#[tokio::main] 
async fn main() { 
    say_hello().await; 
    // An async sleep function, puts the current task to sleep 
for 1s. 
    sleep(Duration::from_millis(1000)).await; 
    say_world().await; 
} 



Between printing "hello" and "world", we put the current task to sleep3

for one second. Observe what happens when we run the program: it prints
"hello", does nothing for one second, then prints "world". That is because
executing a single task is purely sequential. If we had some concurrency,
then that one second nap would be an excellent opportunity to get some
other work done, like printing "world". We'll see how to do that in the next
section.
3

Note that we're using an async sleep function here, if we were to use 
sleep  from std we'd put the whole thread to sleep. That wouldn't make any
difference in this toy example but in a real program it would mean other
tasks could not be scheduled on that thread during that time. That is very
bad.

https://doc.rust-lang.org/std/thread/fn.sleep.html


Spawning tasks
We've talked about async and await as a way to run code in an async

task. And we've said that await  can put the current task to sleep while it
waits for IO or some other event. When that happens, another task can run,
but how do those other tasks come about? Just like we use 
std::thread::spawn  to spawn a new task, we can use tokio::spawn  to
spawn a new async task. Note that spawn  is a function of Tokio, the
runtime, not from Rust's standard library, because tasks are purely a runtime
concept.

Here's a tiny example of running an async function on a separate task by
using spawn :
use tokio::{spawn, time::{sleep, Duration}}; 
 
async fn say_hello() { 
    // Wait for a while before printing to make it a more 
interesting race. 
    sleep(Duration::from_millis(100)).await; 
    println!("hello"); 
} 
 
async fn say_world() { 
    sleep(Duration::from_millis(100)).await; 
    println!("world!"); 
} 
 
#[tokio::main] 
async fn main() { 
    spawn(say_hello()); 
    spawn(say_world()); 
    // Wait for a while to give the tasks time to run. 
    sleep(Duration::from_millis(1000)).await; 
} 

https://docs.rs/tokio/latest/tokio/task/fn.spawn.html


Similar to the last example, we have two functions printing "hello" and
"world!". But this time we run them concurrently (and in parallel) rather
than sequentially. If you run the program a few times you should see the
strings printing in both orders - sometimes "hello" first, sometimes "world!"
first. A classic concurrent race!

Let's dive into what is happening here. There are three concepts in play:
futures, tasks, and threads. The spawn  function takes a future (which
remember can be made up of many smaller futures) and runs it as a new
Tokio task. Tasks are the concept which the Tokio runtime schedules and
manages (not individual futures). Tokio (in its default configuration) is a
multi-threaded runtime which means that when we spawn a new task, that
task may be run on a different OS thread from the task it was spawned from
(it may be run on the same thread, or it may start on one thread and then be
moved to another later on).

So, when a future is spawned as a task it runs concurrently with the task
it was spawned from and any other tasks. It may also run in parallel to those
tasks if it is scheduled on a different thread.

To summarise, when we write two statements following each other in
Rust, they are executed sequentially (whether in async code or not). When
we write await , that does not change the concurrency of sequential
statements. E.g., foo(); bar();  is strictly sequential - foo  is called and
afterwards, bar  is called. That is true whether foo  and bar  are async
functions or not. foo().await; bar().await;  is also strictly sequential, 
foo  is fully evaluated and then bar  is fully evaluated. In both cases
another thread might be interleaved with the sequential execution and in the
second case, another async task might be interleaved at the await points, but
the two statements are executed sequentially with respect to each other in
both cases.

If we use either thread::spawn  or tokio::spawn  we introduce
concurrency and potentially parallelism, in the first case between threads
and in the second between tasks.

Later in the guide we'll see cases where we execute futures concurrently,
but never in parallel.



Joining tasks
If we want to get the result of executing a spawned task, then the

spawning task can wait for it to finish and use the result, this is called
joining the tasks (analogous to joining threads, and the APIs for joining are
similar).

When a task is spawned, the spawn function returns a JoinHandle . If
you just want the task to do it's own thing executing, the JoinHandle  can
be discarded (dropping the JoinHandle  does not affect the spawned task).
But if you want the spawning task to wait for the spawned task to complete
and then use the result, you can await  the JoinHandle  to do so.

For example, let's revisit our 'Hello, world!' example one more time:
use tokio::{spawn, time::{sleep, Duration}}; 
 
async fn say_hello() { 
    // Wait for a while before printing to make it a more 
interesting race. 
    sleep(Duration::from_millis(100)).await; 
    println!("hello"); 
} 
 
async fn say_world() { 
    sleep(Duration::from_millis(100)).await; 
    println!("world"); 
} 
 
#[tokio::main] 
async fn main() { 
    let handle1 = spawn(say_hello()); 
    let handle2 = spawn(say_world()); 
     
    let _ = handle1.await; 
    let _ = handle2.await; 
 

https://doc.rust-lang.org/std/thread/struct.JoinHandle.html#method.join
https://docs.rs/tokio/latest/tokio/task/struct.JoinHandle.html


    println!("!"); 
} 

The code is similar to last time, but instead of just calling spawn , we
save the returned JoinHandle s and later await  them. Since we're waiting
for those tasks to complete before we exit the main  function, we no longer
need the sleep  in main .

The two spawned tasks are still executing concurrently. If you run the
program a few times you should see both orderings. However, the await ed
join handles are a limit on the concurrency: the final exclamation mark ('!')
will always be printed last (you could experiment with moving println!
("!");  relative to the await s. You'll probably need to change with the
sleep times too to get observable effects).

If we immediately await ed the JoinHandle  of the first spawn  rather
than saved it and later await ed (i.e., written 
spawn(say_hello()).await; ), then we'd have spawned another task to
run the 'hello' future, but the spawning task would have waited for it to
finish before doing anything else. In other words, there is no possible
concurrency! You almost never want to do this (because why bother with
the spawn? Just write the sequential code).

JoinHandle
We'll quickly look at JoinHandle  in a little more depth. The fact that we

can await  a JoinHandle  is a clue that a JoinHandle  is itself a future. 
spawn  is not an async  function, it's a regular function that returns a future
( JoinHandle ). It does some work (to schedule the task) before returning
the future (unlike an async future), which is why we don't need to await  
spawn . Awaiting a JoinHandle  waits for the spawned task to complete and
then returns the result. In the above example, there was no result, we just
waited for the task to complete. JoinHandle  is a generic type and it's type
parameter is the type returned by the spawned task. In the above example,
the type would be JoinHandle<()> , a future that results in a String
would produce a JoinHandle  with type JoinHandle<String> .



await ing a JoinHandle  returns a Result  (which is why we used let 
_ = ...  in the above example, it avoids a warning about an unused 
Result ). If the spawned task completed successfully, then the task's result
will be in the Ok  variant. If the task panicked or was aborted (a form of
cancellation), then the result will be an Err  containing a JoinError  docs.
If you are not using cancellation via abort  in your project, then 
unwrapping  the result of JoinHandle.await  is a reasonable approach,
since that is effectively propagating a panic from the spawned task to the
spawning task.

clbr://internal.invalid/book/OEBPS/part-reference/cancellation.md
https://docs.rs/tokio/latest/tokio/task/struct.JoinError.html


More async/await topics



Unit tests
How to unit test async code? The issue is that you can only await from

inside an async context, and unit tests in Rust are not async. Luckily, most
runtimes provide a convenience attribute for tests similar to the one for 
async main . Using Tokio, it looks like this:
#[tokio::test] 
async fn test_something() { 
  // Write a test here, including all the `await`s you like. 
} 

There are many ways to configure the test, see the docs for details.
There are some more advanced topics in testing async code (e.g., testing

for race conditions, deadlock, etc.), and we'll cover some of those later in
this guide.

https://docs.rs/tokio/latest/tokio/attr.test.html
clbr://internal.invalid/book/OEBPS/part-guide/more-async-await.html


Blocking and cancellation
Blocking and cancellation are important to keep in mind when

programming with async Rust. These concepts are not localised to any
particular feature or function, but are ubiquitous properties of the system
which you must understand to write correct code.

Blocking IO
We say a thread (note we're talking about OS threads here, not async

tasks) is blocked when it can't make any progress. That's usually because it
is waiting for the OS to complete a task on its behalf (usually I/O).
Importantly, while a thread is blocked, the OS knows not to schedule it so
that other threads can make progress. This is fine in a multithreaded
program because it lets other threads make progress while the blocked
thread is waiting. However, in an async program, there are other tasks
which should be scheduled on the same OS thread, but the OS doesn't know
about those and keeps the whole thread waiting. This means that rather than
the single task waiting for its I/O to complete (which is fine), many tasks
have to wait (which is not fine).

We'll talk soon about non-blocking/async I/O. For now, just know that
non-blocking I/O is I/O which the async runtime knows about and so will
only the current task will wait, the thread will not be blocked. It is very
important to only use non-blocking I/O from an async task, never blocking
I/O (which is the only kind provided in Rust's standard library).

Blocking computation
You can also block the thread by doing computation (this is not quite the

same as blocking I/O, since the OS is not involved, but the effect is similar).
If you have a long-running computation (with or without blocking I/O)
without yielding control to the runtime, then that task will never give the
runtime's scheduler a chance to schedule other tasks. Remember that async
programming uses cooperative multitasking. Here a task is not cooperating,
so other tasks won't get a chance to get work done. We'll discuss ways to
mitigate this later.



There are many other ways to block a whole thread, and we'll come back
to blocking several times in this guide.

Cancellation
Cancellation means stopping a future (or task) from executing. Since in

Rust (and in contrast to many other async/await systems), futures must be
driven forward by an external force (like the async runtime), if a future is
no longer driven forward then it will not execute any more. If a future is
dropped (remember, a future is just a plain old Rust object), then it can
never make any more progress and is canceled.

Cancellation can be initiated in a few ways:

By simply dropping a future (if you own it).
Calling abort  on a task's 'JoinHandle' (or an AbortHandle ).
Via a CancellationToken  (which requires the future being canceled
to notice the token and cooperatively cancel itself).
Implicitly, by a function or macro like select .

The middle two are specific to Tokio, though most runtimes provide
similar facilities. Using a CancellationToken  requires cooperation of the
future being canceled, but the others do not. In these other cases, the
canceled future will get no notification of cancellation and no opportunity
to clean up (besides its destructor). Note that even if a future has a
cancellation token, it can still be canceled via the other methods which
won't trigger the cancellation token.

From the perspective of writing async code (in async functions, blocks,
futures, etc.), the code might stop executing at any await  (including hidden
ones in macros) and never start again. In order for your code to be correct
(specifically to be cancellation safe), it must work correctly whether it
completes normally or whether it terminates at any await point1.
async fn some_function(input: Option<Input>) { 
    let Some(input) = input else { 
        return;           // Might terminate here (`return`). 
    }; 
 

https://docs.rs/tokio/latest/tokio/task/struct.JoinHandle.html#method.abort
https://docs.rs/tokio-util/latest/tokio_util/sync/struct.CancellationToken.html
https://docs.rs/tokio/latest/tokio/macro.select.html


    let x = foo(input)?;  // Might terminate here (`?`). 
 
    let y = bar(x).await; // Might terminate here (`await`). 
 
    // ... 
 
    //                       Might terminate here (implicit 
return). 
} 

An example of how this can go wrong is if an async function reads data
into an internal buffer, then awaits the next datum. If reading the data is
destructive (i.e., cannot be re-read from the original source) and the async
function is canceled, then the internal buffer will be dropped, and the data
in it will be lost. It is important to consider how a future and any data it
touches will be impacted by canceling the future, restarting the future, or
starting a new future which touches the same data.

We'll be coming back to cancellation and cancellation safety a few times
in this guide, and there is a whole chapter on the topic in the reference
section.
1

It is interesting to compare cancellation in async programming with
canceling threads. Canceling a thread is possible (e.g., using 
pthread_cancel  in C, there is no direct way to do this in Rust), but it is
almost always a very, very bad idea since the thread being canceled can
terminate anywhere. In contrast, canceling an async task can only happen at
an await point. As a consequence, it is very rare to cancel an OS thread
without terminating the whole process and so as a programmer, you
generally don't worry about this happening. In async Rust however,
cancellation is definitely something which can happen. We'll be discussing
how to deal with that as we go along.

clbr://internal.invalid/book/OEBPS/part-guide/more-async-await.html


Async blocks
A regular block ( { ... } ) groups code together in the source and

creates a scope of encapsulation for names. At runtime, the block is
executed in order and evaluates to the value of its last expression (or the
unit type ( () ) if there is no trailing expression).

Similarly to async functions, an async block is a deferred version of a
regular block. An async block scopes code and names together, but at
runtime it is not immediately executed and evaluates to a future. To execute
the block and obtain the result, it must be await ed. E.g.:
let s1 = { 
    let a = 42; 
    format!("The answer is {a}") 
}; 
 
let s2 = async { 
    let q = question().await; 
    format!("The question is {q}") 
}; 

If we were to execute this snippet, s1  would be a string which could be
printed, but s2  would be a future; question()  would not have been called.
To print s2 , we first have to s2.await .

An async block is the simplest way to start an async context and create a
future. It is commonly used to create small futures which are only used in
one place.

Unfortunately, control flow with async blocks is a little quirky. Because
an async block creates a future rather than straightforwardly executing, it
behaves more like a function than a regular block with respect to control
flow. break  and continue  cannot go 'through' an async block like they can
with regular blocks; instead you have to use return :
loop { 
    { 
        if ... { 



            // ok 
            continue; 
        } 
    } 
 
    async { 
        if ... { 
            // not ok 
            // continue; 
 
            // ok - continues with the next execution of the 
`loop`, though note that if there was 
            // code in the loop after the async block that 
would be executed. 
            return; 
        } 
    }.await 
} 

To implement break  you would need to test the value of the block (a
common idiom is to use ControlFlow  for the value of the block, which
also allows use of ? ).

Likewise, ?  inside an async block will terminate execution of the future
in the presence of an error, causing the await ed block to take the value of
the error, but won't exit the surrounding function (like ?  in a regular block
would). You'll need another ?  after await  for that:
async { 
    let x = foo()?;   // This `?` only exits the async block, 
not the surrounding function. 
    consume(x); 
    Ok(()) 
}.await? 

Annoyingly, this often confuses the compiler since (unlike functions) the
'return' type of an async block is not explicitly stated. You'll probably need
to add some type annotations on variables or use turbofished types to make

https://doc.rust-lang.org/std/ops/enum.ControlFlow.html


this work, e.g., Ok::<_, MyError>(())  instead of Ok(())  in the above
example.

A function which returns an async block is pretty similar to an async
function. Writing async fn foo() -> ... { ... }  is roughly equivalent
to fn foo() -> ... { async { ... } } . In fact, from the caller's
perspective they are equivalent, and changing from one form to the other is
not a breaking change. Furthermore, you can override one with the other
when implementing an async trait (see below). However, you do have to
adjust the type, making the Future  explicit in the async block version: 
async fn foo() -> Foo  becomes fn foo() -> impl Future<Output = 
Foo>  (you might also need to make other bounds explicit, e.g., Send  and 
'static ).

You would usually prefer the async function version since it is simpler
and clearer. However, the async block version is more flexible since you
can execute some code when the function is called (by writing it outside the
async block) and some code when the result is awaited (the code inside the
async block).



Async closures

closures

coming soon (https://github.com/rust-lang/rust/pull/132706,
https://blog.rust-lang.org/inside-rust/2024/08/09/async-closures-
call-for-testing.html)
async blocks in closures vs async closures



Lifetimes and borrowing

Mentioned the static lifetime above
Lifetime bounds on futures ( Future + '_ , etc.)
Borrowing across await points
I don't know, I'm sure there are more lifetime issues with async
functions ...



Send + 'static bounds on futures

Why they're there, multi-threaded runtimes
spawn local to avoid them
What makes an async fn Send + 'static  and how to fix bugs with it



Async traits

syntax

The Send + 'static  issue and working around it

trait_variant
explicit future
return type notation (https://blog.rust-lang.org/inside-
rust/2024/09/26/rtn-call-for-testing.html)

overriding

future vs async notation for methods
object safety
capture rules (https://blog.rust-lang.org/2024/09/05/impl-trait-capture-
rules.html)
history and async-trait crate



Recursion

Allowed (relatively new), but requires some explicit boxing

forward reference to futures, pinning
https://rust-lang.github.io/async-
book/07_workarounds/04_recursion.html
https://blog.rust-lang.org/2024/03/21/Rust-1.77.0.html#support-
for-recursion-in-async-fn
async-recursion macro (https://docs.rs/async-
recursion/latest/async_recursion/)



IO and issues with blocking



Blocking and non-blocking IO

High level view
How async IO fits with async concurrency
Why blocking IO is bad
forward ref to streams for streams/sinks



Read and Write

async Read and Write traits

part of the runtime
how to use
specific implementations

network vs disk

tcp, udp
file system is not really async, but io_uring (ref to that
chapter)

practical examples
stdout, etc.
pipe, fd, etc.



Memory management

Issues with buffer management and async IO
Different solutions and pros and cons

zero-copy approach
shared buffer approach

Utility crates to help with this, Bytes, etc.



Advanced topics on IO

buf read/write
Read + Write, split, join
copy
simplex and duplex
cancelation



The OS view of IO

Different kinds of IO and mechanisms, completion IO, reference to
completion IO chapter in adv section

different runtimes can faciliate this
mio for low-level interface



Other blocking operations

Why this is bad
Long running CPU work

Using Tokio for just CPU work: https://thenewstack.io/using-
rustlangs-async-tokio-runtime-for-cpu-bound-tasks/

Solutions

spawn blocking
thread pool
etc.

yielding to the runtime

not the same as Rust's yield keyword
await doesn't yield
implicit yields in Tokio



Composing futures concurrently
In this chapter we're going to cover more ways in which futures can be

composed. In particular, some new ways in which futures can be executed
concurrently (but not in parallel). Superficially, the new functions/macros
we introduce in this chapter are pretty simple. However, the underlying
concepts can be pretty subtle. We'll start with a recap on futures,
concurrency, and parallelism, but you might also want to revisit the earlier
section comparing concurrency with parallelism.

A futures is a deferred computation. A future can be progressed by using
await , which hands over control to the runtime, causing the current task to
wait for the result of the computation. If a  and b  are futures, then they can
be sequentially composed (that is, combined to make a future which
executes a  to completion and then b  to completion) by await ing one then
the other: async { a.await; b.await} .

We have also seen parallel composition of futures using spawn : async 
{ let a = spawn(a); let b = spawn(b); (a.await, b.await)}  runs
the two futures in parallel. Note that the await s in the tuple are not
awaiting the futures themselves, but are awaiting JoinHandle s to get the
results of the futures when they complete.

In this chapter we introduce two ways to compose futures concurrently
without parallelism: join  and select / race . In both cases, the futures run
concurrently by time-slicing; each of the composed futures takes turns to
execute then the next gets a turn. This is done without involving the async
runtime (and therefore without multiple OS threads and without any
potential for parallelism). The composing construct interleaves the futures
locally. You can think of these constructs being like mini-executors which
execute their component futures within a single async task.

The fundamental difference between join and select/race is how they
handle futures completing their work: a join finishes when all futures finish,
a select/race finishes when one future finishes (all the others are cancelled).
There are also variations of both for handling errors.

clbr://internal.invalid/book/OEBPS/part-guide/concurrency.md#concurrency-and-parallelism


These constructs (or similar concepts) are often used with streams, we'll
touch on this below, but we'll talk more about that in the streams chapter.

If you want parallelism (or you don't explicitly not want parallelism),
spawning tasks is often a simpler alternative to these composition
constructs. Spawning tasks is usually less error-prone, more general, and
performance is more predictable. On the other hand, spawning is inherently
less structured, which can make lifecycle and resource management harder
to reason about.

It's worth considering the performance issue in a little more depth. The
potential performance problem with concurrent composition is the fairness
of time sharing. If you have 100 tasks in your program, then typically the
optimal way to share resources is for each task to get 1% of the processor
time (or if the tasks are all waiting, then for each to have the same chance of
being woken up). If you spawn 100 tasks, then this is usually what happens
(roughly). However, if you spawn two tasks and join 99 futures on one of
those tasks, then the scheduler will only know about two tasks and one task
will get 50% of the time and the 99 futures will each get 0.5%.

Usually the distribution of tasks is not so biased, and very often we use
join/select/etc. for things like timeouts where this behaviour is actually
desirable. But it is worth considering to ensure that your program has the
performance characteristics you want.

clbr://internal.invalid/book/OEBPS/part-guide/streams.md
clbr://internal.invalid/book/OEBPS/part-reference/structured.md


Join
Tokio's join  macro takes a list of futures and runs them all to

completion concurrently (returning all the results as a tuple). It returns
when all the futures have completed. The futures are always executed on
the same thread (concurrently and not in parallel).

Here's a simple example:
async fn main() { 
  let (result_1, result_2) = join!(do_a_thing(), do_a_thing()); 
  // Use `result_1` and `result_2`. 
} 

Here, the two executions of do_a_thing  happen concurrently, and the
results are ready when they are both done. Notice that we don't await  to
get the results. join!  implicitly awaits its futures and produces a value. It
does not create a future. You do still need to use it within an async context
(e.g., from within an async function).

