
 The Cargo Book

[image: Cargo Logo]

Cargo is the Rust package manager. Cargo downloads your Rust package's
dependencies, compiles your packages, makes distributable packages, and uploads them to
crates.io, the Rust community’s package registry. You can contribute
to this book on GitHub.

Sections

Getting Started

To get started with Cargo, install Cargo (and Rust) and set up your first
crate.

Cargo Guide

The guide will give you all you need to know about how to use Cargo to develop
Rust packages.

Cargo Reference

The reference covers the details of various areas of Cargo.

Cargo Commands

The commands will let you interact with Cargo using its command-line interface.

Frequently Asked Questions

Appendices:

	Glossary

	Git Authentication

Other Documentation:

	Changelog
--- Detailed notes about changes in Cargo in each release.

	Rust documentation website --- Links to official
Rust documentation and tools.

 Getting Started

To get started with Cargo, install Cargo (and Rust) and set up your first
crate.

	Installation

	First steps with Cargo

 Installation

Install Rust and Cargo

The easiest way to get Cargo is to install the current stable release of Rust
by using rustup. Installing Rust using rustup will also install cargo.

On Linux and macOS systems, this is done as follows:

curl https://sh.rustup.rs -sSf | sh

It will download a script, and start the installation. If everything goes well,
you’ll see this appear:

Rust is installed now. Great!

On Windows, download and run rustup-init.exe. It will start the installation
in a console and present the above message on success.

After this, you can use the rustup command to also install beta or nightly
channels for Rust and Cargo.

For other installation options and information, visit the
install page of the Rust website.

Build and Install Cargo from Source

Alternatively, you can build Cargo from source.

 First Steps with Cargo

This section provides a quick sense for the cargo command line tool. We
demonstrate its ability to generate a new package for us,
its ability to compile the crate within the package, and
its ability to run the resulting program.

To start a new package with Cargo, use cargo new:

$ cargo new hello_world

Cargo defaults to --bin to make a binary program. To make a library, we
would pass --lib, instead.

Let’s check out what Cargo has generated for us:

$ cd hello_world
$ tree .
.
├── Cargo.toml
└── src
 └── main.rs

1 directory, 2 files

This is all we need to get started. First, let’s check out Cargo.toml:

[package]
name = "hello_world"
version = "0.1.0"
edition = "2024"

[dependencies]

This is called a manifest, and it contains all of the
metadata that Cargo needs to compile your package.

Here’s what’s in src/main.rs:

fn main() {
 println!("Hello, world!");
}

Cargo generated a “hello world” program for us, otherwise known as a
binary crate. Let’s compile it:

$ cargo build
 Compiling hello_world v0.1.0 (file:///path/to/package/hello_world)

And then run it:

$./target/debug/hello_world
Hello, world!

We can also use cargo run to compile and then run it, all in one step:

$ cargo run
 Fresh hello_world v0.1.0 (file:///path/to/package/hello_world)
 Running `target/hello_world`
Hello, world!

Going further

For more details on using Cargo, check out the Cargo Guide

 Cargo Guide

This guide will give you all that you need to know about how to use Cargo to
develop Rust packages.

	Why Cargo Exists

	Creating a New Package

	Working on an Existing Cargo Package

	Dependencies

	Package Layout

	Cargo.toml vs Cargo.lock

	Tests

	Continuous Integration

	Publishing on crates.io

	Cargo Home

 Why Cargo Exists

Preliminaries

In Rust, as you may know, a library or executable program is called a
crate. Crates are compiled using the Rust compiler,
rustc. When starting with Rust, the first source code most people encounter
is that of the classic “hello world” program, which they compile by invoking
rustc directly:

$ rustc hello.rs
$./hello
Hello, world!

Note that the above command required that you specify the file name
explicitly. If you were to directly use rustc to compile a different program,
a different command line invocation would be required. If you needed to specify
any specific compiler flags or include external dependencies, then the
needed command would be even more specific (and complex).

Furthermore, most non-trivial programs will likely have dependencies on
external libraries, and will therefore also depend transitively on their
dependencies. Obtaining the correct versions of all the necessary dependencies
and keeping them up to date would be hard and error-prone if done by
hand.

Rather than work only with crates and rustc, you can avoid the difficulties
involved with performing the above tasks by introducing a higher-level
"package" abstraction and by using a
package manager.

Enter: Cargo

Cargo is the Rust package manager. It is a tool that allows Rust
packages to declare their various dependencies and ensure
that you’ll always get a repeatable build.

To accomplish this goal, Cargo does four things:

	Introduces two metadata files with various bits of package information.

	Fetches and builds your package’s dependencies.

	Invokes rustc or another build tool with the correct parameters to build
your package.

	Introduces conventions to make working with Rust packages easier.

To a large extent, Cargo normalizes the commands needed to build a given
program or library; this is one aspect to the above mentioned conventions. As
we show later, the same command can be used to build different
artifacts, regardless of their names. Rather than invoke
rustc directly, you can instead invoke something generic such as cargo build and let cargo worry about constructing the correct rustc
invocation. Furthermore, Cargo will automatically fetch any dependencies
you have defined for your artifact from a registry,
and arrange for them to be added into your build as needed.

It is only a slight exaggeration to say that once you know how to build one
Cargo-based project, you know how to build all of them.

 Creating a New Package

To start a new package with Cargo, use cargo new:

$ cargo new hello_world --bin

We’re passing --bin because we’re making a binary program: if we
were making a library, we’d pass --lib. This also initializes a new git
repository by default. If you don't want it to do that, pass --vcs none.

Let’s check out what Cargo has generated for us:

$ cd hello_world
$ tree .
.
├── Cargo.toml
└── src
 └── main.rs

1 directory, 2 files

Let’s take a closer look at Cargo.toml:

[package]
name = "hello_world"
version = "0.1.0"
edition = "2024"

[dependencies]

This is called a manifest, and it contains all of the
metadata that Cargo needs to compile your package. This file is written in the
TOML format (pronounced /tɑməl/).

Here’s what’s in src/main.rs:

fn main() {
 println!("Hello, world!");
}

Cargo generated a “hello world” program for you, otherwise known as a
binary crate. Let’s compile it:

$ cargo build
 Compiling hello_world v0.1.0 (file:///path/to/package/hello_world)

And then run it:

$./target/debug/hello_world
Hello, world!

You can also use cargo run to compile and then run it, all in one step (You
won't see the Compiling line if you have not made any changes since you last
compiled):

$ cargo run
 Compiling hello_world v0.1.0 (file:///path/to/package/hello_world)
 Running `target/debug/hello_world`
Hello, world!

You’ll now notice a new file, Cargo.lock. It contains information about your
dependencies. Since there are none yet, it’s not very interesting.

Once you’re ready for release, you can use cargo build --release to compile
your files with optimizations turned on:

$ cargo build --release
 Compiling hello_world v0.1.0 (file:///path/to/package/hello_world)

cargo build --release puts the resulting binary in target/release instead of
target/debug.

Compiling in debug mode is the default for development. Compilation time is
shorter since the compiler doesn't do optimizations, but the code will run
slower. Release mode takes longer to compile, but the code will run faster.

 Working on an Existing Cargo Package

If you download an existing package that uses Cargo, it’s
really easy to get going.

First, get the package from somewhere. In this example, we’ll use regex
cloned from its repository on GitHub:

$ git clone https://github.com/rust-lang/regex.git
$ cd regex

To build, use cargo build:

$ cargo build
 Compiling regex v1.5.0 (file:///path/to/package/regex)

This will fetch all of the dependencies and then build them, along with the
package.

 Dependencies

crates.io is the Rust community's central package registry
that serves as a location to discover and download
packages. cargo is configured to use it by default to find
requested packages.

To depend on a library hosted on crates.io, add it to your Cargo.toml.

Adding a dependency

If your Cargo.toml doesn't already have a [dependencies] section, add
that, then list the crate name and version that you would like to
use. This example adds a dependency on the time crate:

[dependencies]
time = "0.1.12"

The version string is a SemVer version requirement. The specifying
dependencies docs have more information about
the options you have here.

If you also wanted to add a dependency on the regex crate, you would not need
to add [dependencies] for each crate listed. Here's what your whole
Cargo.toml file would look like with dependencies on the time and regex
crates:

[package]
name = "hello_world"
version = "0.1.0"
edition = "2024"

[dependencies]
time = "0.1.12"
regex = "0.1.41"

Re-run cargo build, and Cargo will fetch the new dependencies and all of
their dependencies, compile them all, and update the Cargo.lock:

$ cargo build
 Updating crates.io index
 Downloading memchr v0.1.5
 Downloading libc v0.1.10
 Downloading regex-syntax v0.2.1
 Downloading memchr v0.1.5
 Downloading aho-corasick v0.3.0
 Downloading regex v0.1.41
 Compiling memchr v0.1.5
 Compiling libc v0.1.10
 Compiling regex-syntax v0.2.1
 Compiling memchr v0.1.5
 Compiling aho-corasick v0.3.0
 Compiling regex v0.1.41
 Compiling hello_world v0.1.0 (file:///path/to/package/hello_world)

Cargo.lock contains the exact information about which revision was used
for all of these dependencies.

Now, if regex gets updated, you will still build with the same revision until
you choose to run cargo update.

You can now use the regex library in main.rs.

use regex::Regex;

fn main() {
 let re = Regex::new(r"^\d{4}-\d{2}-\d{2}$").unwrap();
 println!("Did our date match? {}", re.is_match("2014-01-01"));
}

Running it will show:

$ cargo run
 Running `target/hello_world`
Did our date match? true

 Package Layout

Cargo uses conventions for file placement to make it easy to dive into a new
Cargo package:

.
├── Cargo.lock
├── Cargo.toml
├── src/
│ ├── lib.rs
│ ├── main.rs
│ └── bin/
│ ├── named-executable.rs
│ ├── another-executable.rs
│ └── multi-file-executable/
│ ├── main.rs
│ └── some_module.rs
├── benches/
│ ├── large-input.rs
│ └── multi-file-bench/
│ ├── main.rs
│ └── bench_module.rs
├── examples/
│ ├── simple.rs
│ └── multi-file-example/
│ ├── main.rs
│ └── ex_module.rs
└── tests/
 ├── some-integration-tests.rs
 └── multi-file-test/
 ├── main.rs
 └── test_module.rs

	Cargo.toml and Cargo.lock are stored in the root of your package (package
root).

	Source code goes in the src directory.

	The default library file is src/lib.rs.

	The default executable file is src/main.rs.

	Other executables can be placed in src/bin/.

	Benchmarks go in the benches directory.

	Examples go in the examples directory.

	Integration tests go in the tests directory.

If a binary, example, bench, or integration test consists of multiple source
files, place a main.rs file along with the extra modules
within a subdirectory of the src/bin, examples, benches, or tests
directory. The name of the executable will be the directory name.

Note: By convention, binaries, examples, benches and integration tests follow kebab-case naming style, unless there are compatibility reasons to do otherwise (e.g. compatibility with a pre-existing binary name). Modules within those targets are snake_case following the Rust standard.

You can learn more about Rust's module system in the book.

See Configuring a target for more details on manually configuring targets.
See Target auto-discovery for more information on controlling how Cargo
automatically infers target names.

 Cargo.toml vs Cargo.lock

Cargo.toml and Cargo.lock serve two different purposes. Before we talk
about them, here’s a summary:

	Cargo.toml is about describing your dependencies in a broad sense, and is
written by you.

	Cargo.lock contains exact information about your dependencies. It is
maintained by Cargo and should not be manually edited.

When in doubt, check Cargo.lock into the version control system (e.g. Git).
For a better understanding of why and what the alternatives might be, see
“Why have Cargo.lock in version control?” in the FAQ.
We recommend pairing this with
Verifying Latest Dependencies

Let’s dig in a little bit more.

Cargo.toml is a manifest file in which you can specify a
bunch of different metadata about your package. For example, you can say that you
depend on another package:

[package]
name = "hello_world"
version = "0.1.0"

[dependencies]
regex = { git = "https://github.com/rust-lang/regex.git" }

This package has a single dependency, on the regex library. It states in
this case to rely on a particular Git repository that lives on
GitHub. Since you haven’t specified any other information, Cargo assumes that
you intend to use the latest commit on the default branch to build our package.

Sound good? Well, there’s one problem: If you build this package today, and
then you send a copy to me, and I build this package tomorrow, something bad
could happen. There could be more commits to regex in the meantime, and my
build would include new commits while yours would not. Therefore, we would
get different builds. This would be bad because we want reproducible builds.

You could fix this problem by defining a specific rev value in our Cargo.toml,
so Cargo could know exactly which revision to use when building the package:

[dependencies]
regex = { git = "https://github.com/rust-lang/regex.git", rev = "9f9f693" }

Now our builds will be the same. But there’s a big drawback: now you have to
manually think about SHA-1s every time you want to update our library. This is
both tedious and error prone.

Enter the Cargo.lock. Because of its existence, you don’t need to manually
keep track of the exact revisions: Cargo will do it for you. When you have a
manifest like this:

[package]
name = "hello_world"
version = "0.1.0"

[dependencies]
regex = { git = "https://github.com/rust-lang/regex.git" }

Cargo will take the latest commit and write that information out into your
Cargo.lock when you build for the first time. That file will look like this:

[[package]]
name = "hello_world"
version = "0.1.0"
dependencies = [
 "regex 1.5.0 (git+https://github.com/rust-lang/regex.git#9f9f693768c584971a4d53bc3c586c33ed3a6831)",
]

[[package]]
name = "regex"
version = "1.5.0"
source = "git+https://github.com/rust-lang/regex.git#9f9f693768c584971a4d53bc3c586c33ed3a6831"

You can see that there’s a lot more information here, including the exact
revision you used to build. Now when you give your package to someone else,
they’ll use the exact same SHA, even though you didn’t specify it in your
Cargo.toml.

When you're ready to opt in to a new version of the library, Cargo can
re-calculate the dependencies and update things for you:

$ cargo update # updates all dependencies
$ cargo update regex # updates just “regex”

This will write out a new Cargo.lock with the new version information. Note
that the argument to cargo update is actually a
Package ID Specification and regex is just a
short specification.

 Tests

Cargo can run your tests with the cargo test command. Cargo looks for tests
to run in two places: in each of your src files and any tests in tests/.
Tests in your src files should be unit tests and documentation tests.
Tests in tests/ should be integration-style tests. As such, you’ll need to
import your crates into the files in tests.

Here's an example of running cargo test in our package, which
currently has no tests:

$ cargo test
 Compiling regex v1.5.0 (https://github.com/rust-lang/regex.git#9f9f693)
 Compiling hello_world v0.1.0 (file:///path/to/package/hello_world)
 Running target/test/hello_world-9c2b65bbb79eabce

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

If your package had tests, you would see more output with the correct number of
tests.

You can also run a specific test by passing a filter:

$ cargo test foo

This will run any test with foo in its name.

cargo test runs additional checks as well. It will compile any examples
you’ve included to ensure they still compile. It also runs documentation
tests to ensure your code samples from documentation comments compile.
Please see the testing guide in the Rust documentation for a general
view of writing and organizing tests. See Cargo Targets: Tests to learn more
about different styles of tests in Cargo.

 Continuous Integration

Getting Started

A basic CI will build and test your projects:

GitHub Actions

To test your package on GitHub Actions, here is a sample .github/workflows/ci.yml file:

name: Cargo Build & Test

on:
 push:
 pull_request:

env:
 CARGO_TERM_COLOR: always

jobs:
 build_and_test:
 name: Rust project - latest
 runs-on: ubuntu-latest
 strategy:
 matrix:
 toolchain:
 - stable
 - beta
 - nightly
 steps:
 - uses: actions/checkout@v4
 - run: rustup update ${{ matrix.toolchain }} && rustup default ${{ matrix.toolchain }}
 - run: cargo build --verbose
 - run: cargo test --verbose

This will test all three release channels (note a failure in any toolchain version will fail the entire job). You can also click "Actions" > "new workflow" in the GitHub UI and select Rust to add the default configuration to your repo. See GitHub Actions documentation for more information.

GitLab CI

To test your package on GitLab CI, here is a sample .gitlab-ci.yml file:

stages:
 - build

rust-latest:
 stage: build
 image: rust:latest
 script:
 - cargo build --verbose
 - cargo test --verbose

rust-nightly:
 stage: build
 image: rustlang/rust:nightly
 script:
 - cargo build --verbose
 - cargo test --verbose
 allow_failure: true

This will test on the stable channel and nightly channel, but any
breakage in nightly will not fail your overall build. Please see the
GitLab CI documentation for more
information.

builds.sr.ht

To test your package on sr.ht, here is a sample .build.yml file.
Be sure to change <your repo> and <your project> to the repo to clone and
the directory where it was cloned.

image: archlinux
packages:
 - rustup
sources:
 - <your repo>
tasks:
 - setup: |
 rustup toolchain install nightly stable
 cd <your project>/
 rustup run stable cargo fetch
 - stable: |
 rustup default stable
 cd <your project>/
 cargo build --verbose
 cargo test --verbose
 - nightly: |
 rustup default nightly
 cd <your project>/
 cargo build --verbose ||:
 cargo test --verbose ||:
 - docs: |
 cd <your project>/
 rustup run stable cargo doc --no-deps
 rustup run nightly cargo doc --no-deps ||:

This will test and build documentation on the stable channel and nightly
channel, but any breakage in nightly will not fail your overall build. Please
see the builds.sr.ht documentation for more
information.

CircleCI

To test your package on CircleCI, here is a sample .circleci/config.yml file:

version: 2.1
jobs:
 build:
 docker:
 # check https://circleci.com/developer/images/image/cimg/rust#image-tags for latest
 - image: cimg/rust:1.77.2
 steps:
 - checkout
 - run: cargo test

To run more complex pipelines, including flaky test detection, caching, and artifact management, please see CircleCI Configuration Reference.

Verifying Latest Dependencies

When specifying dependencies in
Cargo.toml, they generally match a range of versions.
Exhaustively testing all version combination would be unwieldy.
Verifying the latest versions would at least test for users who run cargo add or cargo install.

When testing the latest versions some considerations are:

	Minimizing external factors affecting local development or CI

	Rate of new dependencies being published

	Level of risk a project is willing to accept

	CI costs, including indirect costs like if a CI service has a maximum for
parallel runners, causing new jobs to be serialized when at the maximum.

Some potential solutions include:

	Not checking in the Cargo.lock

	Depending on PR velocity, many versions may go untested

	This comes at the cost of determinism

	Have a CI job verify the latest dependencies but mark it to "continue on failure"

	Depending on the CI service, failures might not be obvious

	Depending on PR velocity, may use more resources than necessary

	Have a scheduled CI job to verify latest dependencies

	A hosted CI service may disable scheduled jobs for repositories that
haven't been touched in a while, affecting passively maintained packages

	Depending on the CI service, notifications might not be routed to people
who can act on the failure

	If not balanced with dependency publish rate, may not test enough versions
or may do redundant testing

	Regularly update dependencies through PRs, like with Dependabot or RenovateBot

	Can isolate dependencies to their own PR or roll them up into a single PR

	Only uses the resources necessary

	Can configure the frequency to balance CI resources and coverage of dependency versions

An example CI job to verify latest dependencies, using GitHub Actions:

jobs:
 latest_deps:
 name: Latest Dependencies
 runs-on: ubuntu-latest
 continue-on-error: true
 env:
 CARGO_RESOLVER_INCOMPATIBLE_RUST_VERSIONS: allow
 steps:
 - uses: actions/checkout@v4
 - run: rustup update stable && rustup default stable
 - run: cargo update --verbose
 - run: cargo build --verbose
 - run: cargo test --verbose

Notes:

	CARGO_RESOLVER_INCOMPATIBLE_RUST_VERSIONS is set to ensure the resolver doesn't limit selected dependencies because of your project's Rust version.

For projects with higher risks of per-platform or per-Rust version failures,
more combinations may want to be tested.

Verifying rust-version

When publishing packages that specify rust-version,
it is important to verify the correctness of that field.

Some third-party tools that can help with this include:

	cargo-msrv

	cargo-hack

An example of one way to do this, using GitHub Actions:

jobs:
 msrv:
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v4
 - uses: taiki-e/install-action@cargo-hack
 - run: cargo hack check --rust-version --workspace --all-targets --ignore-private

This tries to balance thoroughness with turnaround time:

	A single platform is used as most projects are platform-agnostic, trusting platform-specific dependencies to verify their behavior.

	cargo check is used as most issues contributors will run into are API availability and not behavior.

	Unpublished packages are skipped as this assumes only consumers of the verified project, through a registry, will care about rust-version.

 Publishing on crates.io

Once you've got a library that you'd like to share with the world, it's time to
publish it on crates.io! Publishing a crate is when a specific
version is uploaded to be hosted on crates.io.

Take care when publishing a crate, because a publish is permanent. The
version can never be overwritten, and the code cannot be deleted. There is no
limit to the number of versions which can be published, however.

Before your first publish

First things first, you’ll need an account on crates.io to acquire
an API token. To do so, visit the home page and log in via a GitHub
account (required for now). You will also need to provide and verify your email
address on the Account Settings page. Once
that is done create an API token, make sure
you copy it. Once you leave the page you will not be able to see it again.

Then run the cargo login command.

$ cargo login

Then at the prompt put in the token specified.

please paste the API Token found on https://crates.io/me below
abcdefghijklmnopqrstuvwxyz012345

This command will inform Cargo of your API token and store it locally in your
~/.cargo/credentials.toml. Note that this token is a secret and should not be
shared with anyone else. If it leaks for any reason, you should revoke it
immediately.

Note: The cargo logout command can be used to remove the token from
credentials.toml. This can be useful if you no longer need it stored on
the local machine.

Before publishing a new crate

Keep in mind that crate names on crates.io are allocated on a first-come-first-serve
basis. Once a crate name is taken, it cannot be used for another crate.

Check out the metadata you can specify in Cargo.toml to
ensure your crate can be discovered more easily! Before publishing, make sure
you have filled out the following fields:

	license or license-file

	description

	homepage

	repository

	readme

It would also be a good idea to include some keywords and categories,
though they are not required.

If you are publishing a library, you may also want to consult the Rust API
Guidelines.

Packaging a crate

The next step is to package up your crate and upload it to crates.io. For
this we’ll use the cargo publish subcommand. This command performs the following
steps:

	Perform some verification checks on your package.

	Compress your source code into a .crate file.

	Extract the .crate file into a temporary directory and verify that it
compiles.

	Upload the .crate file to crates.io.

	The registry will perform some additional checks on the uploaded package
before adding it.

It is recommended that you first run cargo publish --dry-run (or cargo package which is equivalent) to ensure there aren't any warnings or errors
before publishing. This will perform the first three steps listed above.

$ cargo publish --dry-run

You can inspect the generated .crate file in the target/package directory.
crates.io currently has a 10MB size limit on the .crate file. You may want
to check the size of the .crate file to ensure you didn't accidentally
package up large assets that are not required to build your package, such as
test data, website documentation, or code generation. You can check which
files are included with the following command:

$ cargo package --list

Cargo will automatically ignore files ignored by your version control system
when packaging, but if you want to specify an extra set of files to ignore you
can use the exclude key in the
manifest:

[package]
...
exclude = [
 "public/assets/*",
 "videos/*",
]

If you’d rather explicitly list the files to include, Cargo also supports an
include key, which if set, overrides the exclude key:

[package]
...
include = [
 "**/*.rs",
]

Uploading the crate

When you are ready to publish, use the cargo publish command
to upload to crates.io:

$ cargo publish

And that’s it, you’ve now published your first crate!

Publishing a new version of an existing crate

In order to release a new version, change the version value specified in your Cargo.toml manifest.
Keep in mind the SemVer rules which provide guidelines on what is a compatible change.
Then run cargo publish as described above to upload the new version.

Recommendation: Consider the full release process and automate what you can.

Each version should include:

	A changelog entry, preferably manually curated though a generated one is better than nothing

	A git tag pointing to the published commit

Examples of third-party tools that are representative of different workflows include (in alphabetical order):

	cargo-release

	cargo-smart-release

	release-plz

For more, see crates.io.

Managing a crates.io-based crate

Management of crates is primarily done through the command line cargo tool
rather than the crates.io web interface. For this, there are a few subcommands
to manage a crate.

cargo yank

Occasions may arise where you publish a version of a crate that actually ends up
being broken for one reason or another (syntax error, forgot to include a file,
etc.). For situations such as this, Cargo supports a “yank” of a version of a
crate.

$ cargo yank --version 1.0.1
$ cargo yank --version 1.0.1 --undo

A yank does not delete any code. This feature is not intended for deleting
accidentally uploaded secrets, for example. If that happens, you must reset
those secrets immediately.

The semantics of a yanked version are that no new dependencies can be created
against that version, but all existing dependencies continue to work. One of the
major goals of crates.io is to act as a permanent archive of crates that does
not change over time, and allowing deletion of a version would go against this
goal. Essentially a yank means that all packages with a Cargo.lock will not
break, while any future Cargo.lock files generated will not list the yanked
version.

cargo owner

A crate is often developed by more than one person, or the primary maintainer
may change over time! The owner of a crate is the only person allowed to publish
new versions of the crate, but an owner may designate additional owners.

$ cargo owner --add github-handle
$ cargo owner --remove github-handle
$ cargo owner --add github:rust-lang:owners
$ cargo owner --remove github:rust-lang:owners

The owner IDs given to these commands must be GitHub user names or GitHub teams.

If a user name is given to --add, that user is invited as a “named” owner, with
full rights to the crate. In addition to being able to publish or yank versions
of the crate, they have the ability to add or remove owners, including the
owner that made them an owner. Needless to say, you shouldn’t make people you
don’t fully trust into a named owner. In order to become a named owner, a user
must have logged into crates.io previously.

If a team name is given to --add, that team is invited as a “team” owner, with
restricted right to the crate. While they have permission to publish or yank
versions of the crate, they do not have the ability to add or remove owners.
In addition to being more convenient for managing groups of owners, teams are
just a bit more secure against owners becoming malicious.

The syntax for teams is currently github:org:team (see examples above).
In order to invite a team as an owner one must be a member of that team. No
such restriction applies to removing a team as an owner.

GitHub permissions

Team membership is not something GitHub provides simple public access to, and it
is likely for you to encounter the following message when working with them:

It looks like you don’t have permission to query a necessary property from
GitHub to complete this request. You may need to re-authenticate on crates.io
to grant permission to read GitHub org memberships.

This is basically a catch-all for “you tried to query a team, and one of the
five levels of membership access control denied this”. That is not an
exaggeration. GitHub’s support for team access control is Enterprise Grade.

The most likely cause of this is simply that you last logged in before this
feature was added. We originally requested no permissions from GitHub when
authenticating users, because we didn’t actually ever use the user’s token for
anything other than logging them in. However to query team membership on your
behalf, we now require the read:org scope.

You are free to deny us this scope, and everything that worked before teams
were introduced will keep working. However you will never be able to add a team
as an owner, or publish a crate as a team owner. If you ever attempt to do this,
you will get the error above. You may also see this error if you ever try to
publish a crate that you don’t own at all, but otherwise happens to have a team.

If you ever change your mind, or just aren’t sure if crates.io has sufficient
permission, you can always go to https://crates.io/ and re-authenticate,
which will prompt you for permission if crates.io doesn’t have all the scopes
it would like to.

An additional barrier to querying GitHub is that the organization may be
actively denying third party access. To check this, you can go to:

https://github.com/organizations/:org/settings/oauth_application_policy

where :org is the name of the organization (e.g., rust-lang). You may see
something like:

[image: Organization Access Control]

Where you may choose to explicitly remove crates.io from your organization’s
blacklist, or simply press the “Remove Restrictions” button to allow all third
party applications to access this data.

Alternatively, when crates.io requested the read:org scope, you could have
explicitly whitelisted crates.io querying the org in question by pressing
the “Grant Access” button next to its name:

[image: Authentication Access Control]

Troubleshooting GitHub team access errors

When trying to add a GitHub team as crate owner, you may see an error like:

error: failed to invite owners to crate <crate_name>: api errors (status 200 OK): could not find the github team org/repo

In that case, you should go to the GitHub Application settings page and
check if crates.io is listed in the Authorized OAuth Apps tab.
If it isn't, you should go to https://crates.io/ and authorize it.
Then go back to the Application Settings page on GitHub, click on the
crates.io application in the list, and make sure you or your organization is
listed in the "Organization access" list with a green check mark. If there's
a button labeled Grant or Request, you should grant the access or
request the org owner to do so.

 Cargo Home

The "Cargo home" functions as a download and source cache.
When building a crate, Cargo stores downloaded build dependencies in the Cargo home.
You can alter the location of the Cargo home by setting the CARGO_HOME environmental variable.
The home crate provides an API for getting this location if you need this information inside your Rust crate.
By default, the Cargo home is located in $HOME/.cargo/.

Please note that the internal structure of the Cargo home is not stabilized and may be subject to change at any time.

The Cargo home consists of following components:

Files:

	
config.toml
Cargo's global configuration file, see the config entry in the reference.

	
credentials.toml
Private login credentials from cargo login in order to log in to a registry.

	
.crates.toml, .crates2.json
These hidden files contain package information of crates installed via cargo install. Do NOT edit by hand!

Directories:

	
bin
The bin directory contains executables of crates that were installed via cargo install or rustup.
To be able to make these binaries accessible, add the path of the directory to your $PATH environment variable.

	
git
Git sources are stored here:

	
git/db
When a crate depends on a git repository, Cargo clones the repo as a bare repo into this directory and updates it if necessary.

	
git/checkouts
If a git source is used, the required commit of the repo is checked out from the bare repo inside git/db into this directory.
This provides the compiler with the actual files contained in the repo of the commit specified for that dependency.
Multiple checkouts of different commits of the same repo are possible.

	
registry
Packages and metadata of crate registries (such as crates.io) are located here.

	
registry/index
The index is a bare git repository which contains the metadata (versions, dependencies etc) of all available crates of a registry.

	
registry/cache
Downloaded dependencies are stored in the cache. The crates are compressed gzip archives named with a .crate extension.

	
registry/src
If a downloaded .crate archive is required by a package, it is unpacked into registry/src folder where rustc will find the .rs files.

Caching the Cargo home in CI

To avoid redownloading all crate dependencies during continuous integration, you can cache the $CARGO_HOME directory.
However, caching the entire directory is often inefficient as it will contain downloaded sources twice.
If we depend on a crate such as serde 1.0.92 and cache the entire $CARGO_HOME we would actually cache the sources twice, the serde-1.0.92.crate inside registry/cache and the extracted .rs files of serde inside registry/src.
That can unnecessarily slow down the build as downloading, extracting, recompressing and reuploading the cache to the CI servers can take some time.

If you wish to cache binaries installed with cargo install, you need to cache the bin/ folder and the .crates.toml and .crates2.json files.

It should be sufficient to cache the following files and directories across builds:

	.crates.toml

	.crates2.json

	bin/

	registry/index/

	registry/cache/

	git/db/

Vendoring all dependencies of a project

See the cargo vendor subcommand.

Clearing the cache

In theory, you can always remove any part of the cache and Cargo will do its best to restore sources if a crate needs them either by reextracting an archive or checking out a bare repo or by simply redownloading the sources from the web.

Alternatively, the cargo-cache crate provides a simple CLI tool to only clear selected parts of the cache or show sizes of its components in your command-line.

 Cargo Reference

The reference covers the details of various areas of Cargo.

	The Manifest Format

	Cargo Targets

	Rust version

	Workspaces

	Specifying Dependencies

	Overriding Dependencies

	Source Replacement

	Dependency Resolution

	Features

	Features Examples

	Profiles

	Configuration

	Environment Variables

	Build Scripts

	Build Script Examples

	Build Cache

	Package ID Specifications

	External Tools

	Registries

	Registry Authentication

	Credential Provider Protocol

	Running a Registry

	Registry Index

	Registry Web API

	SemVer Compatibility

	Future incompat report

	Reporting build timings

	Lints

	Unstable Features

 The Manifest Format

The Cargo.toml file for each package is called its manifest. It is written
in the TOML format. It contains metadata that is needed to compile the package. Checkout
the cargo locate-project section for more detail on how cargo finds the manifest file.

Every manifest file consists of the following sections:

	cargo-features --- Unstable, nightly-only features.

	[package] --- Defines a package.

	name --- The name of the package.

	version --- The version of the package.

	authors --- The authors of the package.

	edition --- The Rust edition.

	rust-version --- The minimal supported Rust version.

	description --- A description of the package.

	documentation --- URL of the package documentation.

	readme --- Path to the package's README file.

	homepage --- URL of the package homepage.

	repository --- URL of the package source repository.

	license --- The package license.

	license-file --- Path to the text of the license.

	keywords --- Keywords for the package.

	categories --- Categories of the package.

	workspace --- Path to the workspace for the package.

	build --- Path to the package build script.

	links --- Name of the native library the package links with.

	exclude --- Files to exclude when publishing.

	include --- Files to include when publishing.

	publish --- Can be used to prevent publishing the package.

	metadata --- Extra settings for external tools.

	default-run --- The default binary to run by cargo run.

	autolib --- Disables library auto discovery.

	autobins --- Disables binary auto discovery.

	autoexamples --- Disables example auto discovery.

	autotests --- Disables test auto discovery.

	autobenches --- Disables bench auto discovery.

	resolver --- Sets the dependency resolver to use.

	Target tables: (see configuration for settings)

	[lib] --- Library target settings.

	[[bin]] --- Binary target settings.

	[[example]] --- Example target settings.

	[[test]] --- Test target settings.

	[[bench]] --- Benchmark target settings.

	Dependency tables:

	[dependencies] --- Package library dependencies.

	[dev-dependencies] --- Dependencies for examples, tests, and benchmarks.

	[build-dependencies] --- Dependencies for build scripts.

	[target] --- Platform-specific dependencies.

	[badges] --- Badges to display on a registry.

	[features] --- Conditional compilation features.

	[lints] --- Configure linters for this package.

	[patch] --- Override dependencies.

	[replace] --- Override dependencies (deprecated).

	[profile] --- Compiler settings and optimizations.

	[workspace] --- The workspace definition.

The [package] section

The first section in a Cargo.toml is [package].

[package]
name = "hello_world" # the name of the package
version = "0.1.0" # the current version, obeying semver

The only field required by Cargo is name. If publishing to
a registry, the registry may require additional fields. See the notes below and
the publishing chapter for requirements for publishing to
crates.io.

The name field

The package name is an identifier used to refer to the package. It is used
when listed as a dependency in another package, and as the default name of
inferred lib and bin targets.

The name must use only alphanumeric characters or - or _, and cannot be empty.

Note that cargo new and cargo init impose some additional restrictions on
the package name, such as enforcing that it is a valid Rust identifier and not
a keyword. crates.io imposes even more restrictions, such as:

	Only ASCII characters are allowed.

	Do not use reserved names.

	Do not use special Windows names such as "nul".

	Use a maximum of 64 characters of length.

The version field

The version field is formatted according to the SemVer specification:

Versions must have three numeric parts,
the major version, the minor version, and the patch version.

A pre-release part can be added after a dash such as 1.0.0-alpha.
The pre-release part may be separated with periods to distinguish separate
components. Numeric components will use numeric comparison while
everything else will be compared lexicographically.
For example, 1.0.0-alpha.11 is higher than 1.0.0-alpha.4.

A metadata part can be added after a plus, such as 1.0.0+21AF26D3.
This is for informational purposes only and is generally ignored by Cargo.

Cargo bakes in the concept of Semantic Versioning,
so versions are considered compatible if their left-most non-zero major/minor/patch component is the same.
See the Resolver chapter for more information on how Cargo uses versions to
resolve dependencies.

This field is optional and defaults to 0.0.0. The field is required for publishing packages.

MSRV: Before 1.75, this field was required

The authors field

Warning: This field is deprecated

The optional authors field lists in an array the people or organizations that are considered
the "authors" of the package. An optional email address may be included within angled brackets at
the end of each author entry.

[package]
...
authors = ["Graydon Hoare", "Fnu Lnu <no-reply@rust-lang.org>"]

This field is surfaced in package metadata and in the CARGO_PKG_AUTHORS
environment variable within build.rs for backwards compatibility.

The edition field

The edition key is an optional key that affects which Rust Edition your package
is compiled with. Setting the edition key in [package] will affect all
targets/crates in the package, including test suites, benchmarks, binaries,
examples, etc.

[package]
...
edition = '2024'

Most manifests have the edition field filled in automatically by cargo new
with the latest stable edition. By default cargo new creates a manifest with
the 2024 edition currently.

If the edition field is not present in Cargo.toml, then the 2015 edition is
assumed for backwards compatibility. Note that all manifests
created with cargo new will not use this historical fallback because they
will have edition explicitly specified to a newer value.

The rust-version field

The rust-version field tells cargo what version of the
Rust toolchain you support for your package.
See the Rust version chapter for more detail.

The description field

The description is a short blurb about the package. crates.io will display
this with your package. This should be plain text (not Markdown).

[package]
...
description = "A short description of my package"

Note: crates.io requires the description to be set.

The documentation field

The documentation field specifies a URL to a website hosting the crate's
documentation. If no URL is specified in the manifest file, crates.io will
automatically link your crate to the corresponding docs.rs page when the
documentation has been built and is available (see docs.rs queue).

[package]
...
documentation = "https://docs.rs/bitflags"

The readme field

The readme field should be the path to a file in the package root (relative
to this Cargo.toml) that contains general information about the package.
This file will be transferred to the registry when you publish. crates.io
will interpret it as Markdown and render it on the crate's page.

[package]
...
readme = "README.md"

If no value is specified for this field, and a file named README.md,
README.txt or README exists in the package root, then the name of that
file will be used. You can suppress this behavior by setting this field to
false. If the field is set to true, a default value of README.md will
be assumed.

The homepage field

The homepage field should be a URL to a site that is the home page for your
package.

[package]
...
homepage = "https://serde.rs"

A value should only be set for homepage if there is a dedicated website for
the crate other than the source repository or API documentation. Do not make
homepage redundant with either the documentation or repository values.

The repository field

The repository field should be a URL to the source repository for your
package.

[package]
...
repository = "https://github.com/rust-lang/cargo"

The license and license-file fields

The license field contains the name of the software license that the package
is released under. The license-file field contains the path to a file
containing the text of the license (relative to this Cargo.toml).

crates.io interprets the license field as an SPDX 2.3 license
expression. The name must be a known license
from the SPDX license list 3.20. See the SPDX site
for more information.

SPDX license expressions support AND and OR operators to combine multiple
licenses.1

[package]
...
license = "MIT OR Apache-2.0"

Using OR indicates the user may choose either license. Using AND indicates
the user must comply with both licenses simultaneously. The WITH operator
indicates a license with a special exception. Some examples:

	MIT OR Apache-2.0

	LGPL-2.1-only AND MIT AND BSD-2-Clause

	GPL-2.0-or-later WITH Bison-exception-2.2

If a package is using a nonstandard license, then the license-file field may
be specified in lieu of the license field.

[package]
...
license-file = "LICENSE.txt"

Note: crates.io requires either license or license-file to be set.

1
Previously multiple licenses could be separated with a /, but that
usage is deprecated.

The keywords field

The keywords field is an array of strings that describe this package. This
can help when searching for the package on a registry, and you may choose any
words that would help someone find this crate.

[package]
...
keywords = ["gamedev", "graphics"]

Note: crates.io allows a maximum of 5 keywords. Each keyword must be
ASCII text, have at most 20 characters, start with an alphanumeric character,
and only contain letters, numbers, _, - or +.

The categories field

The categories field is an array of strings of the categories this package
belongs to.

categories = ["command-line-utilities", "development-tools::cargo-plugins"]

Note: crates.io has a maximum of 5 categories. Each category should
match one of the strings available at https://crates.io/category_slugs, and
must match exactly.

The workspace field

The workspace field can be used to configure the workspace that this package
will be a member of. If not specified this will be inferred as the first
Cargo.toml with [workspace] upwards in the filesystem. Setting this is
useful if the member is not inside a subdirectory of the workspace root.

[package]
...
workspace = "path/to/workspace/root"

This field cannot be specified if the manifest already has a [workspace]
table defined. That is, a crate cannot both be a root crate in a workspace
(contain [workspace]) and also be a member crate of another workspace
(contain package.workspace).

For more information, see the workspaces chapter.

The build field

The build field specifies a file in the package root which is a build
script for building native code. More information can be found in the build
script guide.

[package]
...
build = "build.rs"

The default is "build.rs", which loads the script from a file named
build.rs in the root of the package. Use build = "custom_build_name.rs" to
specify a path to a different file or build = false to disable automatic
detection of the build script.

The links field

The links field specifies the name of a native library that is being linked
to. More information can be found in the links section of the build
script guide.

For example, a crate that links a native library called "git2" (e.g. libgit2.a
on Linux) may specify:

[package]
...
links = "git2"

The exclude and include fields

The exclude and include fields can be used to explicitly specify which
files are included when packaging a project to be published,
and certain kinds of change tracking (described below).
The patterns specified in the exclude field identify a set of files that are
not included, and the patterns in include specify files that are explicitly
included.
You may run cargo package --list to verify which files will
be included in the package.

[package]
...
exclude = ["/ci", "images/", ".*"]

[package]
...
include = ["/src", "COPYRIGHT", "/examples", "!/examples/big_example"]

The default if neither field is specified is to include all files from the
root of the package, except for the exclusions listed below.

If include is not specified, then the following files will be excluded:

	If the package is not in a git repository, all "hidden" files starting with
a dot will be skipped.

	If the package is in a git repository, any files that are ignored by the
gitignore rules of the repository and global git configuration will be
skipped.

Regardless of whether exclude or include is specified, the following files
are always excluded:

	Any sub-packages will be skipped (any subdirectory that contains a
Cargo.toml file).

	A directory named target in the root of the package will be skipped.

The following files are always included:

	The Cargo.toml file of the package itself is always included, it does not
need to be listed in include.

	A minimized Cargo.lock is automatically included.
See cargo package for more information.

	If a license-file is specified, it
is always included.

The options are mutually exclusive; setting include will override an
exclude. If you need to have exclusions to a set of include files, use the
! operator described below.

The patterns should be gitignore-style patterns. Briefly:

	foo matches any file or directory with the name foo anywhere in the
package. This is equivalent to the pattern **/foo.

	/foo matches any file or directory with the name foo only in the root of
the package.

	foo/ matches any directory with the name foo anywhere in the package.

	Common glob patterns like *, ?, and [] are supported:

	* matches zero or more characters except /. For example, *.html
matches any file or directory with the .html extension anywhere in the
package.

	? matches any character except /. For example, foo? matches food,
but not foo.

	[] allows for matching a range of characters. For example, [ab]
matches either a or b. [a-z] matches letters a through z.

	**/ prefix matches in any directory. For example, **/foo/bar matches the
file or directory bar anywhere that is directly under directory foo.

	/** suffix matches everything inside. For example, foo/** matches all
files inside directory foo, including all files in subdirectories below
foo.

	/**/ matches zero or more directories. For example, a/**/b matches
a/b, a/x/b, a/x/y/b, and so on.

	! prefix negates a pattern. For example, a pattern of src/*.rs and
!foo.rs would match all files with the .rs extension inside the src
directory, except for any file named foo.rs.

The include/exclude list is also used for change tracking in some situations.
For targets built with rustdoc, it is used to determine the list of files to
track to determine if the target should be rebuilt. If the package has a
build script that does not emit any rerun-if-* directives, then the
include/exclude list is used for tracking if the build script should be re-run
if any of those files change.

The publish field

The publish field can be used to control which registries names the package
may be published to:

[package]
...
publish = ["some-registry-name"]

To prevent a package from being published to a registry (like crates.io) by mistake,
for instance to keep a package private in a company,
you can omit the version field.
If you'd like to be more explicit, you can disable publishing:

[package]
...
publish = false

If publish array contains a single registry, cargo publish command will use
it when --registry flag is not specified.

The metadata table

Cargo by default will warn about unused keys in Cargo.toml to assist in
detecting typos and such. The package.metadata table, however, is completely
ignored by Cargo and will not be warned about. This section can be used for
tools which would like to store package configuration in Cargo.toml. For
example:

[package]
name = "..."
...

Metadata used when generating an Android APK, for example.
[package.metadata.android]
package-name = "my-awesome-android-app"
assets = "path/to/static"

You'll need to look in the documentation for your tool to see how to use this field.
For Rust Projects that use package.metadata tables, see:

	docs.rs

There is a similar table at the workspace level at
workspace.metadata. While cargo does not specify a
format for the content of either of these tables, it is suggested that
external tools may wish to use them in a consistent fashion, such as referring
to the data in workspace.metadata if data is missing from package.metadata,
if that makes sense for the tool in question.

The default-run field

The default-run field in the [package] section of the manifest can be used
to specify a default binary picked by cargo run. For example, when there is
both src/bin/a.rs and src/bin/b.rs:

[package]
default-run = "a"

The [lints] section

Override the default level of lints from different tools by assigning them to a new level in a
table, for example:

[lints.rust]
unsafe_code = "forbid"

This is short-hand for:

[lints.rust]
unsafe_code = { level = "forbid", priority = 0 }

level corresponds to the lint levels in rustc:

	forbid

	deny

	warn

	allow

priority is a signed integer that controls which lints or lint groups override other lint groups:

	lower (particularly negative) numbers have lower priority, being overridden
by higher numbers, and show up first on the command-line to tools like
rustc

To know which table under [lints] a particular lint belongs under, it is the part before :: in the lint
name. If there isn't a ::, then the tool is rust. For example a warning
about unsafe_code would be lints.rust.unsafe_code but a lint about
clippy::enum_glob_use would be lints.clippy.enum_glob_use.

For example:

[lints.rust]
unsafe_code = "forbid"

[lints.clippy]
enum_glob_use = "deny"

Generally, these will only affect local development of the current package.
Cargo only applies these to the current package and not to dependencies.
As for dependents, Cargo suppresses lints from non-path dependencies with features like
--cap-lints.

MSRV: Respected as of 1.74

The [badges] section

The [badges] section is for specifying status badges that can be displayed
on a registry website when the package is published.

Note: crates.io previously displayed badges next to a crate on its
website, but that functionality has been removed. Packages should place
badges in its README file which will be displayed on crates.io (see the
readme field).

[badges]
The `maintenance` table indicates the status of the maintenance of
the crate. This may be used by a registry, but is currently not
used by crates.io. See https://github.com/rust-lang/crates.io/issues/2437
and https://github.com/rust-lang/crates.io/issues/2438 for more details.
#
The `status` field is required. Available options are:
- `actively-developed`: New features are being added and bugs are being fixed.
- `passively-maintained`: There are no plans for new features, but the maintainer intends to
respond to issues that get filed.
- `as-is`: The crate is feature complete, the maintainer does not intend to continue working on
it or providing support, but it works for the purposes it was designed for.
- `experimental`: The author wants to share it with the community but is not intending to meet
anyone's particular use case.
- `looking-for-maintainer`: The current maintainer would like to transfer the crate to someone
else.
- `deprecated`: The maintainer does not recommend using this crate (the description of the crate
can describe why, there could be a better solution available or there could be problems with
the crate that the author does not want to fix).
- `none`: Displays no badge on crates.io, since the maintainer has not chosen to specify
their intentions, potential crate users will need to investigate on their own.
maintenance = { status = "..." }

Dependency sections

See the specifying dependencies page for
information on the [dependencies], [dev-dependencies],
[build-dependencies], and target-specific [target.*.dependencies] sections.

The [profile.*] sections

The [profile] tables provide a way to customize compiler settings such as
optimizations and debug settings. See the Profiles chapter for
more detail.

 Cargo Targets

Cargo packages consist of targets which correspond to source files which can
be compiled into a crate. Packages can have library,
binary, example, test, and
benchmark targets. The list of targets can be configured in the
Cargo.toml manifest, often inferred automatically
by the directory layout of the source files.

See Configuring a target below for details on
configuring the settings for a target.

Library

The library target defines a "library" that can be used and linked by other
libraries and executables. The filename defaults to src/lib.rs, and the name
of the library defaults to the name of the package, with any dashes replaced
with underscores. A package can have only one library. The settings for the
library can be customized in the [lib] table in Cargo.toml.

Example of customizing the library in Cargo.toml.
[lib]
crate-type = ["cdylib"]
bench = false

Binaries

Binary targets are executable programs that can be run after being compiled.
A binary's source can be src/main.rs and/or stored in the src/bin/
directory. For src/main.rs, the default binary name is the
package name. The settings for each binary can be customized in the[[bin]]
tables in Cargo.toml.

Binaries can use the public API of the package's library. They are also linked
with the [dependencies] defined in Cargo.toml.

You can run individual binaries with the cargo run command with the --bin <bin-name> option. cargo install can be used to copy the executable to a
common location.

Example of customizing binaries in Cargo.toml.
[[bin]]
name = "cool-tool"
test = false
bench = false

[[bin]]
name = "frobnicator"
required-features = ["frobnicate"]

Examples

Files located under the examples directory are example
uses of the functionality provided by the library. When compiled, they are
placed in the target/debug/examples directory.

Examples can use the public API of the package's library. They are also linked
with the [dependencies] and
[dev-dependencies] defined in Cargo.toml.

By default, examples are executable binaries (with a main() function). You
can specify the crate-type field to make an example
be compiled as a library:

[[example]]
name = "foo"
crate-type = ["staticlib"]

You can run individual executable examples with the cargo run command with
the --example <example-name> option. Library examples can be built with
cargo build with the --example <example-name> option. cargo install
with the --example <example-name> option can be used to copy executable
binaries to a common location. Examples are compiled by cargo test by
default to protect them from bit-rotting. Set the test
field to true if you have #[test] functions in the
example that you want to run with cargo test.

Tests

There are two styles of tests within a Cargo project:

	Unit tests which are functions marked with the #[test]
attribute located within your library or binaries (or any
target enabled with the test field). These tests have
access to private APIs located within the target they are defined in.

	Integration tests which is a separate executable binary, also containing
#[test] functions, which is linked with the project's library and has
access to its public API.

Tests are run with the cargo test command. By default, Cargo and rustc
use the libtest harness which is responsible for collecting functions
annotated with the #[test] attribute and executing them in
parallel, reporting the success and failure of each test. See the harness
field if you want to use a different harness or test
strategy.

Note: There is another special style of test in Cargo:
documentation tests.
They are handled by rustdoc and have a slightly different execution model.
For more information, please see cargo test.

Integration tests

Files located under the tests directory are integration
tests. When you run cargo test, Cargo will compile each of these files as
a separate crate, and execute them.

Integration tests can use the public API of the package's library. They are
also linked with the [dependencies] and
[dev-dependencies] defined in Cargo.toml.

If you want to share code among multiple integration tests, you can place it
in a separate module such as tests/common/mod.rs and then put mod common;
in each test to import it.

Each integration test results in a separate executable binary, and cargo test will run them serially. In some cases this can be inefficient, as it
can take longer to compile, and may not make full use of multiple CPUs when
running the tests. If you have a lot of integration tests, you may want to
consider creating a single integration test, and split the tests into multiple
modules. The libtest harness will automatically find all of the #[test]
annotated functions and run them in parallel. You can pass module names to
cargo test to only run the tests within that module.

Binary targets are automatically built if there is an integration test. This
allows an integration test to execute the binary to exercise and test its
behavior. The CARGO_BIN_EXE_<name> environment variable is set when the
integration test is built so that it can use the env macro to locate the
executable.

Benchmarks

Benchmarks provide a way to test the performance of your code using the
cargo bench command. They follow the same structure as tests,
with each benchmark function annotated with the #[bench] attribute.
Similarly to tests:

	Benchmarks are placed in the benches directory.

	Benchmark functions defined in libraries and binaries have access to the
private API within the target they are defined in. Benchmarks in the
benches directory may use the public API.

	The bench field can be used to define which targets
are benchmarked by default.

	The harness field can be used to disable the
built-in harness.

Note: The #[bench]
attribute is currently
unstable and only available on the nightly channel. There are some
packages available on crates.io that
may help with running benchmarks on the stable channel, such as
Criterion.

Configuring a target

All of the [lib], [[bin]], [[example]], [[test]], and [[bench]]
sections in Cargo.toml support similar configuration for specifying how a
target should be built. The double-bracket sections like [[bin]] are
array-of-table of TOML,
which means you can write more than one [[bin]] section to make several
executables in your crate. You can only specify one library, so [lib] is a
normal TOML table.

The following is an overview of the TOML settings for each target, with each
field described in detail below.

[lib]
name = "foo" # The name of the target.
path = "src/lib.rs" # The source file of the target.
test = true # Is tested by default.
doctest = true # Documentation examples are tested by default.
bench = true # Is benchmarked by default.
doc = true # Is documented by default.
proc-macro = false # Set to `true` for a proc-macro library.
harness = true # Use libtest harness.
crate-type = ["lib"] # The crate types to generate.
required-features = [] # Features required to build this target (N/A for lib).

The name field

The name field specifies the name of the target, which corresponds to the
filename of the artifact that will be generated. For a library, this is the
crate name that dependencies will use to reference it.

For the library target, this defaults to the name of the package , with any
dashes replaced with underscores. For the default binary (src/main.rs),
it also defaults to the name of the package, with no replacement for dashes.
For auto discovered targets, it defaults to the
directory or file name.

This is required for all targets except [lib].

The path field

The path field specifies where the source for the crate is located, relative
to the Cargo.toml file.

If not specified, the inferred path is used based on
the target name.

The test field

The test field indicates whether or not the target is tested by default by
cargo test. The default is true for lib, bins, and tests.

Note: Examples are built by cargo test by default to ensure they
continue to compile, but they are not tested by default. Setting test = true for an example will also build it as a test and run any
#[test] functions defined in the example.

The doctest field

The doctest field indicates whether or not documentation examples are
tested by default by cargo test. This is only relevant for libraries, it
has no effect on other sections. The default is true for the library.

The bench field

The bench field indicates whether or not the target is benchmarked by
default by cargo bench. The default is true for lib, bins, and
benchmarks.

The doc field

The doc field indicates whether or not the target is included in the
documentation generated by cargo doc by default. The default is true for
libraries and binaries.

Note: The binary will be skipped if its name is the same as the lib
target.

The plugin field

This option is deprecated and unused.

The proc-macro field

The proc-macro field indicates that the library is a procedural macro
(reference). This is only valid for the [lib]
target.

The harness field

The harness field indicates that the --test flag will be passed to
rustc which will automatically include the libtest library which is the
driver for collecting and running tests marked with the #[test]
attribute or benchmarks with the #[bench] attribute. The
default is true for all targets.

If set to false, then you are responsible for defining a main() function
to run tests and benchmarks.

Tests have the cfg(test) conditional expression enabled whether
or not the harness is enabled.

The crate-type field

The crate-type field defines the crate types that will be generated by the
target. It is an array of strings, allowing you to specify multiple crate
types for a single target. This can only be specified for libraries and
examples. Binaries, tests, and benchmarks are always the "bin" crate type. The
defaults are:

	Target	Crate Type

	Normal library	"lib"

	Proc-macro library	"proc-macro"

	Example	"bin"

The available options are bin, lib, rlib, dylib, cdylib,
staticlib, and proc-macro. You can read more about the different crate
types in the Rust Reference Manual.

The required-features field

The required-features field specifies which features the target needs in
order to be built. If any of the required features are not enabled, the
target will be skipped. This is only relevant for the [[bin]], [[bench]],
[[test]], and [[example]] sections, it has no effect on [lib].

[features]
...
postgres = []
sqlite = []
tools = []

[[bin]]
name = "my-pg-tool"
required-features = ["postgres", "tools"]

The edition field

The edition field defines the Rust edition the target will use. If not
specified, it defaults to the edition field for the
[package].

Note: This field is deprecated and will be removed in a future Edition

Target auto-discovery

By default, Cargo automatically determines the targets to build based on the
layout of the files on the filesystem. The target
configuration tables, such as [lib], [[bin]], [[test]], [[bench]], or
[[example]], can be used to add additional targets that don't follow the
standard directory layout.

The automatic target discovery can be disabled so that only manually
configured targets will be built. Setting the keys autolib, autobins, autoexamples,
autotests, or autobenches to false in the [package] section will
disable auto-discovery of the corresponding target type.

[package]
...
autolib = false
autobins = false
autoexamples = false
autotests = false
autobenches = false

Disabling automatic discovery should only be needed for specialized
situations. For example, if you have a library where you want a module named
bin, this would present a problem because Cargo would usually attempt to
compile anything in the bin directory as an executable. Here is a sample
layout of this scenario:

├── Cargo.toml
└── src
 ├── lib.rs
 └── bin
 └── mod.rs

To prevent Cargo from inferring src/bin/mod.rs as an executable, set
autobins = false in Cargo.toml to disable auto-discovery:

[package]
…
autobins = false

Note: For packages with the 2015 edition, the default for auto-discovery
is false if at least one target is manually defined in Cargo.toml.
Beginning with the 2018 edition, the default is always true.

MSRV: Respected as of 1.27 for autobins, autoexamples, autotests, and autobenches

MSRV: Respected as of 1.83 for autolib

 Rust Version

The rust-version field is an optional key that tells cargo what version of the
Rust toolchain you support for your package.

[package]
...
rust-version = "1.56"

The Rust version must be a bare version number with at least one component; it
cannot include semver operators or pre-release identifiers. Compiler pre-release
identifiers such as -nightly will be ignored while checking the Rust version.

MSRV: Respected as of 1.56

Uses

Diagnostics:

When your package is compiled on an unsupported toolchain, Cargo will report that as an error to the user. This makes the support expectations clear and avoids reporting a less direct diagnostic like invalid syntax or missing functionality
in the standard library. This affects all Cargo targets in the
package, including binaries, examples, test suites, benchmarks, etc.
A user can opt-in to an unsupported build of a package with the --ignore-rust-version flag.

Development aid:

cargo add will auto-select the dependency's version requirement to be the latest version compatible with your rust-version.
If that isn't the latest version, cargo add will inform users so they can make the choice on whether to keep it or update your rust-version.

The resolver may take Rust version into account when picking dependencies.

Other tools may also take advantage of it, like cargo clippy's
incompatible_msrv lint.

Note: The rust-version may be ignored using the --ignore-rust-version option.

Support Expectations

These are general expectations; some packages may document when they do not follow these.

Complete:

All functionality, including binaries and API, are available on the supported Rust versions under every feature.

Verified:

A package's functionality is verified on its supported Rust versions, including automated testing.
See also our
Rust version CI guide.

Patchable:

When licenses allow it,
users can override their local dependency with a fork of your package.
In this situation, Cargo may load the entire workspace for the patched dependency which should work on the supported Rust versions, even if other packages in the workspace have different supported Rust versions.

Dependency Support:

In support of the above,
it is expected that each dependency's version-requirement supports at least one version compatible with your rust-version.
However,
it is not expected that the dependency specification excludes versions incompatible with your rust-version.
In fact, supporting both allows you to balance the needs of users that support older Rust versions with those that don't.