Although you can't see it in the example above, join!  takes expressions
which evaluate to futures1. join  does not create an async context in it's
body and you shouldn't await  the futures passed to join  (otherwise they'll
be evaluated before the joined futures).

Because all the futures are executed on the same thread, if any future
blocks the thread, then none of them can make progress. If using a mutex or
other lock, this can easily lead to deadlock if one future is waiting for a lock
held by another future.

join  does not care about the result of the futures. In particular, if a
future is cancelled or returns an error, it does not affect the others - they
continue to execute. If you want 'fail fast' behaviour, use try_join . 
try_join  works similarly to join , however, if any future returns an Err ,
then all the other futures are cancelled and try_join  returns the error
immediately.

Back in the earlier chapter on async/await, we used the word 'join' to talk
about joining spawned tasks. As the name suggests, joining futures and
tasks is related: joining means we execute multiple futures concurrently and

https://docs.rs/tokio/latest/tokio/macro.join.html
https://docs.rs/tokio/latest/tokio/macro.join.html
https://docs.rs/tokio/latest/tokio/macro.try_join.html
clbr://internal.invalid/book/OEBPS/part-guide/async-await.md


wait for the result before continuing. The syntax is different: using a 
JoinHandle  vs the join  macro, but the idea is similar. The key difference
is that when joining tasks, the tasks execute concurrently and in parallel,
whereas using join! , the futures execute concurrently but not in parallel.
Furthermore, spawned tasks are scheduled on the runtime's scheduler,
whereas with join!  the futures are 'scheduled' locally (on the same task
and within the temporal scope of the macro's execution). Another difference
is that if a spawned task panics, the panic is caught by the runtime, but if a
future in join  panics, then the whole task panics.

Alternatives
Running futures concurrently and collecting their results is a common

requirement. You should probably use spawn  and JoinHandle s unless you
have a good reason not to (i.e., you explicitly do not want parallelism, and
even then you might prefer to use spawn_local ). The JoinSet  abstraction
manages such spawned tasks in a way similar to join! .

Most runtimes (and futures.rs) have an equivalent to Tokio's join

macro and they mostly behave the same way. There are also join

functions, which are similar to the macro but a little less flexible. E.g.,
futures.rs has join  for joining two futures, join3 , join4 , and join5  for
joining the obvious number of futures, and join_all for joining a collection
of futures (as well as try_  variations of each of these).

Futures-concurrency also provides functionality for join (and try_join).
In the futures-concurrency style, these operations are trait methods on
groups of futures such as tuples, Vec s, or arrays. E.g., to join two futures,
you would write (fut1, fut2).join().await  (note that await  is explicit
here).

If the set of futures you wish to join together varies dynamically (e.g.,
new futures are created as input comes in over the network), or you want
the results as they complete rather than when all the futures have
completed, then you'll need to use streams and the FuturesUnordered  or 
FuturesOrdered  functionality. We'll cover these in the streams chapter.
1

https://docs.rs/tokio/latest/tokio/task/fn.spawn_local.html
https://docs.rs/tokio/latest/tokio/task/struct.JoinSet.html
https://docs.rs/futures/latest/futures/macro.join.html
https://docs.rs/futures/latest/futures/future/fn.join.html
https://docs.rs/futures/latest/futures/future/fn.join3.html
https://docs.rs/futures/latest/futures/future/fn.join4.html
https://docs.rs/futures/latest/futures/future/fn.join5.html
https://docs.rs/futures/latest/futures/future/fn.join_all.html
https://docs.rs/futures-concurrency/latest
https://docs.rs/futures/latest/futures/stream/struct.FuturesUnordered.html
https://docs.rs/futures/latest/futures/stream/struct.FuturesOrdered.html
clbr://internal.invalid/book/OEBPS/part-guide/streams.md


The expressions must have a type which implements IntoFuture . The
expression is evaluated and converted to a future by the macro. I.e., they
don't actually have to evaluate to a future, but rather something which can
be converted into a future, but this is a pretty minor distinction. The
expressions themselves are evaluated sequentially before any of the
resulting futures are executed.



Race/select
The counterpart to joining futures is racing them (aka selecting on them).

With race/select the futures are executed concurrently, but rather than
waiting for all the futures to complete, we only wait for the first one to
complete and then cancel the others. Although this sounds similar to
joining, it is significantly more interesting (and sometimes error-prone)
because now we have to reason about cancellation.

Here's an example using Tokio's select  macro:
async fn main() { 
  select! { 
    result = do_a_thing() => { 
      println!("computation completed and returned {result}); 
    } 
    _ = timeout() => { 
      println!("computation timed-out"); 
    } 
  } 
} 

You'll notice things are already more interesting than with the join
macro because we handle the results of the futures within the select
macro. It looks a bit like a match  expression, but with select , all branches
are run concurrently and the body of the branch which finishes first is
executed with its result (the other branches are not executed and the futures
are cancelled by dropping). In the example, do_a_thing  and timeout
execute concurrently and the first to complete will have it's block executed
(i.e., only one println  will run), the other future will be cancelled. As with
the join  macro, awaiting the futures is implicit.

Tokio's select  macro supports a bunch of features:

pattern matching: the syntax on the left of =  on each branch can be a
pattern and the block is only executed if the result of the future
matches the pattern. If the pattern does not match, then the future is no
longer polled (but other futures are). This can be useful for futures

https://docs.rs/tokio/latest/tokio/macro.select.html


which optionally return a value, e.g., Some(x) = do_a_thing() => { 
... } .
if  guards: each branch may have an if  guard. When the select
macro runs, after evaluating each expression to produce a future, the 
if  guard is evaluated and the future is only polled if the guard is true.
E.g., x = = do_a_thing() if false => { ... }  will never be
polled. Note that the if  guard is not re-evaluated during polling, only
when the macro is initialized.
else  branch: select  can have an else  branch else => { ... } ,
this is executed if all the futures have stopped and none of the blocks
have been executed. If this happens without an else  branch, then 
select  will panic.

The value of the select!  macro is the value of the executed branch
(just like match ), so all branches must have the same type. E.g., if we
wanted to use the result of the above example outside of the select , we'd
write it like
async fn main() { 
  let result = select! { 
    result = do_a_thing() => { 
      Some(result) 
    } 
    _ = timeout() => { 
      None 
    } 
  }; 
 
  // Use `result` 
} 

As with join! , select!  does not treat Result s in any special way
(other than the pattern matching mentioned previously) and if a branch
completes with an error, then all other branches will be cancelled and the
error will be used as the result of select (in the same way as if the branch
has completed successfully).



The select  macro intrinsically uses cancellation, so if you're trying to
avoid cancellation in your program, you must avoid select! . In fact, 
select  is often the primary source of cancellation in an async program. As
discussed elsewhere, cancellation has many subtle issues which can lead to
bugs. In particular, note that select  cancels futures by simply dropping
them. This will not notify the future being dropped or trigger any
cancellation tokens, etc.

select!  is often used in a loop to handle streams or other sequences of
futures. This adds an extra layer of complexity and opportunities for bugs.
In the simple case that we create a new, independent future on each iteration
of the loop, things are not much more complicated. However, this is rarely
what is needed. Generally we want to preserve some state between
iterations. It is common to use select  in a loop with streams, where each
iteration of the loop handles one result from the stream. E.g.:
async fn main() { 
  let mut stream = ...; 
 
  loop { 
    select! { 
      result = stream.next() => { 
        match result { 
          Some(x) => println!("received: {x}"), 
          None => break, 
        } 
      } 
      _ = timeout() => { 
        println!("time out!"); 
        break; 
      } 
    } 
  } 
} 

In this example, we read values from stream  and print them until there
are none left or waiting for a result times out. What happens to any

clbr://internal.invalid/book/OEBPS/part-reference/cancellation.md


remaining data in the stream in the timeout case depends on the
implementation of the stream (it might be lost! Or duplicated!). This is an
example of why behaviour in the face of cancellation can be important (and
tricky).

We may want to reuse a future, not just a stream, across iterations. For
example, we may want to race against a timeout future where the timeout
applies to all iterations rather than applying a new timeout for each
iteration. This is possible by creating the future outside of the loop and
referencing it:
async fn main() { 
  let mut stream = ...; 
  let mut timeout = timeout(); 
 
  loop { 
    select! { 
      result = stream.next() => { 
        match result { 
          Some(x) => println!("received: {x}"), 
          None => break, 
        } 
      } 
      // Create a reference to `timeout` rather than moving it. 
      _ = &mut timeout => { 
        println!("time out!"); 
        break; 
      } 
    } 
  } 
} 

There are a couple of important details when using select!  in a loop
with futures or streams created outside of the select! . These are a
fundamental consequence of how select  works, so I'll introduce them by
stepping through the details of select , using timeout  in the last example
as an example.



timeout  is created outside of the loop and initialised with some time
to count down.
On each iteration of the loop, select  creates a reference to timeout ,
but does not change its state.
As select  executes, it polls timeout  which will return Pending
while there is time left and Ready  when the time elapses, at which
point its block is executed.

In the above example, when timeout  is ready, we break  out of the
loop. But what if we didn't do that? In that case, select  would simply poll 
timeout  again, which the Future  docs say should not happen! select
can't help this, it doesn't have any state (between iterations) to decide if 
timeout  should be polled. Depending on how timeout  is written, this
might cause a panic, a logic error, or some kind of crash.

You can prevent this kind of bug in several ways:

Use a fused future or stream so that re-polling is safe.
Ensure that your code is structured so that futures are never re-polled,
e.g., by breaking out of the loop (as in the previous example), or by
using an if  guard.

Now, lets consider the type of &mut timeout . Lets assume that 
timeout()  returns a type which implements Future , which might be an
anonymous type from an async function, or it might be a named type like 
Timeout . Lets assume the latter because it makes the examples easier (but
the logic applies in either case). Given that Timeout  implents Future , will 
&mut Timeout  implement Future ? Not necessarily! There is a blanket 
impl  which makes this true, but only if Timeout  implements Unpin . That
is not the case for all futures, so often you'll get a type error writing code
like the last example. Such an error is easily fixed though by using the pin
macro, e.g., let mut timeout = pin!(timeout());

Cancellation with select  in a loop is a rich source of subtle bugs.
These usually happen where a future contains some state involving some
data but not the data itself. When the future is dropped by cancellation, that

https://doc.rust-lang.org/std/future/trait.Future.html#tymethod.poll
clbr://internal.invalid/book/OEBPS/part-guide/futures.md#fusing
https://docs.rs/futures/latest/futures/future/trait.FutureExt.html#method.fuse
https://docs.rs/futures/latest/futures/stream/trait.StreamExt.html#method.fuse
https://doc.rust-lang.org/std/future/trait.Future.html#impl-Future-for-%26mut+F


state is lost but the underlying data is not updated. This can lead to data
being lost or processed multiple times.

Alternatives
Futures.rs has its own select  macro and futures-concurrency has a

Race trait which are alternatives to Tokio's select  macro. These both have
the same core semantics of concurrently racing multiple futures, processing
the result of the first and cancelling the others, but they have different
syntax and vary in the details.

Futures.rs' select  is superficially similar to Tokio's; to summarize the
differences, in the futures.rs version:

Futures must always be fused (enforced by type-checking).
select  has default  and complete  branches, rather than an else
branch.
select  does not support if  guards.

Futures-concurrency's Race  has a very different syntax, similar to it's
version of join , e.g., (future_a, future_b).race().await  (it works on 
Vec s and arrays as well as tuples). The syntax is less flexible than the
macros, but fits in nicely with most async code. Note that if you use race
within a loop, you can still have the same issues as with select .

As with join , spawning tasks and letting them execute in parallel is
often a good alternative to using select . However, cancelling the
remaining tasks after the first completes requires some extra work. This can
be done using channels or a cancellation token. In either case, cancellation
requires some action by the task being cancelled which means the task can
do some tidying up or other graceful shutdown.

A common use for select  (especially inside a loop) is working with
streams. There are stream combinator methods which can replace some uses
of select. For example, merge  in futures-concurrency is a good alternative
to merge multiple streams together.

https://docs.rs/futures/latest/futures/macro.select.html
https://docs.rs/futures-concurrency/latest/futures_concurrency/future/trait.Race.html
https://docs.rs/futures-concurrency/latest/futures_concurrency/stream/trait.Merge.html


Final words
In this section we've talked about two ways to run groups of futures

concurrently. Joining futures means waiting for them all to finish; selecting
(aka racing) futures means waiting for the first to finish. In contrast to
spawning tasks, these compositions make no use of parallelism.

Both join  and select  operate on sets of futures which are known in
advance (often when writing the program, rather than at runtime).
Sometimes, the futures to be composed are not known in advance - futures
must be added to the set of composed futures as they are being executed.
For this we need streams which have their own composition operations.

It's worth reiterating that although these composition operators are
powerful and expressive, it is often easier and more appropriate to use tasks
and spawning: parallelism is often desirable, you're less likely to have bugs
around cancellation or blocking, and resource allocation is usually fairer (or
at least simpler) and more predictable.

clbr://internal.invalid/book/OEBPS/part-guide/streams.md


Channels, locking, and
synchronization

note on runtime specificness of sync primitves
Why we need async primitives rather than use the sync ones



Channels

basically same as the std ones, but await

communicate between tasks (same thread or different)
one shot
mpsc
other channels
bounded and unbounded channels



Locks

async Mutex

c.f., std::Mutex - can be held across await points (borrowing the
mutex in the guard, guard is Send, scheduler-aware? or just
because lock is async?), lock is async (will not block the thread
waiting for lock to be available)

even a clippy lint for holding the guard across await
(https://rust-lang.github.io/rust-
clippy/master/index.html#await_holding_lock)

more expensive because it can be held across await

use std::Mutex if you can

can use try_lock or mutex is expected to not be under
contention

lock is not magically dropped when yield (that's kind of the point
of a lock!)
deadlock by holding mutex over await

tasks deadlocked, but other tasks can make progress so
might not look like a deadlock in process stats/tools/OS
usual advice - limit scope, minimise locks, order locks,
prefer alternatives

no mutex poisoning
lock_owned
blocking_lock

cannot use in async
applies to other locks (should the above be moved before
discussion of mutex specifically? Probably yes)

RWLock
Semaphore
yielding



Other synchronization primitives

notify, barrier
OnceCell
atomics



Tools for async programming
Why we need specialist tools for async
Are there other tools to cover

loom



Monitoring

Tokio console

https://github.com/tokio-rs/console


Tracing and logging

issues with async tracing
tracing crate (https://github.com/tokio-rs/tracing)



Debugging

Understanding async backtraces (RUST_BACKTRACE and in a
debugger)
Techniques for debugging async code
Using Tokio console for debugging
Debugger support (WinDbg?)



Profiling

How async messes up flamegraphs
How to profile async IO
Getting insight into the runtime

Tokio metrics



Destruction and clean-up
Object destruction and recap of Drop
General clean up requirements in software
Async issues

Might want to do stuff async during clean up, e.g., send a final
message
Might need to clean up stuff which is still being used async-ly
Might want to clean up when an async task completes or cancels
and there is no way to catch that
State of the runtime during clean-up phase (esp if we're panicking
or whatever)
No async Drop

WIP
forward ref to completion io topic



Cancellation

How it happens (recap of more-async-await.md)

drop a future
cancellation token
abort functions

What we can do about 'catching' cancellation

logging or monitoring cancellation
How cancellation affects other futures tasks (forward ref to
cancellation safety chapter, this should just be a heads-up)



Panicking and async

Propagation of panics across tasks (spawn result)
Panics leaving data inconsistent (tokio mutexes)
Calling async code when panicking (make sure you don't)



Patterns for clean-up

Avoid needing clean up (abort/restart)
Don't use async for cleanup and don't worry too much
async clean up method + dtor bomb (i.e., separate clean-up from
destruction)
centralise/out-source clean-up in a separate task or thread or supervisor
object/process
https://tokio.rs/tokio/topics/shutdown



Why no async Drop (yet)

Note this is advanced section and not necessary to read
Why async Drop is hard
Possible solutions and there issues
Current status



Futures
We've talked a lot about futures in the preceding chapters; they're a key

part of Rust's async programming story! In this chapter we're going to get
into some of the details of what futures are and how they work, and some
libraries for working directly with futures.



The Future and IntoFuture traits

Future

Output assoc type
No real detail here, polling is in the next section, reference adv
sections on Pin, executors/wakers

IntoFuture

Usage - general, in await, async builder pattern (pros and cons in
using)

Boxing futures, Box<dyn Future>  and how it used to be common and
necessary but mostly isn't now, except for recursion, etc.



Polling

what it is and who does it, Poll type

ready is final state
how it connects with await
drop = cancel

for futures and thus tasks
implications for async programming in general
reference to chapter on cancellation safety

Fusing



futures-rs crate

History and purpose

see streams chapter
helpers for writing executors or other low-level futures stuff

pinning and boxing
executor as a partial runtime (see alternate runtimes in reference)

TryFuture
convenience futures: pending, ready, ok/err, etc.
combinator functions on FutureExt
alternative to Tokio stuff

functions
IO traits



futures-concurrency crate
https://docs.rs/futures-concurrency/latest/futures_concurrency/



Runtimes and runtime issues



Running async code

Explicit startup vs async main
tokio context concept
block_on
runtime as reflected in the code (Runtime, Handle)
runtime shutdown



Threads and tasks

default work stealing, multi-threaded

revisit Send + 'static bounds
yield
spawn-local
spawn-blocking (recap), block-in-place
tokio-specific stuff on yielding to other threads, local vs global queues,
etc



Configuration options

thread pool size
single threaded, thread per core etc.



Alternate runtimes

Why you'd want to use a different runtime or implement your own
What kind of variations exist in the high-level design
Forward ref to adv chapters



Timers and Signal handling



Time and Timers

runtime integration, don't use thread::sleep, etc.
std Instant and Duration
sleep
interval
timeout

special future vs select/race



Signal handling

what is signal handling and why is it an async issue?
very OS specific
see Tokio docs



Async iterators (FKA streams)
Stream as an async iterator or as many futures
WIP

current status
futures and Tokio Stream traits
nightly trait

lazy like sync iterators
pinning and streams (forward ref to pinning chapter)
fused streams



Consuming an async iterator

while let with async next
for_each, for_each_concurrent
collect
into_future, buffered



Stream combinators

Taking a future instead of a closure
Some example combinators
unordered variations
StreamGroup

join/select/race with streams

hazards with select in a loop
fusing
difference to just futures
alternatives to these

Stream::merge, etc.



Implementing an async iterator

Implementing the trait
Practicalities and util functions
async_iter stream macro



Sinks

https://docs.rs/futures/latest/futures/sink/index.html



Future work

current status

https://rust-lang.github.io/rfcs/2996-async-iterator.html
async next vs poll
async iteration syntax
(async) generators
lending iterators



Cancellation and cancellation
safety

Internal vs external cancellation Threads vs futures drop = cancel only at
await points useful feature still somewhat abrubt and surprising Other
cancellation mechanisms abort cancellation tokens



Cancellation safety
Not a memory safety issue or race condition Data loss or other logic

errors Different definitions/names tokio's definition general definition/halt
safety applying a replicated future idea Simple data loss Resumption Issue
with select or similar in loops Splitting state between the future and the
context as a root cause



Pinning
Pinning is a notoriously difficult concept and has some subtle and

confusing properties. This section will go over the topic in depth (arguably
too much depth). Pinning is key to the implementation of async
programming in Rust1, but it's possible to get far without ever encountering
pinning and certainly without having to have a deep understanding.

The first section will give a summary of pinning, which hopefully is
enough for most async programmers to know. The rest of this chapter is for
implementers, others doing advanced or low-level async programming, and
the curious.

After the summary, this chapter will give some background on move
semantics before getting into pinning. We'll cover the general idea, then the 
Pin  and Unpin  types, how pinning achieves it goals, and several topics
about working with pinning in practice. There are then sections on pinning
and async programming, and some alternatives and extensions to pinning
(for the really curious). At the end of the chapter are some links to
alternative explanations and reference material.
1

It's worth noting that pinning is a low-level building block designed
specifically for the implementation of async Rust. Although it is not
directly tied to async Rust and can be used for other purposes, it was not
designed to be a general-purpose mechanism, and in particular is not an out-
of-the-box solution for self-referential fields. Using pinning for anything
other than async code generally only works if it is wrapped in thick layers
of abstraction, since it will require lots of fiddly and hard to reason about
unsafe code.



TL;DR
Pin  marks a pointer as pointing to an object which will not move until it

is dropped. Pinning is not built-in to the language or compiler; it works by
simply restricting access to mutable references to the pointee. It is easy
enough to break pinning in unsafe code, but like all safety guarantees in
unsafe code, it is the responsibility of the programmer not to do so.

By guaranteeing that an object won't move, pinning makes it safe to
have references from one field of a struct to another (sometimes called self-
references). This is required for the implementation of async functions
(which are implemented as data structures where variables are stored as
fields, since variables may reference each other, fields of a future
implementing an async function must be able to reference each other).
Mostly, programmers don't have to be aware of this detail, but when dealing
with futures directly, you might need to be because the signature of 
Future::poll  requires self  to be pinned.