Setting and Updating Rust Version

What Rust versions to support is a trade off between

	Costs for the maintainer in not using newer features of the Rust toolchain or their dependencies

	Costs to users who would benefit from a package using newer features of a toolchain, e.g. reducing build times by migrating to a feature in the standard library from a polyfill

	Availability of a package to users supporting older Rust versions

Note: Changing rust-version is assumed to be a minor incompatibility

Recommendation: Choose a policy for what Rust versions to support and when that is changed so users can compare it with their own policy and,
if it isn't compatible,
decide whether the loss of general improvements or the risk of a blocking bug that won't be fixed is acceptable or not.

The simplest policy to support is to always use the latest Rust version.

Depending on your risk profile, the next simplest approach is to continue to support old major or minor versions of your package that support older Rust versions.

Selecting supported Rust versions

Users of your package are most likely to track their supported Rust versions to:

	Their Rust toolchain vendor's support policy, e.g. The Rust Project or a Linux distribution

	Note: the Rust Project only offers bug fixes and security updates for the latest version.

	A fixed schedule for users to re-verify their packages with the new toolchain, e.g. the first release of the year, every 5 releases.

In addition, users are unlikely to be using the new Rust version immediately but need time to notice and re-verify or might not be aligned on the exact same schedule..

Example version policies:

	"N-2", meaning "latest version with a 2 release grace window for updating"

	Every even release with a 2 release grace window for updating

	Every version from this calendar year with a one year grace window for updating

Note: To find the minimum rust-version compatible with your project as-is, you can use third-party tools like cargo-msrv.

Update timeline

When your policy specifies you no longer need to support a Rust version, you can update rust-version immediately or when needed.

By allowing rust-version to drift from your policy,
you offer users more of a grace window for upgrading.
However, this is too unpredictable to be relied on for aligning with the Rust version users track.

The further rust-version drifts from your specified policy,
the more likely users are to infer a policy you did not intend,
leading to frustration at the unmet expectations.

When drift is allowed,
there is the question of what is "justifiable enough" to drop supported Versions.
Each person can come to a reasonably different justification;
working through that discussion can be frustrating for the involved parties.
This will disempower those who would want to avoid that type of conflict,
which is particularly the case for new or casual contributors who either
feel that they are not in a position to raise the question or
that the conflict may hurt the chance of their change being merged.

Multiple Policies in a Workspace

Cargo allows supporting multiple policies within one workspace.

Verifying specific packages under specific Rust versions can get complicated.
Tools like cargo-hack can help.

For any dependency shared across policies,
the lowest common versions must be used as Cargo
unifies SemVer-compatible versions,
potentially limiting access to features of the shared dependency for the workspace member with the higher rust-version.

To allow users to patch a dependency on one of your workspace members,
every package in the workspace would need to be loadable in the oldest Rust version supported by the workspace.

When using incompatible-rust-versions = "fallback",
the Rust version of one package can affect dependency versions selected for another package with a different Rust version.
See the resolver chapter for more details.

One or More Policies

One way to mitigate the downsides of supporting older Rust versions is to apply your policy to older major or minor versions of your package that you continue to support.
You likely still need a policy for what Rust versions the development branch support compared to the release branches for those major or minor versions.

Only updating the development branch when "needed"' can help reduce the number of supported release branches.

There is the question of what can be backported into these release branches.
By backporting new functionality between minor versions,
the next available version would be missing it which could be considered a breaking change, violating SemVer.
Backporting changes also comes with the risk of introducing bugs.

Supporting older versions comes at a cost.
This cost is dependent on the risk and impact of bugs within the package and what is acceptable for backporting.
Creating the release branches on-demand and putting the backport burden on the community are ways to balance this cost.

There is not yet a way for dependency management tools to report that a non-latest version is still supported,
shifting the responsibility to users to notice this in documentation.

For example, a Rust version support policy could look like:

	The development branch tracks to the latest stable release from the Rust Project, updated when needed

	The minor version will be raised when changing rust-version

	The project supports every version for this calendar year, with another year grace window

	The last minor version that supports a supported Rust version will receive community provided bug fixes

	Fixes must be backported to all supported minor releases between the development branch and the needed supported Rust version

 Workspaces

A workspace is a collection of one or more packages, called workspace
members, that are managed together.

The key points of workspaces are:

	Common commands can run across all workspace members, like cargo check --workspace.

	All packages share a common Cargo.lock file which resides in the
workspace root.

	All packages share a common output directory, which defaults to a
directory named target in the workspace root.

	Sharing package metadata, like with workspace.package.

	The [patch], [replace] and [profile.*]
sections in Cargo.toml are only recognized in the root manifest, and
ignored in member crates' manifests.

The root Cargo.toml of a workspace supports the following sections:

	[workspace] --- Defines a workspace.

	resolver --- Sets the dependency resolver to use.

	members --- Packages to include in the workspace.

	exclude --- Packages to exclude from the workspace.

	default-members --- Packages to operate on when a specific package wasn't selected.

	package --- Keys for inheriting in packages.

	dependencies --- Keys for inheriting in package dependencies.

	lints --- Keys for inheriting in package lints.

	metadata --- Extra settings for external tools.

	[patch] --- Override dependencies.

	[replace] --- Override dependencies (deprecated).

	[profile] --- Compiler settings and optimizations.

The [workspace] section

To create a workspace, you add the [workspace] table to a Cargo.toml:

[workspace]
...

At minimum, a workspace has to have a member, either with a root package or as
a virtual manifest.

Root package

If the [workspace] section is added to a
Cargo.toml that already defines a [package], the package is
the root package of the workspace. The workspace root is the directory
where the workspace's Cargo.toml is located.

[workspace]

[package]
name = "hello_world" # the name of the package
version = "0.1.0" # the current version, obeying semver

Virtual workspace

Alternatively, a Cargo.toml file can be created with a [workspace] section
but without a [package] section. This is called a virtual
manifest. This is typically useful when there isn't a "primary" package, or
you want to keep all the packages organized in separate directories.

[PROJECT_DIR]/Cargo.toml
[workspace]
members = ["hello_world"]
resolver = "3"

[PROJECT_DIR]/hello_world/Cargo.toml
[package]
name = "hello_world" # the name of the package
version = "0.1.0" # the current version, obeying semver
edition = "2024" # the edition, will have no effect on a resolver used in the workspace

By having a workspace without a root package,

	resolver must be
set explicitly in virtual workspaces as they have no
package.edition to infer it from
resolver version.

	Commands run in the workspace root will run against all workspace
members by default, see default-members.

The members and exclude fields

The members and exclude fields define which packages are members of
the workspace:

[workspace]
members = ["member1", "path/to/member2", "crates/*"]
exclude = ["crates/foo", "path/to/other"]

All path dependencies residing in the workspace directory automatically
become members. Additional members can be listed with the members key, which
should be an array of strings containing directories with Cargo.toml files.

The members list also supports globs to match multiple paths, using
typical filename glob patterns like * and ?.

The exclude key can be used to prevent paths from being included in a
workspace. This can be useful if some path dependencies aren't desired to be
in the workspace at all, or using a glob pattern and you want to remove a
directory.

When inside a subdirectory within the workspace, Cargo will automatically
search the parent directories for a Cargo.toml file with a [workspace]
definition to determine which workspace to use. The package.workspace
manifest key can be used in member crates to point at a workspace's root to
override this automatic search. The manual setting can be useful if the member
is not inside a subdirectory of the workspace root.

Package selection

In a workspace, package-related Cargo commands like cargo build can use
the -p / --package or --workspace command-line flags to determine which
packages to operate on. If neither of those flags are specified, Cargo will
use the package in the current working directory. However, if the current directory is
a workspace root, the default-members will be used.

The default-members field

The default-members field specifies paths of members to
operate on when in the workspace root and the package selection flags are not
used:

[workspace]
members = ["path/to/member1", "path/to/member2", "path/to/member3/*"]
default-members = ["path/to/member2", "path/to/member3/foo"]

Note: when a root package is present,
you can only operate on it using --package and --workspace flags.

When unspecified, the root package will be used.
In the case of a virtual workspace, all members will be used
(as if --workspace were specified on the command-line).

The package table

The workspace.package table is where you define keys that can be
inherited by members of a workspace. These keys can be inherited by
defining them in the member package with {key}.workspace = true.

Keys that are supported:

		

	authors	categories

	description	documentation

	edition	exclude

	homepage	include

	keywords	license

	license-file	publish

	readme	repository

	rust-version	version

	license-file and readme are relative to the workspace root

	include and exclude are relative to your package root

Example:

[PROJECT_DIR]/Cargo.toml
[workspace]
members = ["bar"]

[workspace.package]
version = "1.2.3"
authors = ["Nice Folks"]
description = "A short description of my package"
documentation = "https://example.com/bar"

[PROJECT_DIR]/bar/Cargo.toml
[package]
name = "bar"
version.workspace = true
authors.workspace = true
description.workspace = true
documentation.workspace = true

MSRV: Requires 1.64+

The dependencies table

The workspace.dependencies table is where you define dependencies to be
inherited by members of a workspace.

Specifying a workspace dependency is similar to package dependencies except:

	Dependencies from this table cannot be declared as optional

	features declared in this table are additive with the features from [dependencies]

You can then inherit the workspace dependency as a package dependency

Example:

[PROJECT_DIR]/Cargo.toml
[workspace]
members = ["bar"]

[workspace.dependencies]
cc = "1.0.73"
rand = "0.8.5"
regex = { version = "1.6.0", default-features = false, features = ["std"] }

[PROJECT_DIR]/bar/Cargo.toml
[package]
name = "bar"
version = "0.2.0"

[dependencies]
regex = { workspace = true, features = ["unicode"] }

[build-dependencies]
cc.workspace = true

[dev-dependencies]
rand.workspace = true

MSRV: Requires 1.64+

The lints table

The workspace.lints table is where you define lint configuration to be inherited by members of a workspace.

Specifying a workspace lint configuration is similar to package lints.

Example:

[PROJECT_DIR]/Cargo.toml
[workspace]
members = ["crates/*"]

[workspace.lints.rust]
unsafe_code = "forbid"

[PROJECT_DIR]/crates/bar/Cargo.toml
[package]
name = "bar"
version = "0.1.0"

[lints]
workspace = true

MSRV: Respected as of 1.74

The metadata table

The workspace.metadata table is ignored by Cargo and will not be warned
about. This section can be used for tools that would like to store workspace
configuration in Cargo.toml. For example:

[workspace]
members = ["member1", "member2"]

[workspace.metadata.webcontents]
root = "path/to/webproject"
tool = ["npm", "run", "build"]
...

There is a similar set of tables at the package level at
package.metadata. While cargo does not specify a
format for the content of either of these tables, it is suggested that
external tools may wish to use them in a consistent fashion, such as referring
to the data in workspace.metadata if data is missing from package.metadata,
if that makes sense for the tool in question.

 Specifying Dependencies

Your crates can depend on other libraries from crates.io or other
registries, git repositories, or subdirectories on your local file system.
You can also temporarily override the location of a dependency --- for example,
to be able to test out a bug fix in the dependency that you are working on
locally. You can have different dependencies for different platforms, and
dependencies that are only used during development. Let's take a look at how
to do each of these.

Specifying dependencies from crates.io

Cargo is configured to look for dependencies on crates.io by default. Only
the name and a version string are required in this case. In the cargo
guide, we specified a dependency on the time crate:

[dependencies]
time = "0.1.12"

The version string "0.1.12" is called a version requirement.
It specifies a range of versions that can be selected from when resolving dependencies.
In this case, "0.1.12" represents the version range >=0.1.12, <0.2.0.
An update is allowed if it is within that range.
In this case, if we ran cargo update time, cargo should
update us to version 0.1.13 if it is the latest 0.1.z release, but would not
update us to 0.2.0.

Version requirement syntax

Default requirements

Default requirements specify a minimum version with the ability to update to SemVer compatible versions.
Versions are considered compatible if their left-most non-zero major/minor/patch component is the same.
This is different from SemVer which considers all pre-1.0.0 packages to be incompatible.

1.2.3 is an example of a default requirement.

1.2.3 := >=1.2.3, <2.0.0
1.2 := >=1.2.0, <2.0.0
1 := >=1.0.0, <2.0.0
0.2.3 := >=0.2.3, <0.3.0
0.2 := >=0.2.0, <0.3.0
0.0.3 := >=0.0.3, <0.0.4
0.0 := >=0.0.0, <0.1.0
0 := >=0.0.0, <1.0.0

Caret requirements

Caret requirements are the default version requirement strategy.
This version strategy allows SemVer compatible updates.
They are specified as version requirements with a leading caret (^).

^1.2.3 is an example of a caret requirement.

Leaving off the caret is a simplified equivalent syntax to using caret requirements.
While caret requirements are the default, it is recommended to use the
simplified syntax when possible.

log = "^1.2.3" is exactly equivalent to log = "1.2.3".

Tilde requirements

Tilde requirements specify a minimal version with some ability to update.
If you specify a major, minor, and patch version or only a major and minor
version, only patch-level changes are allowed. If you only specify a major
version, then minor- and patch-level changes are allowed.

~1.2.3 is an example of a tilde requirement.

~1.2.3 := >=1.2.3, <1.3.0
~1.2 := >=1.2.0, <1.3.0
~1 := >=1.0.0, <2.0.0

Wildcard requirements

Wildcard requirements allow for any version where the wildcard is
positioned.

, 1. and 1.2.* are examples of wildcard requirements.

* := >=0.0.0
1.* := >=1.0.0, <2.0.0
1.2.* := >=1.2.0, <1.3.0

Note: crates.io does not allow bare * versions.

Comparison requirements

Comparison requirements allow manually specifying a version range or an
exact version to depend on.

Here are some examples of comparison requirements:

>= 1.2.0
> 1
< 2
= 1.2.3

Multiple version requirements

As shown in the examples above, multiple version requirements can be
separated with a comma, e.g., >= 1.2, < 1.5.

Pre-releases

Version requirements exclude pre-release versions, such as 1.0.0-alpha,
unless specifically asked for.
For example, if 1.0.0-alpha of package
foo is published, then a requirement of foo = "1.0" will not match, and
will return an error. The pre-release must be specified, such as foo = "1.0.0-alpha".
Similarly cargo install will avoid pre-releases unless
explicitly asked to install one.

Cargo allows "newer" pre-releases to be used automatically. For example, if
1.0.0-beta is published, then a requirement foo = "1.0.0-alpha" will allow
updating to the beta version. Note that this only works on the same release
version, foo = "1.0.0-alpha" will not allow updating to foo = "1.0.1-alpha"
or foo = "1.0.1-beta".

Cargo will also upgrade automatically to semver-compatible released versions
from prereleases. The requirement foo = "1.0.0-alpha" will allow updating to
foo = "1.0.0" as well as foo = "1.2.0".

Beware that pre-release versions can be unstable, and as such care should be
taken when using them. Some projects may choose to publish breaking changes
between pre-release versions. It is recommended to not use pre-release
dependencies in a library if your library is not also a pre-release. Care
should also be taken when updating your Cargo.lock, and be prepared if a
pre-release update causes issues.

Version metadata

Version metadata, such as 1.0.0+21AF26D3,
is ignored and should not be used in version requirements.

Recommendation: When in doubt, use the default version requirement operator.

In rare circumstances, a package with a "public dependency"
(re-exports the dependency or interoperates with it in its public API)
that is compatible with multiple semver-incompatible versions
(e.g. only uses a simple type that hasn't changed between releases, like an Id)
may support users choosing which version of the "public dependency" to use.
In this case, a version requirement like ">=0.4, <2" may be of interest.
However users of the package will likely run into errors and need to
manually select a version of the "public dependency" via cargo update if
they also depend on it as Cargo might pick different versions of the "public
dependency" when resolving dependency versions (see
#10599).

Avoid constraining the upper bound of a version to be anything less than the
next semver incompatible version
(e.g. avoid ">=2.0, <2.4", "2.0.*", or ~2.0),
as other packages in the dependency tree may
require a newer version, leading to an unresolvable error (see #9029).
Consider whether controlling the version in your Cargo.lock would be more
appropriate.

In some instances this won't matter or the benefits might outweigh the cost, including:

	When no one else depends on your package; e.g. it only has a [[bin]]

	When depending on a pre-release package and wishing to avoid breaking
changes, then a fully specified "=1.2.3-alpha.3" might be warranted (see
#2222)

	When a library re-exports a proc-macro but the proc-macro generates code that
calls into the re-exporting library, then a fully specified =1.2.3 might be
warranted to ensure the proc-macro isn't newer than the re-exporting library
and generating code that uses parts of the API that don't exist within the
current version

Specifying dependencies from other registries

To specify a dependency from a registry other than crates.io set the registry key
to the name of the registry to use:

[dependencies]
some-crate = { version = "1.0", registry = "my-registry" }

where my-registry is the registry name configured in .cargo/config.toml file.
See the registries documentation for more information.

Note: crates.io does not allow packages to be published with
dependencies on code published outside of crates.io.

Specifying dependencies from git repositories

To depend on a library located in a git repository, the minimum information
you need to specify is the location of the repository with the git key:

[dependencies]
regex = { git = "https://github.com/rust-lang/regex.git" }

Cargo fetches the git repository at that location and traverses the file tree to find
Cargo.toml file for the requested crate anywhere inside the git repository.
For example, regex-lite and regex-syntax are members of rust-lang/regex repo
and can be referred to by the repo's root URL (https://github.com/rust-lang/regex.git)
regardless of where in the file tree they reside.

regex-lite = { git = "https://github.com/rust-lang/regex.git" }
regex-syntax = { git = "https://github.com/rust-lang/regex.git" }

The above rule does not apply to path dependencies.

Choice of commit

Cargo assumes that we intend to use the latest commit on the default branch to build
our package if we only specify the repo URL, as in the examples above.

You can combine the git key with the rev, tag, or branch keys to be more specific about
which commit to use. Here's an example of using the latest commit on a branch named next:

[dependencies]
regex = { git = "https://github.com/rust-lang/regex.git", branch = "next" }

Anything that is not a branch or a tag falls under rev key. This can be a commit
hash like rev = "4c59b707", or a named reference exposed by the remote
repository such as rev = "refs/pull/493/head".

What references are available for the rev key varies by where the repo is hosted.

GitHub exposes a reference to the most recent commit of every pull request as in the example above.
Other git hosts may provide something equivalent under a different naming scheme.

More git dependency examples:

.git suffix can be omitted if the host accepts such URLs - both examples work the same
regex = { git = "https://github.com/rust-lang/regex" }
regex = { git = "https://github.com/rust-lang/regex.git" }

a commit with a particular tag
regex = { git = "https://github.com/rust-lang/regex.git", tag = "1.10.3" }

a commit by its SHA1 hash
regex = { git = "https://github.com/rust-lang/regex.git", rev = "0c0990399270277832fbb5b91a1fa118e6f63dba" }

HEAD commit of PR 493
regex = { git = "https://github.com/rust-lang/regex.git", rev = "refs/pull/493/head" }

INVALID EXAMPLES

specifying the commit after # ignores the commit ID and generates a warning
regex = { git = "https://github.com/rust-lang/regex.git#4c59b70" }

git and path cannot be used at the same time
regex = { git = "https://github.com/rust-lang/regex.git#4c59b70", path = "../regex" }

Cargo locks the commits of git dependencies in Cargo.lock file at the time of their addition
and checks for updates only when you run cargo update command.

The role of the version key

The version key always implies that the package is available in a registry,
regardless of the presence of git or path keys.

The version key does not affect which commit is used when Cargo retrieves the git dependency,
but Cargo checks the version information in the dependency's Cargo.toml file
against the version key and raises an error if the check fails.

In this example, Cargo retrieves the HEAD commit of the branch called next from Git and checks if the crate's version
is compatible with version = "1.10.3":

[dependencies]
regex = { version = "1.10.3", git = "https://github.com/rust-lang/regex.git", branch = "next" }

version, git, and path keys are considered separate locations for resolving the dependency.
See Multiple locations section below for detailed explanations.

Note: crates.io does not allow packages to be published with
dependencies on code published outside of crates.io itself
(dev-dependencies are ignored). See the Multiple
locations section for a fallback alternative for git
and path dependencies.

Accessing private Git repositories

See Git Authentication for help with Git authentication for private repos.

Specifying path dependencies

Over time, our hello_world package from the guide has
grown significantly in size! It’s gotten to the point that we probably want to
split out a separate crate for others to use. To do this Cargo supports path
dependencies which are typically sub-crates that live within one repository.
Let’s start by making a new crate inside of our hello_world package:

inside of hello_world/
$ cargo new hello_utils

This will create a new folder hello_utils inside of which a Cargo.toml and
src folder are ready to be configured. To tell Cargo about this, open
up hello_world/Cargo.toml and add hello_utils to your dependencies:

[dependencies]
hello_utils = { path = "hello_utils" }

This tells Cargo that we depend on a crate called hello_utils which is found
in the hello_utils folder, relative to the Cargo.toml file it’s written in.

The next cargo build will automatically build hello_utils and
all of its dependencies.

No local path traversal

The local paths must point to the exact folder with the dependency's Cargo.toml.
Unlike with git dependencies, Cargo does not traverse local paths.
For example, if regex-lite and regex-syntax are members of a
locally cloned rust-lang/regex repo, they have to be referred to by the full path:

git key accepts the repo root URL and Cargo traverses the tree to find the crate
[dependencies]
regex-lite = { git = "https://github.com/rust-lang/regex.git" }
regex-syntax = { git = "https://github.com/rust-lang/regex.git" }

path key requires the member name to be included in the local path
[dependencies]
regex-lite = { path = "../regex/regex-lite" }
regex-syntax = { path = "../regex/regex-syntax" }

Local paths in published crates

Crates that use dependencies specified with only a path are not
permitted on crates.io.

If we wanted to publish our hello_world crate,
we would need to publish a version of hello_utils to crates.io as a separate crate
and specify its version in the dependencies line of hello_world:

[dependencies]
hello_utils = { path = "hello_utils", version = "0.1.0" }

The use of path and version keys together is explained in the Multiple locations section.

Note: crates.io does not allow packages to be published with
dependencies on code outside of crates.io, except for dev-dependencies.
See the Multiple locations section
for a fallback alternative for git and path dependencies.

Multiple locations

It is possible to specify both a registry version and a git or path
location. The git or path dependency will be used locally (in which case
the version is checked against the local copy), and when published to a
registry like crates.io, it will use the registry version. Other
combinations are not allowed. Examples:

[dependencies]
Uses `my-bitflags` when used locally, and uses
version 1.0 from crates.io when published.
bitflags = { path = "my-bitflags", version = "1.0" }

Uses the given git repo when used locally, and uses
version 1.0 from crates.io when published.
smallvec = { git = "https://github.com/servo/rust-smallvec.git", version = "1.0" }

Note: if a version doesn't match, Cargo will fail to compile!

One example where this can be useful is when you have split up a library into
multiple packages within the same workspace. You can then use path
dependencies to point to the local packages within the workspace to use the
local version during development, and then use the crates.io version once it
is published. This is similar to specifying an
override, but only applies to this one
dependency declaration.

Platform specific dependencies

Platform-specific dependencies take the same format, but are listed under a
target section. Normally Rust-like #[cfg]
syntax will be used to define
these sections:

[target.'cfg(windows)'.dependencies]
winhttp = "0.4.0"

[target.'cfg(unix)'.dependencies]
openssl = "1.0.1"

[target.'cfg(target_arch = "x86")'.dependencies]
native-i686 = { path = "native/i686" }

[target.'cfg(target_arch = "x86_64")'.dependencies]
native-x86_64 = { path = "native/x86_64" }

Like with Rust, the syntax here supports the not, any, and all operators
to combine various cfg name/value pairs.

If you want to know which cfg targets are available on your platform, run
rustc --print=cfg from the command line. If you want to know which cfg
targets are available for another platform, such as 64-bit Windows,
run rustc --print=cfg --target=x86_64-pc-windows-msvc.

Unlike in your Rust source code, you cannot use
[target.'cfg(feature = "fancy-feature")'.dependencies] to add dependencies
based on optional features. Use the [features] section
instead:

[dependencies]
foo = { version = "1.0", optional = true }
bar = { version = "1.0", optional = true }

[features]
fancy-feature = ["foo", "bar"]

The same applies to cfg(debug_assertions), cfg(test) and cfg(proc_macro).
These values will not work as expected and will always have the default value
returned by rustc --print=cfg.
There is currently no way to add dependencies based on these configuration values.

In addition to #[cfg] syntax, Cargo also supports listing out the full target
the dependencies would apply to:

[target.x86_64-pc-windows-gnu.dependencies]
winhttp = "0.4.0"

[target.i686-unknown-linux-gnu.dependencies]
openssl = "1.0.1"

Custom target specifications

If you’re using a custom target specification (such as --target foo/bar.json), use the base filename without the .json extension:

[target.bar.dependencies]
winhttp = "0.4.0"

[target.my-special-i686-platform.dependencies]
openssl = "1.0.1"
native = { path = "native/i686" }

Note: Custom target specifications are not usable on the stable channel.

Development dependencies

You can add a [dev-dependencies] section to your Cargo.toml whose format
is equivalent to [dependencies]:

[dev-dependencies]
tempdir = "0.3"

Dev-dependencies are not used when compiling
a package for building, but are used for compiling tests, examples, and
benchmarks.

These dependencies are not propagated to other packages which depend on this
package.

You can also have target-specific development dependencies by using
dev-dependencies in the target section header instead of dependencies. For
example:

[target.'cfg(unix)'.dev-dependencies]
mio = "0.0.1"

Note: When a package is published, only dev-dependencies that specify a
version will be included in the published crate. For most use cases,
dev-dependencies are not needed when published, though some users (like OS
packagers) may want to run tests within a crate, so providing a version if
possible can still be beneficial.

Build dependencies

You can depend on other Cargo-based crates for use in your build scripts.
Dependencies are declared through the build-dependencies section of the
manifest:

[build-dependencies]
cc = "1.0.3"

You can also have target-specific build dependencies by using
build-dependencies in the target section header instead of dependencies. For
example:

[target.'cfg(unix)'.build-dependencies]
cc = "1.0.3"

In this case, the dependency will only be built when the host platform matches the
specified target.

The build script does not have access to the dependencies listed
in the dependencies or dev-dependencies section. Build
dependencies will likewise not be available to the package itself
unless listed under the dependencies section as well. A package
itself and its build script are built separately, so their
dependencies need not coincide. Cargo is kept simpler and cleaner by
using independent dependencies for independent purposes.

Choosing features

If a package you depend on offers conditional features, you can
specify which to use:

[dependencies.awesome]
version = "1.3.5"
default-features = false # do not include the default features, and optionally
 # cherry-pick individual features
features = ["secure-password", "civet"]

More information about features can be found in the features
chapter.

Renaming dependencies in Cargo.toml

When writing a [dependencies] section in Cargo.toml the key you write for a
dependency typically matches up to the name of the crate you import from in the
code. For some projects, though, you may wish to reference the crate with a
different name in the code regardless of how it's published on crates.io. For
example you may wish to:

	Avoid the need to use foo as bar in Rust source.

	Depend on multiple versions of a crate.

	Depend on crates with the same name from different registries.

To support this Cargo supports a package key in the [dependencies] section
of which package should be depended on:

[package]
name = "mypackage"
version = "0.0.1"

[dependencies]
foo = "0.1"
bar = { git = "https://github.com/example/project.git", package = "foo" }
baz = { version = "0.1", registry = "custom", package = "foo" }

In this example, three crates are now available in your Rust code:

extern crate foo; // crates.io
extern crate bar; // git repository
extern crate baz; // registry `custom`

All three of these crates have the package name of foo in their own
Cargo.toml, so we're explicitly using the package key to inform Cargo that
we want the foo package even though we're calling it something else locally.
The package key, if not specified, defaults to the name of the dependency
being requested.

Note that if you have an optional dependency like:

[dependencies]
bar = { version = "0.1", package = 'foo', optional = true }

you're depending on the crate foo from crates.io, but your crate has a bar
feature instead of a foo feature. That is, names of features take after the
name of the dependency, not the package name, when renamed.

Enabling transitive dependencies works similarly, for example we could add the
following to the above manifest:

[features]
log-debug = ['bar/log-debug'] # using 'foo/log-debug' would be an error!

Inheriting a dependency from a workspace

Dependencies can be inherited from a workspace by specifying the
dependency in the workspace's [workspace.dependencies] table.
After that, add it to the [dependencies] table with workspace = true.

Along with the workspace key, dependencies can also include these keys:

	optional: Note that the[workspace.dependencies] table is not allowed to specify optional.

	features: These are additive with the features declared in the [workspace.dependencies]

Other than optional and features, inherited dependencies cannot use any other
dependency key (such as version or default-features).

Dependencies in the [dependencies], [dev-dependencies], [build-dependencies], and
[target."...".dependencies] sections support the ability to reference the
[workspace.dependencies] definition of dependencies.

[package]
name = "bar"
version = "0.2.0"

[dependencies]
regex = { workspace = true, features = ["unicode"] }

[build-dependencies]
cc.workspace = true

[dev-dependencies]
rand = { workspace = true, optional = true }

 Overriding Dependencies

The desire to override a dependency can arise through a number of scenarios.
Most of them, however, boil down to the ability to work with a crate before
it's been published to crates.io. For example:

	A crate you're working on is also used in a much larger application you're
working on, and you'd like to test a bug fix to the library inside of the
larger application.

	An upstream crate you don't work on has a new feature or a bug fix on the
master branch of its git repository which you'd like to test out.

	You're about to publish a new major version of your crate, but you'd like to
do integration testing across an entire package to ensure the new major
version works.

	You've submitted a fix to an upstream crate for a bug you found, but you'd
like to immediately have your application start depending on the fixed
version of the crate to avoid blocking on the bug fix getting merged.

These scenarios can be solved with the [patch] manifest
section.

This chapter walks through a few different use cases, and includes details
on the different ways to override a dependency.