If you're using futures by reference, you might need to pin a reference
using pin!(...)  to ensure the reference still implements the Future  trait
(this often comes up with the select  macro). Likewise, if you want to
manually call poll  on a future (usually because you are implementing
another future), you will need a pinned reference to it (use pin!  or ensure
arguments have pinned types). If you're implementing a future or if you
have a pinned reference for some other reason, and you want mutable
access to the object's internals, you'll need to understand the section below
on pinned fields to know how to do so and when it is safe.



Move semantics
A useful concept for discussing pinning and related topics is the idea of

places. A place is a chunk of memory (with an address) where a value can
live. A reference doesn't really point at a value, it points at a place. That is
why *ref = ...  makes sense: the dereference gives you the place, not a
copy of the value. Places are well-known to language implementers but
usually implicit in programming languages (they are implicit in Rust).
Programmers usually have a good intuition for places, but may not think of
them explicitly.

As well as references, variables and field accesses evaluate to places. In
fact, anything that can appear on the left-hand side of an assignment must
be a place at runtime (which is why places are called 'lvalue's in compiler
jargon).

In Rust, mutability is a property of places, as is being 'frozen' as a result
of borrowing (we might say the place is borrowed).

Assignment in Rust moves data (mostly, some simple data has copy
semantics, but that doesn't matter too much). When we write let b = a; ,
the data that was in memory at a place identified by a  is moved to the place
identified by b . That means that after the assignment, the data exists at b
but no longer exists at a . Or in other words, the address of the object is
changed by the assignment2.

If pointers existed to the place which was moved from, the pointers
would be invalid since they no longer point to the object. This is why
borrowed references prevent moving: let r = &a; let b = a;  is illegal,
the existence of r  prevents a  being moved.

The compiler only knows about references from outside an object into
the object (such as the above example, or a reference to a field of an object).
A reference entirely within an object would be invisible to the compiler.
Imagine if we were allowed to write something like:
struct Bad { 
    field: u64, 



    r: &'self u64, 
} 

We could have an instance b  of Bad  where b.r  points to b.field . In 
let a = b; , the internal reference b.r  to b.field  is invisible to the
compiler, so it looks like there are no references to b  and therefore the
move to a  would be ok. However if that happened, then after the move, 
a.r  would not point to a.field  as we'd like, but to invalid memory at the
old location of b.field , violating Rust's safety guarantees.

Moving data isn't limited to values. Data can also be moved out of a
unique reference. Dereferencing a Box  moves the data from the heap to the
stack. take , replace , and swap  (all in std::mem ) move data out of a
mutable reference ( &mut T ). Moving out of a Box  leaves the pointed-to
place invalid. Moving out of a mutable reference leaves the place valid, but
containing different data.
2

We're conflating source code and runtime a bit here. To be absolutely
clear, variables don't exist at runtime. The (compiled) snippet might be
executed multiple times (e.g., if it's in a loop or in a function called multiple
times). For each execution the variables in the source code will be
represented by different addresses at runtime.

Abstractly, a move is implemented by copying the bits from the origin to
the destination and then erasing the origin bits. However, the compiler can
optimise this is many ways.

https://doc.rust-lang.org/std/mem/index.html


Pinning
Important note: I'm going to start by discussing an abstract concept of

pinning, which is not exactly what is expressed by any particular type. We'll
make the concept more concrete as we go on, and end up with precise
definitions of what different types mean, but none of these types mean
exactly the same as the pinning concept we'll start with.

An object is pinned if it will not be moved or otherwise invalidated. As I
explained above, this is not a new concept - borrowing an object prevents
the object being moved for the duration of the borrow. Whether an object
can be moved or not is not explicit in Rust's types, though it is known by
the compiler (which is why you can get "cannot move out of" error
messages). As opposed to borrowing (and the temporary restriction on
moves caused by borrowing), being pinned is permanent. An object can
change from being not pinned to being pinned, but once it is pinned then it
must remain pinned until it is dropped3.

Just as pointer types reflect the ownership and mutability of the pointee
(e.g., Box  vs & , &mut  vs & ), we want to reflect pinned-ness in pointer
types too. This is not a property of the pointer - the pointer is not pinned or
movable - it is a property of the pointed-to place: whether the pointee can
be moved out of its place.

Roughly, Pin<Box<T>>  is a pointer to an owned, pinned object and 
Pin<&mut T>  is a pointer to a uniquely borrowed, mutable, pinned object
(c.f., &mut T  which is a pointer to a uniquely borrowed, mutable, object
which may or may not be pinned).

The pinning concept was not added to Rust until after 1.0 and for
reasons of backwards compatibility, there is no way to explicitly express
whether an object is pinned or not. We can only express that a reference
points to a pinned or not-pinned object.

Pinning is orthogonal to mutability. An object might be mutable and
either pinned ( Pin<&mut T> ) or not ( &mut T ) (i.e., the object can be
modified, and either it is pinned in place or can be moved), or immutable
and either pinned ( Pin<&T> ) or not ( T ) (i.e., the object can't be modified,
and either it can't be moved or can be moved but not modified). Note that 



&T  cannot be mutated or moved, but is not pinned because its immovability
is only temporary.
3

Permanence is not a fundamental aspect of pinning, it is part of the
framing of pinning in Rust and the safety guarantees around it. It would be
ok for pinning to be temporary if this could be safely expressed and the
temporal scope of pinning could be relied upon by consumers of the
pinning guarantees. However, that is not possible with Rust today or with
any reasonable extension.

Unpin
Although moving and not moving is how we introduced pinning and is

somewhat suggested by the name, Pin  does not actually tell you much
about whether the pointee will actually move or not.

What? Sigh.
Pinning is actually a contract about validity, not about moving. It

guarantees that if an object is address-sensitive, then its address will not
change (and thus addresses derived from it, such as the addresses of its
fields, will not change either). Most data in Rust is not address-sensitive. It
can be moved around and everything will be ok. Pin  guarantees that the
pointee will be valid with respect to it's address. If the pointee is address-
sensitive, then it can't be moved; if it's not address-sensitive, then it doesn't
matter whether it is moved.

Unpin  is a trait which expresses whether objects are address-sensitive. If
an object implements Unpin , then it is not address-sensitive. If an object is 
!Unpin  then it is address-sensitive. Alternatively, if we think of pinning as
the act of holding an object in its place, then Unpin  means it is safe to undo
that action and allow the object to be moved.

Unpin  is an auto-trait and most types are Unpin . Only types which have
an !Unpin  field or which explicitly opt-out are not Unpin . You can opt-out
by having a PhantomPinned  field or (if you're using nightly) with impl 
!Unpin for ... {} .

https://doc.rust-lang.org/std/marker/struct.PhantomPinned.html


For types which implement Unpin , Pin  essentially does nothing. 
Pin<Box<T>>  and Pin<&mut T>  can be used just like Box<T>  and &mut T .
In fact, for Unpin  types, the Pin ed and regular pointers can be freely-
interconverted using Pin::new  and Pin::into_inner . It's worth restating:
Pin<...>  does not guarantee that the pointee will not move, only that the
pointee won't move if it is !Unpin .

The practical implication of the above is that working with Unpin  types
and pinning is much easier than with types which are not Unpin , in fact the 
Pin  marker has basically no effect on Unpin  types and pointers to Unpin
types, and you can basically ignore all the pinning guarantees and
requirements.

Unpin  should not be understood as a property of an object alone; the
only thing Unpin  changes is how an object interacts with Pin . Using an
Unpin  bound outside of the pinning context doesn't affect the compiler's
behaviour or what can be done with the object. The only reason to use 
Unpin  is in conjunction with pinning, or to propagate the bound to where it
is used with pinning.

Pin
Pin  is a marker type, it is important for type checking, but is compiled

away and does not exist at runtime ( Pin<Ptr>  is guaranteed to have the
same memory layout and ABI as Ptr ). It is a wrapper of pointers (such as 
Box ), so it behaves like a pointer type, but it does not add an indirection, 
Box<Foo>  and Pin<Box<Foo>>  are the same when a program is run. It is
better to think of Pin  as a modifier to the pointer rather than a pointer
itself.

Pin<Ptr>  means that the pointee of Ptr  (not Ptr  itself) is pinned. That
is, Pin  guarantees that the pointee (not the pointer) will remain valid with
respect to its address until the pointee is dropped. If the pointee is address-
sensitive (i.e., is !Unpin ), then the pointee will not be moved.

Pinning values

https://doc.rust-lang.org/std/pin/struct.Pin.html


Objects are not created pinned. An object starts unpinned (and may be
freely moved), it becomes pinned when a pinning pointer is created which
points to the object. If the object is Unpin , then this is trivial using 
Pin::new , however, if the object is not Unpin , then pinning it must ensure
that it cannot be moved or invalidated via an alias.

To pin an object on the heap, you can create a new pinning Box  by using
Box::pin , or convert an existing Box  into a pinning Box  using 
Box::into_pin . In either case, you'll end up with Pin<Box<T>> . Some
other pointers (such as Arc  and Rc ) have similar mechanisms. For pointers
which don't, or for your own pointer types, you'll need to use 
Pin::new_unchecked  to create a pinned pointer4. This is an unsafe
function and so the programmer must ensure that Pin 's invariants are
maintained. That is, that the pointee will, under every circumstance, remain
valid until it's destructor is called. There are some subtle details to ensuring
this, refer to the function's docs or the below section how pinning works for
more.

Box::pin  pins an object to a place in the heap. To pin an object on the
stack, you can use the pin  macro to create and pin a mutable reference
( Pin<&mut T> )5.

Tokio also has a pin  macro which does the same thing as the std macro
and also supports assigning into a variable inside the macro. The futures-rs
and pin-utils crates have a pin_mut  macro which used to be commonly
used, but is now deprecated in favor of the std macro.

You can also use Pin::static_ref  and Pin::static_mut  to pin a
static reference.
4

There is no special treatment for Box  (or the other std pointers) either in
the pinning implementation or the compiler. Box  uses the unsafe functions
in Pin 's API to implement Box::pin . The safety requirements of Pin  are
satisfied due to the safety guarantees of Box .
5

https://doc.rust-lang.org/std/boxed/struct.Box.html#method.pin
https://doc.rust-lang.org/std/boxed/struct.Box.html#method.into_pin
https://doc.rust-lang.org/std/pin/struct.Pin.html#method.new_unchecked
https://doc.rust-lang.org/std/pin/struct.Pin.html#method.new_unchecked
https://doc.rust-lang.org/std/pin/macro.pin.html
https://docs.rs/tokio/latest/tokio/macro.pin.html


This is only strictly pinning to the stack in non-async functions. In an
async function, all locals are allocated in the async pseudo-stack, so the
place being pinned is likely to be stored on the heap as part of the future
underlying the async function.

Using pinned types
In theory, using pinned pointers is just like using any other pointer type.

However, because it is not the most intuitive abstraction, and because it has
no language support, using pinned pointers tends to be pretty unergonomic.
The most common case for using pinning is when dealing with futures and
streams, we'll cover those specifics in more detail below.

Using a pinned pointer as an immutably borrowed reference is trivial
because of Pin 's implementation of Deref . You can mostly just treat 
Poll<Ptr<T>>  as &T , using an explicit deref()  if necessary. Likewise,
getting a Pin<&T>  is pretty easy using as_ref() .

The most common way to work with pinned types is using Pin<&mut 
T>  (e.g., in Future::poll ), however, the easiest way to produce a pinned
object is Box::pin  which gives a Pin<Box<T>> . You can convert the latter
to the former using Pin::as_mut . However, without the language support
for reusing references (implicit reborrowing), you have to keep calling 
as_mut  rather than reusing the result. E.g. (from the as_mut  docs),
impl Type { 
    fn method(self: Pin<&mut Self>) { 
        // do something 
    } 
 
    fn call_method_twice(mut self: Pin<&mut Self>) { 
        // `method` consumes `self`, so reborrow the `Pin<&mut 
Self>` via `as_mut`. 
        self.as_mut().method(); 
        self.as_mut().method(); 
    } 
} 

https://doc.rust-lang.org/std/future/trait.Future.html#tymethod.poll
https://doc.rust-lang.org/std/pin/struct.Pin.html#method.as_mut


If you need to access the pinned pointee in some other way, you can do
so via Pin::into_inner_unchecked . However, this is unsafe and you must
be very careful about ensuring the safety requirements of Pin  are respected.

How pinning works
Pin  is a simple wrapper struct (aka, a newtype) for pointers. It is

enforced to work only on pointers by requiring the Deref  bound on it's
generic parameter to do anything useful, however, this is just for expressing
intention, rather than for preserving safety. As with most newtype wrappers,
Pin  exists to express an invariant at compile-time rather than for any
runtime effect. Indeed, in most circumstances, Pin  and the pinning
machinery will completely disappear during compilation.

To be precise, the invariant expressed by Pin  is about validity, not just
movability. It is also a validity invariant which only applies once a pointer
is pinned - before that Pin  has no effect and makes no requirements on
what happens before something is pinned. Once a pointer is pinned, Pin
requires (and guarantees in safe code) that the pointed-to object will remain
valid at the same address in memory until the object's destructor is called.

For immutable pointers (e.g., borrowed references), Pin  has no effect -
since the pointee cannot be mutated or replaced, there is no danger of it
being invalidated.

For a pointer that allows mutation (e.g., Box  or &mut ), having direct
access to that pointer or access to a mutable reference ( &mut ) to the pointee
could allow for mutation or moving the pointee. Pin  simply does not
provide any (non- unsafe ) way to get direct access to the pointer or a
mutable reference. The usual way for a pointer to provide a mutable
reference to its pointee is by implementing DerefMut , Pin  only
implements DerefMut  if the pointee is Unpin .

This implementation is incredibly simple! To summarize: Pin  is a
wrapper struct around a pointer which provides only immutable access to
the pointee (and mutable access if the pointee is Unpin ). Everything else is
details (and subtle invariants for unsafe code). For convenience, Pin

https://doc.rust-lang.org/std/pin/struct.Pin.html#method.into_inner_unchecked
https://doc.rust-lang.org/std/ops/trait.DerefMut.html


provides a facility to convert between Pin  types (always safe since the
pointer cannot escape a Pin ), etc.

Pin  also provides unsafe functions for creating pinned pointers and
accessing the underlying data. As with all unsafe  functions, maintaining
the safety invariants is the responsibility of the programmer rather than the
compiler. Unfortunately, the safety invariants for pinning are somewhat
scattered, in that they are enforced in different places and are hard to
describe in a global, unified manner. I won't describe them in detail here
and refer you to the docs, but I'll attempt to summarize (see the module
docs for a detailed overview):

Creating a new pinned pointer new_unchecked . The programmer must
ensure that the pointee is pinned (that is, abides by the pinning
invariants). This requirement may be satisfied by the pointer type
alone (e.g., in the case of Box ) or may require participation of the
pointee type (e.g., in the case of &mut ). This includes (but is not
limited to):

Not moving out of self  in Deref  and DerefMut .
Properly implementing Drop , see the drop guarantee.
Opting out of Unpin  (by using PhantomPinned ) if you require
the pinning guarantees.
The pointee may not be #[repr(packed)] .

Accessing the pinned value into_inner_unchecked , 
get_unchecked_mut , map_unchecked , and map_unchecked_mut . It
becomes the programmer's responsibility to enforce the pinning
guarantees (including not moving the data) from the moment data is
accessed until it's destructor runs (note that this scope of responsibility
extends beyond the unsafe call and applies whatever happens to the
underlying data).
Not providing any other way to move data out of a pinned type (which
would need an unsafe implementation).

Pinning pointer types

https://doc.rust-lang.org/std/pin/index.html
https://doc.rust-lang.org/std/pin/struct.Pin.html#method.new_unchecked
https://doc.rust-lang.org/std/pin/index.html#subtle-details-and-the-drop-guarantee
https://doc.rust-lang.org/std/marker/struct.PhantomPinned.html
https://doc.rust-lang.org/std/pin/struct.Pin.html#method.into_inner_unchecked
https://doc.rust-lang.org/std/pin/struct.Pin.html#method.get_unchecked_mut
https://doc.rust-lang.org/std/pin/struct.Pin.html#method.map_unchecked
https://doc.rust-lang.org/std/pin/struct.Pin.html#method.map_unchecked_mut


We said earlier that Pin  wraps a pointer type. It is common to see 
Pin<Box<T>> , Pin<&T> , and Pin<&mut T> . Technically, the only
requirement of the pinning pointer type is that it implements Deref .
However, there are no ways to create a Pin<Ptr>  for any other pointer
types other than using unsafe code (via new_unchecked ). Doing so has
requirements on the pointer type to ensure the pinning contract:

The pointer's implementations of Deref  and DerefMut  must not move
out of their pointee.
It must not be possible to obtain an &mut  reference to the pointee at
any time after the Pin  is created, even after the Pin  has been dropped
(this is why you can't safely construct a Pin<&mut T>  from an &mut 
T ). This must remain true via multiple steps or via references (which
prevents using Rc  or Arc ).
The pointer's implementation of Drop  must not move (or otherwise
invalidate) it's pointee.

See the new_unchecked  docs for more detail.

Pinning and Drop
The pinning contract applies until the pinned object is dropped

(technically, that means when its drop  method returns, not when it is
called). This is usually fairly straightforward since drop  is called
automatically when objects are destroyed. If you are doing things manually
with an object's lifecycle, you might need to give it some extra thought. If
you have an object which is (or might be) pinned and that object is not 
Unpin , then you must call it's drop  method (using drop_in_place ) before
deallocating or reusing the object's memory or address. See the std docs for
details.

If you are implementing an address-sensitive type (i.e., one that is 
!Unpin ), then you must take extra care with the Drop  implementation.
Even though the self-type in drop  is &mut Self , you must treat the self-
type as Pin<&mut Self> . In other words, you must ensure the object

https://doc.rust-lang.org/std/pin/struct.Pin.html#method.new_unchecked
https://doc.rust-lang.org/std/ptr/fn.drop_in_place.html
https://doc.rust-lang.org/std/pin/index.html#drop-guarantee


remains valid until the drop  function returns. One way to make this
explicit in the source code is to follow the following idiom:
impl Drop for Type { 
    fn drop(&mut self) { 
        // `new_unchecked` is okay because we know this value 
is never used 
        // again after being dropped. 
        inner_drop(unsafe { Pin::new_unchecked(self)}); 
 
        fn inner_drop(this: Pin<&mut Self>) { 
            // Actual drop code goes here. 
        } 
    } 
} 

Note that the validity requirements will be dependent on the type being
implemented. Precisely defining these requirements, especially concerning
object destruction is recommended, especially if multiple objects could be
involved (e.g., an intrusive linked list). Ensuring correctness here is likely
to be interesting!

Pinned self in methods
Calling methods on pinned types leads to thinking about the self-type in

these methods. If the method does not need to mutate self , then you can
still use &self  since Pin<...>  can dereference to a borrowed reference.
However, if you need to mutate self  (and your type is not Unpin ) then
you need to choose between &mut self  and self: Pin<&mut Self>

(although pinned pointers can't be implicitly coerced to the latter type, they
can be easily converted using Pin::as_mut ).

Using &mut self  makes the implementation easy, but means the
method cannot be called on a pinned object. Using self: Pin<&mut Self>
means considering pin projection (see the next section) and can only be
called on a pinned object. Although this is all a bit confounding, it makes
sense intuitively when you remember that pinning is a phased concept -
objects start unpinned, and at some point undergo a phase change to



become pinned. &mut self  methods are ones which can be called in the
first (unpinned) phase and self: Pin<&mut Self>  methods are ones which
can be called in the second (pinned) phase.

Note that drop  takes &mut self  (even though it might be called in
either phase). This is due to a limitation of the language and the desire for
backwards compatibility. It requires special treatment in the compiler and
comes with safety requirements.

Pinned fields, structural pinning, and pin
projection

Given that an object is pinned, what does that tell us about the 'pinned'-
ness of its fields? The answer depends on choices made by the implementer
of the datatype, there is no universal answer (indeed it can be different for
different fields of the same object).

If the pinned-ness of an object propagates to a field, we say the field
exhibits 'structural pinning' or that pinning is projected with the field. In this
case there should be a projection method fn get_field(self: Pin<&mut 
Self>) -> Pin<&mut Field> . If the field is not structurally pinned, then a
projection method should have signature fn get_field(self: Pin<&mut 
Self>) -> &mut Field . Implementing either method (or implementing
similar code) requires unsafe  code and either choice has safety
implications. Pin-propagation must be consistent, a field must always be
structurally pinned or not, it is nearly always unsound for a field to be
structurally pinned at some times and not at others.

Pinning should project to a field if the field is an address-sensitive part
of the aggregate datatype. That is, if the aggregate being pinned depends on
the field being pinned, then pinning must project to that field. For example,
if there is a reference from another part of the aggregate into the field, or if
there is a self-reference within the field, then pinning must project to the
field. On the other hand, for a generic collection, pinning does not need to
project to it's contents since the collection does not rely on their behaviour
(that's because the collection cannot rely on the implementation of the
generic items it contains, so the collection itself cannot rely on the
addresses of its items).