	Example use cases

	Testing a bugfix

	Working with an unpublished minor version

	Overriding repository URL

	Prepublishing a breaking change

	Using [patch] with multiple versions

	Reference

	The [patch] section

	The [replace] section

	paths overrides

Note: See also specifying a dependency with multiple locations, which
can be used to override the source for a single dependency declaration in a
local package.

Testing a bugfix

Let's say you're working with the uuid crate but while you're working on it
you discover a bug. You are, however, quite enterprising so you decide to also
try to fix the bug! Originally your manifest will look like:

[package]
name = "my-library"
version = "0.1.0"

[dependencies]
uuid = "1.0"

First thing we'll do is to clone the uuid repository
locally via:

$ git clone https://github.com/uuid-rs/uuid.git

Next we'll edit the manifest of my-library to contain:

[patch.crates-io]
uuid = { path = "../path/to/uuid" }

Here we declare that we're patching the source crates-io with a new
dependency. This will effectively add the local checked out version of uuid to
the crates.io registry for our local package.

Next up we need to ensure that our lock file is updated to use this new version
of uuid so our package uses the locally checked out copy instead of one from
crates.io. The way [patch] works is that it'll load the dependency at
../path/to/uuid and then whenever crates.io is queried for versions of uuid
it'll also return the local version.

This means that the version number of the local checkout is significant and will
affect whether the patch is used. Our manifest declared uuid = "1.0" which
means we'll only resolve to >= 1.0.0, < 2.0.0, and Cargo's greedy resolution
algorithm also means that we'll resolve to the maximum version within that
range. Typically this doesn't matter as the version of the git repository will
already be greater or match the maximum version published on crates.io, but it's
important to keep this in mind!

In any case, typically all you need to do now is:

$ cargo build
 Compiling uuid v1.0.0 (.../uuid)
 Compiling my-library v0.1.0 (.../my-library)
 Finished dev [unoptimized + debuginfo] target(s) in 0.32 secs

And that's it! You're now building with the local version of uuid (note the
path in parentheses in the build output). If you don't see the local path version getting
built then you may need to run cargo update uuid --precise $version where
$version is the version of the locally checked out copy of uuid.

Once you've fixed the bug you originally found the next thing you'll want to do
is to likely submit that as a pull request to the uuid crate itself. Once
you've done this then you can also update the [patch] section. The listing
inside of [patch] is just like the [dependencies] section, so once your pull
request is merged you could change your path dependency to:

[patch.crates-io]
uuid = { git = 'https://github.com/uuid-rs/uuid.git' }

Working with an unpublished minor version

Let's now shift gears a bit from bug fixes to adding features. While working on
my-library you discover that a whole new feature is needed in the uuid
crate. You've implemented this feature, tested it locally above with [patch],
and submitted a pull request. Let's go over how you continue to use and test it
before it's actually published.

Let's also say that the current version of uuid on crates.io is 1.0.0, but
since then the master branch of the git repository has updated to 1.0.1. This
branch includes your new feature you submitted previously. To use this
repository we'll edit our Cargo.toml to look like

[package]
name = "my-library"
version = "0.1.0"

[dependencies]
uuid = "1.0.1"

[patch.crates-io]
uuid = { git = 'https://github.com/uuid-rs/uuid.git' }

Note that our local dependency on uuid has been updated to 1.0.1 as it's
what we'll actually require once the crate is published. This version doesn't
exist on crates.io, though, so we provide it with the [patch] section of the
manifest.

Now when our library is built it'll fetch uuid from the git repository and
resolve to 1.0.1 inside the repository instead of trying to download a version
from crates.io. Once 1.0.1 is published on crates.io the [patch] section can
be deleted.

It's also worth noting that [patch] applies transitively. Let's say you use
my-library in a larger package, such as:

[package]
name = "my-binary"
version = "0.1.0"

[dependencies]
my-library = { git = 'https://example.com/git/my-library' }
uuid = "1.0"

[patch.crates-io]
uuid = { git = 'https://github.com/uuid-rs/uuid.git' }

Remember that [patch] is applicable transitively but can only be defined at
the top level so we consumers of my-library have to repeat the [patch] section
if necessary. Here, though, the new uuid crate applies to both our dependency on
uuid and the my-library -> uuid dependency. The uuid crate will be resolved to
one version for this entire crate graph, 1.0.1, and it'll be pulled from the git
repository.

Overriding repository URL

In case the dependency you want to override isn't loaded from crates.io,
you'll have to change a bit how you use [patch]. For example, if the
dependency is a git dependency, you can override it to a local path with:

[patch."https://github.com/your/repository"]
my-library = { path = "../my-library/path" }

And that's it!

Prepublishing a breaking change

Let's take a look at working with a new major version of a crate, typically
accompanied with breaking changes. Sticking with our previous crates, this
means that we're going to be creating version 2.0.0 of the uuid crate. After
we've submitted all changes upstream we can update our manifest for
my-library to look like:

[dependencies]
uuid = "2.0"

[patch.crates-io]
uuid = { git = "https://github.com/uuid-rs/uuid.git", branch = "2.0.0" }

And that's it! Like with the previous example the 2.0.0 version doesn't actually
exist on crates.io but we can still put it in through a git dependency through
the usage of the [patch] section. As a thought exercise let's take another
look at the my-binary manifest from above again as well:

[package]
name = "my-binary"
version = "0.1.0"

[dependencies]
my-library = { git = 'https://example.com/git/my-library' }
uuid = "1.0"

[patch.crates-io]
uuid = { git = 'https://github.com/uuid-rs/uuid.git', branch = '2.0.0' }

Note that this will actually resolve to two versions of the uuid crate. The
my-binary crate will continue to use the 1.x.y series of the uuid crate but
the my-library crate will use the 2.0.0 version of uuid. This will allow you
to gradually roll out breaking changes to a crate through a dependency graph
without being forced to update everything all at once.

Using [patch] with multiple versions

You can patch in multiple versions of the same crate with the package key
used to rename dependencies. For example let's say that the serde crate has
a bugfix that we'd like to use to its 1.* series but we'd also like to
prototype using a 2.0.0 version of serde we have in our git repository. To
configure this we'd do:

[patch.crates-io]
serde = { git = 'https://github.com/serde-rs/serde.git' }
serde2 = { git = 'https://github.com/example/serde.git', package = 'serde', branch = 'v2' }

The first serde = ... directive indicates that serde 1.* should be used
from the git repository (pulling in the bugfix we need) and the second serde2 = ... directive indicates that the serde package should also be pulled from
the v2 branch of https://github.com/example/serde. We're assuming here
that Cargo.toml on that branch mentions version 2.0.0.

Note that when using the package key the serde2 identifier here is actually
ignored. We simply need a unique name which doesn't conflict with other patched
crates.

The [patch] section

The [patch] section of Cargo.toml can be used to override dependencies
with other copies. The syntax is similar to the
[dependencies] section:

[patch.crates-io]
foo = { git = 'https://github.com/example/foo.git' }
bar = { path = 'my/local/bar' }

[dependencies.baz]
git = 'https://github.com/example/baz.git'

[patch.'https://github.com/example/baz']
baz = { git = 'https://github.com/example/patched-baz.git', branch = 'my-branch' }

Note: The [patch] table can also be specified as a configuration
option, such as in a .cargo/config.toml file or a CLI option
like --config 'patch.crates-io.rand.path="rand"'. This can be useful for
local-only changes that you don't want to commit, or temporarily testing a
patch.

The [patch] table is made of dependency-like sub-tables. Each key after
[patch] is a URL of the source that is being patched, or the name of a
registry. The name crates-io may be used to override the default registry
crates.io. The first [patch] in the example above demonstrates overriding
crates.io, and the second [patch] demonstrates overriding a git source.

Each entry in these tables is a normal dependency specification, the same as
found in the [dependencies] section of the manifest. The dependencies listed
in the [patch] section are resolved and used to patch the source at the
URL specified. The above manifest snippet patches the crates-io source (e.g.
crates.io itself) with the foo crate and bar crate. It also
patches the https://github.com/example/baz source with a my-branch that
comes from elsewhere.

Sources can be patched with versions of crates that do not exist, and they can
also be patched with versions of crates that already exist. If a source is
patched with a crate version that already exists in the source, then the
source's original crate is replaced.

Cargo only looks at the patch settings in the Cargo.toml manifest at the
root of the workspace. Patch settings defined in dependencies will be
ignored.

The [replace] section

Note: [replace] is deprecated. You should use the
[patch] table instead.

This section of Cargo.toml can be used to override dependencies with other
copies. The syntax is similar to the [dependencies] section:

[replace]
"foo:0.1.0" = { git = 'https://github.com/example/foo.git' }
"bar:1.0.2" = { path = 'my/local/bar' }

Each key in the [replace] table is a package ID
specification, which allows arbitrarily choosing a node in the
dependency graph to override (the 3-part version number is required). The
value of each key is the same as the [dependencies] syntax for specifying
dependencies, except that you can't specify features. Note that when a crate
is overridden the copy it's overridden with must have both the same name and
version, but it can come from a different source (e.g., git or a local path).

Cargo only looks at the replace settings in the Cargo.toml manifest at the
root of the workspace. Replace settings defined in dependencies will be
ignored.

paths overrides

Sometimes you're only temporarily working on a crate and you don't want to have
to modify Cargo.toml like with the [patch] section above. For this use
case Cargo offers a much more limited version of overrides called path
overrides.

Path overrides are specified through .cargo/config.toml instead of
Cargo.toml. Inside of .cargo/config.toml you'll specify a key called paths:

paths = ["/path/to/uuid"]

This array should be filled with directories that contain a Cargo.toml. In
this instance, we’re just adding uuid, so it will be the only one that’s
overridden. This path can be either absolute or relative to the directory that
contains the .cargo folder.

Path overrides are more restricted than the [patch] section, however, in
that they cannot change the structure of the dependency graph. When a
path replacement is used then the previous set of dependencies
must all match exactly to the new Cargo.toml specification. For example this
means that path overrides cannot be used to test out adding a dependency to a
crate. Instead, [patch] must be used in that situation. As a result, usage of a
path override is typically isolated to quick bug fixes rather than larger
changes.

Note: using a local configuration to override paths will only work for
crates that have been published to crates.io. You cannot use this feature
to tell Cargo how to find local unpublished crates.

 Source Replacement

This document is about replacing the crate index. You can read about overriding
dependencies in the overriding dependencies section of this
documentation.

A source is a provider that contains crates that may be included as
dependencies for a package. Cargo supports the ability to replace one source
with another to express strategies such as:

	
Vendoring --- custom sources can be defined which represent crates on the local
filesystem. These sources are subsets of the source that they're replacing and
can be checked into packages if necessary.

	
Mirroring --- sources can be replaced with an equivalent version which acts as a
cache for crates.io itself.

Cargo has a core assumption about source replacement that the source code is
exactly the same from both sources. Note that this also means that
a replacement source is not allowed to have crates which are not present in the
original source.

As a consequence, source replacement is not appropriate for situations such as
patching a dependency or a private registry. Cargo supports patching
dependencies through the usage of the [patch] key, and private registry support is described in the Registries
chapter.

When using source replacement, running commands that need to
contact the registry directly1 requires passing the --registry option. This helps avoid
any ambiguity about which registry to contact, and will use the authentication
token for the specified registry.

1
Examples of such commands are in Publishing Commands.

Configuration

Configuration of replacement sources is done through .cargo/config.toml
and the full set of available keys are:

The `source` table is where all keys related to source-replacement
are stored.
[source]

Under the `source` table are a number of other tables whose keys are a
name for the relevant source. For example this section defines a new
source, called `my-vendor-source`, which comes from a directory
located at `vendor` relative to the directory containing this `.cargo/config.toml`
file
[source.my-vendor-source]
directory = "vendor"

The crates.io default source for crates is available under the name
"crates-io", and here we use the `replace-with` key to indicate that it's
replaced with our source above.
#
The `replace-with` key can also reference an alternative registry name
defined in the `[registries]` table.
[source.crates-io]
replace-with = "my-vendor-source"

Each source has its own table where the key is the name of the source
[source.the-source-name]

Indicate that `the-source-name` will be replaced with `another-source`,
defined elsewhere
replace-with = "another-source"

Several kinds of sources can be specified (described in more detail below):
registry = "https://example.com/path/to/index"
local-registry = "path/to/registry"
directory = "path/to/vendor"

Git sources can optionally specify a branch/tag/rev as well
git = "https://example.com/path/to/repo"
branch = "master"
tag = "v1.0.1"
rev = "313f44e8"

Registry Sources

A "registry source" is one that is the same as crates.io itself. That is, it has
an index served in a git repository which matches the format of the
crates.io index. That repository
then has configuration indicating where to download crates from.

Currently there is not an already-available project for setting up a mirror of
crates.io. Stay tuned though!

Local Registry Sources

A "local registry source" is intended to be a subset of another registry
source, but available on the local filesystem (aka vendoring). Local registries
are downloaded ahead of time, typically sync'd with a Cargo.lock, and are
made up of a set of *.crate files and an index like the normal registry is.

The primary way to manage and create local registry sources is through the
cargo-local-registry subcommand,
available on crates.io and can be installed with
cargo install cargo-local-registry.

Local registries are contained within one directory and contain a number of
*.crate files downloaded from crates.io as well as an index directory with
the same format as the crates.io-index project (populated with just entries for
the crates that are present).

Directory Sources

A "directory source" is similar to a local registry source where it contains a
number of crates available on the local filesystem, suitable for vendoring
dependencies. Directory sources are primarily managed by the cargo vendor
subcommand.

Directory sources are distinct from local registries though in that they contain
the unpacked version of *.crate files, making it more suitable in some
situations to check everything into source control. A directory source is just a
directory containing a number of other directories which contain the source code
for crates (the unpacked version of *.crate files). Currently no restriction
is placed on the name of each directory.

Each crate in a directory source also has an associated metadata file indicating
the checksum of each file in the crate to protect against accidental
modifications.

 Dependency Resolution

One of Cargo's primary tasks is to determine the versions of dependencies to
use based on the version requirements specified in each package. This process
is called "dependency resolution" and is performed by the "resolver". The
result of the resolution is stored in the Cargo.lock file which "locks" the
dependencies to specific versions, and keeps them fixed over time.
The cargo tree command can be used to visualize the result of the
resolver.

Constraints and Heuristics

In many cases there is no single "best" dependency resolution.
The resolver operates under various constraints and heuristics to find a generally applicable resolution.
To understand how these interact, it is helpful to have a coarse understanding of how dependency resolution works.

This pseudo-code approximates what Cargo's resolver does:

pub fn resolve(workspace: &[Package], policy: Policy) -> Option<ResolveGraph> {
 let dep_queue = Queue::new(workspace);
 let resolved = ResolveGraph::new();
 resolve_next(pkq_queue, resolved, policy)
}

fn resolve_next(dep_queue: Queue, resolved: ResolveGraph, policy: Policy) -> Option<ResolveGraph> {
 let Some(dep_spec) = policy.pick_next_dep(dep_queue) else {
 // Done
 return Some(resolved);
 };

 if let Some(resolved) = policy.try_unify_version(dep_spec, resolved.clone()) {
 return Some(resolved);
 }

 let dep_versions = dep_spec.lookup_versions()?;
 let mut dep_versions = policy.filter_versions(dep_spec, dep_versions);
 while let Some(dep_version) = policy.pick_next_version(&mut dep_versions) {
 if policy.needs_version_unification(dep_version, &resolved) {
 continue;
 }

 let mut dep_queue = dep_queue.clone();
 dep_queue.enqueue(dep_version.dependencies);
 let mut resolved = resolved.clone();
 resolved.register(dep_version);
 if let Some(resolved) = resolve_next(dep_queue, resolved) {
 return Some(resolved);
 }
 }

 // No valid solution found, backtrack and `pick_next_version`
 None
}

Key steps:

	Walking dependencies (pick_next_dep):
The order dependencies are walked can affect
how related version requirements for the same dependency get resolved, see unifying versions,
and how much the resolver backtracks, affecting resolver performance,

	Unifying versions (try_unify_version, needs_version_unification):
Cargo reuses versions where possible to reduce build times and allow types from common dependencies to be passed between APIs.
If multiple versions would have been unified if it wasn't for conflicts in their dependency specifications, Cargo will backtrack, erroring if no solution is found, rather than selecting multiple versions.
A dependency specification or Cargo may decide that a version is undesirable,
preferring to backtrack or error rather than use it.

	Preferring versions (pick_next_version):
Cargo may decide that it should prefer a specific version,
falling back to the next version when backtracking.

Version numbers

Generally, Cargo prefers the highest version currently available.

For example, if you had a package in the resolve graph with:

[dependencies]
bitflags = "*"

If at the time the Cargo.lock file is generated, the greatest version of
bitflags is 1.2.1, then the package will use 1.2.1.

For an example of a possible exception, see Rust version.

Version requirements

Package specify what versions they support, rejecting all others, through
version requirements.

For example, if you had a package in the resolve graph with:

[dependencies]
bitflags = "1.0" # meaning `>=1.0.0,<2.0.0`

If at the time the Cargo.lock file is generated, the greatest version of
bitflags is 1.2.1, then the package will use 1.2.1 because it is the
greatest within the compatibility range. If 2.0.0 is published, it will
still use 1.2.1 because 2.0.0 is considered incompatible.

SemVer compatibility

Cargo assumes packages follow SemVer and will unify dependency versions if they are
SemVer compatible according to the Caret version requirements.
If two compatible versions cannot be unified because of conflicting version requirements,
Cargo will error.

See the SemVer Compatibility chapter for guidance on what is considered a
"compatible" change.

Examples:

The following two packages will have their dependencies on bitflags unified because any version picked will be compatible with each other.

Package A
[dependencies]
bitflags = "1.0" # meaning `>=1.0.0,<2.0.0`

Package B
[dependencies]
bitflags = "1.1" # meaning `>=1.1.0,<2.0.0`

The following packages will error because the version requirements conflict, selecting two distinct compatible versions.

Package A
[dependencies]
log = "=0.4.11"

Package B
[dependencies]
log = "=0.4.8"

The following two packages will not have their dependencies on rand unified because only incompatible versions are available for each.
Instead, two different versions (e.g. 0.6.5 and 0.7.3) will be resolved and built.
This can lead to potential problems, see the Version-incompatibility hazards section for more details.

Package A
[dependencies]
rand = "0.7" # meaning `>=0.7.0,<0.8.0`

Package B
[dependencies]
rand = "0.6" # meaning `>=0.6.0,<0.7.0`

Generally, the following two packages will not have their dependencies unified because incompatible versions are available that satisfy the version requirements:
Instead, two different versions (e.g. 0.6.5 and 0.7.3) will be resolved and built.
The application of other constraints or heuristics may cause these to be unified,
picking one version (e.g. 0.6.5).

Package A
[dependencies]
rand = ">=0.6,<0.8.0"

Package B
[dependencies]
rand = "0.6" # meaning `>=0.6.0,<0.7.0`

Version-incompatibility hazards

When multiple versions of a crate appear in the resolve graph, this can cause
problems when types from those crates are exposed by the crates using them.
This is because the types and items are considered different by the Rust
compiler, even if they have the same name. Libraries should take care when
publishing a SemVer-incompatible version (for example, publishing 2.0.0
after 1.0.0 has been in use), particularly for libraries that are widely
used.

The "semver trick" is a workaround for this problem of publishing a breaking
change while retaining compatibility with older versions. The linked page goes
into detail about what the problem is and how to address it. In short, when a
library wants to publish a SemVer-breaking release, publish the new release,
and also publish a point release of the previous version that reexports the
types from the newer version.

These incompatibilities usually manifest as a compile-time error, but
sometimes they will only appear as a runtime misbehavior. For example, let's
say there is a common library named foo that ends up appearing with both
version 1.0.0 and 2.0.0 in the resolve graph. If downcast_ref is used
on an object created by a library using version 1.0.0, and the code calling
downcast_ref is downcasting to a type from version 2.0.0, the downcast
will fail at runtime.

It is important to make sure that if you have multiple versions of a library
that you are properly using them, especially if it is ever possible for the
types from different versions to be used together. The cargo tree -d command can be used to identify duplicate versions and
where they come from. Similarly, it is important to consider the impact on the
ecosystem if you publish a SemVer-incompatible version of a popular library.

Rust version

To support developing software with a minimum supported Rust version,
the resolver can take into account a dependency version's compatibility with your Rust version.
This is controlled by the config field resolver.incompatible-rust-versions.

With the fallback setting, the resolver will prefer packages with a Rust version that is
less than or equal to your own Rust version.
For example, you are using Rust 1.85 to develop the following package:

[package]
name = "my-cli"
rust-version = "1.62"

[dependencies]
clap = "4.0" # resolves to 4.0.32

The resolver would pick version 4.0.32 because it has a Rust version of 1.60.0.

	4.0.0 is not picked because it is a lower version number despite it also having a Rust version of 1.60.0.

	4.5.20 is not picked because it is incompatible with my-cli's Rust version of 1.62 despite having a much higher version and it has a Rust version of 1.74.0 which is compatible with your 1.85 toolchain.

If a version requirement does not include a Rust version compatible dependency version,
the resolver won't error but will instead pick a version, even if its potentially suboptimal.
For example, you change the dependency on clap:

[package]
name = "my-cli"
rust-version = "1.62"

[dependencies]
clap = "4.2" # resolves to 4.5.20

No version of clap matches that version requirement
that is compatible with Rust version 1.62.
The resolver will then pick an incompatible version, like 4.5.20 despite it having a Rust version of 1.74.

When the resolver selects a dependency version of a package,
it does not know all the workspace members that will eventually have a transitive dependency on that version
and so it cannot take into account only the Rust versions relevant for that dependency.
The resolver has heuristics to find a "good enough" solution when workspace members have different Rust versions.
This applies even for packages in a workspace without a Rust version.

When a workspace has members with different Rust versions,
the resolver may pick a lower dependency version than necessary.
For example, you have the following workspace members:

[package]
name = "a"
rust-version = "1.62"

[package]
name = "b"

[dependencies]
clap = "4.2" # resolves to 4.5.20

Though package b does not have a Rust version and could use a higher version like 4.5.20,
4.0.32 will be selected because of package a's Rust version of 1.62.

Or the resolver may pick too high of a version.
For example, you have the following workspace members:

[package]
name = "a"
rust-version = "1.62"

[dependencies]
clap = "4.2" # resolves to 4.5.20

[package]
name = "b"

[dependencies]
clap = "4.5" # resolves to 4.5.20

Though each package has a version requirement for clap that would meet its own Rust version,
because of version unification,
the resolver will need to pick one version that works in both cases and that would be a version like 4.5.20.

Features

For the purpose of generating Cargo.lock, the resolver builds the dependency
graph as-if all features of all workspace members are enabled. This
ensures that any optional dependencies are available and properly resolved
with the rest of the graph when features are added or removed with the
--features command-line flag.
The resolver runs a second time to determine the actual features used when
compiling a crate, based on the features selected on the command-line.

Dependencies are resolved with the union of all features enabled on them. For
example, if one package depends on the im package with the serde
dependency enabled and another package depends on it with the rayon
dependency enabled, then im will be built with both features enabled, and
the serde and rayon crates will be included in the resolve graph. If no
packages depend on im with those features, then those optional dependencies
will be ignored, and they will not affect resolution.

When building multiple packages in a workspace (such as with --workspace or
multiple -p flags), the features of the dependencies of all of those
packages are unified. If you have a circumstance where you want to avoid that
unification for different workspace members, you will need to build them via
separate cargo invocations.

The resolver will skip over versions of packages that are missing required
features. For example, if a package depends on version ^1 of regex with
the perf feature, then the oldest version it can select is 1.3.0,
because versions prior to that did not contain the perf feature. Similarly,
if a feature is removed from a new release, then packages that require that
feature will be stuck on the older releases that contain that feature. It is
discouraged to remove features in a SemVer-compatible release. Beware that
optional dependencies also define an implicit feature, so removing an optional
dependency or making it non-optional can cause problems, see removing an
optional dependency.

Feature resolver version 2

When resolver = "2" is specified in Cargo.toml (see resolver
versions below), a different feature resolver is used
which uses a different algorithm for unifying features. The version "1"
resolver will unify features for a package no matter where it is specified.
The version "2" resolver will avoid unifying features in the following
situations:

	
Features for target-specific dependencies are not enabled if the target is
not currently being built. For example:

[dependencies.common]
version = "1.0"
features = ["f1"]

[target.'cfg(windows)'.dependencies.common]
version = "1.0"
features = ["f2"]

When building this example for a non-Windows platform, the f2 feature will
not be enabled.

	
Features enabled on build-dependencies or proc-macros will not be unified
when those same dependencies are used as a normal dependency. For example:

[dependencies]
log = "0.4"

[build-dependencies]
log = {version = "0.4", features=['std']}

When building the build script, the log crate will be built with the std
feature. When building the library of your package, it will not enable the
feature.

	
Features enabled on dev-dependencies will not be unified when those same
dependencies are used as a normal dependency, unless those dev-dependencies
are currently being built. For example:

[dependencies]
serde = {version = "1.0", default-features = false}

[dev-dependencies]
serde = {version = "1.0", features = ["std"]}

In this example, the library will normally link against serde without the
std feature. However, when built as a test or example, it will include the
std feature. For example, cargo test or cargo build --all-targets will
unify these features. Note that dev-dependencies in dependencies are always
ignored, this is only relevant for the top-level package or workspace
members.

links

The links field is used to ensure only one copy of a native library is
linked into a binary. The resolver will attempt to find a graph where there is
only one instance of each links name. If it is unable to find a graph that
satisfies that constraint, it will return an error.

For example, it is an error if one package depends on libgit2-sys version
0.11 and another depends on 0.12, because Cargo is unable to unify those,
but they both link to the git2 native library. Due to this requirement, it
is encouraged to be very careful when making SemVer-incompatible releases with
the links field if your library is in common use.

Yanked versions

Yanked releases are those that are marked that they should not be
used. When the resolver is building the graph, it will ignore all yanked
releases unless they already exist in the Cargo.lock file or are explicitly
requested by the --precise flag of cargo update (nightly only).

Dependency updates

Dependency resolution is automatically performed by all Cargo commands that
need to know about the dependency graph. For example, cargo build will run
the resolver to discover all the dependencies to build. After the first time
it runs, the result is stored in the Cargo.lock file. Subsequent commands
will run the resolver, keeping dependencies locked to the versions in
Cargo.lock if it can.

If the dependency list in Cargo.toml has been modified, for example changing
the version of a dependency from 1.0 to 2.0, then the resolver will select
a new version for that dependency that matches the new requirements. If that
new dependency introduces new requirements, those new requirements may also
trigger additional updates. The Cargo.lock file will be updated with the new
result. The --locked or --frozen flags can be used to change this behavior
to prevent automatic updates when requirements change, and return an error
instead.

cargo update can be used to update the entries in Cargo.lock when new
versions are published. Without any options, it will attempt to update all
packages in the lock file. The -p flag can be used to target the update for
a specific package, and other flags such as --recursive or --precise can
be used to control how versions are selected.

Overrides

Cargo has several mechanisms to override dependencies within the graph. The
Overriding Dependencies chapter goes into detail on how to use overrides.
The overrides appear as an overlay to a registry, replacing the patched
version with the new entry. Otherwise, resolution is performed like normal.

Dependency kinds

There are three kinds of dependencies in a package: normal, build, and
dev. For the most part these are all treated the same from
the perspective of the resolver. One difference is that dev-dependencies for
non-workspace members are always ignored, and do not influence resolution.

Platform-specific dependencies with the [target] table are resolved as-if
all platforms are enabled. In other words, the resolver ignores the platform
or cfg expression.

dev-dependency cycles

Usually the resolver does not allow cycles in the graph, but it does allow
them for dev-dependencies. For example, project "foo" has a dev-dependency
on "bar", which has a normal dependency on "foo" (usually as a "path"
dependency). This is allowed because there isn't really a cycle from the
perspective of the build artifacts. In this example, the "foo" library is
built (which does not need "bar" because "bar" is only used for tests), and
then "bar" can be built depending on "foo", then the "foo" tests can be built
linking to "bar".

Beware that this can lead to confusing errors. In the case of building library
unit tests, there are actually two copies of the library linked into the final
test binary: the one that was linked with "bar", and the one built that
contains the unit tests. Similar to the issues highlighted in the
Version-incompatibility hazards section, the types between the two are not
compatible. Be careful when exposing types of "foo" from "bar" in this
situation, since the "foo" unit tests won't treat them the same as the local
types.

If possible, try to split your package into multiple packages and restructure
it so that it remains strictly acyclic.

Resolver versions

Different resolver behavior can be specified through the resolver
version in Cargo.toml like this:

[package]
name = "my-package"
version = "1.0.0"
resolver = "2"

	"1" (default)

	"2" (edition = "2021" default): Introduces changes in feature
unification. See the features chapter for more
details.

	"3" (edition = "2024" default, requires Rust 1.84+): Change the default for resolver.incompatible-rust-versions from allow to fallback

The resolver is a global option that affects the entire workspace. The
resolver version in dependencies is ignored, only the value in the top-level
package will be used. If using a virtual workspace, the version should be
specified in the [workspace] table, for example:

[workspace]
members = ["member1", "member2"]
resolver = "2"

MSRV: Requires 1.51+

Recommendations

The following are some recommendations for setting the version within your
package, and for specifying dependency requirements. These are general
guidelines that should apply to common situations, but of course some
situations may require specifying unusual requirements.

	
Follow the SemVer guidelines when deciding how to update your version
number, and whether or not you will need to make a SemVer-incompatible
version change.

	
Use caret requirements for dependencies, such as "1.2.3", for most
situations. This ensures that the resolver can be maximally flexible in
choosing a version while maintaining build compatibility.