When writing unsafe code, you can only assume that the pinning
guarantees apply to the fields of an object which are structurally pinned. On
the other hand, you can safely treat non-structurally pinned fields as
moveable and not worry about the pinning requirements for them. In
particular, a struct can be Unpin  even if a field is not, as long as that field is
always treated as not being structurally pinned.

If a field is structurally pinned, then the pinning requirements on the
aggregate struct extend to the field. Under no circumstance can code move
the contents of the field while the aggregate is pinned (this would always
require unsafe code). Structurally pinned fields must be dropped before they
are moved (including deallocation) even in the case of panicking, which
means care must be taken within the aggregate's Drop  impl. Furthermore,
the aggregate struct cannot be Unpin  unless all of its structurally-pinned
fields are.

Macros for pin projection
There are macros available for helping with pin projection.
The pin-project crate provides the #[pin_project]  attribute macro (and

the #[pin]  helper attribute) which implements safe pin projection for you
by creating a pinned version of the annotated type which can be accessed
using the project  method on the annotated type.

Pin-project-lite is an alternative using a declarative macro
( pin_project! ) which works in a very similar way to pin-project. Pin-
project-lite is lightweight in the sense that it is not a procedural macro and
therefore does not add dependences for implementing procedural macros to
your project. However, it is less expressive than pin-project and does not
give custom error messages. Pin-project-lite is recommended if you want to
avoid adding the procedural macro dependencies, and pin-project is
recommended otherwise.

Pin-utils provides the unsafe_pinned  macro to help implement pin
projection, but the whole crate is deprecated in favor of the above crates
and functionality now in std.

Assigning to a pinned pointer

https://docs.rs/pin-project/latest/pin_project/
https://docs.rs/pin-project-lite/latest/pin_project_lite/
https://docs.rs/pin-utils/latest/pin_utils/macro.unsafe_pinned.html


It is generally safe to assign into a pinned pointer. Although this can't be
done in the usual way ( *p = ... ), it can be done using Pin::set . More
generally, you can use unsafe code to assign into fields of the pointee.

Using Pin::set  is always safe since the previously pinned pointee will
be dropped, fulfilling the pin requirements and the new pointee is not
pinned until the move into the pinned place is complete. Assigning into
individual fields does not automatically violate the pinning requirements,
but care must be taken to ensure that the object as a whole remains valid.
For example, if a field is assigned into, then any other fields which
reference that field must still be valid with the new object (this is not part of
the pinning requirements, but might be part of the object's other invariants).

Copying one pinned object into another pinned place can only be done in
unsafe code, how safety is maintained depends on the individual object.
There is no general violation of the pinning requirements - the object being
replaced is not moving and nor is the object being copied. However, the
validity of the object being replaced may have safety requirements which
are usually protected by pinning, but in this case must be established by the
programmer. For example, if we have a struct with two fields a  and b
where b  refers to a , that reference requires pinning to be remain valid. If
such a struct is copied into another place, then the value of b  must be
updated to point to the new a  rather than the old one.

https://doc.rust-lang.org/std/pin/index.html#assigning-pinned-data
https://doc.rust-lang.org/std/pin/struct.Pin.html#method.set


Pinning and async programming
Hopefully, you can do all you ever want to do with async Rust and never

worry about pinning. Sometimes you'll hit a corner case which requires
using pinning and if you want to do implement futures, a runtime, or similar
things, you'll need to know about pinning. In this section, I'll explain why.

Async functions are implemented as futures (see section TODO - this is
a summary overview, make sure we explain more deeply and with examples
elsewhere). At each await point execution of the function may be paused
and during that time the values of live variables must be saved. They
essentially become fields of a struct (which is part of an enum). Such
variables may refer to other variables which are saved in the future, e.g.,
consider,
async fn foo() { 
  let a = ...; 
  let b = &a; 
  bar().await; 
  // use b 
} 

The generated future object here will be something like:
struct Foo { 
  a: A, 
  b: &'self A,  // Invariant `self.b == &self.a` 
} 

(I'm simplifying a bit, ignoring the state of execution, etc., but the
important bit is the variables/fields).

This makes intuitive sense, unfortunately 'self  does not exist in Rust.
And for good reason! Remember that Rust objects can be moved, so code
like the following would be unsound:
let f1 = Foo { ... }; // f1.b == &f1.a 
let f2 = f1; // f2.b == &f1.a, but f1 no longer exists since it 
moved to f2 

Note that this is not just an issue of not being able to name the lifetime,
even if we use raw pointers, such code would still be incorrect.



However, if we know that once it is created, then an instance of Foo  will
never move, then everything Just Works. (The compiler has a concept
similar to 'self  internally for such cases, as a programmer, we would have
to use raw pointers and unsafe code). This concept of not moving is exactly
what pinning describes.

We see this requirement in the signature of Future::poll , where the
type of self  (the future) is Pin<&mut Self> . Mostly, when using
async/await, the compiler takes care of pinning and unpinning, and as a
programmer you don't need to worry about it.

Manual pinning
There are some places where pinning leaks through the abstraction of

async/await. At its root, this is due to the Pin  in the signature of 
Future::poll  and Stream::poll_next . When using futures and streams
directly (rather than through async/await), we might need to consider
pinning to make things work. Some common reasons to need pinned types
are:

Polling a future or stream - either in application code or when
implementing your own future.
Using boxed futures. If you're using boxed futures (or streams) and
therefore writing out future types rather than using async functions,
you'll likely see a lot of Pin<...>  in those types and need to use 
Box::pin  to create the futures.
Implementing a future - inside poll , self  is pinned and therefore
you need to work with pin projection and/or unsafe code to get
mutable access to fields of self .
Combining futures or streams. This mostly just works, but if you need
to take a reference to a future and then poll it (e.g., defining a future
outside a loop and using it in select!  inside the loop), then you will
need to pin the reference to the future in order to use the reference like
a future.
Working with streams - there is currently less abstraction in Rust
around streams than futures, so you're more likely to use combinator



methods (which don't technically require pinning, but seems to make
issues around referencing or creating futures/streams more prevalent)
or even poll  manually than when working with futures.



Alternatives and extensions
This section is for those with a curiosity about the language design

around pinning. You absolutely don't need to read this section if you just
want to read, understand, and write async programs.

Pinning is difficult to understand and can feel a bit clunky, so people
often wonder if there is a better alternative or variation. I'll cover a few
alternatives and show why they either don't work or are more complex than
you might expect.

However before that, it's important to understand the historical context
for pinning. If you are designing a brand new language and want to support
async/await, self-references, or immovable types there are certainly better
ways to do so than Rust's pinning. However, async/await, futures, and
pinning were added to Rust after it's 1.0 release and designed in the context
of a strong backwards-compatibility guarantee. Beyond that hard
requirement, there was a requirement of wanting to design and implement
this feature in a reasonable time frame. Some solutions (e.g., those
involving linear types) would require fundamental research, design, and
implementation that would realistically be measured in decades when
considering the resources and constraints of the Rust project.

Alternatives
First, lets consider the class of solutions which make Rust types non-

movable by default. Note that this is a significant change to the fundamental
semantics of Rust; any solution in this class would likely need significant
effort to achieve backwards-compatibility (I won't speculate on if that's
even possible for specific solutions, but with techniques like auto-traits,
derive attributes, editions, migration tooling, etc., it is possibly possible).

One proposal (really, a group of proposals since there are various ways
to define the semantics) is to have a Move  marker trait (similar to Copy )
which marks objects as movable and all other types would be immovable.
In contrast to Pin , this is a property of values, not of pointers, so the effect
is much more far-reaching, e.g., let a = b;  would be an error if b  does
not implement Move .



The fundamental problem with this approach is that pinning today is a
phased concept (a place starts unpinned and becomes pinned) and types
apply to the whole lifetime of values. (Pinning is also best understood as a
property of places rather than values, but types apply to values, whether this
is a fundamental problem for any trait-based approach, I don't know). This
is explored in these two blog posts: Two Ways Not to Move and Ergonomic
Self-Referential Types for Rust.

Furthermore, any Move  trait is likely to have problems with backwards-
compatibility and lead to 'infectious bounds' (i.e., Move  or !Move  would be
required in many, many places).

Another proposal is to support move constructors similar to C++.
However, this breaks the fundamental invariant of Rust that objects can
always be bit-wise moved. That would make Rust much less predictable
and therefore make Rust programs more difficult to understand and debug.
This is a backwards-incompatible change of the worst kind because it
would silently break unsafe code because it changes a fundamental
assumption that authors of the code may have made. Furthermore, the
design and implementation effort required for such a fundamental change
would be huge. On top of those practical issues, it's unclear if it would even
work: move constructors could be used to fix-up references in the object
being moved, but there might be references to the object being moved from
outside the object which could not be fixed up.

A potential solution of a different kind is the idea of offset references.
This is a reference which is relative rather than absolute, i.e., a field which
is an offset reference to another field would always point within the same
object, even if the object is moved in memory. The issue with offset
pointers is that a field must be either an offset pointer or an absolute pointer.
But references in async function become fields which sometimes reference
memory internal to the future object and sometimes reference memory
outside it.

Extensions
There are multiple proposals for making pinning more powerful and/or

easier to work with. These are mostly proposals to make pinning a more
first-class part of the language in various ways, rather than a purely library

https://theincredibleholk.org/blog/2024/07/15/two-ways-not-to-move/
https://blog.yoshuawuyts.com/self-referential-types/#immovable-types
https://without.boats/blog/pin/


concept (they often include extensions to std as well as the language). I'll
cover a few of the more developed ideas, they are related to each other and
all have the general goal of improving pinning ergonomics by making
creating and using pinned places easier, in particular around structural
pinning and drop .

Pinned places runs with the idea that pinning is property of places rather
than values or types, and adds a pin / pinned  modifier to references similar
to mut . This integrates with reborrowing and method resolution to improve
the ergonomics of method calls with pinned self .

UnpinCell  extends the pinned places idea to support native pin
projection of fields. MinPin is a more minimal (and backwards-compatible)
proposal for native pin projection and better drop  support.

The Overwrite  trait is a proposed trait which makes explicit the
distinction between permission to modify a part of an object ( foo.f = 

... ) and permission to overwrite the whole object ( *foo = ... ), both of
which are currently allowed for all mutable references. The proposal also
includes immutable fields. Overwrite  is a sort-of-replacement for Unpin
which (together with some of the ideas from pinned places) could improve
working with pinning. Unfortunately, although it could be adopted
backwards-compatibly, the transition would be a lot more work than for the
other extensions.

https://without.boats/blog/pinned-places/
https://without.boats/blog/unpin-cell/
https://smallcultfollowing.com/babysteps/blog/2024/11/05/minpin/
https://smallcultfollowing.com/babysteps/series/overwrite-trait/
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Structured Concurrency
Authors note (TODO): we might want to discuss some parts of this

chapter much earlier in the book, in particularly as design principles (first
intro is in guide/intro). However, in the interests of better understanding the
topic and getting something written down, I'm starting with a separate
chapter. It's also still a bit rough.

(Note: the first few sections are talking about the abstract concept of
structured concurrency and is not specific to Rust or async programming
(c.f., synchronous concurrent programming with threads). I use 'task' to
mean any thread or async task or other similar concurrency primitive).

Structured concurrency is a philosophy for designing concurrent
programs. For programs to fully adhere to the principals of structured
concurrency requires certain language features and libraries, but many of
the benefits are available by following the philosophy without such
features. Structured concurrency is independent of language and
concurrency primitives (threads vs async, etc.). Many people have found
the ideas from structured concurrency to be useful when programming with
async Rust.

The essential idea of structured concurrency is that tasks are organised
into a tree. Child tasks start after their parents and always finish before
them. This allows results and errors to always be passed back to parent
tasks, and requires that cancellation of parents is always propagated to child
tasks. Primarily, temporal scope follows lexical scope, which means that a
task should not outlive the function or block where it is created. However,
this is not a requirement of structured concurrency as long as longer-lived
tasks are reified in the program in some way (typically by using an object to
represent the temporal scope of a child task within its parent task).

TODO diagram
Structured concurrency is named by analogy to structured programming,

which is the idea that control flow should be structured using functions,
loops, etc., rather than arbitrary jumps ( goto ).

https://en.wikipedia.org/wiki/Structured_programming


Before we consider structured concurrency, it's helpful to reflect on the
sense in which common concurrent designs are unstructured. A typical
pattern is that a task is started using some kind of spawning statement. That
task then runs to completion concurrently with other tasks in the system
(including the task which spawned it). There is no constraint on which task
finishes first. The program is essentially just a bag of tasks which live
independently and might terminate at any time. Any communication or
synchronization of the tasks is ad hoc, and the programmer cannot assume
that any other task will still be running.

The practical downsides of unstructured concurrency are that returning
results from a task must happen in an extra-linguistic fashion with no
language-level guarantees around when or how this happens. Errors may go
uncaught because languages' error handling mechanisms cannot be applied
to the unconstrained control flow of unstructured concurrency. We also
have no guarantees about the relative state of tasks - any task may be
running, terminated successfully or with an error, or externally cancelled,
independent of the state of any others1. All this makes concurrent programs
difficult to understand and maintain. This lack of structure is one reason
why concurrent programming is considered categorically more difficult
than sequential programming.

It's worth noting that structured concurrency is a programming discipline
which imposes restrictions on your program. Just like functions and loops
are less flexible than goto, structured concurrency is less flexible than just
spawning tasks. However, as with structured programming the costs of
structured concurrency in flexibility are outweighed by the gains in
predictability.
1

Using join handles mitigates these downsides somewhat, but is an ad hoc
mechanism with no reliable guarantees. To get the full benefits of structured
concurrency you have to be meticulous about always using them, as well as
handling cancellation and errors properly. This is difficult without language
or library support; we'll discuss this a bit more below.



Principles of structured concurrency
The key idea of structured concurrency is that all tasks (or threads or

whatever) are organized as a tree. I.e., each task (except the main task
which is the root) has a single parent and there are no cycles of parents. A
child task is started by its parent2 and must always finish executing before
its parent. There are no constraints between siblings. The parent of a task
may not change.

When reasoning about programs which implement structured
concurrency, the key new fact is that if a task is live, then all of its ancestor
tasks must also be live. This doesn't guarantee they are in a good state - they
might be in the process of shutting down or handling an error, but they must
be running in some form. This means that for any task (except the root
task), there is always a live task to send results or errors to. Indeed, the ideal
approach is that the language's error handling is extended so that errors are
always propagated to the parent task. In Rust, this should apply to both
returning Result::Err  and to panicking.

Furthermore, the lifetime of child tasks can be represented in the parent
task. In the common case, the lifetime of a task (its temporal scope) is tied
to the lexical scope in which it is started. For example, all tasks started
within a function should complete before the function returns. This is an
extremely powerful reasoning tool. Of course, this is too restrictive for all
cases, and so the temporal scope of tasks can extend beyond a lexical scope
by using an object in the program (often called a 'scope' or 'nursery'). Such
an object can be passed or stored, and thus have an arbitrary lifetime. We
still have an important reasoning tool: the tasks tied to that object cannot
outlive it (in Rust this property lets us integrate tasks with the lifetime
system).

The above leads to another benefit of structured concurrency: it lets us
reason about resource management across multiple tasks. Cleanup code is
called when a resource will no longer be used (e.g., closing a file handle).
In sequential code, the problem of when to call cleanup code is solved by
ensuring destructors are called when an object goes out of scope. However,
in concurrent code, an object might still be in use by another task and so
when to clean up is unclear (reference counting or garbage collection are



solutions in many cases, but make reasoning about the lifetimes of objects
difficult which can lead to errors, and also has runtime overheads).

The principle of a parent task outliving it's children has an important
implication for cancellation: if a task is cancelled, then all its child tasks
must be cancelled, and their cancellation must complete before the parent's
cancellation completes. That in turn has implications for how cancellation
can be implemented in a structurally concurrent system.

If a task completes early due to an error (in Rust, this might mean a
panic, as well as an early return), then before returning the task must wait
for all its child tasks to complete. In practice, an early return must trigger
cancellation of child tasks. This is analogous to panicking in Rust:
panicking triggers destructors in the current scope before walking up the
stack, calling destructors in each scope until the program terminates or the
panic is caught. Under structural concurrency, an early return must trigger
cancellation of child tasks (and thus cleanup of objects in those tasks) and
walks down the tree of tasks cancelling all (transitive) children.

Some designs work very naturally under structured concurrency (e.g.,
worker tasks with a single job to complete), while others don't fit so well.
Generally these patterns are ones where not being tied to a specific task is a
feature, e.g., worker pools or background threads. Even using these
patterns, the tasks usually shouldn't outlive the whole program and so there
is always one task which can be the parent.
2

This is not actually a hard requirement for structured concurrency. If the
temporal scope of a task can be represented in the program and passed
between tasks, then a child task can be started by one task but have another
as its parent.

Implementing structured concurrency
The exemplar implementation of structured concurrency is the Python

Trio library. Trio is a general purpose library for async programming and IO
designed around the concepts of structured concurrency. Trio programs use
the async with  construct to define a lexical scope for spawning tasks.
Spawned tasks are associated with a nursery object (which is somewhat like
a Scope in Rust). The lifetime of a task is tied to the dynamic temporal

https://trio.readthedocs.io/en/stable/
https://trio.readthedocs.io/en/stable/reference-core.html#nurseries-and-spawning
https://doc.rust-lang.org/stable/std/thread/struct.Scope.html


scope of its nursery, and in the common case, the lexical scope of an async 
with  block. This enforces the parent/child relationship between tasks and
thus the tree-invariant of structured concurrency.

Error handling uses Python exceptions which are automatically
propagated to parent tasks.

Partially structured concurrency
Like many programming techniques, the full benefits of structured

concurrency come from only using it. If all concurrency is structured, then
it makes it much easier to reason about the behaviour of the whole program.
However, that has requirements on a language which are not easily met; it is
easy enough to do unstructured concurrency in Rust, for example. However,
even applying the principles of structured concurrency selectively, or
thinking in terms of structured concurrency can be useful.

One can use structured concurrency as a design discipline. When
designing a program, always consider and document the parent-child
relationships between tasks and ensure that a child task terminates before
it's parent. This is usually fairly easy under normal execution, but can be
difficult in the face of cancellation and panics.

Another element of structured concurrency which is fairly easy to adopt
is to always propagate errors to the parent task. Just like regular error
handling, the best thing to do might be to ignore the error, but this should be
explicit in the code of the parent task.

Another programming discipline to learn from structured concurrency is
to cancel all child tasks in the event of cancelling a parent task. This makes
the structural concurrency guarantees much more reliable and makes
cancellation in general easier to reason about.



Practical structured concurrency with async Rust
Concurrency in Rust (whether async or using threads) is inherently

unstructured. Tasks can be arbitrarily spawned, errors and panics on other
tasks can be ignored, and cancellation is usually instantaneous and does not
propagate to other tasks (see below for why these issues can't be easily
solved). However, there are several ways you can get some of the benefits
of structured concurrency in your programs:

Design your programs at a high level in accordance with structured
concurrency.
Stick to structured concurrency idioms where possible (and avoid
unstructured idioms).
Use crates to make structured concurrency more ergonomic and
reliable.

One of the trickiest issues with using structured concurrency with Rust is
propagating cancellation to child futures/tasks. If you're using futures and
composing them concurrently, then this happens naturally if abruptly
(dropping a future drops any futures it owns, cancelling them). However,
when a task is dropped, there is no opportunity to send a signal to tasks it
has spawned (at least not with Tokio3).

The implication of this is that you can only assume a weaker invariant
than with 'real' structured concurrency: rather than being able to assume that
a parent task is always alive, you can only assume that the parent is always
alive unless it has been cancelled or it has panicked. While this is sub-
optimal, it can still simplify programming because you never have to handle
the case of having no parent to handle some result under normal execution.

TODO

ownership/lifetimes naturally leading to sc
reasoning about resources

3

The semantics of Tokio's JoinHandle  is that if the handle is dropped,
then the underlying task is 'released' (c.f., dropped), i.e., the result of the
child task is not handled by any other task.

clbr://internal.invalid/book/OEBPS/part-guide/concurrency-primitives.md


Applying structured concurrency to the design of
async programs

In terms of designing programs, applying structured concurrency has a
few implications:

Organising the concurrency of a program in a tree structure, i.e.,
thinking in terms of parent and child tasks.
Temporal scope should follow lexical scope where possible, or in
concrete terms a function shouldn't return (including early returns and
panics) until any tasks launched in the function are complete.
Data generally flows from child tasks to parent tasks. Of course, some
data will flow from parents to children or in other ways, but primarily,
tasks pass the results of their work to their parent tasks for further
processing. This includes errors, so parent tasks should handle the
errors of their children.

If you're writing a library and want to use structured concurrency (or you
want the library to be usable in a concurrent-structured program), then it is
important that encapsulation of the library component includes temporal
encapsulation. I.e., it doesn't start tasks which keep running beyond the API
functions returning.