	Specify all three components with the version you are currently using.
This helps set the minimum version that will be used, and ensures that
other users won't end up with an older version of the dependency that
might be missing something that your package requires.

	Avoid * requirements, as they are not allowed on crates.io, and they
can pull in SemVer-breaking changes during a normal cargo update.

	Avoid overly broad version requirements. For example, >=2.0.0 can pull
in any SemVer-incompatible version, like version 5.0.0, which can result
in broken builds in the future.

	Avoid overly narrow version requirements if possible. For example, if you
specify a tilde requirement like bar="~1.3", and another package
specifies a requirement of bar="1.4", this will fail to resolve, even
though minor releases should be compatible.

	
Try to keep the dependency versions up-to-date with the actual minimum
versions that your library requires. For example, if you have a requirement
of bar="1.0.12", and then in a future release you start using new features
added in the 1.1.0 release of "bar", update your dependency requirement to
bar="1.1.0".

If you fail to do this, it may not be immediately obvious because Cargo can
opportunistically choose the newest version when you run a blanket cargo update. However, if another user depends on your library, and runs cargo update your-library, it will not automatically update "bar" if it is
locked in their Cargo.lock. It will only update "bar" in that situation if
the dependency declaration is also updated. Failure to do so can cause
confusing build errors for the user using cargo update your-library.

	
If two packages are tightly coupled, then an = dependency requirement may
help ensure that they stay in sync. For example, a library with a companion
proc-macro library will sometimes make assumptions between the two libraries
that won't work well if the two are out of sync (and it is never expected to
use the two libraries independently). The parent library can use an =
requirement on the proc-macro, and re-export the macros for easy access.

	
0.0.x versions can be used for packages that are permanently unstable.

In general, the stricter you make the dependency requirements, the more likely
it will be for the resolver to fail. Conversely, if you use requirements that
are too loose, it may be possible for new versions to be published that will
break the build.

Troubleshooting

The following illustrates some problems you may experience, and some possible
solutions.

Why was a dependency included?

Say you see dependency rand in the cargo check output but don't think it's needed and want to understand why it's being pulled in.

You can run

$ cargo tree --workspace --target all --all-features --invert rand
rand v0.8.5
└── ...

rand v0.8.5
└── ...

Why was that feature on this dependency enabled?

You might identify that it was an activated feature that caused rand to show up. To figure out which package activated the feature, you can add the --edges features

$ cargo tree --workspace --target all --all-features --edges features --invert rand
rand v0.8.5
└── ...

rand v0.8.5
└── ...

Unexpected dependency duplication

You see multiple instances of rand when you run

$ cargo tree --workspace --target all --all-features --duplicates
rand v0.7.3
└── ...

rand v0.8.5
└── ...

The resolver algorithm has converged on a solution that includes two copies of a
dependency when one would suffice. For example:

Package A
[dependencies]
rand = "0.7"

Package B
[dependencies]
rand = ">=0.6" # note: open requirements such as this are discouraged

In this example, Cargo may build two copies of the rand crate, even though a
single copy at version 0.7.3 would meet all requirements. This is because the
resolver's algorithm favors building the latest available version of rand for
Package B, which is 0.8.5 at the time of this writing, and that is
incompatible with Package A's specification. The resolver's algorithm does not
currently attempt to "deduplicate" in this situation.

The use of open-ended version requirements like >=0.6 is discouraged in Cargo.
But, if you run into this situation, the cargo update command with the
--precise flag can be used to manually remove such duplications.

Why wasn't a newer version selected?

Say you noticed that the latest version of a dependency wasn't selected when you ran:

$ cargo update

You can enable some extra logging to see why this happened:

$ env CARGO_LOG=cargo::core::resolver=trace cargo update

Note: Cargo log targets and levels may change over time.

SemVer-breaking patch release breaks the build

Sometimes a project may inadvertently publish a point release with a
SemVer-breaking change. When users update with cargo update, they will pick
up this new release, and then their build may break. In this situation, it is
recommended that the project should yank the release, and either remove the
SemVer-breaking change, or publish it as a new SemVer-major version increase.

If the change happened in a third-party project, if possible try to
(politely!) work with the project to resolve the issue.

While waiting for the release to be yanked, some workarounds depend on the
circumstances:

	If your project is the end product (such as a binary executable), just avoid
updating the offending package in Cargo.lock. This can be done with the
--precise flag in cargo update.

	If you publish a binary on crates.io, then you can temporarily add an =
requirement to force the dependency to a specific good version.

	Binary projects can alternatively recommend users to use the --locked
flag with cargo install to use the original Cargo.lock that contains
the known good version.

	Libraries may also consider publishing a temporary new release with stricter
requirements that avoid the troublesome dependency. You may want to consider
using range requirements (instead of =) to avoid overly-strict
requirements that may conflict with other packages using the same
dependency. Once the problem has been resolved, you can publish another
point release that relaxes the dependency back to a caret requirement.

	If it looks like the third-party project is unable or unwilling to yank the
release, then one option is to update your code to be compatible with the
changes, and update the dependency requirement to set the minimum version to
the new release. You will also need to consider if this is a SemVer-breaking
change of your own library, for example if it exposes types from the
dependency.

 Features

Cargo "features" provide a mechanism to express conditional compilation and
optional dependencies. A package defines a set of
named features in the [features] table of Cargo.toml, and each feature can
either be enabled or disabled. Features for the package being built can be
enabled on the command-line with flags such as --features. Features for
dependencies can be enabled in the dependency declaration in Cargo.toml.

Note: New crates or versions published on crates.io are now limited to
a maximum of 300 features. Exceptions are granted on a case-by-case basis.
See this blog post for details. Participation in solution discussions is
encouraged via the crates.io Zulip stream.

See also the Features Examples chapter for some examples of how features can
be used.

The [features] section

Features are defined in the [features] table in Cargo.toml. Each feature
specifies an array of other features or optional dependencies that it enables.
The following examples illustrate how features could be used for a 2D image
processing library where support for different image formats can be optionally
included:

[features]
Defines a feature named `webp` that does not enable any other features.
webp = []

With this feature defined, cfg expressions can be used to conditionally
include code to support the requested feature at compile time. For example,
inside lib.rs of the package could include this:

// This conditionally includes a module which implements WEBP support.
#[cfg(feature = "webp")]
pub mod webp;

Cargo sets features in the package using the rustc --cfg flag, and code
can test for their presence with the cfg attribute or the cfg macro.

Features can list other features to enable. For example, the ICO image format
can contain BMP and PNG images, so when it is enabled, it should make sure
those other features are enabled, too:

[features]
bmp = []
png = []
ico = ["bmp", "png"]
webp = []

Feature names may include characters from the Unicode XID standard (which
includes most letters), and additionally allows starting with _ or digits
0 through 9, and after the first character may also contain -, +, or
..

Note: crates.io imposes additional constraints on feature name syntax
that they must only be ASCII alphanumeric characters or _, -, or +.

The default feature

By default, all features are disabled unless explicitly enabled. This can be
changed by specifying the default feature:

[features]
default = ["ico", "webp"]
bmp = []
png = []
ico = ["bmp", "png"]
webp = []

When the package is built, the default feature is enabled which in turn
enables the listed features. This behavior can be changed by:

	The --no-default-features command-line
flag disables the default features of the
package.

	The default-features = false option can be specified in a dependency
declaration.

Note: Be careful about choosing the default feature set. The default
features are a convenience that make it easier to use a package without
forcing the user to carefully select which features to enable for common
use, but there are some drawbacks. Dependencies automatically enable default
features unless default-features = false is specified. This can make it
difficult to ensure that the default features are not enabled, especially
for a dependency that appears multiple times in the dependency graph. Every
package must ensure that default-features = false is specified to avoid
enabling them.

Another issue is that it can be a SemVer incompatible
change to remove a feature from the default set, so
you should be confident that you will keep those features.

Optional dependencies

Dependencies can be marked "optional", which means they will not be compiled
by default. For example, let's say that our 2D image processing library uses
an external package to handle GIF images. This can be expressed like this:

[dependencies]
gif = { version = "0.11.1", optional = true }

By default, this optional dependency implicitly defines a feature that looks
like this:

[features]
gif = ["dep:gif"]

This means that this dependency will only be included if the gif
feature is enabled.
The same cfg(feature = "gif") syntax can be used in the code, and the
dependency can be enabled just like any feature such as --features gif (see
Command-line feature options below).

In some cases, you may not want to expose a feature that has the same name
as the optional dependency.
For example, perhaps the optional dependency is an internal detail, or you
want to group multiple optional dependencies together, or you just want to use
a better name.
If you specify the optional dependency with the dep: prefix anywhere
in the [features] table, that disables the implicit feature.

Note: The dep: syntax is only available starting with Rust 1.60.
Previous versions can only use the implicit feature name.

For example, let's say in order to support the AVIF image format, our library
needs two other dependencies to be enabled:

[dependencies]
ravif = { version = "0.6.3", optional = true }
rgb = { version = "0.8.25", optional = true }

[features]
avif = ["dep:ravif", "dep:rgb"]

In this example, the avif feature will enable the two listed dependencies.
This also avoids creating the implicit ravif and rgb features, since we
don't want users to enable those individually as they are internal details to
our crate.

Note: Another way to optionally include a dependency is to use
platform-specific dependencies. Instead of using features, these are
conditional based on the target platform.

Dependency features

Features of dependencies can be enabled within the dependency declaration. The
features key indicates which features to enable:

[dependencies]
Enables the `derive` feature of serde.
serde = { version = "1.0.118", features = ["derive"] }

The default features can be disabled using
default-features = false:

[dependencies]
flate2 = { version = "1.0.3", default-features = false, features = ["zlib-rs"] }

Note: This may not ensure the default features are disabled. If another
dependency includes flate2 without specifying default-features = false,
then the default features will be enabled. See feature
unification below for more details.

Features of dependencies can also be enabled in the [features] table. The
syntax is "package-name/feature-name". For example:

[dependencies]
jpeg-decoder = { version = "0.1.20", default-features = false }

[features]
Enables parallel processing support by enabling the "rayon" feature of jpeg-decoder.
parallel = ["jpeg-decoder/rayon"]

The "package-name/feature-name" syntax will also enable package-name
if it is an optional dependency. Often this is not what you want.
You can add a ? as in "package-name?/feature-name" which will only enable
the given feature if something else enables the optional dependency.

Note: The ? syntax is only available starting with Rust 1.60.

For example, let's say we have added some serialization support to our
library, and it requires enabling a corresponding feature in some optional
dependencies.
That can be done like this:

[dependencies]
serde = { version = "1.0.133", optional = true }
rgb = { version = "0.8.25", optional = true }

[features]
serde = ["dep:serde", "rgb?/serde"]

In this example, enabling the serde feature will enable the serde
dependency.
It will also enable the serde feature for the rgb dependency, but only if
something else has enabled the rgb dependency.

Command-line feature options

The following command-line flags can be used to control which features are
enabled:

	--features FEATURES: Enables the listed features. Multiple features may
be separated with commas or spaces. If using spaces, be sure to use quotes
around all the features if running Cargo from a shell (such as --features "foo bar"). If building multiple packages in a workspace, the
package-name/feature-name syntax can be used to specify features for
specific workspace members.

	--all-features: Activates all features of all packages selected on the command line.

	--no-default-features: Does not activate the default
feature of the selected packages.

NOTE: check the individual subcommand documentation for details. Not all flags are available for all subcommands.

Feature unification

Features are unique to the package that defines them. Enabling a feature on a
package does not enable a feature of the same name on other packages.

When a dependency is used by multiple packages, Cargo will use the union of
all features enabled on that dependency when building it. This helps ensure
that only a single copy of the dependency is used. See the features section
of the resolver documentation for more details.

For example, let's look at the winapi package which uses a large
number of features. If your package depends on a package
foo which enables the "fileapi" and "handleapi" features of winapi, and
another dependency bar which enables the "std" and "winnt" features of
winapi, then winapi will be built with all four of those features enabled.

[image: winapi features example]

A consequence of this is that features should be additive. That is, enabling
a feature should not disable functionality, and it should usually be safe to
enable any combination of features. A feature should not introduce a
SemVer-incompatible change.

For example, if you want to optionally support no_std environments, do
not use a no_std feature. Instead, use a std feature that enables
std. For example:

#![no_std]

#[cfg(feature = "std")]
extern crate std;

#[cfg(feature = "std")]
pub fn function_that_requires_std() {
 // ...
}

Mutually exclusive features

There are rare cases where features may be mutually incompatible with one
another. This should be avoided if at all possible, because it requires
coordinating all uses of the package in the dependency graph to cooperate to
avoid enabling them together. If it is not possible, consider adding a compile
error to detect this scenario. For example:

#[cfg(all(feature = "foo", feature = "bar"))]
compile_error!("feature \"foo\" and feature \"bar\" cannot be enabled at the same time");

Instead of using mutually exclusive features, consider some other options:

	Split the functionality into separate packages.

	When there is a conflict, choose one feature over
another. The cfg-if package can help with writing
more complex cfg expressions.

	Architect the code to allow the features to be enabled concurrently, and use
runtime options to control which is used. For example, use a config file,
command-line argument, or environment variable to choose which behavior to
enable.

Inspecting resolved features

In complex dependency graphs, it can sometimes be difficult to understand how
different features get enabled on various packages. The cargo tree command
offers several options to help inspect and visualize which features are
enabled. Some options to try:

	cargo tree -e features: This will show features in the dependency graph.
Each feature will appear showing which package enabled it.

	cargo tree -f "{p} {f}": This is a more compact view that shows a
comma-separated list of features enabled on each package.

	cargo tree -e features -i foo: This will invert the tree, showing how
features flow into the given package "foo". This can be useful because
viewing the entire graph can be quite large and overwhelming. Use this when
you are trying to figure out which features are enabled on a specific
package and why. See the example at the bottom of the cargo tree page on
how to read this.

Feature resolver version 2

A different feature resolver can be specified with the resolver field in
Cargo.toml, like this:

[package]
name = "my-package"
version = "1.0.0"
resolver = "2"

See the resolver versions section for more detail on specifying resolver
versions.

The version "2" resolver avoids unifying features in a few situations where
that unification can be unwanted. The exact situations are described in the
resolver chapter, but in short, it avoids unifying in these
situations:

	Features enabled on platform-specific dependencies for target architectures not
currently being built are ignored.

	Build-dependencies and proc-macros do not share features with normal
dependencies.

	Dev-dependencies do not activate features unless building a Cargo target that
needs them (like tests or examples).

Avoiding the unification is necessary for some situations. For example, if a
build-dependency enables a std feature, and the same dependency is used as a
normal dependency for a no_std environment, enabling std would break the
build.

However, one drawback is that this can increase build times because the
dependency is built multiple times (each with different features). When using
the version "2" resolver, it is recommended to check for dependencies that
are built multiple times to reduce overall build time. If it is not required
to build those duplicated packages with separate features, consider adding
features to the features list in the dependency
declaration so that the duplicates end up with the same
features (and thus Cargo will build it only once). You can detect these
duplicate dependencies with the cargo tree --duplicates
command. It will show which packages are built multiple times; look for any
entries listed with the same version. See Inspecting resolved
features for more on fetching information on
the resolved features. For build dependencies, this is not necessary if you
are cross-compiling with the --target flag because build dependencies are
always built separately from normal dependencies in that scenario.

Resolver version 2 command-line flags

The resolver = "2" setting also changes the behavior of the --features and
--no-default-features command-line options.

With version "1", you can only enable features for the package in the
current working directory. For example, in a workspace with packages foo and
bar, and you are in the directory for package foo, and ran the command
cargo build -p bar --features bar-feat, this would fail because the
--features flag only allowed enabling features on foo.

With resolver = "2", the features flags allow enabling features for any of
the packages selected on the command-line with -p and --workspace flags.
For example:

This command is allowed with resolver = "2", regardless of which directory
you are in.
cargo build -p foo -p bar --features foo-feat,bar-feat

This explicit equivalent works with any resolver version:
cargo build -p foo -p bar --features foo/foo-feat,bar/bar-feat

Additionally, with resolver = "1", the --no-default-features flag only
disables the default feature for the package in the current directory. With
version "2", it will disable the default features for all workspace members.

Build scripts

Build scripts can detect which features are enabled on the package by
inspecting the CARGO_FEATURE_<name> environment variable, where <name> is
the feature name converted to uppercase and - converted to _.

Required features

The required-features field can be used to disable specific Cargo
targets if a feature is not enabled. See the linked documentation for more
details.

SemVer compatibility

Enabling a feature should not introduce a SemVer-incompatible change. For
example, the feature shouldn't change an existing API in a way that could
break existing uses. More details about what changes are compatible can be
found in the SemVer Compatibility chapter.

Care should be taken when adding and removing feature definitions and optional
dependencies, as these can sometimes be backwards-incompatible changes. More
details can be found in the Cargo section of the SemVer
Compatibility chapter. In short, follow these rules:

	The following is usually safe to do in a minor release:

	Add a new feature or optional dependency.

	Change the features used on a dependency.

	The following should usually not be done in a minor release:

	Remove a feature or optional dependency.

	Moving existing public code behind a feature.

	Remove a feature from a feature list.

See the links for caveats and examples.

Feature documentation and discovery

You are encouraged to document which features are available in your package.
This can be done by adding doc comments at the top of lib.rs. As an
example, see the regex crate source, which when rendered can be viewed on
docs.rs. If you have other documentation, such as a user
guide, consider adding the documentation there (for example, see serde.rs).
If you have a binary project, consider documenting the features in the README
or other documentation for the project (for example, see sccache).

Clearly documenting the features can set expectations about features that are
considered "unstable" or otherwise shouldn't be used. For example, if there is
an optional dependency, but you don't want users to explicitly list that
optional dependency as a feature, exclude it from the documented list.

Documentation published on docs.rs can use metadata in Cargo.toml to
control which features are enabled when the documentation is built. See
docs.rs metadata documentation for more details.

Note: Rustdoc has experimental support for annotating the documentation
to indicate which features are required to use certain APIs. See the
doc_cfg documentation for more details. An example is the syn
documentation, where you can see colored boxes which note which features
are required to use it.

Discovering features

When features are documented in the library API, this can make it easier for
your users to discover which features are available and what they do. If the
feature documentation for a package isn't readily available, you can look at
the Cargo.toml file, but sometimes it can be hard to track it down. The
crate page on crates.io has a link to the source repository if available.
Tools like cargo vendor or cargo-clone-crate can be used to download the
source and inspect it.

Feature combinations

Because features are a form of conditional compilation, they require an exponential number of configurations and test cases to be 100% covered. By default, tests, docs, and other tooling such as Clippy will only run with the default set of features.

We encourage you to consider your strategy and tooling in regards to different feature combinations --- Every project will have different requirements in conjunction with time, resources, and the cost-benefit of covering specific scenarios. Common configurations may be with / without default features, specific combinations of features, or all combinations of features.

 Features Examples

The following illustrates some real-world examples of features in action.

Minimizing build times and file sizes

Some packages use features so that if the features are not enabled, it reduces
the size of the crate and reduces compile time. Some examples are:

	syn is a popular crate for parsing Rust code. Since it is so popular, it
is helpful to reduce compile times since it affects so many projects. It has
a clearly documented list of features which can be used to
minimize the amount of code it contains.

	regex has a several features that are well
documented. Cutting out Unicode support can reduce the
resulting file size as it can remove some large tables.

	winapi has a large number of features that
limit which Windows API bindings it supports.

	web-sys is another example similar to winapi that provides a huge
surface area of API bindings that are limited by using
features.

Extending behavior

The serde_json package has a preserve_order feature
which changes the behavior of JSON maps to preserve the
order that keys are inserted. Notice that it enables an optional dependency
indexmap to implement the new behavior.

When changing behavior like this, be careful to make sure the changes are
SemVer compatible. That is, enabling the feature should not break code that
usually builds with the feature off.

no_std support

Some packages want to support both no_std and std environments. This is
useful for supporting embedded and resource-constrained platforms, but still
allowing extended capabilities for platforms that support the full standard
library.

The wasm-bindgen package defines a std feature that
is enabled by default. At the top of the library, it
unconditionally enables the no_std attribute. This
ensures that std and the std prelude are not automatically in scope.
Then, in various places in the code (example1,
example2), it uses #[cfg(feature = "std")] attributes
to conditionally enable extra functionality that requires std.

Re-exporting dependency features

It can be convenient to re-export the features from a dependency. This allows
the user depending on the crate to control those features without needing to
specify those dependencies directly. For example, regex re-exports the
features from the regex_syntax
package. Users of regex don't need to know about the regex_syntax package,
but they can still access the features it contains.

Vendoring of C libraries

Some packages provide bindings to common C libraries (sometimes referred to as
"sys" crates). Sometimes these packages give you the choice to use the
C library installed on the system, or to build it from source. For example,
the openssl package has a vendored feature which
enables the corresponding vendored feature of openssl-sys. The
openssl-sys build script has some conditional logic which
causes it to build from a local copy of the OpenSSL source code instead of
using the version from the system.

The curl-sys package is another example where the static-curl
feature causes it to build libcurl from source. Notice that
it also has a force-system-lib-on-osx feature which forces
it to use the system libcurl, overriding the
static-curl setting.

Feature precedence

Some packages may have mutually-exclusive features. One option to handle this
is to prefer one feature over another. The log package is an example. It
has several features for choosing the maximum logging level at
compile-time described here. It uses cfg-if to choose a
precedence. If multiple features are enabled, the higher "max"
levels will be preferred over the lower levels.

Proc-macro companion package

Some packages have a proc-macro that is intimately tied with it. However, not
all users will need to use the proc-macro. By making the proc-macro an
optional-dependency, this allows you to conveniently choose whether or not it
is included. This is helpful, because sometimes the proc-macro version must
stay in sync with the parent package, and you don't want to force the users to
have to specify both dependencies and keep them in sync.

An example is serde which has a derive feature which
enables the serde_derive proc-macro. The serde_derive crate is very
tightly tied to serde, so it uses an equals version
requirement to ensure they stay in sync.

Nightly-only features

Some packages want to experiment with APIs or language features that are only
available on the Rust nightly channel. However, they may not want to require
their users to also use the nightly channel. An example is wasm-bindgen
which has a nightly feature which enables an
extended API that uses the Unsize marker trait that
is only available on the nightly channel at the time of this writing.

Note that at the root of the crate it uses cfg_attr to enable the nightly
feature. Keep in mind that the feature attribute
is unrelated to Cargo features, and is used to opt-in to experimental language
features.

The simd_support feature of the rand package is another example,
which relies on a dependency that only builds on the nightly channel.

Experimental features

Some packages have new functionality that they may want to experiment with,
without having to commit to the stability of those APIs. The features are
usually documented that they are experimental, and thus may change or break in
the future, even during a minor release. An example is the async-std
package, which has an unstable feature, which gates
new APIs that people can opt-in to using, but may not be
completely ready to be relied upon.

 Profiles

Profiles provide a way to alter the compiler settings, influencing things like
optimizations and debugging symbols.

Cargo has 4 built-in profiles: dev, release, test, and bench. The
profile is automatically chosen based on which command is being run if a
profile is not specified on the command-line. In addition to the built-in
profiles, custom user-defined profiles can also be specified.

Profile settings can be changed in Cargo.toml with the
[profile] table. Within each named profile, individual settings can be changed
with key/value pairs like this:

[profile.dev]
opt-level = 1 # Use slightly better optimizations.
overflow-checks = false # Disable integer overflow checks.

Cargo only looks at the profile settings in the Cargo.toml manifest at the
root of the workspace. Profile settings defined in dependencies will be
ignored.

Additionally, profiles can be overridden from a config definition.
Specifying a profile in a config file or environment variable will override
the settings from Cargo.toml.

Profile settings

The following is a list of settings that can be controlled in a profile.

opt-level

The opt-level setting controls the -C opt-level flag which controls the level
of optimization. Higher optimization levels may produce faster runtime code at
the expense of longer compiler times. Higher levels may also change and
rearrange the compiled code which may make it harder to use with a debugger.

The valid options are:

	0: no optimizations

	1: basic optimizations

	2: some optimizations

	3: all optimizations

	"s": optimize for binary size

	"z": optimize for binary size, but also turn off loop vectorization.

It is recommended to experiment with different levels to find the right
balance for your project. There may be surprising results, such as level 3
being slower than 2, or the "s" and "z" levels not being necessarily
smaller. You may also want to reevaluate your settings over time as newer
versions of rustc change optimization behavior.

See also Profile Guided Optimization for more advanced optimization
techniques.

debug

The debug setting controls the -C debuginfo flag which controls the
amount of debug information included in the compiled binary.

The valid options are:

	0, false, or "none": no debug info at all, default for release

	"line-directives-only": line info directives only. For the nvptx* targets this enables profiling. For other use cases, line-tables-only is the better, more compatible choice.

	"line-tables-only": line tables only. Generates the minimal amount of debug info for backtraces with filename/line number info, but not anything else, i.e. no variable or function parameter info.

	1 or "limited": debug info without type or variable-level information. Generates more detailed module-level info than line-tables-only.

	2, true, or "full": full debug info, default for dev

For more information on what each option does see rustc's docs on debuginfo.

You may wish to also configure the split-debuginfo option
depending on your needs as well.

MSRV: 1.71 is required for none, limited, full, line-directives-only, and line-tables-only

split-debuginfo

The split-debuginfo setting controls the -C split-debuginfo flag which
controls whether debug information, if generated, is either placed in the
executable itself or adjacent to it.

This option is a string and acceptable values are the same as those the
compiler accepts. The default value for this option
is unpacked on macOS for profiles that have debug information otherwise
enabled. Otherwise the default for this option is documented with rustc and is platform-specific. Some options are only
available on the nightly channel. The Cargo default may change in the future
once more testing has been performed, and support for DWARF is stabilized.

Be aware that Cargo and rustc have different defaults for this option. This
option exists to allow Cargo to experiment on different combinations of flags
thus providing better debugging and developer experience.

strip

The strip option controls the -C strip flag, which directs rustc to
strip either symbols or debuginfo from a binary. This can be enabled like so:

[package]
...

[profile.release]
strip = "debuginfo"

Possible string values of strip are "none", "debuginfo", and "symbols".
The default is "none".

You can also configure this option with the boolean values true or false.
strip = true is equivalent to strip = "symbols". strip = false is
equivalent to strip = "none" and disables strip completely.

debug-assertions

The debug-assertions setting controls the -C debug-assertions flag which
turns cfg(debug_assertions) conditional compilation on or off. Debug
assertions are intended to include runtime validation which is only available
in debug/development builds. These may be things that are too expensive or
otherwise undesirable in a release build. Debug assertions enables the
debug_assert! macro in the standard library.

The valid options are:

	true: enabled

	false: disabled

overflow-checks

The overflow-checks setting controls the -C overflow-checks flag which
controls the behavior of runtime integer overflow. When overflow-checks are
enabled, a panic will occur on overflow.

The valid options are:

	true: enabled

	false: disabled

lto

The lto setting controls rustc's -C lto, -C linker-plugin-lto, and
-C embed-bitcode options, which control LLVM's link time optimizations.
LTO can produce better optimized code, using whole-program analysis, at the cost
of longer linking time.

The valid options are:

	false: Performs "thin local LTO" which performs "thin" LTO on the local
crate only across its codegen units. No LTO is performed
if codegen units is 1 or opt-level is 0.

	true or "fat": Performs "fat" LTO which attempts to perform
optimizations across all crates within the dependency graph.

	"thin": Performs "thin" LTO. This is similar to "fat", but takes
substantially less time to run while still achieving performance gains
similar to "fat".

	"off": Disables LTO.

See the linker-plugin-lto chapter if you are interested in cross-language LTO.
This is not yet supported natively in Cargo, but can be performed via
RUSTFLAGS.

panic

The panic setting controls the -C panic flag which controls which panic
strategy to use.

The valid options are:

	"unwind": Unwind the stack upon panic.

	"abort": Terminate the process upon panic.

When set to "unwind", the actual value depends on the default of the target
platform. For example, the NVPTX platform does not support unwinding, so it
always uses "abort".

Tests, benchmarks, build scripts, and proc macros ignore the panic setting.
The rustc test harness currently requires unwind behavior. See the
panic-abort-tests unstable flag which enables abort behavior.

Additionally, when using the abort strategy and building a test, all of the
dependencies will also be forced to build with the unwind strategy.

incremental

The incremental setting controls the -C incremental flag which controls
whether or not incremental compilation is enabled. Incremental compilation
causes rustc to save additional information to disk which will be reused
when recompiling the crate, improving re-compile times. The additional
information is stored in the target directory.

The valid options are:

	true: enabled

	false: disabled

Incremental compilation is only used for workspace members and "path"
dependencies.

The incremental value can be overridden globally with the CARGO_INCREMENTAL
environment variable or the build.incremental config variable.

codegen-units

The codegen-units setting controls the -C codegen-units flag which
controls how many "code generation units" a crate will be split into. More
code generation units allows more of a crate to be processed in parallel
possibly reducing compile time, but may produce slower code.

This option takes an integer greater than 0.

The default is 256 for incremental builds, and 16 for
non-incremental builds.

rpath

The rpath setting controls the -C rpath flag which controls
whether or not rpath is enabled.

Default profiles

dev

The dev profile is used for normal development and debugging. It is the
default for build commands like cargo build, and is used for cargo install --debug.

The default settings for the dev profile are:

[profile.dev]
opt-level = 0
debug = true
split-debuginfo = '...' # Platform-specific.
strip = "none"
debug-assertions = true
overflow-checks = true
lto = false
panic = 'unwind'
incremental = true
codegen-units = 256
rpath = false

release

The release profile is intended for optimized artifacts used for releases
and in production. This profile is used when the --release flag is used, and
is the default for cargo install.