Since Rust can't enforce the rules of structured concurrency, it's
important to be aware of, and to document, in which ways the program (or
component) is structured and where it violates the structured concurrency
discipline.

One useful compromise pattern is to only allow unstructured
concurrency at the highest level of abstraction, and only for tasks spawned
from the outer-most functions of the main task (ideally only from the main
function, but programs often have some setup or configuration code which
means that the logical 'top level' of a program is actually a few functions
deep). Under such a pattern, a bunch of tasks are spawned from main ,
usually with distinct responsibilities and limited interaction between each
other. These tasks might be restarted, new tasks started by any other task, or
have a limited lifetime tied to clients or similar, i.e., they are concurrent-



unstructured. Within each of these tasks, structured concurrency is
rigorously applied.

TODO why is this useful?
TODO would be great to have a case study here.

Structured and unstructured idioms
This subsection covers a grab-bag of idioms which work well with a

structured approach to concurrency, and a few which make structuring
concurrency more difficult.

The easiest way to follow structured concurrency is to use futures and
concurrent composition rather than tasks and spawning. If you need tasks
for parallelism, then you will need to use JoinHandle s or JoinSet s. You
must take care that child tasks can clean up properly if the parent task
panics or is cancelled. Handles must be checked for errors to ensure errors
in child tasks are properly handled.

One way to work around the lack of cancellation propagation is to avoid
abruptly cancelling (dropping) any task which may have children. Instead
use a signal (e.g., a cancellation token) so that the task can cancel it's
children before terminating. Unfortunately this is incompatible with 
select .

To handle shutting down a program (or component), use an explicit
shutdown method rather than dropping the component, so that the shutdown
function can wait for child tasks to terminate or cancel them (since drop
cannot be async).

A few idioms do not play well with structured concurrency:

Spawning tasks without awaiting their completion via a join handle, or
dropping those join handles.
Select or race macros/functions. These are not inherently structured,
but since they abruptly cancel futures, it's a common source of
unstructured cancellation.
Worker tasks or pools. For async tasks the overheads of
starting/shutting down tasks is so low that there is likely to be very

clbr://internal.invalid/book/OEBPS/part-guide/concurrency-primitives.md


little benefit of using a pool of tasks rather than a pool of 'data', e.g., a
connection pool.
Data with no clear ownership structure - this isn't necessarily in
contradiction with structured concurrency, but often leads to design
issues.

Crates for structured concurrency
TODO

crates: moro, async-nursery
futures-concurrency

https://github.com/nikomatsakis/moro
https://github.com/najamelan/async_nursery


Related topics
This section is not necessary to know to use structured concurrency with

async Rust, but is useful context included for the curious.

Scoped threads
Structured concurrency with Rust threads works pretty well. Although

you can't prevent spawning threads with unscoped lifetime, this is easy to
avoid. Instead, restrict yourself to using scoped threads, see the scope
function docs for how. Using scoped threads limits child lifetimes and
automatically propagates panics back to the parent thread. The parent thread
must check the results of child threads to handle errors though. You can
even pass around the Scope  object like a Trio nursery. Cancellation is not
usually an issue for Rust threads, but if you do make use of thread
cancellation, you'll have to integrate that with scoped threads manually.

Specific to Rust, scoped threads allow child threads to borrow data from
the parent thread, something not possible with concurrent-unstructured
threads. This can be very useful and shows how well structured
concurrency and Rust-ownership-style resource management can work
together.

Async drop and scoped tasks
In Rust, destructors ( drop ) are used to ensure resources are cleaned up

when an object's lifetime ends. Since futures are just objects, their
destructor would be an obvious place to ensure cancellation of child futures.
However, in an async program it is very often desirable for cleanup actions
to be asynchronous (not doing so can block other tasks). Unfortunately Rust
does not currently support asynchronous destructors (async drop). There is
ongoing work to support them, but it is difficult for a number of reasons,
including that an object with an async destructor might be dropped from
non-async context, and that since calling drop  is implicit, there is nowhere
to write an explicit await .

Given how useful scoped threads are (both in general and for structured
concurrency), another good question is why there is no similar construct for

https://doc.rust-lang.org/stable/std/thread/fn.scope.html
https://doc.rust-lang.org/stable/std/thread/struct.Scope.html


async programming ('scoped tasks')? TODO answer this

References
If you're interested, here are some good blog posts for further reading:

Structured Concurrency
Tree-structured concurrency

https://www.250bpm.com/p/structured-concurrency
https://blog.yoshuawuyts.com/tree-structured-concurrency/


Getting Started
Welcome to Asynchronous Programming in Rust! If you're looking to

start writing asynchronous Rust code, you've come to the right place.
Whether you're building a web server, a database, or an operating system,
this book will show you how to use Rust's asynchronous programming tools
to get the most out of your hardware.



What This Book Covers
This book aims to be a comprehensive, up-to-date guide to using Rust's

async language features and libraries, appropriate for beginners and old
hands alike.

The early chapters provide an introduction to async programming
in general, and to Rust's particular take on it.

The middle chapters discuss key utilities and control-flow tools you
can use when writing async code, and describe best-practices for
structuring libraries and applications to maximize performance and
reusability.

The last section of the book covers the broader async ecosystem,
and provides a number of examples of how to accomplish common
tasks.

With that out of the way, let's explore the exciting world of
Asynchronous Programming in Rust!



Why Async?
We all love how Rust empowers us to write fast, safe software. But how

does asynchronous programming fit into this vision?
Asynchronous programming, or async for short, is a concurrent

programming model supported by an increasing number of programming
languages. It lets you run a large number of concurrent tasks on a small
number of OS threads, while preserving much of the look and feel of
ordinary synchronous programming, through the async/await  syntax.



Async vs other concurrency models
Concurrent programming is less mature and "standardized" than regular,

sequential programming. As a result, we express concurrency differently
depending on which concurrent programming model the language is
supporting. A brief overview of the most popular concurrency models can
help you understand how asynchronous programming fits within the
broader field of concurrent programming:

OS threads don't require any changes to the programming model,
which makes it very easy to express concurrency. However,
synchronizing between threads can be difficult, and the performance
overhead is large. Thread pools can mitigate some of these costs, but
not enough to support massive IO-bound workloads.
Event-driven programming, in conjunction with callbacks, can be
very performant, but tends to result in a verbose, "non-linear" control
flow. Data flow and error propagation is often hard to follow.
Coroutines, like threads, don't require changes to the programming
model, which makes them easy to use. Like async, they can also
support a large number of tasks. However, they abstract away low-
level details that are important for systems programming and custom
runtime implementors.
The actor model divides all concurrent computation into units called
actors, which communicate through fallible message passing, much
like in distributed systems. The actor model can be efficiently
implemented, but it leaves many practical issues unanswered, such as
flow control and retry logic.

In summary, asynchronous programming allows highly performant
implementations that are suitable for low-level languages like Rust, while
providing most of the ergonomic benefits of threads and coroutines.



Async in Rust vs other languages
Although asynchronous programming is supported in many languages,

some details vary across implementations. Rust's implementation of async
differs from most languages in a few ways:

Futures are inert in Rust and make progress only when polled.
Dropping a future stops it from making further progress.
Async is zero-cost in Rust, which means that you only pay for what
you use. Specifically, you can use async without heap allocations and
dynamic dispatch, which is great for performance! This also lets you
use async in constrained environments, such as embedded systems.
No built-in runtime is provided by Rust. Instead, runtimes are
provided by community maintained crates.
Both single- and multithreaded runtimes are available in Rust, which
have different strengths and weaknesses.



Async vs threads in Rust
The primary alternative to async in Rust is using OS threads, either

directly through std::thread  or indirectly through a thread pool.
Migrating from threads to async or vice versa typically requires major
refactoring work, both in terms of implementation and (if you are building a
library) any exposed public interfaces. As such, picking the model that suits
your needs early can save a lot of development time.

OS threads are suitable for a small number of tasks, since threads come
with CPU and memory overhead. Spawning and switching between threads
is quite expensive as even idle threads consume system resources. A thread
pool library can help mitigate some of these costs, but not all. However,
threads let you reuse existing synchronous code without significant code
changes—no particular programming model is required. In some operating
systems, you can also change the priority of a thread, which is useful for
drivers and other latency sensitive applications.

Async provides significantly reduced CPU and memory overhead,
especially for workloads with a large amount of IO-bound tasks, such as
servers and databases. All else equal, you can have orders of magnitude
more tasks than OS threads, because an async runtime uses a small amount
of (expensive) threads to handle a large amount of (cheap) tasks. However,
async Rust results in larger binary blobs due to the state machines generated
from async functions and since each executable bundles an async runtime.

On a last note, asynchronous programming is not better than threads, but
different. If you don't need async for performance reasons, threads can often
be the simpler alternative.

Example: Concurrent downloading
In this example our goal is to download two web pages concurrently. In

a typical threaded application we need to spawn threads to achieve
concurrency:
fn get_two_sites() { 
    // Spawn two threads to do work. 
    let thread_one = thread::spawn(|| 
download("https://www.foo.com")); 

https://doc.rust-lang.org/std/thread/


    let thread_two = thread::spawn(|| 
download("https://www.bar.com")); 
 
    // Wait for both threads to complete. 
    thread_one.join().expect("thread one panicked"); 
    thread_two.join().expect("thread two panicked"); 
} 

However, downloading a web page is a small task; creating a thread for
such a small amount of work is quite wasteful. For a larger application, it
can easily become a bottleneck. In async Rust, we can run these tasks
concurrently without extra threads:
async fn get_two_sites_async() { 
    // Create two different "futures" which, when run to 
completion, 
    // will asynchronously download the webpages. 
    let future_one = download_async("https://www.foo.com"); 
    let future_two = download_async("https://www.bar.com"); 
 
    // Run both futures to completion at the same time. 
    join!(future_one, future_two); 
} 

Here, no extra threads are created. Additionally, all function calls are
statically dispatched, and there are no heap allocations! However, we need
to write the code to be asynchronous in the first place, which this book will
help you achieve.



Custom concurrency models in Rust
On a last note, Rust doesn't force you to choose between threads and

async. You can use both models within the same application, which can be
useful when you have mixed threaded and async dependencies. In fact, you
can even use a different concurrency model altogether, such as event-driven
programming, as long as you find a library that implements it.



The State of Asynchronous Rust
Parts of async Rust are supported with the same stability guarantees as

synchronous Rust. Other parts are still maturing and will change over time.
With async Rust, you can expect:

Outstanding runtime performance for typical concurrent workloads.
More frequent interaction with advanced language features, such as
lifetimes and pinning.
Some compatibility constraints, both between sync and async code,
and between different async runtimes.
Higher maintenance burden, due to the ongoing evolution of async
runtimes and language support.

In short, async Rust is more difficult to use and can result in a higher
maintenance burden than synchronous Rust, but gives you best-in-class
performance in return. All areas of async Rust are constantly improving, so
the impact of these issues will wear off over time.



Language and library support
While asynchronous programming is supported by Rust itself, most

async applications depend on functionality provided by community crates.
As such, you need to rely on a mixture of language features and library
support:

The most fundamental traits, types and functions, such as the Future
trait are provided by the standard library.
The async/await  syntax is supported directly by the Rust compiler.
Many utility types, macros and functions are provided by the futures
crate. They can be used in any async Rust application.
Execution of async code, IO and task spawning are provided by "async
runtimes", such as Tokio and async-std. Most async applications, and
some async crates, depend on a specific runtime. See "The Async
Ecosystem" section for more details.

Some language features you may be used to from synchronous Rust are
not yet available in async Rust. Notably, Rust did not let you declare async
functions in traits until 1.75.0 stable (and still has limitations on dynamic
dispatch for those traits). Instead, you need to use workarounds to achieve
the same result, which can be more verbose.

https://doc.rust-lang.org/std/future/trait.Future.html
https://docs.rs/futures/
clbr://internal.invalid/book/OEBPS/08_ecosystem/00_chapter.md


Compiling and debugging
For the most part, compiler- and runtime errors in async Rust work the

same way as they have always done in Rust. There are a few noteworthy
differences:

Compilation errors
Compilation errors in async Rust conform to the same high standards as

synchronous Rust, but since async Rust often depends on more complex
language features, such as lifetimes and pinning, you may encounter these
types of errors more frequently.

Runtime errors
Whenever the compiler encounters an async function, it generates a state

machine under the hood. Stack traces in async Rust typically contain details
from these state machines, as well as function calls from the runtime. As
such, interpreting stack traces can be a bit more involved than it would be in
synchronous Rust.

New failure modes
A few novel failure modes are possible in async Rust, for instance if you

call a blocking function from an async context or if you implement the 
Future  trait incorrectly. Such errors can silently pass both the compiler and
sometimes even unit tests. Having a firm understanding of the underlying
concepts, which this book aims to give you, can help you avoid these
pitfalls.



Compatibility considerations
Asynchronous and synchronous code cannot always be combined freely.

For instance, you can't directly call an async function from a sync function.
Sync and async code also tend to promote different design patterns, which
can make it difficult to compose code intended for the different
environments.

Even async code cannot always be combined freely. Some crates depend
on a specific async runtime to function. If so, it is usually specified in the
crate's dependency list.

These compatibility issues can limit your options, so make sure to
research which async runtime and what crates you may need early. Once
you have settled in with a runtime, you won't have to worry much about
compatibility.



Performance characteristics
The performance of async Rust depends on the implementation of the

async runtime you're using. Even though the runtimes that power async
Rust applications are relatively new, they perform exceptionally well for
most practical workloads.

That said, most of the async ecosystem assumes a multi-threaded
runtime. This makes it difficult to enjoy the theoretical performance
benefits of single-threaded async applications, namely cheaper
synchronization. Another overlooked use-case is latency sensitive tasks,
which are important for drivers, GUI applications and so on. Such tasks
depend on runtime and/or OS support in order to be scheduled
appropriately. You can expect better library support for these use cases in
the future.



async/.await Primer
async / .await  is Rust's built-in tool for writing asynchronous functions

that look like synchronous code. async  transforms a block of code into a
state machine that implements a trait called Future . Whereas calling a
blocking function in a synchronous method would block the whole thread,
blocked Future s will yield control of the thread, allowing other Future s
to run.

Let's add some dependencies to the Cargo.toml  file:
[dependencies] 
futures = "0.3" 

To create an asynchronous function, you can use the async fn  syntax:
async fn do_something() { /* ... */ } 

The value returned by async fn  is a Future . For anything to happen,
the Future  needs to be run on an executor.
// `block_on` blocks the current thread until the provided 
future has run to 
// completion. Other executors provide more complex behavior, 
like scheduling 
// multiple futures onto the same thread. 
use futures::executor::block_on; 
 
async fn hello_world() { 
    println!("hello, world!"); 
} 
 
fn main() { 
    let future = hello_world(); // Nothing is printed 
    block_on(future); // `future` is run and "hello, world!" is 
printed 
} 



Inside an async fn , you can use .await  to wait for the completion of
another type that implements the Future  trait, such as the output of another
async fn . Unlike block_on , .await  doesn't block the current thread, but
instead asynchronously waits for the future to complete, allowing other
tasks to run if the future is currently unable to make progress.

For example, imagine that we have three async fn : learn_song , 
sing_song , and dance :
async fn learn_song() -> Song { /* ... */ } 
async fn sing_song(song: Song) { /* ... */ } 
async fn dance() { /* ... */ } 

One way to do learn, sing, and dance would be to block on each of these
individually:
fn main() { 
    let song = block_on(learn_song()); 
    block_on(sing_song(song)); 
    block_on(dance()); 
} 

However, we're not giving the best performance possible this way—
we're only ever doing one thing at once! Clearly we have to learn the song
before we can sing it, but it's possible to dance at the same time as learning
and singing the song. To do this, we can create two separate async fn
which can be run concurrently:
async fn learn_and_sing() { 
    // Wait until the song has been learned before singing it. 
    // We use `.await` here rather than `block_on` to prevent 
blocking the 
    // thread, which makes it possible to `dance` at the same 
time. 
    let song = learn_song().await; 
    sing_song(song).await; 
} 
 
async fn async_main() { 
    let f1 = learn_and_sing(); 



    let f2 = dance(); 
 
    // `join!` is like `.await` but can wait for multiple 
futures concurrently. 
    // If we're temporarily blocked in the `learn_and_sing` 
future, the `dance` 
    // future will take over the current thread. If `dance` 
becomes blocked, 
    // `learn_and_sing` can take back over. If both futures are 
blocked, then 
    // `async_main` is blocked and will yield to the executor. 
    futures::join!(f1, f2); 
} 
 
fn main() { 
    block_on(async_main()); 
} 

In this example, learning the song must happen before singing the song,
but both learning and singing can happen at the same time as dancing. If we
used block_on(learn_song())  rather than learn_song().await  in 
learn_and_sing , the thread wouldn't be able to do anything else while 
learn_song  was running. This would make it impossible to dance at the
same time. By .await -ing the learn_song  future, we allow other tasks to
take over the current thread if learn_song  is blocked. This makes it
possible to run multiple futures to completion concurrently on the same
thread.



Under the Hood: Executing 
Futures and Tasks

In this section, we'll cover the underlying structure of how Future s and
asynchronous tasks are scheduled. If you're only interested in learning how
to write higher-level code that uses existing Future  types and aren't
interested in the details of how Future  types work, you can skip ahead to
the async / await  chapter. However, several of the topics discussed in this
chapter are useful for understanding how async / await  code works,
understanding the runtime and performance properties of async / await
code, and building new asynchronous primitives. If you decide to skip this
section now, you may want to bookmark it to revisit in the future.

Now, with that out of the way, let's talk about the Future  trait.



The Future Trait
The Future  trait is at the center of asynchronous programming in Rust.

A Future  is an asynchronous computation that can produce a value
(although that value may be empty, e.g. () ). A simplified version of the
future trait might look something like this:
trait SimpleFuture { 
    type Output; 
    fn poll(&mut self, wake: fn()) -> Poll<Self::Output>; 
} 
 
enum Poll<T> { 
    Ready(T), 
    Pending, 
} 

Futures can be advanced by calling the poll  function, which will drive
the future as far towards completion as possible. If the future completes, it
returns Poll::Ready(result) . If the future is not able to complete yet, it
returns Poll::Pending  and arranges for the wake()  function to be called
when the Future  is ready to make more progress. When wake()  is called,
the executor driving the Future  will call poll  again so that the Future
can make more progress.

Without wake() , the executor would have no way of knowing when a
particular future could make progress, and would have to be constantly
polling every future. With wake() , the executor knows exactly which
futures are ready to be poll ed.

For example, consider the case where we want to read from a socket that
may or may not have data available already. If there is data, we can read it
in and return Poll::Ready(data) , but if no data is ready, our future is
blocked and can no longer make progress. When no data is available, we
must register wake  to be called when data becomes ready on the socket,



which will tell the executor that our future is ready to make progress. A
simple SocketRead  future might look something like this:
pub struct SocketRead<'a> { 
    socket: &'a Socket, 
} 
 
impl SimpleFuture for SocketRead<'_> { 
    type Output = Vec<u8>; 
 
    fn poll(&mut self, wake: fn()) -> Poll<Self::Output> { 
        if self.socket.has_data_to_read() { 
            // The socket has data -- read it into a buffer and 
return it. 
            Poll::Ready(self.socket.read_buf()) 
        } else { 
            // The socket does not yet have data. 
            // 
            // Arrange for `wake` to be called once data is 
available. 
            // When data becomes available, `wake` will be 
called, and the 
            // user of this `Future` will know to call `poll` 
again and 
            // receive data. 
            self.socket.set_readable_callback(wake); 
            Poll::Pending 
        } 
    } 
} 

This model of Future s allows for composing together multiple
asynchronous operations without needing intermediate allocations. Running
multiple futures at once or chaining futures together can be implemented
via allocation-free state machines, like this:
/// A SimpleFuture that runs two other futures to completion 
concurrently. 



/// 
/// Concurrency is achieved via the fact that calls to `poll` 
each future 
/// may be interleaved, allowing each future to advance itself 
at its own pace. 
pub struct Join<FutureA, FutureB> { 
    // Each field may contain a future that should be run to 
completion. 
    // If the future has already completed, the field is set to 
`None`. 
    // This prevents us from polling a future after it has 
completed, which 
    // would violate the contract of the `Future` trait. 
    a: Option<FutureA>, 
    b: Option<FutureB>, 
} 
 
impl<FutureA, FutureB> SimpleFuture for Join<FutureA, FutureB> 
where 
    FutureA: SimpleFuture<Output = ()>, 
    FutureB: SimpleFuture<Output = ()>, 
{ 
    type Output = (); 
    fn poll(&mut self, wake: fn()) -> Poll<Self::Output> { 
        // Attempt to complete future `a`. 
        if let Some(a) = &mut self.a { 
            if let Poll::Ready(()) = a.poll(wake) { 
                self.a.take(); 
            } 
        } 
 
        // Attempt to complete future `b`. 
        if let Some(b) = &mut self.b { 
            if let Poll::Ready(()) = b.poll(wake) { 
                self.b.take(); 
            } 



        } 
 
        if self.a.is_none() && self.b.is_none() { 
            // Both futures have completed -- we can return 
successfully 
            Poll::Ready(()) 
        } else { 
            // One or both futures returned `Poll::Pending` and 
still have 
            // work to do. They will call `wake()` when 
progress can be made. 
            Poll::Pending 
        } 
    } 
} 

This shows how multiple futures can be run simultaneously without
needing separate allocations, allowing for more efficient asynchronous
programs. Similarly, multiple sequential futures can be run one after
another, like this:
/// A SimpleFuture that runs two futures to completion, one 
after another. 
// 
// Note: for the purposes of this simple example, `AndThenFut` 
assumes both 
// the first and second futures are available at creation-time. 
The real 
// `AndThen` combinator allows creating the second future based 
on the output 
// of the first future, like `get_breakfast.and_then(|food| 
eat(food))`. 
pub struct AndThenFut<FutureA, FutureB> { 
    first: Option<FutureA>, 
    second: FutureB, 
} 
 



impl<FutureA, FutureB> SimpleFuture for AndThenFut<FutureA, 
FutureB> 
where 
    FutureA: SimpleFuture<Output = ()>, 
    FutureB: SimpleFuture<Output = ()>, 
{ 
    type Output = (); 
    fn poll(&mut self, wake: fn()) -> Poll<Self::Output> { 
        if let Some(first) = &mut self.first { 
            match first.poll(wake) { 
                // We've completed the first future -- remove 
it and start on 
                // the second! 
                Poll::Ready(()) => self.first.take(), 
                // We couldn't yet complete the first future. 
                // Notice that we disrupt the flow of the 
`poll` function with the `return` statement. 
                Poll::Pending => return Poll::Pending, 
            }; 
        } 
        // Now that the first future is done, attempt to 
complete the second. 
        self.second.poll(wake) 
    } 
} 

These examples show how the Future  trait can be used to express
asynchronous control flow without requiring multiple allocated objects and
deeply nested callbacks. With the basic control-flow out of the way, let's
talk about the real Future  trait and how it is different.
trait Future { 
    type Output; 
    fn poll( 
        // Note the change from `&mut self` to `Pin<&mut 
Self>`: 
        self: Pin<&mut Self>, 



        // and the change from `wake: fn()` to `cx: &mut 
Context<'_>`: 
        cx: &mut Context<'_>, 
    ) -> Poll<Self::Output>; 
} 

The first change you'll notice is that our self  type is no longer &mut 
Self , but has changed to Pin<&mut Self> . We'll talk more about pinning
in a later section, but for now know that it allows us to create futures that
are immovable. Immovable objects can store pointers between their fields,
e.g. struct MyFut { a: i32, ptr_to_a: *const i32 } . Pinning is
necessary to enable async/await.

Secondly, wake: fn()  has changed to &mut Context<'_> . In 
SimpleFuture , we used a call to a function pointer ( fn() ) to tell the future
executor that the future in question should be polled. However, since fn()
is just a function pointer, it can't store any data about which Future  called 
wake .

In a real-world scenario, a complex application like a web server may
have thousands of different connections whose wakeups should all be
managed separately. The Context  type solves this by providing access to a
value of type Waker , which can be used to wake up a specific task.



Task Wakeups with Waker
It's common that futures aren't able to complete the first time they are 

poll ed. When this happens, the future needs to ensure that it is polled
again once it is ready to make more progress. This is done with the Waker
type.

Each time a future is polled, it is polled as part of a "task". Tasks are the
top-level futures that have been submitted to an executor.

Waker  provides a wake()  method that can be used to tell the executor
that the associated task should be awoken. When wake()  is called, the
executor knows that the task associated with the Waker  is ready to make
progress, and its future should be polled again.

Waker  also implements clone()  so that it can be copied around and
stored.

Let's try implementing a simple timer future using Waker .



Applied: Build a Timer
For the sake of the example, we'll just spin up a new thread when the

timer is created, sleep for the required time, and then signal the timer future
when the time window has elapsed.

First, start a new project with cargo new --lib timer_future  and add
the imports we'll need to get started to src/lib.rs :
use std::{ 
    future::Future, 
    pin::Pin, 
    sync::{Arc, Mutex}, 
    task::{Context, Poll, Waker}, 
    thread, 
    time::Duration, 
}; 

Let's start by defining the future type itself. Our future needs a way for
the thread to communicate that the timer has elapsed and the future should
complete. We'll use a shared Arc<Mutex<..>>  value to communicate
between the thread and the future.
pub struct TimerFuture { 
    shared_state: Arc<Mutex<SharedState>>, 
} 
 
/// Shared state between the future and the waiting thread 
struct SharedState { 
    /// Whether or not the sleep time has elapsed 
    completed: bool, 
 
    /// The waker for the task that `TimerFuture` is running 
on. 
    /// The thread can use this after setting `completed = 
true` to tell 
    /// `TimerFuture`'s task to wake up, see that `completed = 
true`, and 



    /// move forward. 
    waker: Option<Waker>, 
} 

Now, let's actually write the Future  implementation!
impl Future for TimerFuture { 
    type Output = (); 
    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> 
Poll<Self::Output> { 
        // Look at the shared state to see if the timer has 
already completed. 
        let mut shared_state = 
self.shared_state.lock().unwrap(); 
        if shared_state.completed { 
            Poll::Ready(()) 
        } else { 
            // Set waker so that the thread can wake up the 
current task 
            // when the timer has completed, ensuring that the 
future is polled 
            // again and sees that `completed = true`. 
            // 
            // It's tempting to do this once rather than 
repeatedly cloning 
            // the waker each time. However, the `TimerFuture` 
can move between 
            // tasks on the executor, which could cause a stale 
waker pointing 
            // to the wrong task, preventing `TimerFuture` from 
waking up 
            // correctly. 
            // 
            // N.B. it's possible to check for this using the 
`Waker::will_wake` 
            // function, but we omit that here to keep things 
simple. 



            shared_state.waker = Some(cx.waker().clone()); 
            Poll::Pending 
        } 
    } 
} 

Pretty simple, right? If the thread has set shared_state.completed = 
true , we're done! Otherwise, we clone the Waker  for the current task and
pass it to shared_state.waker  so that the thread can wake the task back
up.

Importantly, we have to update the Waker  every time the future is polled
because the future may have moved to a different task with a different 
Waker . This will happen when futures are passed around between tasks
after being polled.

Finally, we need the API to actually construct the timer and start the
thread:
impl TimerFuture { 
    /// Create a new `TimerFuture` which will complete after 
the provided 
    /// timeout. 
    pub fn new(duration: Duration) -> Self { 
        let shared_state = Arc::new(Mutex::new(SharedState { 
            completed: false, 
            waker: None, 
        })); 
 
        // Spawn the new thread 
        let thread_shared_state = shared_state.clone(); 
        thread::spawn(move || { 
            thread::sleep(duration); 
            let mut shared_state = 
thread_shared_state.lock().unwrap(); 
            // Signal that the timer has completed and wake up 
the last 
            // task on which the future was polled, if one 



exists. 
            shared_state.completed = true; 
            if let Some(waker) = shared_state.waker.take() { 
                waker.wake() 
            } 
        }); 
 
        TimerFuture { shared_state } 
    } 
} 

Woot! That's all we need to build a simple timer future. Now, if only we
had an executor to run the future on...



Applied: Build an Executor
Rust's Future s are lazy: they won't do anything unless actively driven

to completion. One way to drive a future to completion is to .await  it
inside an async  function, but that just pushes the problem one level up:
who will run the futures returned from the top-level async  functions? The
answer is that we need a Future  executor.

Future  executors take a set of top-level Future s and run them to
completion by calling poll  whenever the Future  can make progress.
Typically, an executor will poll  a future once to start off. When Future s
indicate that they are ready to make progress by calling wake() , they are
placed back onto a queue and poll  is called again, repeating until the 
Future  has completed.

In this section, we'll write our own simple executor capable of running a
large number of top-level futures to completion concurrently.

For this example, we depend on the futures  crate for the ArcWake
trait, which provides an easy way to construct a Waker . Edit Cargo.toml
to add a new dependency:
[package] 
name = "timer_future" 
version = "0.1.0" 
authors = ["XYZ Author"] 
edition = "2021" 
 
[dependencies] 
futures = "0.3" 

Next, we need the following imports at the top of src/main.rs :
use futures::{ 
    future::{BoxFuture, FutureExt}, 
    task::{waker_ref, ArcWake}, 
}; 



use std::{ 
    future::Future, 
    sync::mpsc::{sync_channel, Receiver, SyncSender}, 
    sync::{Arc, Mutex}, 
    task::Context, 
    time::Duration, 
}; 
// The timer we wrote in the previous section: 
use timer_future::TimerFuture; 

Our executor will work by sending tasks to run over a channel. The
executor will pull events off of the channel and run them. When a task is
ready to do more work (is awoken), it can schedule itself to be polled again
by putting itself back onto the channel.

In this design, the executor itself just needs the receiving end of the task
channel. The user will get a sending end so that they can spawn new
futures. Tasks themselves are just futures that can reschedule themselves, so
we'll store them as a future paired with a sender that the task can use to
requeue itself.
/// Task executor that receives tasks off of a channel and runs 
them. 
struct Executor { 
    ready_queue: Receiver<Arc<Task>>, 
} 
 
/// `Spawner` spawns new futures onto the task channel. 
#[derive(Clone)] 
struct Spawner { 
    task_sender: SyncSender<Arc<Task>>, 
} 
 
/// A future that can reschedule itself to be polled by an 
`Executor`. 
struct Task { 
    /// In-progress future that should be pushed to completion. 
    /// 



    /// The `Mutex` is not necessary for correctness, since we 
only have 
    /// one thread executing tasks at once. However, Rust isn't 
smart 
    /// enough to know that `future` is only mutated from one 
thread, 
    /// so we need to use the `Mutex` to prove thread-safety. A 
production 
    /// executor would not need this, and could use 
`UnsafeCell` instead. 
    future: Mutex<Option<BoxFuture<'static, ()>>>, 
 
    /// Handle to place the task itself back onto the task 
queue. 
    task_sender: SyncSender<Arc<Task>>, 
} 
 
fn new_executor_and_spawner() -> (Executor, Spawner) { 
    // Maximum number of tasks to allow queueing in the channel 
at once. 
    // This is just to make `sync_channel` happy, and wouldn't 
be present in 
    // a real executor. 
    const MAX_QUEUED_TASKS: usize = 10_000; 
    let (task_sender, ready_queue) = 
sync_channel(MAX_QUEUED_TASKS); 
    (Executor { ready_queue }, Spawner { task_sender }) 
} 

Let's also add a method to spawner to make it easy to spawn new
futures. This method will take a future type, box it, and create a new 
Arc<Task>  with it inside which can be enqueued onto the executor.
impl Spawner { 
    fn spawn(&self, future: impl Future<Output = ()> + 'static 
+ Send) { 
        let future = future.boxed(); 



        let task = Arc::new(Task { 
            future: Mutex::new(Some(future)), 
            task_sender: self.task_sender.clone(), 
        }); 
        self.task_sender.try_send(task).expect("too many tasks 
queued"); 
    } 
} 

To poll futures, we'll need to create a Waker . As discussed in the task
wakeups section, Waker s are responsible for scheduling a task to be polled
again once wake  is called. Remember that Waker s tell the executor exactly
which task has become ready, allowing them to poll just the futures that are
ready to make progress. The easiest way to create a new Waker  is by
implementing the ArcWake  trait and then using the waker_ref  or 
.into_waker()  functions to turn an Arc<impl ArcWake>  into a Waker .
Let's implement ArcWake  for our tasks to allow them to be turned into 
Waker s and awoken:
impl ArcWake for Task { 
    fn wake_by_ref(arc_self: &Arc<Self>) { 
        // Implement `wake` by sending this task back onto the 
task channel 
        // so that it will be polled again by the executor. 
        let cloned = arc_self.clone(); 
        arc_self 
            .task_sender 
            .try_send(cloned) 
            .expect("too many tasks queued"); 
    } 
} 

When a Waker  is created from an Arc<Task> , calling wake()  on it will
cause a copy of the Arc  to be sent onto the task channel. Our executor then
needs to pick up the task and poll it. Let's implement that:
impl Executor { 
    fn run(&self) { 
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        while let Ok(task) = self.ready_queue.recv() { 
            // Take the future, and if it has not yet completed 
(is still Some), 
            // poll it in an attempt to complete it. 
            let mut future_slot = task.future.lock().unwrap(); 
            if let Some(mut future) = future_slot.take() { 
                // Create a `LocalWaker` from the task itself 
                let waker = waker_ref(&task); 
                let context = &mut Context::from_waker(&waker); 
                // `BoxFuture<T>` is a type alias for 
                // `Pin<Box<dyn Future<Output = T> + Send + 
'static>>`. 
                // We can get a `Pin<&mut dyn Future + Send + 
'static>` 
                // from it by calling the `Pin::as_mut` method. 
                if future.as_mut().poll(context).is_pending() { 
                    // We're not done processing the future, so 
put it 
                    // back in its task to be run again in the 
future. 
                    *future_slot = Some(future); 
                } 
            } 
        } 
    } 
} 

Congratulations! We now have a working futures executor. We can even
use it to run async/.await  code and custom futures, such as the 
TimerFuture  we wrote earlier:
fn main() { 
    let (executor, spawner) = new_executor_and_spawner(); 
 
    // Spawn a task to print before and after waiting on a 
timer. 
    spawner.spawn(async { 



        println!("howdy!"); 
        // Wait for our timer future to complete after two 
seconds. 
        TimerFuture::new(Duration::new(2, 0)).await; 
        println!("done!"); 
    }); 
 
    // Drop the spawner so that our executor knows it is 
finished and won't 
    // receive more incoming tasks to run. 
    drop(spawner); 
 
    // Run the executor until the task queue is empty. 
    // This will print "howdy!", pause, and then print "done!". 
    executor.run(); 
} 



Executors and System IO
In the previous section on The Future  Trait, we discussed this example

of a future that performed an asynchronous read on a socket:
pub struct SocketRead<'a> { 
    socket: &'a Socket, 
} 
 
impl SimpleFuture for SocketRead<'_> { 
    type Output = Vec<u8>; 
 
    fn poll(&mut self, wake: fn()) -> Poll<Self::Output> { 
        if self.socket.has_data_to_read() { 
            // The socket has data -- read it into a buffer and 
return it. 
            Poll::Ready(self.socket.read_buf()) 
        } else { 
            // The socket does not yet have data. 
            // 
            // Arrange for `wake` to be called once data is 
available. 
            // When data becomes available, `wake` will be 
called, and the 
            // user of this `Future` will know to call `poll` 
again and 
            // receive data. 
            self.socket.set_readable_callback(wake); 
            Poll::Pending 
        } 
    } 
} 

This future will read available data on a socket, and if no data is
available, it will yield to the executor, requesting that its task be awoken
when the socket becomes readable again. However, it's not clear from this
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example how the Socket  type is implemented, and in particular it isn't
obvious how the set_readable_callback  function works. How can we
arrange for wake()  to be called once the socket becomes readable? One
option would be to have a thread that continually checks whether socket  is
readable, calling wake()  when appropriate. However, this would be quite
inefficient, requiring a separate thread for each blocked IO future. This
would greatly reduce the efficiency of our async code.

In practice, this problem is solved through integration with an IO-aware
system blocking primitive, such as epoll  on Linux, kqueue  on FreeBSD
and Mac OS, IOCP on Windows, and port s on Fuchsia (all of which are
exposed through the cross-platform Rust crate mio ). These primitives all
allow a thread to block on multiple asynchronous IO events, returning once
one of the events completes. In practice, these APIs usually look something
like this:
struct IoBlocker { 
    /* ... */ 
} 
 
struct Event { 
    // An ID uniquely identifying the event that occurred and 
was listened for. 
    id: usize, 
 
    // A set of signals to wait for, or which occurred. 
    signals: Signals, 
} 
 
impl IoBlocker { 
    /// Create a new collection of asynchronous IO events to 
block on. 
    fn new() -> Self { /* ... */ } 
 
    /// Express an interest in a particular IO event. 
    fn add_io_event_interest( 
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        &self, 
 
        /// The object on which the event will occur 
        io_object: &IoObject, 
 
        /// A set of signals that may appear on the `io_object` 
for 
        /// which an event should be triggered, paired with 
        /// an ID to give to events that result from this 
interest. 
        event: Event, 
    ) { /* ... */ } 
 
    /// Block until one of the events occurs. 
    fn block(&self) -> Event { /* ... */ } 
} 
 
let mut io_blocker = IoBlocker::new(); 
io_blocker.add_io_event_interest( 
    &socket_1, 
    Event { id: 1, signals: READABLE }, 
); 
io_blocker.add_io_event_interest( 
    &socket_2, 
    Event { id: 2, signals: READABLE | WRITABLE }, 
); 
let event = io_blocker.block(); 
 
// prints e.g. "Socket 1 is now READABLE" if socket one became 
readable. 
println!("Socket {:?} is now {:?}", event.id, event.signals); 

Futures executors can use these primitives to provide asynchronous IO
objects such as sockets that can configure callbacks to be run when a
particular IO event occurs. In the case of our SocketRead  example above,



the Socket::set_readable_callback  function might look like the
following pseudocode:
impl Socket { 
    fn set_readable_callback(&self, waker: Waker) { 
        // `local_executor` is a reference to the local 
executor. 
        // This could be provided at creation of the socket, 
but in practice 
        // many executor implementations pass it down through 
thread local 
        // storage for convenience. 
        let local_executor = self.local_executor; 
 
        // Unique ID for this IO object. 
        let id = self.id; 
 
        // Store the local waker in the executor's map so that 
it can be called 
        // once the IO event arrives. 
        local_executor.event_map.insert(id, waker); 
        local_executor.add_io_event_interest( 
            &self.socket_file_descriptor, 
            Event { id, signals: READABLE }, 
        ); 
    } 
} 

We can now have just one executor thread which can receive and
dispatch any IO event to the appropriate Waker , which will wake up the
corresponding task, allowing the executor to drive more tasks to completion
before returning to check for more IO events (and the cycle continues...).



async/.await
In the first chapter, we took a brief look at async / .await . This chapter

will discuss async / .await  in greater detail, explaining how it works and
how async  code differs from traditional Rust programs.

async / .await  are special pieces of Rust syntax that make it possible to
yield control of the current thread rather than blocking, allowing other code
to make progress while waiting on an operation to complete.

There are two main ways to use async : async fn  and async  blocks.
Each returns a value that implements the Future  trait:
 
// `foo()` returns a type that implements `Future<Output = 
u8>`. 
// `foo().await` will result in a value of type `u8`. 
async fn foo() -> u8 { 5 } 
 
fn bar() -> impl Future<Output = u8> { 
    // This `async` block results in a type that implements 
    // `Future<Output = u8>`. 
    async { 
        let x: u8 = foo().await; 
        x + 5 
    } 
} 

As we saw in the first chapter, async  bodies and other futures are lazy:
they do nothing until they are run. The most common way to run a Future
is to .await  it. When .await  is called on a Future , it will attempt to run
it to completion. If the Future  is blocked, it will yield control of the
current thread. When more progress can be made, the Future  will be
picked up by the executor and will resume running, allowing the .await  to
resolve.
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async Lifetimes
Unlike traditional functions, async fn s which take references or other

non- 'static  arguments return a Future  which is bounded by the lifetime
of the arguments:
// This function: 
async fn foo(x: &u8) -> u8 { *x } 
 
// Is equivalent to this function: 
fn foo_expanded<'a>(x: &'a u8) -> impl Future<Output = u8> + 'a 
{ 
    async move { *x } 
} 

This means that the future returned from an async fn  must be 
.await ed while its non- 'static  arguments are still valid. In the common
case of .await ing the future immediately after calling the function (as in 
foo(&x).await ) this is not an issue. However, if storing the future or
sending it over to another task or thread, this may be an issue.

One common workaround for turning an async fn  with references-as-
arguments into a 'static  future is to bundle the arguments with the call to
the async fn  inside an async  block:
fn bad() -> impl Future<Output = u8> { 
    let x = 5; 
    borrow_x(&x) // ERROR: `x` does not live long enough 
} 
 
fn good() -> impl Future<Output = u8> { 
    async { 
        let x = 5; 
        borrow_x(&x).await 
    } 
} 



By moving the argument into the async  block, we extend its lifetime to
match that of the Future  returned from the call to good .



async move
async  blocks and closures allow the move  keyword, much like normal

closures. An async move  block will take ownership of the variables it
references, allowing it to outlive the current scope, but giving up the ability
to share those variables with other code:
/// `async` block: 
/// 
/// Multiple different `async` blocks can access the same local 
variable 
/// so long as they're executed within the variable's scope 
async fn blocks() { 
    let my_string = "foo".to_string(); 
 
    let future_one = async { 
        // ... 
        println!("{my_string}"); 
    }; 
 
    let future_two = async { 
        // ... 
        println!("{my_string}"); 
    }; 
 
    // Run both futures to completion, printing "foo" twice: 
    let ((), ()) = futures::join!(future_one, future_two); 
} 
 
/// `async move` block: 
/// 
/// Only one `async move` block can access the same captured 
variable, since 
/// captures are moved into the `Future` generated by the 
`async move` block. 
/// However, this allows the `Future` to outlive the original 



scope of the 
/// variable: 
fn move_block() -> impl Future<Output = ()> { 
    let my_string = "foo".to_string(); 
    async move { 
        // ... 
        println!("{my_string}"); 
    } 
} 



.awaiting on a Multithreaded Executor
Note that, when using a multithreaded Future  executor, a Future  may

move between threads, so any variables used in async  bodies must be able
to travel between threads, as any .await  can potentially result in a switch
to a new thread.