The default settings for the release profile are:

[profile.release]
opt-level = 3
debug = false
split-debuginfo = '...' # Platform-specific.
strip = "none"
debug-assertions = false
overflow-checks = false
lto = false
panic = 'unwind'
incremental = false
codegen-units = 16
rpath = false

test

The test profile is the default profile used by cargo test.
The test profile inherits the settings from the dev profile.

bench

The bench profile is the default profile used by cargo bench.
The bench profile inherits the settings from the release profile.

Build Dependencies

To compile quickly, all profiles, by default, do not optimize build
dependencies (build scripts, proc macros, and their dependencies), and avoid
computing debug info when a build dependency is not used as a runtime
dependency. The default settings for build overrides are:

[profile.dev.build-override]
opt-level = 0
codegen-units = 256
debug = false # when possible

[profile.release.build-override]
opt-level = 0
codegen-units = 256

However, if errors occur while running build dependencies, turning full debug
info on will improve backtraces and debuggability when needed:

debug = true

Build dependencies otherwise inherit settings from the active profile in use, as
described in Profile selection.

Custom profiles

In addition to the built-in profiles, additional custom profiles can be
defined. These may be useful for setting up multiple workflows and build
modes. When defining a custom profile, you must specify the inherits key to
specify which profile the custom profile inherits settings from when the
setting is not specified.

For example, let's say you want to compare a normal release build with a
release build with LTO optimizations, you can specify something like
the following in Cargo.toml:

[profile.release-lto]
inherits = "release"
lto = true

The --profile flag can then be used to choose this custom profile:

cargo build --profile release-lto

The output for each profile will be placed in a directory of the same name
as the profile in the target directory. As in the example above, the
output would go into the target/release-lto directory.

Profile selection

The profile used depends on the command, the command-line flags like
--release or --profile, and the package (in the case of
overrides). The default profile if none is specified is:

	Command	Default Profile

	cargo run, cargo build,cargo check, cargo rustc

 Configuration

 Configuration

This document explains how Cargo’s configuration system works, as well as
available keys or configuration. For configuration of a package through its
manifest, see the manifest format.

Hierarchical structure

Cargo allows local configuration for a particular package as well as global
configuration. It looks for configuration files in the current directory and
all parent directories. If, for example, Cargo were invoked in
/projects/foo/bar/baz, then the following configuration files would be
probed for and unified in this order:

	/projects/foo/bar/baz/.cargo/config.toml

	/projects/foo/bar/.cargo/config.toml

	/projects/foo/.cargo/config.toml

	/projects/.cargo/config.toml

	/.cargo/config.toml

	$CARGO_HOME/config.toml which defaults to:

	Windows: %USERPROFILE%\.cargo\config.toml

	Unix: $HOME/.cargo/config.toml

With this structure, you can specify configuration per-package, and even
possibly check it into version control. You can also specify personal defaults
with a configuration file in your home directory.

If a key is specified in multiple config files, the values will get merged
together. Numbers, strings, and booleans will use the value in the deeper
config directory taking precedence over ancestor directories, where the
home directory is the lowest priority. Arrays will be joined together
with higher precedence items being placed later in the merged array.

At present, when being invoked from a workspace, Cargo does not read config
files from crates within the workspace. i.e. if a workspace has two crates in
it, named /projects/foo/bar/baz/mylib and /projects/foo/bar/baz/mybin, and
there are Cargo configs at /projects/foo/bar/baz/mylib/.cargo/config.toml
and /projects/foo/bar/baz/mybin/.cargo/config.toml, Cargo does not read
those configuration files if it is invoked from the workspace root
(/projects/foo/bar/baz/).

Note: Cargo also reads config files without the .toml extension, such as
.cargo/config. Support for the .toml extension was added in version 1.39
and is the preferred form. If both files exist, Cargo will use the file
without the extension.

Configuration format

Configuration files are written in the TOML format (like the
manifest), with simple key-value pairs inside of sections (tables). The
following is a quick overview of all settings, with detailed descriptions
found below.

paths = ["/path/to/override"] # path dependency overrides

[alias] # command aliases
b = "build"
c = "check"
t = "test"
r = "run"
rr = "run --release"
recursive_example = "rr --example recursions"
space_example = ["run", "--release", "--", "\"command list\""]

[build]
jobs = 1 # number of parallel jobs, defaults to # of CPUs
rustc = "rustc" # the rust compiler tool
rustc-wrapper = "…" # run this wrapper instead of `rustc`
rustc-workspace-wrapper = "…" # run this wrapper instead of `rustc` for workspace members
rustdoc = "rustdoc" # the doc generator tool
target = "triple" # build for the target triple (ignored by `cargo install`)
target-dir = "target" # path of where to place all generated artifacts
rustflags = ["…", "…"] # custom flags to pass to all compiler invocations
rustdocflags = ["…", "…"] # custom flags to pass to rustdoc
incremental = true # whether or not to enable incremental compilation
dep-info-basedir = "…" # path for the base directory for targets in depfiles

[credential-alias]
Provides a way to define aliases for credential providers.
my-alias = ["/usr/bin/cargo-credential-example", "--argument", "value", "--flag"]

[doc]
browser = "chromium" # browser to use with `cargo doc --open`,
 # overrides the `BROWSER` environment variable

[env]
Set ENV_VAR_NAME=value for any process run by Cargo
ENV_VAR_NAME = "value"
Set even if already present in environment
ENV_VAR_NAME_2 = { value = "value", force = true }
`value` is relative to the parent of `.cargo/config.toml`, env var will be the full absolute path
ENV_VAR_NAME_3 = { value = "relative/path", relative = true }

[future-incompat-report]
frequency = 'always' # when to display a notification about a future incompat report

[cache]
auto-clean-frequency = "1 day" # How often to perform automatic cache cleaning

[cargo-new]
vcs = "none" # VCS to use ('git', 'hg', 'pijul', 'fossil', 'none')

[http]
debug = false # HTTP debugging
proxy = "host:port" # HTTP proxy in libcurl format
ssl-version = "tlsv1.3" # TLS version to use
ssl-version.max = "tlsv1.3" # maximum TLS version
ssl-version.min = "tlsv1.1" # minimum TLS version
timeout = 30 # timeout for each HTTP request, in seconds
low-speed-limit = 10 # network timeout threshold (bytes/sec)
cainfo = "cert.pem" # path to Certificate Authority (CA) bundle
proxy-cainfo = "cert.pem" # path to proxy Certificate Authority (CA) bundle
check-revoke = true # check for SSL certificate revocation
multiplexing = true # HTTP/2 multiplexing
user-agent = "…" # the user-agent header

[install]
root = "/some/path" # `cargo install` destination directory

[net]
retry = 3 # network retries
git-fetch-with-cli = true # use the `git` executable for git operations
offline = true # do not access the network

[net.ssh]
known-hosts = ["..."] # known SSH host keys

[patch.<registry>]
Same keys as for [patch] in Cargo.toml

[profile.<name>] # Modify profile settings via config.
inherits = "dev" # Inherits settings from [profile.dev].
opt-level = 0 # Optimization level.
debug = true # Include debug info.
split-debuginfo = '...' # Debug info splitting behavior.
strip = "none" # Removes symbols or debuginfo.
debug-assertions = true # Enables debug assertions.
overflow-checks = true # Enables runtime integer overflow checks.
lto = false # Sets link-time optimization.
panic = 'unwind' # The panic strategy.
incremental = true # Incremental compilation.
codegen-units = 16 # Number of code generation units.
rpath = false # Sets the rpath linking option.
[profile.<name>.build-override] # Overrides build-script settings.
Same keys for a normal profile.
[profile.<name>.package.<name>] # Override profile for a package.
Same keys for a normal profile (minus `panic`, `lto`, and `rpath`).

[resolver]
incompatible-rust-versions = "allow" # Specifies how resolver reacts to these

[registries.<name>] # registries other than crates.io
index = "…" # URL of the registry index
token = "…" # authentication token for the registry
credential-provider = "cargo:token" # The credential provider for this registry.

[registries.crates-io]
protocol = "sparse" # The protocol to use to access crates.io.

[registry]
default = "…" # name of the default registry
token = "…" # authentication token for crates.io
credential-provider = "cargo:token" # The credential provider for crates.io.
global-credential-providers = ["cargo:token"] # The credential providers to use by default.

[source.<name>] # source definition and replacement
replace-with = "…" # replace this source with the given named source
directory = "…" # path to a directory source
registry = "…" # URL to a registry source
local-registry = "…" # path to a local registry source
git = "…" # URL of a git repository source
branch = "…" # branch name for the git repository
tag = "…" # tag name for the git repository
rev = "…" # revision for the git repository

[target.<triple>]
linker = "…" # linker to use
runner = "…" # wrapper to run executables
rustflags = ["…", "…"] # custom flags for `rustc`
rustdocflags = ["…", "…"] # custom flags for `rustdoc`

[target.<cfg>]
runner = "…" # wrapper to run executables
rustflags = ["…", "…"] # custom flags for `rustc`

[target.<triple>.<links>] # `links` build script override
rustc-link-lib = ["foo"]
rustc-link-search = ["/path/to/foo"]
rustc-flags = "-L /some/path"
rustc-cfg = ['key="value"']
rustc-env = {key = "value"}
rustc-cdylib-link-arg = ["…"]
metadata_key1 = "value"
metadata_key2 = "value"

[term]
quiet = false # whether cargo output is quiet
verbose = false # whether cargo provides verbose output
color = 'auto' # whether cargo colorizes output
hyperlinks = true # whether cargo inserts links into output
unicode = true # whether cargo can render output using non-ASCII unicode characters
progress.when = 'auto' # whether cargo shows progress bar
progress.width = 80 # width of progress bar
progress.term-integration = true # whether cargo reports progress to terminal emulator

Environment variables

Cargo can also be configured through environment variables in addition to the
TOML configuration files. For each configuration key of the form foo.bar the
environment variable CARGO_FOO_BAR can also be used to define the value.
Keys are converted to uppercase, dots and dashes are converted to underscores.
For example the target.x86_64-unknown-linux-gnu.runner key can also be
defined by the CARGO_TARGET_X86_64_UNKNOWN_LINUX_GNU_RUNNER environment
variable.

Environment variables will take precedence over TOML configuration files.
Currently only integer, boolean, string and some array values are supported to
be defined by environment variables. Descriptions below
indicate which keys support environment variables and otherwise they are not
supported due to technical issues.

In addition to the system above, Cargo recognizes a few other specific
environment variables.

Command-line overrides

Cargo also accepts arbitrary configuration overrides through the
--config command-line option. The argument should be in TOML syntax of
KEY=VALUE or provided as a path to an extra configuration file:

With `KEY=VALUE` in TOML syntax
cargo --config net.git-fetch-with-cli=true fetch

With a path to a configuration file
cargo --config ./path/to/my/extra-config.toml fetch

The --config option may be specified multiple times, in which case the
values are merged in left-to-right order, using the same merging logic
that is used when multiple configuration files apply. Configuration
values specified this way take precedence over environment variables,
which take precedence over configuration files.

When the --config option is provided as an extra configuration file,
The configuration file loaded this way follow the same precedence rules
as other options specified directly with --config.

Some examples of what it looks like using Bourne shell syntax:

Most shells will require escaping.
cargo --config http.proxy=\"http://example.com\" …

Spaces may be used.
cargo --config "net.git-fetch-with-cli = true" …

TOML array example. Single quotes make it easier to read and write.
cargo --config 'build.rustdocflags = ["--html-in-header", "header.html"]' …

Example of a complex TOML key.
cargo --config "target.'cfg(all(target_arch = \"arm\", target_os = \"none\"))'.runner = 'my-runner'" …

Example of overriding a profile setting.
cargo --config profile.dev.package.image.opt-level=3 …

Config-relative paths

Paths in config files may be absolute, relative, or a bare name without any path separators.
Paths for executables without a path separator will use the PATH environment variable to search for the executable.
Paths for non-executables will be relative to where the config value is defined.

In particular, rules are:

	For environment variables, paths are relative to the current working directory.

	For config values loaded directly from the --config KEY=VALUE option,
paths are relative to the current working directory.

	For config files, paths are relative to the parent directory of the directory where the config files were defined,
no matter those files are from either the hierarchical probing
or the --config <path> option.

Note: To maintain consistency with existing .cargo/config.toml probing behavior,
it is by design that a path in a config file passed via --config <path>
is also relative to two levels up from the config file itself.

To avoid unexpected results, the rule of thumb is putting your extra config files
at the same level of discovered .cargo/config.toml in your project.
For instance, given a project /my/project,
it is recommended to put config files under /my/project/.cargo
or a new directory at the same level, such as /my/project/.config.

Relative path examples.

[target.x86_64-unknown-linux-gnu]
runner = "foo" # Searches `PATH` for `foo`.

[source.vendored-sources]
Directory is relative to the parent where `.cargo/config.toml` is located.
For example, `/my/project/.cargo/config.toml` would result in `/my/project/vendor`.
directory = "vendor"

Executable paths with arguments

Some Cargo commands invoke external programs, which can be configured as a path
and some number of arguments.

The value may be an array of strings like ['/path/to/program', 'somearg'] or
a space-separated string like '/path/to/program somearg'. If the path to the
executable contains a space, the list form must be used.

If Cargo is passing other arguments to the program such as a path to open or
run, they will be passed after the last specified argument in the value of an
option of this format. If the specified program does not have path separators,
Cargo will search PATH for its executable.

Credentials

Configuration values with sensitive information are stored in the
$CARGO_HOME/credentials.toml file. This file is automatically created and updated
by cargo login and cargo logout when using the cargo:token credential provider.

Tokens are used by some Cargo commands such as cargo publish for
authenticating with remote registries. Care should be taken to protect the
tokens and to keep them secret.

It follows the same format as Cargo config files.

[registry]
token = "…" # Access token for crates.io

[registries.<name>]
token = "…" # Access token for the named registry

As with most other config values, tokens may be specified with environment
variables. The token for crates.io may be specified with the
CARGO_REGISTRY_TOKEN environment variable. Tokens for other registries may
be specified with environment variables of the form
CARGO_REGISTRIES_<name>_TOKEN where <name> is the name of the registry in
all capital letters.

Note: Cargo also reads and writes credential files without the .toml
extension, such as .cargo/credentials. Support for the .toml extension
was added in version 1.39. In version 1.68, Cargo writes to the file with the
extension by default. However, for backward compatibility reason, when both
files exist, Cargo will read and write the file without the extension.

Configuration keys

This section documents all configuration keys. The description for keys with
variable parts are annotated with angled brackets like target.<triple> where
the <triple> part can be any target triple like
target.x86_64-pc-windows-msvc.

paths

	Type: array of strings (paths)

	Default: none

	Environment: not supported

An array of paths to local packages which are to be used as overrides for
dependencies. For more information see the Overriding Dependencies
guide.

[alias]

	Type: string or array of strings

	Default: see below

	Environment: CARGO_ALIAS_<name>

The [alias] table defines CLI command aliases. For example, running cargo b is an alias for running cargo build. Each key in the table is the
subcommand, and the value is the actual command to run. The value may be an
array of strings, where the first element is the command and the following are
arguments. It may also be a string, which will be split on spaces into
subcommand and arguments. The following aliases are built-in to Cargo:

[alias]
b = "build"
c = "check"
d = "doc"
t = "test"
r = "run"
rm = "remove"

Aliases are not allowed to redefine existing built-in commands.

Aliases are recursive:

[alias]
rr = "run --release"
recursive_example = "rr --example recursions"

[build]

The [build] table controls build-time operations and compiler settings.

build.jobs

	Type: integer or string

	Default: number of logical CPUs

	Environment: CARGO_BUILD_JOBS

Sets the maximum number of compiler processes to run in parallel. If negative,
it sets the maximum number of compiler processes to the number of logical CPUs
plus provided value. Should not be 0. If a string default is provided, it sets
the value back to defaults.

Can be overridden with the --jobs CLI option.

build.rustc

	Type: string (program path)

	Default: "rustc"

	Environment: CARGO_BUILD_RUSTC or RUSTC

Sets the executable to use for rustc.

build.rustc-wrapper

	Type: string (program path)

	Default: none

	Environment: CARGO_BUILD_RUSTC_WRAPPER or RUSTC_WRAPPER

Sets a wrapper to execute instead of rustc. The first argument passed to the
wrapper is the path to the actual executable to use
(i.e., build.rustc, if that is set, or "rustc" otherwise).

build.rustc-workspace-wrapper

	Type: string (program path)

	Default: none

	Environment: CARGO_BUILD_RUSTC_WORKSPACE_WRAPPER or RUSTC_WORKSPACE_WRAPPER

Sets a wrapper to execute instead of rustc, for workspace members only. When building a
single-package project without workspaces, that package is considered to be the workspace. The first
argument passed to the wrapper is the path to the actual executable to use (i.e., build.rustc, if
that is set, or "rustc" otherwise). It affects the filename hash so that artifacts produced by the
wrapper are cached separately.

If both rustc-wrapper and rustc-workspace-wrapper are set, then they will be nested:
the final invocation is $RUSTC_WRAPPER $RUSTC_WORKSPACE_WRAPPER $RUSTC.

build.rustdoc

	Type: string (program path)

	Default: "rustdoc"

	Environment: CARGO_BUILD_RUSTDOC or RUSTDOC

Sets the executable to use for rustdoc.

build.target

	Type: string or array of strings

	Default: host platform

	Environment: CARGO_BUILD_TARGET

The default target platform triples to compile to.

This allows passing either a string or an array of strings. Each string value
is a target platform triple. The selected build targets will be built for each
of the selected architectures.

The string value may also be a relative path to a .json target spec file.

Can be overridden with the --target CLI option.

[build]
target = ["x86_64-unknown-linux-gnu", "i686-unknown-linux-gnu"]

build.target-dir

	Type: string (path)

	Default: "target"

	Environment: CARGO_BUILD_TARGET_DIR or CARGO_TARGET_DIR

The path to where all compiler output is placed. The default if not specified
is a directory named target located at the root of the workspace.

Can be overridden with the --target-dir CLI option.

build.rustflags

	Type: string or array of strings

	Default: none

	Environment: CARGO_BUILD_RUSTFLAGS or CARGO_ENCODED_RUSTFLAGS or RUSTFLAGS

Extra command-line flags to pass to rustc. The value may be an array of
strings or a space-separated string.

There are four mutually exclusive sources of extra flags. They are checked in
order, with the first one being used:

	CARGO_ENCODED_RUSTFLAGS environment variable.

	RUSTFLAGS environment variable.

	All matching target.<triple>.rustflags and target.<cfg>.rustflags
config entries joined together.

	build.rustflags config value.

Additional flags may also be passed with the cargo rustc command.

If the --target flag (or build.target) is used, then the
flags will only be passed to the compiler for the target. Things being built
for the host, such as build scripts or proc macros, will not receive the args.
Without --target, the flags will be passed to all compiler invocations
(including build scripts and proc macros) because dependencies are shared. If
you have args that you do not want to pass to build scripts or proc macros and
are building for the host, pass --target with the host triple.

It is not recommended to pass in flags that Cargo itself usually manages. For
example, the flags driven by profiles are best handled by setting the
appropriate profile setting.

Caution: Due to the low-level nature of passing flags directly to the
compiler, this may cause a conflict with future versions of Cargo which may
issue the same or similar flags on its own which may interfere with the
flags you specify. This is an area where Cargo may not always be backwards
compatible.

build.rustdocflags

	Type: string or array of strings

	Default: none

	Environment: CARGO_BUILD_RUSTDOCFLAGS or CARGO_ENCODED_RUSTDOCFLAGS or RUSTDOCFLAGS

Extra command-line flags to pass to rustdoc. The value may be an array of
strings or a space-separated string.

There are four mutually exclusive sources of extra flags. They are checked in
order, with the first one being used:

	CARGO_ENCODED_RUSTDOCFLAGS environment variable.

	RUSTDOCFLAGS environment variable.

	All matching target.<triple>.rustdocflags config entries joined together.

	build.rustdocflags config value.

Additional flags may also be passed with the cargo rustdoc command.

Caution: Due to the low-level nature of passing flags directly to the
compiler, this may cause a conflict with future versions of Cargo which may
issue the same or similar flags on its own which may interfere with the
flags you specify. This is an area where Cargo may not always be backwards
compatible.

build.incremental

	Type: bool

	Default: from profile

	Environment: CARGO_BUILD_INCREMENTAL or CARGO_INCREMENTAL

Whether or not to perform incremental compilation. The default if not set is
to use the value from the profile. Otherwise this overrides the setting of
all profiles.

The CARGO_INCREMENTAL environment variable can be set to 1 to force enable
incremental compilation for all profiles, or 0 to disable it. This env var
overrides the config setting.

build.dep-info-basedir

	Type: string (path)

	Default: none

	Environment: CARGO_BUILD_DEP_INFO_BASEDIR

Strips the given path prefix from dep
info file paths. This config setting
is intended to convert absolute paths to relative paths for tools that require
relative paths.

The setting itself is a config-relative path. So, for example, a value of
"." would strip all paths starting with the parent directory of the .cargo
directory.

build.pipelining

This option is deprecated and unused. Cargo always has pipelining enabled.

[credential-alias]

	Type: string or array of strings

	Default: empty

	Environment: CARGO_CREDENTIAL_ALIAS_<name>

The [credential-alias] table defines credential provider aliases.
These aliases can be referenced as an element of the registry.global-credential-providers
array, or as a credential provider for a specific registry
under registries.<NAME>.credential-provider.

If specified as a string, the value will be split on spaces into path and arguments.

For example, to define an alias called my-alias:

[credential-alias]
my-alias = ["/usr/bin/cargo-credential-example", "--argument", "value", "--flag"]

See Registry Authentication for more information.

[doc]

The [doc] table defines options for the cargo doc command.

doc.browser

	Type: string or array of strings (program path with args)

	Default: BROWSER environment variable, or, if that is missing,
opening the link in a system specific way

This option sets the browser to be used by cargo doc, overriding the
BROWSER environment variable when opening documentation with the --open
option.

[cargo-new]

The [cargo-new] table defines defaults for the cargo new command.

cargo-new.name

This option is deprecated and unused.

cargo-new.email

This option is deprecated and unused.

cargo-new.vcs

	Type: string

	Default: "git" or "none"

	Environment: CARGO_CARGO_NEW_VCS

Specifies the source control system to use for initializing a new repository.
Valid values are git, hg (for Mercurial), pijul, fossil or none to
disable this behavior. Defaults to git, or none if already inside a VCS
repository. Can be overridden with the --vcs CLI option.

[env]

The [env] section allows you to set additional environment variables for
build scripts, rustc invocations, cargo run and cargo build.

[env]
OPENSSL_DIR = "/opt/openssl"

By default, the variables specified will not override values that already exist
in the environment. This behavior can be changed by setting the force flag.

Setting the relative flag evaluates the value as a config-relative path that
is relative to the parent directory of the .cargo directory that contains the
config.toml file. The value of the environment variable will be the full
absolute path.

[env]
TMPDIR = { value = "/home/tmp", force = true }
OPENSSL_DIR = { value = "vendor/openssl", relative = true }

[future-incompat-report]

The [future-incompat-report] table controls setting for future incompat reporting

future-incompat-report.frequency

	Type: string

	Default: "always"

	Environment: CARGO_FUTURE_INCOMPAT_REPORT_FREQUENCY

Controls how often we display a notification to the terminal when a future incompat report is available. Possible values:

	always (default): Always display a notification when a command (e.g. cargo build) produces a future incompat report

	never: Never display a notification

[cache]

The [cache] table defines settings for cargo's caches.

Global caches

When running cargo commands, Cargo will automatically track which files you are using within the global cache.
Periodically, Cargo will delete files that have not been used for some period of time.
It will delete files that have to be downloaded from the network if they have not been used in 3 months. Files that can be generated without network access will be deleted if they have not been used in 1 month.

The automatic deletion of files only occurs when running commands that are already doing a significant amount of work, such as all of the build commands (cargo build, cargo test, cargo check, etc.), and cargo fetch.

Automatic deletion is disabled if cargo is offline such as with --offline or --frozen to avoid deleting artifacts that may need to be used if you are offline for a long period of time.

Note: This tracking is currently only implemented for the global cache in Cargo's home directory.
This includes registry indexes and source files downloaded from registries and git dependencies.
Support for tracking build artifacts is not yet implemented, and tracked in cargo#13136.

Additionally, there is an unstable feature to support manually triggering cache cleaning, and to further customize the configuration options.
See the Unstable chapter for more information.

cache.auto-clean-frequency

	Type: string

	Default: "1 day"

	Environment: CARGO_CACHE_AUTO_CLEAN_FREQUENCY

This option defines how often Cargo will automatically delete unused files in the global cache.
This does not define how old the files must be, those thresholds are described above.

It supports the following settings:

	"never" --- Never deletes old files.

	"always" --- Checks to delete old files every time Cargo runs.

	An integer followed by "seconds", "minutes", "hours", "days", "weeks", or "months" --- Checks to delete old files at most the given time frame.

[http]

The [http] table defines settings for HTTP behavior. This includes fetching
crate dependencies and accessing remote git repositories.

http.debug

	Type: boolean

	Default: false

	Environment: CARGO_HTTP_DEBUG

If true, enables debugging of HTTP requests. The debug information can be
seen by setting the CARGO_LOG=network=debug environment
variable (or use network=trace for even more information).

Be wary when posting logs from this output in a public location. The output
may include headers with authentication tokens which you don't want to leak!
Be sure to review logs before posting them.

http.proxy

	Type: string

	Default: none

	Environment: CARGO_HTTP_PROXY or HTTPS_PROXY or https_proxy or http_proxy

Sets an HTTP and HTTPS proxy to use. The format is in libcurl format as in
[protocol://]host[:port]. If not set, Cargo will also check the http.proxy
setting in your global git configuration. If none of those are set, the
HTTPS_PROXY or https_proxy environment variables set the proxy for HTTPS
requests, and http_proxy sets it for HTTP requests.

http.timeout

	Type: integer

	Default: 30

	Environment: CARGO_HTTP_TIMEOUT or HTTP_TIMEOUT

Sets the timeout for each HTTP request, in seconds.

http.cainfo

	Type: string (path)

	Default: none

	Environment: CARGO_HTTP_CAINFO

Path to a Certificate Authority (CA) bundle file, used to verify TLS
certificates. If not specified, Cargo attempts to use the system certificates.

http.proxy-cainfo

	Type: string (path)

	Default: falls back to http.cainfo if not set

	Environment: CARGO_HTTP_PROXY_CAINFO

Path to a Certificate Authority (CA) bundle file, used to verify proxy TLS
certificates.

http.check-revoke

	Type: boolean

	Default: true (Windows) false (all others)

	Environment: CARGO_HTTP_CHECK_REVOKE

This determines whether or not TLS certificate revocation checks should be
performed. This only works on Windows.

http.ssl-version

	Type: string or min/max table

	Default: none

	Environment: CARGO_HTTP_SSL_VERSION

This sets the minimum TLS version to use. It takes a string, with one of the
possible values of "default", "tlsv1", "tlsv1.0", "tlsv1.1", "tlsv1.2", or
"tlsv1.3".

This may alternatively take a table with two keys, min and max, which each
take a string value of the same kind that specifies the minimum and maximum
range of TLS versions to use.

The default is a minimum version of "tlsv1.0" and a max of the newest version
supported on your platform, typically "tlsv1.3".

http.low-speed-limit

	Type: integer

	Default: 10

	Environment: CARGO_HTTP_LOW_SPEED_LIMIT

This setting controls timeout behavior for slow connections. If the average
transfer speed in bytes per second is below the given value for
http.timeout seconds (default 30 seconds), then the
connection is considered too slow and Cargo will abort and retry.

http.multiplexing

	Type: boolean

	Default: true

	Environment: CARGO_HTTP_MULTIPLEXING

When true, Cargo will attempt to use the HTTP2 protocol with multiplexing.
This allows multiple requests to use the same connection, usually improving
performance when fetching multiple files. If false, Cargo will use HTTP 1.1
without pipelining.

http.user-agent

	Type: string

	Default: Cargo's version

	Environment: CARGO_HTTP_USER_AGENT

Specifies a custom user-agent header to use. The default if not specified is a
string that includes Cargo's version.

[install]

The [install] table defines defaults for the cargo install command.

install.root

	Type: string (path)

	Default: Cargo's home directory

	Environment: CARGO_INSTALL_ROOT

Sets the path to the root directory for installing executables for cargo install. Executables go into a bin directory underneath the root.

To track information of installed executables, some extra files, such as
.crates.toml and .crates2.json, are also created under this root.

The default if not specified is Cargo's home directory (default .cargo in
your home directory).

Can be overridden with the --root command-line option.

[net]

The [net] table controls networking configuration.

net.retry

	Type: integer

	Default: 3

	Environment: CARGO_NET_RETRY

Number of times to retry possibly spurious network errors.

net.git-fetch-with-cli

	Type: boolean

	Default: false

	Environment: CARGO_NET_GIT_FETCH_WITH_CLI

If this is true, then Cargo will use the git executable to fetch registry
indexes and git dependencies. If false, then it uses a built-in git
library.

Setting this to true can be helpful if you have special authentication
requirements that Cargo does not support. See Git
Authentication for more information about
setting up git authentication.

net.offline

	Type: boolean

	Default: false

	Environment: CARGO_NET_OFFLINE

If this is true, then Cargo will avoid accessing the network, and attempt to
proceed with locally cached data. If false, Cargo will access the network as
needed, and generate an error if it encounters a network error.