This means that it is not safe to use Rc , &RefCell  or any other types
that don't implement the Send  trait, including references to types that don't
implement the Sync  trait.

(Caveat: it is possible to use these types as long as they aren't in scope
during a call to .await .)

Similarly, it isn't a good idea to hold a traditional non-futures-aware lock
across an .await , as it can cause the threadpool to lock up: one task could
take out a lock, .await  and yield to the executor, allowing another task to
attempt to take the lock and cause a deadlock. To avoid this, use the Mutex
in futures::lock  rather than the one from std::sync .



The Stream Trait
The Stream  trait is similar to Future  but can yield multiple values

before completing, similar to the Iterator  trait from the standard library:
trait Stream { 
    /// The type of the value yielded by the stream. 
    type Item; 
 
    /// Attempt to resolve the next item in the stream. 
    /// Returns `Poll::Pending` if not ready, 
`Poll::Ready(Some(x))` if a value 
    /// is ready, and `Poll::Ready(None)` if the stream has 
completed. 
    fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) 
        -> Poll<Option<Self::Item>>; 
} 

One common example of a Stream  is the Receiver  for the channel
type from the futures  crate. It will yield Some(val)  every time a value is
sent from the Sender  end, and will yield None  once the Sender  has been
dropped and all pending messages have been received:
async fn send_recv() { 
    const BUFFER_SIZE: usize = 10; 
    let (mut tx, mut rx) = mpsc::channel::<i32>(BUFFER_SIZE); 
 
    tx.send(1).await.unwrap(); 
    tx.send(2).await.unwrap(); 
    drop(tx); 
 
    // `StreamExt::next` is similar to `Iterator::next`, but 
returns a 
    // type that implements `Future<Output = Option<T>>`. 
    assert_eq!(Some(1), rx.next().await); 
    assert_eq!(Some(2), rx.next().await); 



    assert_eq!(None, rx.next().await); 
} 



Iteration and Concurrency
Similar to synchronous Iterator s, there are many different ways to

iterate over and process the values in a Stream . There are combinator-style
methods such as map , filter , and fold , and their early-exit-on-error
cousins try_map , try_filter , and try_fold .

Unfortunately, for  loops are not usable with Stream s, but for
imperative-style code, while let  and the next / try_next  functions can
be used:
async fn sum_with_next(mut stream: Pin<&mut dyn Stream<Item = 
i32>>) -> i32 { 
    use futures::stream::StreamExt; // for `next` 
    let mut sum = 0; 
    while let Some(item) = stream.next().await { 
        sum += item; 
    } 
    sum 
} 
 
async fn sum_with_try_next( 
    mut stream: Pin<&mut dyn Stream<Item = Result<i32, 
io::Error>>>, 
) -> Result<i32, io::Error> { 
    use futures::stream::TryStreamExt; // for `try_next` 
    let mut sum = 0; 
    while let Some(item) = stream.try_next().await? { 
        sum += item; 
    } 
    Ok(sum) 
} 

However, if we're just processing one element at a time, we're potentially
leaving behind opportunity for concurrency, which is, after all, why we're
writing async code in the first place. To process multiple items from a



stream concurrently, use the for_each_concurrent  and 
try_for_each_concurrent  methods:
async fn jump_around( 
    mut stream: Pin<&mut dyn Stream<Item = Result<u8, 
io::Error>>>, 
) -> Result<(), io::Error> { 
    use futures::stream::TryStreamExt; // for 
`try_for_each_concurrent` 
    const MAX_CONCURRENT_JUMPERS: usize = 100; 
 
    stream.try_for_each_concurrent(MAX_CONCURRENT_JUMPERS, 
|num| async move { 
        jump_n_times(num).await?; 
        report_n_jumps(num).await?; 
        Ok(()) 
    }).await?; 
 
    Ok(()) 
} 



Executing Multiple Futures at a
Time

Up until now, we've mostly executed futures by using .await , which
blocks the current task until a particular Future  completes. However, real
asynchronous applications often need to execute several different operations
concurrently.

In this chapter, we'll cover some ways to execute multiple asynchronous
operations at the same time:

join! : waits for futures to all complete
select! : waits for one of several futures to complete
Spawning: creates a top-level task which ambiently runs a future to
completion
FuturesUnordered : a group of futures which yields the result of each
subfuture



join!
The futures::join  macro makes it possible to wait for multiple

different futures to complete while executing them all concurrently.



join!
When performing multiple asynchronous operations, it's tempting to

simply .await  them in a series:
async fn get_book_and_music() -> (Book, Music) { 
    let book = get_book().await; 
    let music = get_music().await; 
    (book, music) 
} 

However, this will be slower than necessary, since it won't start trying to 
get_music  until after get_book  has completed. In some other languages,
futures are ambiently run to completion, so two operations can be run
concurrently by first calling each async fn  to start the futures, and then
awaiting them both:
// WRONG -- don't do this 
async fn get_book_and_music() -> (Book, Music) { 
    let book_future = get_book(); 
    let music_future = get_music(); 
    (book_future.await, music_future.await) 
} 

However, Rust futures won't do any work until they're actively 
.await ed. This means that the two code snippets above will both run 
book_future  and music_future  in series rather than running them
concurrently. To correctly run the two futures concurrently, use 
futures::join! :
use futures::join; 
 
async fn get_book_and_music() -> (Book, Music) { 
    let book_fut = get_book(); 
    let music_fut = get_music(); 
    join!(book_fut, music_fut) 
} 



The value returned by join!  is a tuple containing the output of each 
Future  passed in.



try_join!
For futures which return Result , consider using try_join!  rather than 

join! . Since join!  only completes once all subfutures have completed,
it'll continue processing other futures even after one of its subfutures has
returned an Err .

Unlike join! , try_join!  will complete immediately if one of the
subfutures returns an error.
use futures::try_join; 
 
async fn get_book() -> Result<Book, String> { /* ... */ 
Ok(Book) } 
async fn get_music() -> Result<Music, String> { /* ... */ 
Ok(Music) } 
 
async fn get_book_and_music() -> Result<(Book, Music), String> 
{ 
    let book_fut = get_book(); 
    let music_fut = get_music(); 
    try_join!(book_fut, music_fut) 
} 

Note that the futures passed to try_join!  must all have the same error
type. Consider using the .map_err(|e| ...)  and .err_into()  functions
from futures::future::TryFutureExt  to consolidate the error types:
use futures::{ 
    future::TryFutureExt, 
    try_join, 
}; 
 
async fn get_book() -> Result<Book, ()> { /* ... */ Ok(Book) } 
async fn get_music() -> Result<Music, String> { /* ... */ 
Ok(Music) } 
 
async fn get_book_and_music() -> Result<(Book, Music), String> 



{ 
    let book_fut = get_book().map_err(|()| "Unable to get 
book".to_string()); 
    let music_fut = get_music(); 
    try_join!(book_fut, music_fut) 
} 



select!
The futures::select  macro runs multiple futures simultaneously,

allowing the user to respond as soon as any future completes.
use futures::{ 
    future::FutureExt, // for `.fuse()` 
    pin_mut, 
    select, 
}; 
 
async fn task_one() { /* ... */ } 
async fn task_two() { /* ... */ } 
 
async fn race_tasks() { 
    let t1 = task_one().fuse(); 
    let t2 = task_two().fuse(); 
 
    pin_mut!(t1, t2); 
 
    select! { 
        () = t1 => println!("task one completed first"), 
        () = t2 => println!("task two completed first"), 
    } 
} 

The function above will run both t1  and t2  concurrently. When either 
t1  or t2  finishes, the corresponding handler will call println! , and the
function will end without completing the remaining task.

The basic syntax for select  is <pattern> = <expression> => 

<code>, , repeated for as many futures as you would like to select  over.



default => ... and complete => ...
select  also supports default  and complete  branches.
A default  branch will run if none of the futures being select ed over

are yet complete. A select  with a default  branch will therefore always
return immediately, since default  will be run if none of the other futures
are ready.

complete  branches can be used to handle the case where all futures
being select ed over have completed and will no longer make progress.
This is often handy when looping over a select! .
use futures::{future, select}; 
 
async fn count() { 
    let mut a_fut = future::ready(4); 
    let mut b_fut = future::ready(6); 
    let mut total = 0; 
 
    loop { 
        select! { 
            a = a_fut => total += a, 
            b = b_fut => total += b, 
            complete => break, 
            default => unreachable!(), // never runs (futures 
are ready, then complete) 
        }; 
    } 
    assert_eq!(total, 10); 
} 



Interaction with Unpin and FusedFuture
One thing you may have noticed in the first example above is that we

had to call .fuse()  on the futures returned by the two async fn s, as well
as pinning them with pin_mut . Both of these calls are necessary because
the futures used in select  must implement both the Unpin  trait and the 
FusedFuture  trait.

Unpin  is necessary because the futures used by select  are not taken by
value, but by mutable reference. By not taking ownership of the future,
uncompleted futures can be used again after the call to select .

Similarly, the FusedFuture  trait is required because select  must not
poll a future after it has completed. FusedFuture  is implemented by
futures which track whether or not they have completed. This makes it
possible to use select  in a loop, only polling the futures which still have
yet to complete. This can be seen in the example above, where a_fut  or 
b_fut  will have completed the second time through the loop. Because the
future returned by future::ready  implements FusedFuture , it's able to
tell select  not to poll it again.

Note that streams have a corresponding FusedStream  trait. Streams
which implement this trait or have been wrapped using .fuse()  will yield 
FusedFuture  futures from their .next()  / .try_next()  combinators.
use futures::{ 
    stream::{Stream, StreamExt, FusedStream}, 
    select, 
}; 
 
async fn add_two_streams( 
    mut s1: impl Stream<Item = u8> + FusedStream + Unpin, 
    mut s2: impl Stream<Item = u8> + FusedStream + Unpin, 
) -> u8 { 
    let mut total = 0; 
 
    loop { 



        let item = select! { 
            x = s1.next() => x, 
            x = s2.next() => x, 
            complete => break, 
        }; 
        if let Some(next_num) = item { 
            total += next_num; 
        } 
    } 
 
    total 
} 



Concurrent tasks in a select loop with Fuse and 
FuturesUnordered

One somewhat hard-to-discover but handy function is 
Fuse::terminated() , which allows constructing an empty future which is
already terminated, and can later be filled in with a future that needs to be
run.

This can be handy when there's a task that needs to be run during a 
select  loop but which is created inside the select  loop itself.

Note the use of the .select_next_some()  function. This can be used
with select  to only run the branch for Some(_)  values returned from the
stream, ignoring None s.
use futures::{ 
    future::{Fuse, FusedFuture, FutureExt}, 
    stream::{FusedStream, Stream, StreamExt}, 
    pin_mut, 
    select, 
}; 
 
async fn get_new_num() -> u8 { /* ... */ 5 } 
 
async fn run_on_new_num(_: u8) { /* ... */ } 
 
async fn run_loop( 
    mut interval_timer: impl Stream<Item = ()> + FusedStream + 
Unpin, 
    starting_num: u8, 
) { 
    let run_on_new_num_fut = 
run_on_new_num(starting_num).fuse(); 
    let get_new_num_fut = Fuse::terminated(); 
    pin_mut!(run_on_new_num_fut, get_new_num_fut); 
    loop { 



        select! { 
            () = interval_timer.select_next_some() => { 
                // The timer has elapsed. Start a new 
`get_new_num_fut` 
                // if one was not already running. 
                if get_new_num_fut.is_terminated() { 
                    get_new_num_fut.set(get_new_num().fuse()); 
                } 
            }, 
            new_num = get_new_num_fut => { 
                // A new number has arrived -- start a new 
`run_on_new_num_fut`, 
                // dropping the old one. 
                
run_on_new_num_fut.set(run_on_new_num(new_num).fuse()); 
            }, 
            // Run the `run_on_new_num_fut` 
            () = run_on_new_num_fut => {}, 
            // panic if everything completed, since the 
`interval_timer` should 
            // keep yielding values indefinitely. 
            complete => panic!("`interval_timer` completed 
unexpectedly"), 
        } 
    } 
} 

When many copies of the same future need to be run simultaneously, use
the FuturesUnordered  type. The following example is similar to the one
above, but will run each copy of run_on_new_num_fut  to completion,
rather than aborting them when a new one is created. It will also print out a
value returned by run_on_new_num_fut .
use futures::{ 
    future::{Fuse, FusedFuture, FutureExt}, 
    stream::{FusedStream, FuturesUnordered, Stream, StreamExt}, 
    pin_mut, 



    select, 
}; 
 
async fn get_new_num() -> u8 { /* ... */ 5 } 
 
async fn run_on_new_num(_: u8) -> u8 { /* ... */ 5 } 
 
async fn run_loop( 
    mut interval_timer: impl Stream<Item = ()> + FusedStream + 
Unpin, 
    starting_num: u8, 
) { 
    let mut run_on_new_num_futs = FuturesUnordered::new(); 
    run_on_new_num_futs.push(run_on_new_num(starting_num)); 
    let get_new_num_fut = Fuse::terminated(); 
    pin_mut!(get_new_num_fut); 
    loop { 
        select! { 
            () = interval_timer.select_next_some() => { 
                // The timer has elapsed. Start a new 
`get_new_num_fut` 
                // if one was not already running. 
                if get_new_num_fut.is_terminated() { 
                    get_new_num_fut.set(get_new_num().fuse()); 
                } 
            }, 
            new_num = get_new_num_fut => { 
                // A new number has arrived -- start a new 
`run_on_new_num_fut`. 
                
run_on_new_num_futs.push(run_on_new_num(new_num)); 
            }, 
            // Run the `run_on_new_num_futs` and check if any 
have completed 
            res = run_on_new_num_futs.select_next_some() => { 
                println!("run_on_new_num_fut returned {:?}", 



res); 
            }, 
            // panic if everything completed, since the 
`interval_timer` should 
            // keep yielding values indefinitely. 
            complete => panic!("`interval_timer` completed 
unexpectedly"), 
        } 
    } 
} 
 



Spawning
Spawning allows you to run a new asynchronous task in the background.

This allows us to continue executing other code while it runs.
Say we have a web server that wants to accept connections without

blocking the main thread. To achieve this, we can use the 
async_std::task::spawn  function to create and run a new task that
handles the connections. This function takes a future and returns a 
JoinHandle , which can be used to wait for the result of the task once it's
completed.
use async_std::{task, net::TcpListener, net::TcpStream}; 
use futures::AsyncWriteExt; 
 
async fn process_request(stream: &mut TcpStream) -> Result<(), 
std::io::Error>{ 
    stream.write_all(b"HTTP/1.1 200 OK\r\n\r\n").await?; 
    stream.write_all(b"Hello World").await?; 
    Ok(()) 
} 
 
async fn main() { 
    let listener = 
TcpListener::bind("127.0.0.1:8080").await.unwrap(); 
    loop { 
        // Accept a new connection 
        let (mut stream, _) = listener.accept().await.unwrap(); 
        // Now process this request without blocking the main 
loop 
        task::spawn(async move {process_request(&mut 
stream).await}); 
    } 
} 



The JoinHandle  returned by spawn  implements the Future  trait, so we
can .await  it to get the result of the task. This will block the current task
until the spawned task completes. If the task is not awaited, your program
will continue executing without waiting for the task, cancelling it if the
function is completed before the task is finished.
use futures::future::join_all; 
async fn task_spawner(){ 
    let tasks = vec![ 
        task::spawn(my_task(Duration::from_secs(1))), 
        task::spawn(my_task(Duration::from_secs(2))), 
        task::spawn(my_task(Duration::from_secs(3))), 
    ]; 
    // If we do not await these tasks and the function 
finishes, they will be dropped 
    join_all(tasks).await; 
} 

To communicate between the main task and the spawned task, we can
use channels provided by the async runtime used.



Workarounds to Know and Love
Rust's async  support is still fairly new, and there are a handful of

highly-requested features still under active development, as well as some
subpar diagnostics. This chapter will discuss some common pain points and
explain how to work around them.



Send Approximation
Some async fn  state machines are safe to be sent across threads, while

others are not. Whether or not an async fn  Future  is Send  is determined
by whether a non- Send  type is held across an .await  point. The compiler
does its best to approximate when values may be held across an .await
point, but this analysis is too conservative in a number of places today.

For example, consider a simple non- Send  type, perhaps a type which
contains an Rc :
use std::rc::Rc; 
 
#[derive(Default)] 
struct NotSend(Rc<()>); 

Variables of type NotSend  can briefly appear as temporaries in async 
fn s even when the resulting Future  type returned by the async fn  must
be Send :
# use std::rc::Rc; 
# #[derive(Default)] 
# struct NotSend(Rc<()>); 
async fn bar() {} 
async fn foo() { 
    NotSend::default(); 
    bar().await; 
} 
 
fn require_send(_: impl Send) {} 
 
fn main() { 
    require_send(foo()); 
} 

However, if we change foo  to store NotSend  in a variable, this example
no longer compiles:



# use std::rc::Rc; 
# #[derive(Default)] 
# struct NotSend(Rc<()>); 
# async fn bar() {} 
async fn foo() { 
    let x = NotSend::default(); 
    bar().await; 
} 
# fn require_send(_: impl Send) {} 
# fn main() { 
#    require_send(foo()); 
# } 
error[E0277]: `std::rc::Rc<()>` cannot be sent between threads 
safely 
  --> src/main.rs:15:5 
   | 
15 |     require_send(foo()); 
   |     ^^^^^^^^^^^^ `std::rc::Rc<()>` cannot be sent between 
threads safely 
   | 
   = help: within `impl std::future::Future`, the trait 
`std::marker::Send` is not implemented for `std::rc::Rc<()>` 
   = note: required because it appears within the type 
`NotSend` 
   = note: required because it appears within the type 
`{NotSend, impl std::future::Future, ()}` 
   = note: required because it appears within the type `[static 
generator@src/main.rs:7:16: 10:2 {NotSend, impl 
std::future::Future, ()}]` 
   = note: required because it appears within the type 
`std::future::GenFuture<[static generator@src/main.rs:7:16: 
10:2 {NotSend, impl std::future::Future, ()}]>` 
   = note: required because it appears within the type `impl 
std::future::Future` 
   = note: required because it appears within the type `impl 
std::future::Future` 



note: required by `require_send` 
  --> src/main.rs:12:1 
   | 
12 | fn require_send(_: impl Send) {} 
   | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 
 
error: aborting due to previous error 
 
For more information about this error, try `rustc --explain 
E0277`. 

This error is correct. If we store x  into a variable, it won't be dropped
until after the .await , at which point the async fn  may be running on a
different thread. Since Rc  is not Send , allowing it to travel across threads
would be unsound. One simple solution to this would be to drop  the Rc
before the .await , but unfortunately that does not work today.

In order to successfully work around this issue, you may have to
introduce a block scope encapsulating any non- Send  variables. This makes
it easier for the compiler to tell that these variables do not live across an 
.await  point.
# use std::rc::Rc; 
# #[derive(Default)] 
# struct NotSend(Rc<()>); 
# async fn bar() {} 
async fn foo() { 
    { 
        let x = NotSend::default(); 
    } 
    bar().await; 
} 
# fn require_send(_: impl Send) {} 
# fn main() { 
#    require_send(foo()); 
# } 



Recursion
Internally, async fn  creates a state machine type containing each sub-

Future  being .await ed. This makes recursive async fn s a little tricky,
since the resulting state machine type has to contain itself:
# async fn step_one() { /* ... */ } 
# async fn step_two() { /* ... */ } 
# struct StepOne; 
# struct StepTwo; 
// This function: 
async fn foo() { 
    step_one().await; 
    step_two().await; 
} 
// generates a type like this: 
enum Foo { 
    First(StepOne), 
    Second(StepTwo), 
} 
 
// So this function: 
async fn recursive() { 
    recursive().await; 
    recursive().await; 
} 
 
// generates a type like this: 
enum Recursive { 
    First(Recursive), 
    Second(Recursive), 
} 

This won't work—we've created an infinitely-sized type! The compiler
will complain:



error[E0733]: recursion in an async fn requires boxing 
 --> src/lib.rs:1:1 
  | 
1 | async fn recursive() { 
  | ^^^^^^^^^^^^^^^^^^^^ 
  | 
  = note: a recursive `async fn` call must introduce 
indirection such as `Box::pin` to avoid an infinitely sized 
future 

In order to allow this, we have to introduce an indirection using Box .
Prior to Rust 1.77, due to compiler limitations, just wrapping the calls to 

recursive()  in Box::pin  isn't enough. To make this work, we have to
make recursive  into a non- async  function which returns a .boxed()  
async  block:
use futures::future::{BoxFuture, FutureExt}; 
 
fn recursive() -> BoxFuture<'static, ()> { 
    async move { 
        recursive().await; 
        recursive().await; 
    }.boxed() 
} 

In newer version of Rust, that compiler limitation has been lifted.
Since Rust 1.77, support for recursion in async fn  with allocation

indirection becomes stable, so recursive calls are permitted so long as they
use some form of indirection to avoid an infinite size for the state of the
function.

This means that code like this now works:
async fn recursive_pinned() { 
    Box::pin(recursive_pinned()).await; 
    Box::pin(recursive_pinned()).await; 
} 

https://github.com/rust-lang/rust/pull/117703/
https://blog.rust-lang.org/2024/03/21/Rust-1.77.0.html#support-for-recursion-in-async-fn


async in Traits
Currently, async fn  cannot be used in traits on the stable release of

Rust. Since the 17th November 2022, an MVP of async-fn-in-trait is
available on the nightly version of the compiler tool chain, see here for
details.

In the meantime, there is a work around for the stable tool chain using
the async-trait crate from crates.io.

Note that using these trait methods will result in a heap allocation per-
function-call. This is not a significant cost for the vast majority of
applications, but should be considered when deciding whether to use this
functionality in the public API of a low-level function that is expected to be
called millions of times a second.

Last updates: https://blog.rust-lang.org/2023/12/21/async-fn-rpit-in-
traits.html

https://blog.rust-lang.org/inside-rust/2022/11/17/async-fn-in-trait-nightly.html
https://github.com/dtolnay/async-trait


The Async Ecosystem
Rust currently provides only the bare essentials for writing async code.

Importantly, executors, tasks, reactors, combinators, and low-level I/O
futures and traits are not yet provided in the standard library. In the
meantime, community-provided async ecosystems fill in these gaps.

The Async Foundations Team is interested in extending examples in the
Async Book to cover multiple runtimes. If you're interested in contributing
to this project, please reach out to us on Zulip.

https://rust-lang.zulipchat.com/#narrow/stream/201246-wg-async-foundations.2Fbook


Async Runtimes
Async runtimes are libraries used for executing async applications.

Runtimes usually bundle together a reactor with one or more executors.
Reactors provide subscription mechanisms for external events, like async
I/O, interprocess communication, and timers. In an async runtime,
subscribers are typically futures representing low-level I/O operations.
Executors handle the scheduling and execution of tasks. They keep track of
running and suspended tasks, poll futures to completion, and wake tasks
when they can make progress. The word "executor" is frequently used
interchangeably with "runtime". Here, we use the word "ecosystem" to
describe a runtime bundled with compatible traits and features.



Community-Provided Async Crates
The Futures Crate

The futures  crate contains traits and functions useful for writing async
code. This includes the Stream , Sink , AsyncRead , and AsyncWrite  traits,
and utilities such as combinators. These utilities and traits may eventually
become part of the standard library.

futures  has its own executor, but not its own reactor, so it does not
support execution of async I/O or timer futures. For this reason, it's not
considered a full runtime. A common choice is to use utilities from 
futures  with an executor from another crate.

Popular Async Runtimes
There is no asynchronous runtime in the standard library, and none are

officially recommended. The following crates provide popular runtimes.

Tokio: A popular async ecosystem with HTTP, gRPC, and tracing
frameworks.
async-std: A crate that provides asynchronous counterparts to standard
library components.
smol: A small, simplified async runtime. Provides the Async  trait that
can be used to wrap structs like UnixStream  or TcpListener .
fuchsia-async: An executor for use in the Fuchsia OS.

https://docs.rs/futures/
https://docs.rs/tokio/
https://docs.rs/async-std/
https://docs.rs/smol/
https://fuchsia.googlesource.com/fuchsia/+/master/src/lib/fuchsia-async/


Determining Ecosystem Compatibility
Not all async applications, frameworks, and libraries are compatible

with each other, or with every OS or platform. Most async code can be used
with any ecosystem, but some frameworks and libraries require the use of a
specific ecosystem. Ecosystem constraints are not always documented, but
there are several rules of thumb to determine whether a library, trait, or
function depends on a specific ecosystem.

Any async code that interacts with async I/O, timers, interprocess
communication, or tasks generally depends on a specific async executor or
reactor. All other async code, such as async expressions, combinators,
synchronization types, and streams are usually ecosystem independent,
provided that any nested futures are also ecosystem independent. Before
beginning a project, it's recommended to research relevant async
frameworks and libraries to ensure compatibility with your chosen runtime
and with each other.

Notably, Tokio  uses the mio  reactor and defines its own versions of
async I/O traits, including AsyncRead  and AsyncWrite . On its own, it's not
compatible with async-std  and smol , which rely on the async-executor
crate, and the AsyncRead  and AsyncWrite  traits defined in futures .

Conflicting runtime requirements can sometimes be resolved by
compatibility layers that allow you to call code written for one runtime
within another. For example, the async_compat  crate provides a
compatibility layer between Tokio  and other runtimes.

Libraries exposing async APIs should not depend on a specific executor
or reactor, unless they need to spawn tasks or define their own async I/O or
timer futures. Ideally, only binaries should be responsible for scheduling
and running tasks.

https://docs.rs/async-executor
https://docs.rs/async_compat


Single Threaded vs Multi-Threaded Executors
Async executors can be single-threaded or multi-threaded. For example,

the async-executor  crate has both a single-threaded LocalExecutor  and
a multi-threaded Executor .

A multi-threaded executor makes progress on several tasks
simultaneously. It can speed up the execution greatly for workloads with
many tasks, but synchronizing data between tasks is usually more
expensive. It is recommended to measure performance for your application
when you are choosing between a single- and a multi-threaded runtime.

Tasks can either be run on the thread that created them or on a separate
thread. Async runtimes often provide functionality for spawning tasks onto
separate threads. Even if tasks are executed on separate threads, they should
still be non-blocking. In order to schedule tasks on a multi-threaded
executor, they must also be Send . Some runtimes provide functions for
spawning non- Send  tasks, which ensures every task is executed on the
thread that spawned it. They may also provide functions for spawning
blocking tasks onto dedicated threads, which is useful for running blocking
synchronous code from other libraries.



Final Project: Building a
Concurrent Web Server with Async

Rust
In this chapter, we'll use asynchronous Rust to modify the Rust book's

single-threaded web server to serve requests concurrently.

https://doc.rust-lang.org/book/ch20-01-single-threaded.html


Recap
Here's what the code looked like at the end of the lesson.
src/main.rs :

use std::fs; 
use std::io::prelude::*; 
use std::net::TcpListener; 
use std::net::TcpStream; 
 
fn main() { 
    // Listen for incoming TCP connections on localhost port 
7878 
    let listener = 
TcpListener::bind("127.0.0.1:7878").unwrap(); 
 
    // Block forever, handling each request that arrives at 
this IP address 
    for stream in listener.incoming() { 
        let stream = stream.unwrap(); 
 
        handle_connection(stream); 
    } 
} 
 
fn handle_connection(mut stream: TcpStream) { 
    // Read the first 1024 bytes of data from the stream 
    let mut buffer = [0; 1024]; 
    stream.read(&mut buffer).unwrap(); 
 
    let get = b"GET / HTTP/1.1\r\n"; 
 
    // Respond with greetings or a 404, 
    // depending on the data in the request 
    let (status_line, filename) = if buffer.starts_with(get) { 
        ("HTTP/1.1 200 OK\r\n\r\n", "hello.html") 



    } else { 
        ("HTTP/1.1 404 NOT FOUND\r\n\r\n", "404.html") 
    }; 
    let contents = fs::read_to_string(filename).unwrap(); 
 
    // Write response back to the stream, 
    // and flush the stream to ensure the response is sent 
back to the client 
    let response = format!("{status_line}{contents}"); 
    stream.write_all(response.as_bytes()).unwrap(); 
    stream.flush().unwrap(); 
} 

hello.html :
<!DOCTYPE html> 
<html lang="en"> 
  <head> 
    <meta charset="utf-8"> 
    <title>Hello!</title> 
  </head> 
  <body> 
    <h1>Hello!</h1> 
    <p>Hi from Rust</p> 
  </body> 
</html> 

404.html :
<!DOCTYPE html> 
<html lang="en"> 
  <head> 
    <meta charset="utf-8"> 
    <title>Hello!</title> 
  </head> 
  <body> 
    <h1>Oops!</h1> 
    <p>Sorry, I don't know what you're asking for.</p> 



  </body> 
</html> 

If you run the server with cargo run  and visit 127.0.0.1:7878  in your
browser, you'll be greeted with a friendly message from Ferris!



Running Asynchronous Code
An HTTP server should be able to serve multiple clients concurrently;

that is, it should not wait for previous requests to complete before handling
the current request. The book solves this problem by creating a thread pool
where each connection is handled on its own thread. Here, instead of
improving throughput by adding threads, we'll achieve the same effect
using asynchronous code.

Let's modify handle_connection  to return a future by declaring it an
async fn :
async fn handle_connection(mut stream: TcpStream) { 
    //<-- snip --> 
} 

Adding async  to the function declaration changes its return type from
the unit type ()  to a type that implements Future<Output=()> .

If we try to compile this, the compiler warns us that it will not work:
$ cargo check 
    Checking async-rust v0.1.0 (file:///projects/async-rust) 
warning: unused implementer of `std::future::Future` that must 
be used 
  --> src/main.rs:12:9 
   | 
12 |         handle_connection(stream); 
   |         ^^^^^^^^^^^^^^^^^^^^^^^^^^ 
   | 
   = note: `#[warn(unused_must_use)]` on by default 
   = note: futures do nothing unless you `.await` or poll them 

Because we haven't await ed or poll ed the result of 
handle_connection , it'll never run. If you run the server and visit 
127.0.0.1:7878  in a browser, you'll see that the connection is refused; our
server is not handling requests.

https://doc.rust-lang.org/book/ch20-02-multithreaded.html#turning-our-single-threaded-server-into-a-multithreaded-server


We can't await  or poll  futures within synchronous code by itself. We'll
need an asynchronous runtime to handle scheduling and running futures to
completion. Please consult the section on choosing a runtime for more
information on asynchronous runtimes, executors, and reactors. Any of the
runtimes listed will work for this project, but for these examples, we've
chosen to use the async-std  crate.

clbr://internal.invalid/book/OEBPS/08_ecosystem/00_chapter.md


Adding an Async Runtime
The following example will demonstrate refactoring synchronous code

to use an async runtime; here, async-std . The #[async_std::main]

attribute from async-std  allows us to write an asynchronous main
function. To use it, enable the attributes  feature of async-std  in 
Cargo.toml :
[dependencies.async-std] 
version = "1.6" 
features = ["attributes"] 

As a first step, we'll switch to an asynchronous main function, and 
await  the future returned by the async version of handle_connection .
Then, we'll test how the server responds. Here's what that would look like:
#[async_std::main] 
async fn main() { 
    let listener = 
TcpListener::bind("127.0.0.1:7878").unwrap(); 
    for stream in listener.incoming() { 
        let stream = stream.unwrap(); 
        // Warning: This is not concurrent! 
        handle_connection(stream).await; 
    } 
} 

Now, let's test to see if our server can handle connections concurrently.
Simply making handle_connection  asynchronous doesn't mean that the
server can handle multiple connections at the same time, and we'll soon see
why.

To illustrate this, let's simulate a slow request. When a client makes a
request to 127.0.0.1:7878/sleep , our server will sleep for 5 seconds:
use std::time::Duration; 
use async_std::task; 
 
async fn handle_connection(mut stream: TcpStream) { 



    let mut buffer = [0; 1024]; 
    stream.read(&mut buffer).unwrap(); 
 
    let get = b"GET / HTTP/1.1\r\n"; 
    let sleep = b"GET /sleep HTTP/1.1\r\n"; 
 
    let (status_line, filename) = if buffer.starts_with(get) { 
        ("HTTP/1.1 200 OK\r\n\r\n", "hello.html") 
    } else if buffer.starts_with(sleep) { 
        task::sleep(Duration::from_secs(5)).await; 
        ("HTTP/1.1 200 OK\r\n\r\n", "hello.html") 
    } else { 
        ("HTTP/1.1 404 NOT FOUND\r\n\r\n", "404.html") 
    }; 
    let contents = fs::read_to_string(filename).unwrap(); 
 
    let response = format!("{status_line}{contents}"); 
    stream.write(response.as_bytes()).unwrap(); 
    stream.flush().unwrap(); 
} 

This is very similar to the simulation of a slow request from the Book,
but with one important difference: we're using the non-blocking function 
async_std::task::sleep  instead of the blocking function 
std::thread::sleep . It's important to remember that even if a piece of
code is run within an async fn  and await ed, it may still block. To test
whether our server handles connections concurrently, we'll need to ensure
that handle_connection  is non-blocking.

If you run the server, you'll see that a request to 127.0.0.1:7878/sleep
will block any other incoming requests for 5 seconds! This is because there
are no other concurrent tasks that can make progress while we are 
await ing the result of handle_connection . In the next section, we'll see
how to use async code to handle connections concurrently.

https://doc.rust-lang.org/book/ch20-02-multithreaded.html#simulating-a-slow-request-in-the-current-server-implementation


Handling Connections
Concurrently

The problem with our code so far is that listener.incoming()  is a
blocking iterator. The executor can't run other futures while listener
waits on incoming connections, and we can't handle a new connection until
we're done with the previous one.

In order to fix this, we'll transform listener.incoming()  from a
blocking Iterator to a non-blocking Stream. Streams are similar to Iterators,
but can be consumed asynchronously. For more information, see the chapter
on Streams.

Let's replace our blocking std::net::TcpListener  with the non-
blocking async_std::net::TcpListener , and update our connection
handler to accept an async_std::net::TcpStream :
use async_std::prelude::*; 
 
async fn handle_connection(mut stream: TcpStream) { 
    let mut buffer = [0; 1024]; 
    stream.read(&mut buffer).await.unwrap(); 
 
    //<-- snip --> 
    stream.write(response.as_bytes()).await.unwrap(); 
    stream.flush().await.unwrap(); 
} 

The asynchronous version of TcpListener  implements the Stream  trait
for listener.incoming() , a change which provides two benefits. The first
is that listener.incoming()  no longer blocks the executor. The executor
can now yield to other pending futures while there are no incoming TCP
connections to be processed.

The second benefit is that elements from the Stream can optionally be
processed concurrently, using a Stream's for_each_concurrent  method.

clbr://internal.invalid/book/OEBPS/05_streams/01_chapter.md


Here, we'll take advantage of this method to handle each incoming request
concurrently. We'll need to import the Stream  trait from the futures  crate,
so our Cargo.toml now looks like this:
+[dependencies] 
+futures = "0.3" 
 
 [dependencies.async-std] 
 version = "1.6" 
 features = ["attributes"] 

Now, we can handle each connection concurrently by passing 
handle_connection  in through a closure function. The closure function
takes ownership of each TcpStream , and is run as soon as a new 
TcpStream  becomes available. As long as handle_connection  does not
block, a slow request will no longer prevent other requests from
completing.
use async_std::net::TcpListener; 
use async_std::net::TcpStream; 
use futures::stream::StreamExt; 
 
#[async_std::main] 
async fn main() { 
    let listener = 
TcpListener::bind("127.0.0.1:7878").await.unwrap(); 
    listener 
        .incoming() 
        .for_each_concurrent(/* limit */ None, |tcpstream| 
async move { 
            let tcpstream = tcpstream.unwrap(); 
            handle_connection(tcpstream).await; 
        }) 
        .await; 
} 



Serving Requests in Parallel
Our example so far has largely presented cooperative multitasking

concurrency (using async code) as an alternative to preemptive multitasking
(using threads). However, async code and threads are not mutually
exclusive. In our example, for_each_concurrent  processes each
connection concurrently, but on the same thread. The async-std  crate
allows us to spawn tasks onto separate threads as well. Because 
handle_connection  is both Send  and non-blocking, it's safe to use with 
async_std::task::spawn . Here's what that would look like:
use async_std::task::spawn; 
 
#[async_std::main] 
async fn main() { 
    let listener = 
TcpListener::bind("127.0.0.1:7878").await.unwrap(); 
    listener 
        .incoming() 
        .for_each_concurrent(/* limit */ None, |stream| async 
move { 
            let stream = stream.unwrap(); 
            spawn(handle_connection(stream)); 
        }) 
        .await; 
} 

Now we are using both cooperative multitasking concurrency and
preemptive multitasking to handle multiple requests at the same time! See
the section on multithreaded executors for more information.

clbr://internal.invalid/book/OEBPS/08_ecosystem/00_chapter.md#single-threading-vs-multithreading


Testing the TCP Server
Let's move on to testing our handle_connection  function.
First, we need a TcpStream  to work with. In an end-to-end or

integration test, we might want to make a real TCP connection to test our
code. One strategy for doing this is to start a listener on localhost  port 0.
Port 0 isn't a valid UNIX port, but it'll work for testing. The operating
system will pick an open TCP port for us.

Instead, in this example we'll write a unit test for the connection handler,
to check that the correct responses are returned for the respective inputs. To
keep our unit test isolated and deterministic, we'll replace the TcpStream
with a mock.

First, we'll change the signature of handle_connection  to make it
easier to test. handle_connection  doesn't actually require an 
async_std::net::TcpStream ; it requires any struct that implements 
async_std::io::Read , async_std::io::Write , and marker::Unpin .
Changing the type signature to reflect this allows us to pass a mock for
testing.
use async_std::io::{Read, Write}; 
 
async fn handle_connection(mut stream: impl Read + Write + 
Unpin) { 

Next, let's build a mock TcpStream  that implements these traits. First,
let's implement the Read  trait, with one method, poll_read . Our mock 
TcpStream  will contain some data that is copied into the read buffer, and
we'll return Poll::Ready  to signify that the read is complete.
    use super::*; 
    use futures::io::Error; 
    use futures::task::{Context, Poll}; 
 
    use std::cmp::min; 
    use std::pin::Pin; 



 
    struct MockTcpStream { 
        read_data: Vec<u8>, 
        write_data: Vec<u8>, 
    } 
 
    impl Read for MockTcpStream { 
        fn poll_read( 
            self: Pin<&mut Self>, 
            _: &mut Context, 
            buf: &mut [u8], 
        ) -> Poll<Result<usize, Error>> { 
            let size: usize = min(self.read_data.len(), 
buf.len()); 
            
buf[..size].copy_from_slice(&self.read_data[..size]); 
            Poll::Ready(Ok(size)) 
        } 
    } 

Our implementation of Write  is very similar, although we'll need to
write three methods: poll_write , poll_flush , and poll_close . 
poll_write  will copy any input data into the mock TcpStream , and return 
Poll::Ready  when complete. No work needs to be done to flush or close
the mock TcpStream , so poll_flush  and poll_close  can just return
Poll::Ready .
    impl Write for MockTcpStream { 
        fn poll_write( 
            mut self: Pin<&mut Self>, 
            _: &mut Context, 
            buf: &[u8], 
        ) -> Poll<Result<usize, Error>> { 
            self.write_data = Vec::from(buf); 
 
            Poll::Ready(Ok(buf.len())) 



        } 
 
        fn poll_flush(self: Pin<&mut Self>, _: &mut Context) -> 
Poll<Result<(), Error>> { 
            Poll::Ready(Ok(())) 
        } 
 
        fn poll_close(self: Pin<&mut Self>, _: &mut Context) -> 
Poll<Result<(), Error>> { 
            Poll::Ready(Ok(())) 
        } 
    } 

Lastly, our mock will need to implement Unpin , signifying that its
location in memory can safely be moved. For more information on pinning
and the Unpin  trait, see the section on pinning.
    impl Unpin for MockTcpStream {} 

Now we're ready to test the handle_connection  function. After setting
up the MockTcpStream  containing some initial data, we can run 
handle_connection  using the attribute #[async_std::test] , similarly to
how we used #[async_std::main] . To ensure that handle_connection
works as intended, we'll check that the correct data was written to the 
MockTcpStream  based on its initial contents.
    use std::fs; 
 
    #[async_std::test] 
    async fn test_handle_connection() { 
        let input_bytes = b"GET / HTTP/1.1\r\n"; 
        let mut contents = vec![0u8; 1024]; 
        
contents[..input_bytes.len()].clone_from_slice(input_bytes); 
        let mut stream = MockTcpStream { 
            read_data: contents, 
            write_data: Vec::new(), 
        }; 



 
        handle_connection(&mut stream).await; 
 
        let expected_contents = 
fs::read_to_string("hello.html").unwrap(); 
        let expected_response = format!("HTTP/1.1 200 
OK\r\n\r\n{}", expected_contents); 
        assert!
(stream.write_data.starts_with(expected_response.as_bytes())); 
    } 



Appendix : Translations of the
Book

For resources in languages other than English.

Русский
Français
فارسی

https://doc.rust-lang.ru/async-book/
https://jimskapt.github.io/async-book-fr/
https://rouzbehsbz.github.io/rust-async-book/
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