Can be overridden with the --offline command-line option.

net.ssh

The [net.ssh] table contains settings for SSH connections.

net.ssh.known-hosts

	Type: array of strings

	Default: see description

	Environment: not supported

The known-hosts array contains a list of SSH host keys that should be
accepted as valid when connecting to an SSH server (such as for SSH git
dependencies). Each entry should be a string in a format similar to OpenSSH
known_hosts files. Each string should start with one or more hostnames
separated by commas, a space, the key type name, a space, and the
base64-encoded key. For example:

[net.ssh]
known-hosts = [
 "example.com ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIFO4Q5T0UV0SQevair9PFwoxY9dl4pQl3u5phoqJH3cF"
]

Cargo will attempt to load known hosts keys from common locations supported in
OpenSSH, and will join those with any listed in a Cargo configuration file.
If any matching entry has the correct key, the connection will be allowed.

Cargo comes with the host keys for github.com built-in. If
those ever change, you can add the new keys to the config or known_hosts file.

See Git Authentication
for more details.

[patch]

Just as you can override dependencies using [patch] in
Cargo.toml, you can
override them in the cargo configuration file to apply those patches to
any affected build. The format is identical to the one used in
Cargo.toml.

Since .cargo/config.toml files are not usually checked into source
control, you should prefer patching using Cargo.toml where possible to
ensure that other developers can compile your crate in their own
environments. Patching through cargo configuration files is generally
only appropriate when the patch section is automatically generated by an
external build tool.

If a given dependency is patched both in a cargo configuration file and
a Cargo.toml file, the patch in the configuration file is used. If
multiple configuration files patch the same dependency, standard cargo
configuration merging is used, which prefers the value defined closest
to the current directory, with $HOME/.cargo/config.toml taking the
lowest precedence.

Relative path dependencies in such a [patch] section are resolved
relative to the configuration file they appear in.

[profile]

The [profile] table can be used to globally change profile settings, and
override settings specified in Cargo.toml. It has the same syntax and
options as profiles specified in Cargo.toml. See the Profiles chapter for
details about the options.

[profile.<name>.build-override]

	Environment: CARGO_PROFILE_<name>_BUILD_OVERRIDE_<key>

The build-override table overrides settings for build scripts, proc macros,
and their dependencies. It has the same keys as a normal profile. See the
overrides section for more details.

[profile.<name>.package.<name>]

	Environment: not supported

The package table overrides settings for specific packages. It has the same
keys as a normal profile, minus the panic, lto, and rpath settings. See
the overrides section for more details.

profile.<name>.codegen-units

	Type: integer

	Default: See profile docs.

	Environment: CARGO_PROFILE_<name>_CODEGEN_UNITS

See codegen-units.

profile.<name>.debug

	Type: integer or boolean

	Default: See profile docs.

	Environment: CARGO_PROFILE_<name>_DEBUG

See debug.

profile.<name>.split-debuginfo

	Type: string

	Default: See profile docs.

	Environment: CARGO_PROFILE_<name>_SPLIT_DEBUGINFO

See split-debuginfo.

profile.<name>.debug-assertions

	Type: boolean

	Default: See profile docs.

	Environment: CARGO_PROFILE_<name>_DEBUG_ASSERTIONS

See debug-assertions.

profile.<name>.incremental

	Type: boolean

	Default: See profile docs.

	Environment: CARGO_PROFILE_<name>_INCREMENTAL

See incremental.

profile.<name>.lto

	Type: string or boolean

	Default: See profile docs.

	Environment: CARGO_PROFILE_<name>_LTO

See lto.

profile.<name>.overflow-checks

	Type: boolean

	Default: See profile docs.

	Environment: CARGO_PROFILE_<name>_OVERFLOW_CHECKS

See overflow-checks.

profile.<name>.opt-level

	Type: integer or string

	Default: See profile docs.

	Environment: CARGO_PROFILE_<name>_OPT_LEVEL

See opt-level.

profile.<name>.panic

	Type: string

	Default: See profile docs.

	Environment: CARGO_PROFILE_<name>_PANIC

See panic.

profile.<name>.rpath

	Type: boolean

	Default: See profile docs.

	Environment: CARGO_PROFILE_<name>_RPATH

See rpath.

profile.<name>.strip

	Type: string or boolean

	Default: See profile docs.

	Environment: CARGO_PROFILE_<name>_STRIP

See strip.

[resolver]

The [resolver] table overrides dependency resolution behavior for local development (e.g. excludes cargo install).

resolver.incompatible-rust-versions

	Type: string

	Default: See resolver docs

	Environment: CARGO_RESOLVER_INCOMPATIBLE_RUST_VERSIONS

When resolving which version of a dependency to use, select how versions with incompatible package.rust-versions are treated.
Values include:

	allow: treat rust-version-incompatible versions like any other version

	fallback: only consider rust-version-incompatible versions if no other version matched

Can be overridden with

	--ignore-rust-version CLI option

	Setting the dependency's version requirement higher than any version with a compatible rust-version

	Specifying the version to cargo update with --precise

See the resolver chapter for more details.

MSRV:

	allow is supported on any version

	fallback is respected as of 1.84

[registries]

The [registries] table is used for specifying additional registries. It
consists of a sub-table for each named registry.

registries.<name>.index

	Type: string (url)

	Default: none

	Environment: CARGO_REGISTRIES_<name>_INDEX

Specifies the URL of the index for the registry.

registries.<name>.token

	Type: string

	Default: none

	Environment: CARGO_REGISTRIES_<name>_TOKEN

Specifies the authentication token for the given registry. This value should
only appear in the credentials file. This is used for registry
commands like cargo publish that require authentication.

Can be overridden with the --token command-line option.

registries.<name>.credential-provider

	Type: string or array of path and arguments

	Default: none

	Environment: CARGO_REGISTRIES_<name>_CREDENTIAL_PROVIDER

Specifies the credential provider for the given registry. If not set, the
providers in registry.global-credential-providers
will be used.

If specified as a string, path and arguments will be split on spaces. For
paths or arguments that contain spaces, use an array.

If the value exists in the [credential-alias] table, the alias will be used.

See Registry Authentication for more information.

registries.crates-io.protocol

	Type: string

	Default: "sparse"

	Environment: CARGO_REGISTRIES_CRATES_IO_PROTOCOL

Specifies the protocol used to access crates.io. Allowed values are git or sparse.

git causes Cargo to clone the entire index of all packages ever published to crates.io from https://github.com/rust-lang/crates.io-index/.
This can have performance implications due to the size of the index.
sparse is a newer protocol which uses HTTPS to download only what is necessary from https://index.crates.io/.
This can result in a significant performance improvement for resolving new dependencies in most situations.

More information about registry protocols may be found in the Registries chapter.

[registry]

The [registry] table controls the default registry used when one is not
specified.

registry.index

This value is no longer accepted and should not be used.

registry.default

	Type: string

	Default: "crates-io"

	Environment: CARGO_REGISTRY_DEFAULT

The name of the registry (from the registries table) to use
by default for registry commands like cargo publish.

Can be overridden with the --registry command-line option.

registry.credential-provider

	Type: string or array of path and arguments

	Default: none

	Environment: CARGO_REGISTRY_CREDENTIAL_PROVIDER

Specifies the credential provider for crates.io. If not set, the
providers in registry.global-credential-providers
will be used.

If specified as a string, path and arguments will be split on spaces. For
paths or arguments that contain spaces, use an array.

If the value exists in the [credential-alias] table, the alias will be used.

See Registry Authentication for more information.

registry.token

	Type: string

	Default: none

	Environment: CARGO_REGISTRY_TOKEN

Specifies the authentication token for crates.io. This value should only
appear in the credentials file. This is used for registry
commands like cargo publish that require authentication.

Can be overridden with the --token command-line option.

registry.global-credential-providers

	Type: array

	Default: ["cargo:token"]

	Environment: CARGO_REGISTRY_GLOBAL_CREDENTIAL_PROVIDERS

Specifies the list of global credential providers. If credential provider is not set
for a specific registry using registries.<name>.credential-provider, Cargo will use
the credential providers in this list. Providers toward the end of the list have precedence.

Path and arguments are split on spaces. If the path or arguments contains spaces, the credential
provider should be defined in the [credential-alias] table and
referenced here by its alias.

See Registry Authentication for more information.

[source]

The [source] table defines the registry sources available. See Source
Replacement for more information. It consists of a sub-table for each named
source. A source should only define one kind (directory, registry,
local-registry, or git).

source.<name>.replace-with

	Type: string

	Default: none

	Environment: not supported

If set, replace this source with the given named source or named registry.

source.<name>.directory

	Type: string (path)

	Default: none

	Environment: not supported

Sets the path to a directory to use as a directory source.

source.<name>.registry

	Type: string (url)

	Default: none

	Environment: not supported

Sets the URL to use for a registry source.

source.<name>.local-registry

	Type: string (path)

	Default: none

	Environment: not supported

Sets the path to a directory to use as a local registry source.

source.<name>.git

	Type: string (url)

	Default: none

	Environment: not supported

Sets the URL to use for a git repository source.

source.<name>.branch

	Type: string

	Default: none

	Environment: not supported

Sets the branch name to use for a git repository.

If none of branch, tag, or rev is set, defaults to the master branch.

source.<name>.tag

	Type: string

	Default: none

	Environment: not supported

Sets the tag name to use for a git repository.

If none of branch, tag, or rev is set, defaults to the master branch.

source.<name>.rev

	Type: string

	Default: none

	Environment: not supported

Sets the revision to use for a git repository.

If none of branch, tag, or rev is set, defaults to the master branch.

[target]

The [target] table is used for specifying settings for specific platform
targets. It consists of a sub-table which is either a platform triple
or a cfg() expression. The given values will be used if the target platform
matches either the <triple> value or the <cfg> expression.

[target.thumbv7m-none-eabi]
linker = "arm-none-eabi-gcc"
runner = "my-emulator"
rustflags = ["…", "…"]

[target.'cfg(all(target_arch = "arm", target_os = "none"))']
runner = "my-arm-wrapper"
rustflags = ["…", "…"]

cfg values come from those built-in to the compiler (run rustc --print=cfg
to view) and extra --cfg flags passed to rustc (such as those defined in
RUSTFLAGS). Do not try to match on debug_assertions, test, Cargo features
like feature="foo", or values set by build scripts.

If using a target spec JSON file, the <triple> value is the filename stem.
For example --target foo/bar.json would match [target.bar].

target.<triple>.ar

This option is deprecated and unused.

target.<triple>.linker

	Type: string (program path)

	Default: none

	Environment: CARGO_TARGET_<triple>_LINKER

Specifies the linker which is passed to rustc (via -C linker) when the
<triple> is being compiled for. By default, the linker is not overridden.

target.<cfg>.linker

This is similar to the target linker, but using
a cfg() expression. If both a <triple> and <cfg> runner match,
the <triple> will take precedence. It is an error if more than one
<cfg> runner matches the current target.

target.<triple>.runner

	Type: string or array of strings (program path with args)

	Default: none

	Environment: CARGO_TARGET_<triple>_RUNNER

If a runner is provided, executables for the target <triple> will be
executed by invoking the specified runner with the actual executable passed as
an argument. This applies to cargo run, cargo test and cargo bench
commands. By default, compiled executables are executed directly.

target.<cfg>.runner

This is similar to the target runner, but using
a cfg() expression. If both a <triple> and <cfg> runner match,
the <triple> will take precedence. It is an error if more than one
<cfg> runner matches the current target.

target.<triple>.rustflags

	Type: string or array of strings

	Default: none

	Environment: CARGO_TARGET_<triple>_RUSTFLAGS

Passes a set of custom flags to the compiler for this <triple>.
The value may be an array of strings or a space-separated string.

See build.rustflags for more details on the different
ways to specific extra flags.

target.<cfg>.rustflags

This is similar to the target rustflags, but
using a cfg() expression. If several <cfg> and <triple> entries
match the current target, the flags are joined together.

target.<triple>.rustdocflags

	Type: string or array of strings

	Default: none

	Environment: CARGO_TARGET_<triple>_RUSTDOCFLAGS

Passes a set of custom flags to the compiler for this <triple>.
The value may be an array of strings or a space-separated string.

See build.rustdocflags for more details on the different
ways to specific extra flags.

target.<triple>.<links>

The links sub-table provides a way to override a build script. When
specified, the build script for the given links library will not be
run, and the given values will be used instead.

[target.x86_64-unknown-linux-gnu.foo]
rustc-link-lib = ["foo"]
rustc-link-search = ["/path/to/foo"]
rustc-flags = "-L /some/path"
rustc-cfg = ['key="value"']
rustc-env = {key = "value"}
rustc-cdylib-link-arg = ["…"]
metadata_key1 = "value"
metadata_key2 = "value"

[term]

The [term] table controls terminal output and interaction.

term.quiet

	Type: boolean

	Default: false

	Environment: CARGO_TERM_QUIET

Controls whether or not log messages are displayed by Cargo.

Specifying the --quiet flag will override and force quiet output.
Specifying the --verbose flag will override and disable quiet output.

term.verbose

	Type: boolean

	Default: false

	Environment: CARGO_TERM_VERBOSE

Controls whether or not extra detailed messages are displayed by Cargo.

Specifying the --quiet flag will override and disable verbose output.
Specifying the --verbose flag will override and force verbose output.

term.color

	Type: string

	Default: "auto"

	Environment: CARGO_TERM_COLOR

Controls whether or not colored output is used in the terminal. Possible values:

	auto (default): Automatically detect if color support is available on the
terminal.

	always: Always display colors.

	never: Never display colors.

Can be overridden with the --color command-line option.

term.hyperlinks

	Type: bool

	Default: auto-detect

	Environment: CARGO_TERM_HYPERLINKS

Controls whether or not hyperlinks are used in the terminal.

term.unicode

	Type: bool

	Default: auto-detect

	Environment: CARGO_TERM_UNICODE

Control whether output can be rendered using non-ASCII unicode characters.

term.progress.when

	Type: string

	Default: "auto"

	Environment: CARGO_TERM_PROGRESS_WHEN

Controls whether or not progress bar is shown in the terminal. Possible values:

	auto (default): Intelligently guess whether to show progress bar.

	always: Always show progress bar.

	never: Never show progress bar.

term.progress.width

	Type: integer

	Default: none

	Environment: CARGO_TERM_PROGRESS_WIDTH

Sets the width for progress bar.

term.progress.term-integration

	Type: bool

	Default: auto-detect

	Environment: CARGO_TERM_PROGRESS_TERM_INTEGRATION

Report progress to the terminal emulator for display in places like the task bar.

 Environment Variables

 Environment Variables

Cargo sets and reads a number of environment variables which your code can detect
or override. Here is a list of the variables Cargo sets, organized by when it interacts
with them:

Environment variables Cargo reads

You can override these environment variables to change Cargo's behavior on your
system:

	CARGO_LOG --- Cargo uses the tracing crate to display debug log messages.
The CARGO_LOG environment variable can be set to enable debug logging,
with a value such as trace, debug, or warn.
Usually it is only used during debugging. For more details refer to the
Debug logging.

	CARGO_HOME --- Cargo maintains a local cache of the registry index and of
git checkouts of crates. By default these are stored under $HOME/.cargo
(%USERPROFILE%\.cargo on Windows), but this variable overrides the
location of this directory. Once a crate is cached it is not removed by the
clean command.
For more details refer to the guide.

	CARGO_TARGET_DIR --- Location of where to place all generated artifacts,
relative to the current working directory. See build.target-dir to set
via config.

	CARGO --- If set, Cargo will forward this value instead of setting it
to its own auto-detected path when it builds crates and when it
executes build scripts and external subcommands. This value is not
directly executed by Cargo, and should always point at a command that
behaves exactly like cargo, as that's what users of the variable
will be expecting.

	RUSTC --- Instead of running rustc, Cargo will execute this specified
compiler instead. See build.rustc to set via config.

	RUSTC_WRAPPER --- Instead of simply running rustc, Cargo will execute this
specified wrapper, passing as its command-line arguments the rustc
invocation, with the first argument being the path to the actual rustc.
Useful to set up a build cache tool such as sccache. See
build.rustc-wrapper to set via config. Setting this to the empty string
overwrites the config and resets cargo to not use a wrapper.

	RUSTC_WORKSPACE_WRAPPER --- Instead of simply running rustc, for workspace members Cargo will
execute this specified wrapper, passing as its command-line arguments the rustc invocation, with
the first argument being the path to the actual rustc. When building a single-package project
without workspaces, that package is considered to be the workspace. It affects the filename hash
so that artifacts produced by the wrapper are cached separately. See
build.rustc-workspace-wrapper to set via config. Setting this to the empty string overwrites
the config and resets cargo to not use a wrapper for workspace members. If both RUSTC_WRAPPER
and RUSTC_WORKSPACE_WRAPPER are set, then they will be nested: the final invocation is
$RUSTC_WRAPPER $RUSTC_WORKSPACE_WRAPPER $RUSTC.

	RUSTDOC --- Instead of running rustdoc, Cargo will execute this specified
rustdoc instance instead. See build.rustdoc to set via config.

	RUSTDOCFLAGS --- A space-separated list of custom flags to pass to all rustdoc
invocations that Cargo performs. In contrast with cargo rustdoc, this is
useful for passing a flag to all rustdoc instances. See
build.rustdocflags for some more ways to set flags. This string is
split by whitespace; for a more robust encoding of multiple arguments,
see CARGO_ENCODED_RUSTDOCFLAGS.

	CARGO_ENCODED_RUSTDOCFLAGS --- A list of custom flags separated by 0x1f
(ASCII Unit Separator) to pass to all rustdoc invocations that Cargo performs.

	RUSTFLAGS --- A space-separated list of custom flags to pass to all compiler
invocations that Cargo performs. In contrast with cargo rustc, this is
useful for passing a flag to all compiler instances. See
build.rustflags for some more ways to set flags. This string is
split by whitespace; for a more robust encoding of multiple arguments,
see CARGO_ENCODED_RUSTFLAGS.

	CARGO_ENCODED_RUSTFLAGS --- A list of custom flags separated by 0x1f
(ASCII Unit Separator) to pass to all compiler invocations that Cargo performs.

	CARGO_INCREMENTAL --- If this is set to 1 then Cargo will force incremental
compilation to be enabled for the current compilation, and when set to 0 it
will force disabling it. If this env var isn't present then cargo's defaults
will otherwise be used. See also build.incremental config value.

	CARGO_CACHE_RUSTC_INFO --- If this is set to 0 then Cargo will not try to cache
compiler version information.

	HTTPS_PROXY or https_proxy or http_proxy --- The HTTP proxy to use, see
http.proxy for more detail.

	HTTP_TIMEOUT --- The HTTP timeout in seconds, see http.timeout for more
detail.

	TERM --- If this is set to dumb, it disables the progress bar.

	BROWSER --- The web browser to execute to open documentation with cargo doc's' --open flag, see doc.browser for more details.

	RUSTFMT --- Instead of running rustfmt,
cargo fmt will execute this specified
rustfmt instance instead.

Configuration environment variables

Cargo reads environment variables for some configuration values.
See the configuration chapter for more details.
In summary, the supported environment variables are:

	CARGO_ALIAS_<name> --- Command aliases, see alias.

	CARGO_BUILD_JOBS --- Number of parallel jobs, see build.jobs.

	CARGO_BUILD_RUSTC --- The rustc executable, see build.rustc.

	CARGO_BUILD_RUSTC_WRAPPER --- The rustc wrapper, see build.rustc-wrapper.

	CARGO_BUILD_RUSTC_WORKSPACE_WRAPPER --- The rustc wrapper for workspace members only, see build.rustc-workspace-wrapper.

	CARGO_BUILD_RUSTDOC --- The rustdoc executable, see build.rustdoc.

	CARGO_BUILD_TARGET --- The default target platform, see build.target.

	CARGO_BUILD_TARGET_DIR --- The default output directory, see build.target-dir.

	CARGO_BUILD_RUSTFLAGS --- Extra rustc flags, see build.rustflags.

	CARGO_BUILD_RUSTDOCFLAGS --- Extra rustdoc flags, see build.rustdocflags.

	CARGO_BUILD_INCREMENTAL --- Incremental compilation, see build.incremental.

	CARGO_BUILD_DEP_INFO_BASEDIR --- Dep-info relative directory, see build.dep-info-basedir.

	CARGO_CACHE_AUTO_CLEAN_FREQUENCY --- Configures how often automatic cache cleaning runs, see cache.auto-clean-frequency.

	CARGO_CARGO_NEW_VCS --- The default source control system with cargo new, see cargo-new.vcs.

	CARGO_FUTURE_INCOMPAT_REPORT_FREQUENCY --- How often we should generate a future incompat report notification, see future-incompat-report.frequency.

	CARGO_HTTP_DEBUG --- Enables HTTP debugging, see http.debug.

	CARGO_HTTP_PROXY --- Enables HTTP proxy, see http.proxy.

	CARGO_HTTP_TIMEOUT --- The HTTP timeout, see http.timeout.

	CARGO_HTTP_CAINFO --- The TLS certificate Certificate Authority file, see http.cainfo.

	CARGO_HTTP_PROXY_CAINFO --- The proxy TLS certificate Certificate Authority file, see http.proxy-cainfo.

	CARGO_HTTP_CHECK_REVOKE --- Disables TLS certificate revocation checks, see http.check-revoke.

	CARGO_HTTP_SSL_VERSION --- The TLS version to use, see http.ssl-version.

	CARGO_HTTP_LOW_SPEED_LIMIT --- The HTTP low-speed limit, see http.low-speed-limit.

	CARGO_HTTP_MULTIPLEXING --- Whether HTTP/2 multiplexing is used, see http.multiplexing.

	CARGO_HTTP_USER_AGENT --- The HTTP user-agent header, see http.user-agent.

	CARGO_INSTALL_ROOT --- The default directory for cargo install, see install.root.

	CARGO_NET_RETRY --- Number of times to retry network errors, see net.retry.

	CARGO_NET_GIT_FETCH_WITH_CLI --- Enables the use of the git executable to fetch, see net.git-fetch-with-cli.

	CARGO_NET_OFFLINE --- Offline mode, see net.offline.

	CARGO_PROFILE_<name>_BUILD_OVERRIDE_<key> --- Override build script profile, see profile.<name>.build-override.

	CARGO_PROFILE_<name>_CODEGEN_UNITS --- Set code generation units, see profile.<name>.codegen-units.

	CARGO_PROFILE_<name>_DEBUG --- What kind of debug info to include, see profile.<name>.debug.

	CARGO_PROFILE_<name>_DEBUG_ASSERTIONS --- Enable/disable debug assertions, see profile.<name>.debug-assertions.

	CARGO_PROFILE_<name>_INCREMENTAL --- Enable/disable incremental compilation, see profile.<name>.incremental.

	CARGO_PROFILE_<name>_LTO --- Link-time optimization, see profile.<name>.lto.

	CARGO_PROFILE_<name>_OVERFLOW_CHECKS --- Enable/disable overflow checks, see profile.<name>.overflow-checks.

	CARGO_PROFILE_<name>_OPT_LEVEL --- Set the optimization level, see profile.<name>.opt-level.

	CARGO_PROFILE_<name>_PANIC --- The panic strategy to use, see profile.<name>.panic.

	CARGO_PROFILE_<name>_RPATH --- The rpath linking option, see profile.<name>.rpath.

	CARGO_PROFILE_<name>_SPLIT_DEBUGINFO --- Controls debug file output behavior, see profile.<name>.split-debuginfo.

	CARGO_PROFILE_<name>_STRIP --- Controls stripping of symbols and/or debuginfos, see profile.<name>.strip.

	CARGO_REGISTRIES_<name>_CREDENTIAL_PROVIDER --- Credential provider for a registry, see registries.<name>.credential-provider.

	CARGO_REGISTRIES_<name>_INDEX --- URL of a registry index, see registries.<name>.index.

	CARGO_REGISTRIES_<name>_TOKEN --- Authentication token of a registry, see registries.<name>.token.

	CARGO_REGISTRY_CREDENTIAL_PROVIDER --- Credential provider for crates.io, see registry.credential-provider.

	CARGO_REGISTRY_DEFAULT --- Default registry for the --registry flag, see registry.default.

	CARGO_REGISTRY_GLOBAL_CREDENTIAL_PROVIDERS --- Credential providers for registries that do not have a specific provider defined. See registry.global-credential-providers.

	CARGO_REGISTRY_TOKEN --- Authentication token for crates.io, see registry.token.

	CARGO_TARGET_<triple>_LINKER --- The linker to use, see target.<triple>.linker. The triple must be converted to uppercase and underscores.

	CARGO_TARGET_<triple>_RUNNER --- The executable runner, see target.<triple>.runner.

	CARGO_TARGET_<triple>_RUSTFLAGS --- Extra rustc flags for a target, see target.<triple>.rustflags.

	CARGO_TERM_QUIET --- Quiet mode, see term.quiet.

	CARGO_TERM_VERBOSE --- The default terminal verbosity, see term.verbose.

	CARGO_TERM_COLOR --- The default color mode, see term.color.

	CARGO_TERM_PROGRESS_WHEN --- The default progress bar showing mode, see term.progress.when.

	CARGO_TERM_PROGRESS_WIDTH --- The default progress bar width, see term.progress.width.

Environment variables Cargo sets for crates

Cargo exposes these environment variables to your crate when it is compiled.
Note that this applies for running binaries with cargo run and cargo test
as well. To get the value of any of these variables in a Rust program, do
this:

let version = env!("CARGO_PKG_VERSION");

version will now contain the value of CARGO_PKG_VERSION.

Note that if one of these values is not provided in the manifest, the
corresponding environment variable is set to the empty string, "".

	CARGO --- Path to the cargo binary performing the build.

	CARGO_MANIFEST_DIR --- The directory containing the manifest of your package.

	CARGO_MANIFEST_PATH --- The path to the manifest of your package.

	CARGO_PKG_VERSION --- The full version of your package.

	CARGO_PKG_VERSION_MAJOR --- The major version of your package.

	CARGO_PKG_VERSION_MINOR --- The minor version of your package.

	CARGO_PKG_VERSION_PATCH --- The patch version of your package.

	CARGO_PKG_VERSION_PRE --- The pre-release version of your package.

	CARGO_PKG_AUTHORS --- Colon separated list of authors from the manifest of your package.

	CARGO_PKG_NAME --- The name of your package.

	CARGO_PKG_DESCRIPTION --- The description from the manifest of your package.

	CARGO_PKG_HOMEPAGE --- The home page from the manifest of your package.

	CARGO_PKG_REPOSITORY --- The repository from the manifest of your package.

	CARGO_PKG_LICENSE --- The license from the manifest of your package.

	CARGO_PKG_LICENSE_FILE --- The license file from the manifest of your package.

	CARGO_PKG_RUST_VERSION --- The Rust version from the manifest of your package.
Note that this is the minimum Rust version supported by the package, not the
current Rust version.

	CARGO_PKG_README --- Path to the README file of your package.

	CARGO_CRATE_NAME --- The name of the crate that is currently being compiled. It is the name of the Cargo target with - converted to _, such as the name of the library, binary, example, integration test, or benchmark.

	CARGO_BIN_NAME --- The name of the binary that is currently being compiled.
Only set for binaries or binary examples. This name does not include any
file extension, such as .exe.

	OUT_DIR --- If the package has a build script, this is set to the folder
where the build script should place its output. See below for more information.
(Only set during compilation.)

	CARGO_BIN_EXE_<name> --- The absolute path to a binary target's executable.
This is only set when building an integration test or benchmark. This may
be used with the env macro to find the executable to run for testing
purposes. The <name> is the name of the binary target, exactly as-is. For
example, CARGO_BIN_EXE_my-program for a binary named my-program.
Binaries are automatically built when the test is built, unless the binary
has required features that are not enabled.

	CARGO_PRIMARY_PACKAGE --- This environment variable will be set if the
package being built is primary. Primary packages are the ones the user
selected on the command-line, either with -p flags or the defaults based
on the current directory and the default workspace members.
This variable will not be set when building dependencies,
unless a dependency is also a workspace member that was also selected on the command-line.
This is only set when compiling the package (not when running binaries or tests).

	CARGO_TARGET_TMPDIR --- Only set when building integration test or benchmark code.
This is a path to a directory inside the target directory
where integration tests or benchmarks are free to put any data needed by
the tests/benches. Cargo initially creates this directory but doesn't
manage its content in any way, this is the responsibility of the test code.

Dynamic library paths

Cargo also sets the dynamic library path when compiling and running binaries
with commands like cargo run and cargo test. This helps with locating
shared libraries that are part of the build process. The variable name depends
on the platform:

	Windows: PATH

	macOS: DYLD_FALLBACK_LIBRARY_PATH

	Unix: LD_LIBRARY_PATH

	AIX: LIBPATH

The value is extended from the existing value when Cargo starts. macOS has
special consideration where if DYLD_FALLBACK_LIBRARY_PATH is not already
set, it will add the default $HOME/lib:/usr/local/lib:/usr/lib.

Cargo includes the following paths:

	Search paths included from any build script with the rustc-link-search
instruction. Paths outside of the
target directory are removed. It is the responsibility of the user running
Cargo to properly set the environment if additional libraries on the system
are needed in the search path.

	The base output directory, such as target/debug, and the "deps" directory.
This is mostly for support of proc-macros.

	The rustc sysroot library path. This generally is not important to most
users.

Environment variables Cargo sets for build scripts

Cargo sets several environment variables when build scripts are run. Because these variables
are not yet set when the build script is compiled, the above example using env! won't work
and instead you'll need to retrieve the values when the build script is run:

use std::env;
let out_dir = env::var("OUT_DIR").unwrap();

out_dir will now contain the value of OUT_DIR.

	CARGO --- Path to the cargo binary performing the build.

	CARGO_MANIFEST_DIR --- The directory containing the manifest for the package
being built (the package containing the build script). Also note that this is
the value of the current working directory of the build script when it starts.

	CARGO_MANIFEST_PATH --- The path to the manifest of your package.

	CARGO_MANIFEST_LINKS --- the manifest links value.

	CARGO_MAKEFLAGS --- Contains parameters needed for Cargo's jobserver
implementation to parallelize subprocesses. Rustc or cargo invocations from
build.rs can already read CARGO_MAKEFLAGS, but GNU Make requires the flags
to be specified either directly as arguments, or through the MAKEFLAGS
environment variable. Currently Cargo doesn't set the MAKEFLAGS variable,
but it's free for build scripts invoking GNU Make to set it to the contents
of CARGO_MAKEFLAGS.

	CARGO_FEATURE_<name> --- For each activated feature of the package being built,
this environment variable will be present where <name> is the name of the
feature uppercased and having - translated to _.

	CARGO_CFG_<cfg> --- For each configuration option of the
package being built, this environment variable will contain the value of the
configuration, where <cfg> is the name of the configuration uppercased and
having - translated to _. Boolean configurations are present if they are
set, and not present otherwise. Configurations with multiple values are
joined to a single variable with the values delimited by ,. This includes
values built-in to the compiler (which can be seen with rustc --print=cfg)
and values set by build scripts and extra flags passed to rustc (such as
those defined in RUSTFLAGS). Some examples of what these variables are:

	CARGO_CFG_FEATURE --- Each activated feature of the package being built.

	CARGO_CFG_UNIX --- Set on unix-like platforms.

	CARGO_CFG_WINDOWS --- Set on windows-like platforms.

	CARGO_CFG_TARGET_FAMILY=unix,wasm --- The target family.

	CARGO_CFG_TARGET_OS=macos --- The target operating system.

	CARGO_CFG_TARGET_ARCH=x86_64 --- The CPU target architecture.

	CARGO_CFG_TARGET_VENDOR=apple --- The target vendor.

	CARGO_CFG_TARGET_ENV=gnu --- The target environment ABI.

	CARGO_CFG_TARGET_ABI=eabihf --- The target ABI.

	CARGO_CFG_TARGET_POINTER_WIDTH=64 --- The CPU pointer width.

	CARGO_CFG_TARGET_ENDIAN=little --- The CPU target endianness.

	CARGO_CFG_TARGET_FEATURE=mmx,sse --- List of CPU target features enabled.

Note that different target triples have different sets of cfg values,
hence variables present in one target triple might not be available in the other.

Some cfg values like debug_assertions and test are not available.

	OUT_DIR --- the folder in which all output and intermediate artifacts should
be placed. This folder is inside the build directory for the package being built,
and it is unique for the package in question.

	TARGET --- the target triple that is being compiled for. Native code should be
compiled for this triple. See the Target Triple description for more information.

	HOST --- the host triple of the Rust compiler.

	NUM_JOBS --- the parallelism specified as the top-level parallelism. This can
be useful to pass a -j parameter to a system like make. Note that care
should be taken when interpreting this environment variable. For historical
purposes this is still provided but recent versions of Cargo, for example, do
not need to run make -j, and instead can set the MAKEFLAGS env var to the
content of CARGO_MAKEFLAGS to activate the use of Cargo's GNU Make compatible
jobserver for sub-make invocations.

	OPT_LEVEL, DEBUG --- values of the corresponding variables for the profile currently being built.

	PROFILE --- release for release builds, debug for other builds. This is
determined based on if the profile inherits from the dev or
release profile. Using this environment variable is not recommended.
Using other environment variables like OPT_LEVEL provide a more correct
view of the actual settings being used.

	DEP_<name>_<key> --- For more information about this set of environment variables,
see build script documentation about links.

	RUSTC, RUSTDOC --- the compiler and documentation generator that Cargo has
resolved to use, passed to the build script so it might use it as well.

	RUSTC_WRAPPER --- the rustc wrapper, if any, that Cargo is using. See build.rustc-wrapper.

	RUSTC_WORKSPACE_WRAPPER --- the rustc wrapper, if any, that Cargo is using
for workspace members. See build.rustc-workspace-wrapper.

	RUSTC_LINKER --- The path to the linker binary that Cargo has resolved to use
for the current target, if specified. The linker can be changed by editing
.cargo/config.toml; see the documentation about cargo configuration
for more information.

	CARGO_ENCODED_RUSTFLAGS --- extra flags that Cargo invokes rustc with,
separated by a 0x1f character (ASCII Unit Separator). See
build.rustflags. Note that since Rust 1.55, RUSTFLAGS is removed from
the environment; scripts should use CARGO_ENCODED_RUSTFLAGS instead.

	CARGO_PKG_<var> --- The package information variables, with the same names and values as are provided during crate building.

Environment variables Cargo sets for 3rd party subcommands

Cargo exposes this environment variable to 3rd party subcommands
(ie. programs named cargo-foobar placed in $PATH):

	CARGO --- Path to the cargo binary performing the build.

	CARGO_MAKEFLAGS --- Contains parameters needed for Cargo's jobserver
implementation to parallelize subprocesses.
This is set only when Cargo detects the existence of a jobserver.

For extended information about your environment you may run cargo metadata.

 Build Scripts

 Build Scripts

Some packages need to compile third-party non-Rust code, for example C
libraries. Other packages need to link to C libraries which can either be
located on the system or possibly need to be built from source. Others still
need facilities for functionality such as code generation before building (think
parser generators).

Cargo does not aim to replace other tools that are well-optimized for these
tasks, but it does integrate with them with custom build scripts. Placing a
file named build.rs in the root of a package will cause Cargo to compile
that script and execute it just before building the package.

// Example custom build script.
fn main() {
 // Tell Cargo that if the given file changes, to rerun this build script.
 println!("cargo::rerun-if-changed=src/hello.c");
 // Use the `cc` crate to build a C file and statically link it.
 cc::Build::new()
 .file("src/hello.c")
 .compile("hello");
}

Some example use cases of build scripts are:

	Building a bundled C library.

	Finding a C library on the host system.

	Generating a Rust module from a specification.

	Performing any platform-specific configuration needed for the crate.

The sections below describe how build scripts work, and the examples
chapter shows a variety of examples on how to write
scripts.

Note: The package.build manifest key can be
used to change the name of the build script, or disable it entirely.

Life Cycle of a Build Script

Just before a package is built, Cargo will compile a build script into an
executable (if it has not already been built). It will then run the script,
which may perform any number of tasks. The script may communicate with Cargo
by printing specially formatted commands prefixed with cargo:: to stdout.

The build script will be rebuilt if any of its source files or dependencies
change.

By default, Cargo will re-run the build script if any of the files in the
package changes. Typically it is best to use the rerun-if commands,
described in the change detection section below, to
narrow the focus of what triggers a build script to run again.

Once the build script successfully finishes executing, the rest of the package
will be compiled. Scripts should exit with a non-zero exit code to halt the
build if there is an error, in which case the build script's output will be
displayed on the terminal.

Inputs to the Build Script

When the build script is run, there are a number of inputs to the build script,
all passed in the form of environment variables.

In addition to environment variables, the build script’s current directory is
the source directory of the build script’s package.

Outputs of the Build Script

Build scripts may save any output files or intermediate artifacts in the
directory specified in the OUT_DIR environment variable. Scripts
should not modify any files outside of that directory.

Build scripts communicate with Cargo by printing to stdout. Cargo will
interpret each line that starts with cargo:: as an instruction that will
influence compilation of the package. All other lines are ignored.

The order of cargo:: instructions printed by the build script may
affect the order of arguments that cargo passes to rustc. In turn, the
order of arguments passed to rustc may affect the order of arguments passed
to the linker. Therefore, you will want to pay attention to the order of the
build script's instructions. For example, if object foo needs to link against
library bar, you may want to make sure that library bar's
cargo::rustc-link-lib instruction appears after
instructions to link object foo.

The output of the script is hidden from the terminal during normal
compilation. If you would like to see the output directly in your terminal,
invoke Cargo as "very verbose" with the -vv flag. This only happens when the
build script is run. If Cargo determines nothing has changed, it will not
re-run the script, see change detection below for more.

All the lines printed to stdout by a build script are written to a file like
target/debug/build/<pkg>/output (the precise location may depend on your
configuration). The stderr output is also saved in that same directory.

The following is a summary of the instructions that Cargo recognizes, with each
one detailed below.

	cargo::rerun-if-changed=PATH --- Tells Cargo when to
re-run the script.

	cargo::rerun-if-env-changed=VAR --- Tells Cargo when
to re-run the script.

	cargo::rustc-link-arg=FLAG --- Passes custom flags to a
linker for benchmarks, binaries, cdylib crates, examples, and tests.

	cargo::rustc-link-arg-cdylib=FLAG --- Passes custom
flags to a linker for cdylib crates.

	cargo::rustc-link-arg-bin=BIN=FLAG --- Passes custom
flags to a linker for the binary BIN.

	cargo::rustc-link-arg-bins=FLAG --- Passes custom
flags to a linker for binaries.

	cargo::rustc-link-arg-tests=FLAG --- Passes custom
flags to a linker for tests.

	cargo::rustc-link-arg-examples=FLAG --- Passes custom
flags to a linker for examples.

	cargo::rustc-link-arg-benches=FLAG --- Passes custom
flags to a linker for benchmarks.

	cargo::rustc-link-lib=LIB --- Adds a library to
link.

	cargo::rustc-link-search=[KIND=]PATH --- Adds to the
library search path.

	cargo::rustc-flags=FLAGS --- Passes certain flags to the
compiler.

	cargo::rustc-cfg=KEY[="VALUE"] --- Enables compile-time cfg
settings.

	cargo::rustc-check-cfg=CHECK_CFG -- Register custom cfgs as
expected for compile-time checking of configs.

	cargo::rustc-env=VAR=VALUE --- Sets an environment variable.

	cargo::error=MESSAGE --- Displays an error on the terminal.

	cargo::warning=MESSAGE --- Displays a warning on the
terminal.

	cargo::metadata=KEY=VALUE --- Metadata, used by links
scripts.

MSRV: 1.77 is required for cargo::KEY=VALUE syntax.
To support older versions, use the cargo:KEY=VALUE syntax.

cargo::rustc-link-arg=FLAG {#rustc-link-arg}

The rustc-link-arg instruction tells Cargo to pass the -C link-arg=FLAG
option to the compiler, but only when building supported targets
(benchmarks, binaries, cdylib crates, examples, and tests). Its usage is
highly platform specific. It is useful to set the shared library version or
linker script.

cargo::rustc-link-arg-cdylib=FLAG {#rustc-cdylib-link-arg}

The rustc-link-arg-cdylib instruction tells Cargo to pass the -C link-arg=FLAG option to the compiler, but only when building a
cdylib library target. Its usage is highly platform specific. It is useful
to set the shared library version or the runtime-path.

For historical reasons, the cargo::rustc-cdylib-link-arg form is an alias
for cargo::rustc-link-arg-cdylib, and has the same meaning.

cargo::rustc-link-arg-bin=BIN=FLAG {#rustc-link-arg-bin}

The rustc-link-arg-bin instruction tells Cargo to pass the -C link-arg=FLAG option to the compiler, but only when building
the binary target with name BIN. Its usage is highly platform specific. It is useful
to set a linker script or other linker options.

cargo::rustc-link-arg-bins=FLAG {#rustc-link-arg-bins}

The rustc-link-arg-bins instruction tells Cargo to pass the -C link-arg=FLAG option to the compiler, but only when building a
binary target. Its usage is highly platform specific. It is useful
to set a linker script or other linker options.

cargo::rustc-link-arg-tests=FLAG {#rustc-link-arg-tests}

The rustc-link-arg-tests instruction tells Cargo to pass the -C link-arg=FLAG option to the compiler, but only when building a
tests target.

cargo::rustc-link-arg-examples=FLAG {#rustc-link-arg-examples}

The rustc-link-arg-examples instruction tells Cargo to pass the -C link-arg=FLAG option to the compiler, but only when building an examples
target.

cargo::rustc-link-arg-benches=FLAG {#rustc-link-arg-benches}

The rustc-link-arg-benches instruction tells Cargo to pass the -C link-arg=FLAG option to the compiler, but only when building a benchmark
target.

cargo::rustc-link-lib=LIB {#rustc-link-lib}

The rustc-link-lib instruction tells Cargo to link the given library using
the compiler's -l flag. This is typically used to link a
native library using FFI.

The LIB string is passed directly to rustc, so it supports any syntax that
-l does.

Currently the fully supported syntax for LIB is [KIND[:MODIFIERS]=]NAME[:RENAME].

The -l flag is only passed to the library target of the package, unless
there is no library target, in which case it is passed to all targets. This is
done because all other targets have an implicit dependency on the library
target, and the given library to link should only be included once. This means
that if a package has both a library and a binary target, the library has
access to the symbols from the given lib, and the binary should access them
through the library target's public API.

The optional KIND may be one of dylib, static, or framework. See the
rustc book for more detail.

cargo::rustc-link-search=[KIND=]PATH {#rustc-link-search}

The rustc-link-search instruction tells Cargo to pass the -L
flag to the compiler to add a directory to the library search
path.

The optional KIND may be one of dependency, crate, native,
framework, or all. See the rustc book for more detail.

These paths are also added to the dynamic library search path environment
variable if they are within
the OUT_DIR. Depending on this behavior is discouraged since this makes it
difficult to use the resulting binary. In general, it is best to avoid
creating dynamic libraries in a build script (using existing system libraries
is fine).

cargo::rustc-flags=FLAGS {#rustc-flags}

The rustc-flags instruction tells Cargo to pass the given space-separated
flags to the compiler. This only allows the -l and -L flags, and is
equivalent to using rustc-link-lib and
rustc-link-search.

cargo::rustc-cfg=KEY[="VALUE"] {#rustc-cfg}

The rustc-cfg instruction tells Cargo to pass the given value to the
--cfg flag to the compiler. This may be used for compile-time
detection of features to enable conditional compilation. Custom cfgs
must either be expected using the cargo::rustc-check-cfg
instruction or usage will need to allow the unexpected_cfgs
lint to avoid unexpected cfgs warnings.

Note that this does not affect Cargo's dependency resolution. This cannot be
used to enable an optional dependency, or enable other Cargo features.

Be aware that Cargo features use the form feature="foo". cfg values
passed with this flag are not restricted to that form, and may provide just a
single identifier, or any arbitrary key/value pair. For example, emitting
cargo::rustc-cfg=abc will then allow code to use #[cfg(abc)] (note the lack
of feature=). Or an arbitrary key/value pair may be used with an = symbol
like cargo::rustc-cfg=my_component="foo". The key should be a Rust
identifier, the value should be a string.

cargo::rustc-check-cfg=CHECK_CFG {#rustc-check-cfg}

Add to the list of expected config names and values that is used when checking
the reachable cfg expressions with the unexpected_cfgs lint.

The syntax of CHECK_CFG mirrors the rustc --check-cfg flag, see
Checking conditional configurations for more details.

The instruction can be used like this:

// build.rs
println!("cargo::rustc-check-cfg=cfg(foo, values(\"bar\"))");
if foo_bar_condition {
 println!("cargo::rustc-cfg=foo=\"bar\"");
}

Note that all possible cfgs should be defined, regardless of which cfgs are
currently enabled. This includes all possible values of a given cfg name.

It is recommended to group the cargo::rustc-check-cfg and
cargo::rustc-cfg instructions as closely as possible in order to
avoid typos, missing check-cfg, stale cfgs...

See also the
conditional compilation example.

MSRV: Respected as of 1.80

cargo::rustc-env=VAR=VALUE {#rustc-env}

The rustc-env instruction tells Cargo to set the given environment variable
when compiling the package. The value can be then retrieved by the env!
macro in the compiled crate. This is useful for embedding
additional metadata in crate's code, such as the hash of git HEAD or the
unique identifier of a continuous integration server.

See also the environment variables automatically included by
Cargo.

Note: These environment variables are also set when running an
executable with cargo run or cargo test. However, this usage is
discouraged since it ties the executable to Cargo's execution environment.
Normally, these environment variables should only be checked at compile-time
with the env! macro.

cargo::error=MESSAGE {#cargo-error}

The error instruction tells Cargo to display an error after the build script
has finished running, and then fail the build.

Note: Build script libraries should carefully consider if they want to
use cargo::error versus returning a Result. It may be better to return
a Result, and allow the caller to decide if the error is fatal or not.
The caller can then decide whether or not to display the Err variant
using cargo::error.

MSRV: Respected as of 1.84

cargo::warning=MESSAGE {#cargo-warning}

The warning instruction tells Cargo to display a warning after the build
script has finished running. Warnings are only shown for path dependencies
(that is, those you're working on locally), so for example warnings printed
out in crates.io crates are not emitted by default, unless the build fails.
The -vv "very verbose" flag may be used to have Cargo display warnings for
all crates.

Build Dependencies

Build scripts are also allowed to have dependencies on other Cargo-based crates.
Dependencies are declared through the build-dependencies section of the
manifest.

[build-dependencies]
cc = "1.0.46"

The build script does not have access to the dependencies listed in the
dependencies or dev-dependencies section (they’re not built yet!). Also,
build dependencies are not available to the package itself unless also
explicitly added in the [dependencies] table.

It is recommended to carefully consider each dependency you add, weighing
against the impact on compile time, licensing, maintenance, etc. Cargo will
attempt to reuse a dependency if it is shared between build dependencies and
normal dependencies. However, this is not always possible, for example when
cross-compiling, so keep that in consideration of the impact on compile time.

Change Detection

When rebuilding a package, Cargo does not necessarily know if the build script
needs to be run again. By default, it takes a conservative approach of always
re-running the build script if any file within the package is changed (or the
list of files controlled by the exclude and include fields). For most
cases, this is not a good choice, so it is recommended that every build script
emit at least one of the rerun-if instructions (described below). If these
are emitted, then Cargo will only re-run the script if the given value has
changed. If Cargo is re-running the build scripts of your own crate or a
dependency and you don't know why, see "Why is Cargo rebuilding my code?" in the
FAQ.

cargo::rerun-if-changed=PATH {#rerun-if-changed}

The rerun-if-changed instruction tells Cargo to re-run the build script if
the file at the given path has changed. Currently, Cargo only uses the
filesystem last-modified "mtime" timestamp to determine if the file has
changed. It compares against an internal cached timestamp of when the build
script last ran.

If the path points to a directory, it will scan the entire directory for
any modifications.

If the build script inherently does not need to re-run under any circumstance,
then emitting cargo::rerun-if-changed=build.rs is a simple way to prevent it
from being re-run (otherwise, the default if no rerun-if instructions are
emitted is to scan the entire package directory for changes). Cargo
automatically handles whether or not the script itself needs to be recompiled,
and of course the script will be re-run after it has been recompiled.
Otherwise, specifying build.rs is redundant and unnecessary.

cargo::rerun-if-env-changed=NAME {#rerun-if-env-changed}

The rerun-if-env-changed instruction tells Cargo to re-run the build script
if the value of an environment variable of the given name has changed.

Note that the environment variables here are intended for global environment
variables like CC and such, it is not possible to use this for environment
variables like TARGET that Cargo sets for build scripts. The
environment variables in use are those received by cargo invocations, not
those received by the executable of the build script.

As of 1.46, using env! and option_env! in
source code will automatically detect changes and trigger rebuilds.
rerun-if-env-changed is no longer needed for variables already referenced by
these macros.

The links Manifest Key

The package.links key may be set in the Cargo.toml manifest to declare
that the package links with the given native library. The purpose of this
manifest key is to give Cargo an understanding about the set of native
dependencies that a package has, as well as providing a principled system of
passing metadata between package build scripts.

[package]
...
links = "foo"

This manifest states that the package links to the libfoo native library.
When using the links key, the package must have a build script, and the
build script should use the rustc-link-lib instruction to
link the library.

Primarily, Cargo requires that there is at most one package per links value.
In other words, it is forbidden to have two packages link to the same native
library. This helps prevent duplicate symbols between crates. Note, however,
that there are conventions in place to alleviate this.

Build scripts can generate an arbitrary set of metadata in the form of
key-value pairs. This metadata is set with the cargo::metadata=KEY=VALUE
instruction.

The metadata is passed to the build scripts of dependent packages. For
example, if the package foo depends on bar, which links baz, then if
bar generates key=value as part of its build script metadata, then the
build script of foo will have the environment variables DEP_BAZ_KEY=value
(note that the value of the links key is used).
See the "Using another sys crate" for an example of
how this can be used.

Note that metadata is only passed to immediate dependents, not transitive
dependents.

MSRV: 1.77 is required for cargo::metadata=KEY=VALUE.
To support older versions, use cargo:KEY=VALUE (unsupported directives are assumed to be metadata keys).

*-sys Packages

Some Cargo packages that link to system libraries have a naming convention of
having a -sys suffix. Any package named foo-sys should provide two major
pieces of functionality:

	The library crate should link to the native library libfoo. This will often
probe the current system for libfoo before resorting to building from
source.

	The library crate should provide declarations for types and functions in
libfoo, but not higher-level abstractions.

The set of *-sys packages provides a common set of dependencies for linking
to native libraries. There are a number of benefits earned from having this
convention of native-library-related packages:

	Common dependencies on foo-sys alleviates the rule about one package per
value of links.

	Other -sys packages can take advantage of the DEP_NAME_KEY=value
environment variables to better integrate with other packages. See the
"Using another sys crate" example.

	A common dependency allows centralizing logic on discovering libfoo itself
(or building it from source).

	These dependencies are easily overridable.

It is common to have a companion package without the -sys suffix that
provides a safe, high-level abstractions on top of the sys package. For
example, the git2 crate provides a high-level interface to the
libgit2-sys crate.

Overriding Build Scripts

If a manifest contains a links key, then Cargo supports overriding the build
script specified with a custom library. The purpose of this functionality is to
prevent running the build script in question altogether and instead supply the
metadata ahead of time.

To override a build script, place the following configuration in any acceptable config.toml file.

[target.x86_64-unknown-linux-gnu.foo]
rustc-link-lib = ["foo"]
rustc-link-search = ["/path/to/foo"]
rustc-flags = "-L /some/path"
rustc-cfg = ['key="value"']
rustc-env = {key = "value"}
rustc-cdylib-link-arg = ["…"]
metadata_key1 = "value"
metadata_key2 = "value"

With this configuration, if a package declares that it links to foo then the
build script will not be compiled or run, and the metadata specified will
be used instead.

The warning, rerun-if-changed, and rerun-if-env-changed keys should not
be used and will be ignored.

Jobserver

Cargo and rustc use the jobserver protocol, developed for GNU make, to
coordinate concurrency across processes. It is essentially a semaphore that
controls the number of jobs running concurrently. The concurrency may be set
with the --jobs flag, which defaults to the number of logical CPUs.

Each build script inherits one job slot from Cargo, and should endeavor to
only use one CPU while it runs. If the script wants to use more CPUs in
parallel, it should use the jobserver crate to coordinate with Cargo.

As an example, the cc crate may enable the optional parallel feature
which will use the jobserver protocol to attempt to build multiple C files
at the same time.

 Build Script Examples

 Build Script Examples

The following sections illustrate some examples of writing build scripts.

Some common build script functionality can be found via crates on crates.io.
Check out the build-dependencies
keyword to see what is
available. The following is a sample of some popular crates1:

	bindgen --- Automatically generate Rust
FFI bindings to C libraries.

	cc --- Compiles C/C++/assembly.

	pkg-config --- Detect system
libraries using the pkg-config utility.

	cmake --- Runs the cmake build tool to build a native library.

	autocfg,
rustc_version,
version_check --- These crates
provide ways to implement conditional compilation based on the current
rustc such as the version of the compiler.

1
This list is not an endorsement. Evaluate your dependencies to see which
is right for your project.

Code generation

Some Cargo packages need to have code generated just before they are compiled
for various reasons. Here we’ll walk through a simple example which generates a
library call as part of the build script.

First, let’s take a look at the directory structure of this package:

.
├── Cargo.toml
├── build.rs
└── src
 └── main.rs

1 directory, 3 files

Here we can see that we have a build.rs build script and our binary in
main.rs. This package has a basic manifest:

Cargo.toml

[package]
name = "hello-from-generated-code"
version = "0.1.0"
edition = "2024"

Let’s see what’s inside the build script:

// build.rs

use std::env;
use std::fs;
use std::path::Path;

fn main() {
 let out_dir = env::var_os("OUT_DIR").unwrap();
 let dest_path = Path::new(&out_dir).join("hello.rs");
 fs::write(
 &dest_path,
 "pub fn message() -> &'static str {
 \"Hello, World!\"
 }
 "
).unwrap();
 println!("cargo::rerun-if-changed=build.rs");
}

There’s a couple of points of note here:

	The script uses the OUT_DIR environment variable to discover where the
output files should be located. It can use the process’ current working
directory to find where the input files should be located, but in this case we
don’t have any input files.

	In general, build scripts should not modify any files outside of OUT_DIR.
It may seem fine on the first blush, but it does cause problems when you use
such crate as a dependency, because there's an implicit invariant that
sources in .cargo/registry should be immutable. cargo won't allow such
scripts when packaging.

	This script is relatively simple as it just writes out a small generated file.
One could imagine that other more complex operations could take place such as
generating a Rust module from a C header file or another language definition,
for example.

	The rerun-if-changed instruction
tells Cargo that the build script only needs to re-run if the build script
itself changes. Without this line, Cargo will automatically run the build
script if any file in the package changes. If your code generation uses some
input files, this is where you would print a list of each of those files.

Next, let’s peek at the library itself:

// src/main.rs

include!(concat!(env!("OUT_DIR"), "/hello.rs"));

fn main() {
 println!("{}", message());
}

This is where the real magic happens. The library is using the rustc-defined
include! macro in combination with the
concat! and env! macros to include the
generated file (hello.rs) into the crate’s compilation.

Using the structure shown here, crates can include any number of generated files
from the build script itself.

Building a native library

Sometimes it’s necessary to build some native C or C++ code as part of a
package. This is another excellent use case of leveraging the build script to
build a native library before the Rust crate itself. As an example, we’ll create
a Rust library which calls into C to print “Hello, World!”.

Like above, let’s first take a look at the package layout:

.
├── Cargo.toml
├── build.rs
└── src
 ├── hello.c
 └── main.rs

1 directory, 4 files

Pretty similar to before! Next, the manifest:

Cargo.toml

[package]
name = "hello-world-from-c"
version = "0.1.0"
edition = "2024"

For now we’re not going to use any build dependencies, so let’s take a look at
the build script now:

// build.rs

use std::process::Command;
use std::env;
use std::path::Path;

fn main() {
 let out_dir = env::var("OUT_DIR").unwrap();

 // Note that there are a number of downsides to this approach, the comments
 // below detail how to improve the portability of these commands.
 Command::new("gcc").args(&["src/hello.c", "-c", "-fPIC", "-o"])
 .arg(&format!("{}/hello.o", out_dir))
 .status().unwrap();
 Command::new("ar").args(&["crus", "libhello.a", "hello.o"])
 .current_dir(&Path::new(&out_dir))
 .status().unwrap();

 println!("cargo::rustc-link-search=native={}", out_dir);
 println!("cargo::rustc-link-lib=static=hello");
 println!("cargo::rerun-if-changed=src/hello.c");
}

This build script starts out by compiling our C file into an object file (by
invoking gcc) and then converting this object file into a static library (by
invoking ar). The final step is feedback to Cargo itself to say that our
output was in out_dir and the compiler should link the crate to libhello.a
statically via the -l static=hello flag.

Note that there are a number of drawbacks to this hard-coded approach:

	The gcc command itself is not portable across platforms. For example it’s
unlikely that Windows platforms have gcc, and not even all Unix platforms
may have gcc. The ar command is also in a similar situation.

	These commands do not take cross-compilation into account. If we’re cross
compiling for a platform such as Android it’s unlikely that gcc will produce
an ARM executable.

Not to fear, though, this is where a build-dependencies entry would help!
The Cargo ecosystem has a number of packages to make this sort of task much
easier, portable, and standardized. Let's try the cc
crate from crates.io. First, add it to the
build-dependencies in Cargo.toml:

[build-dependencies]
cc = "1.0"

And rewrite the build script to use this crate:

// build.rs

fn main() {
 cc::Build::new()
 .file("src/hello.c")
 .compile("hello");
 println!("cargo::rerun-if-changed=src/hello.c");
}

The cc crate abstracts a range of build script requirements for C code:

	It invokes the appropriate compiler (MSVC for windows, gcc for MinGW, cc
for Unix platforms, etc.).

	It takes the TARGET variable into account by passing appropriate flags to
the compiler being used.

	Other environment variables, such as OPT_LEVEL, DEBUG, etc., are all
handled automatically.

	The stdout output and OUT_DIR locations are also handled by the cc
library.

Here we can start to see some of the major benefits of farming as much
functionality as possible out to common build dependencies rather than
duplicating logic across all build scripts!

Back to the case study though, let’s take a quick look at the contents of the
src directory:

// src/hello.c

#include <stdio.h>

void hello() {
 printf("Hello, World!\n");
}

// src/main.rs

// Note the lack of the `#[link]` attribute. We’re delegating the responsibility
// of selecting what to link over to the build script rather than hard-coding
// it in the source file.
unsafe extern { fn hello(); }

fn main() {
 unsafe { hello(); }
}

And there we go! This should complete our example of building some C code from a
Cargo package using the build script itself. This also shows why using a build
dependency can be crucial in many situations and even much more concise!

We’ve also seen a brief example of how a build script can use a crate as a
dependency purely for the build process and not for the crate itself at runtime.

Linking to system libraries

This example demonstrates how to link a system library and how the build
script is used to support this use case.

Quite frequently a Rust crate wants to link to a native library provided on
the system to bind its functionality or just use it as part of an
implementation detail. This is quite a nuanced problem when it comes to
performing this in a platform-agnostic fashion. It is best, if possible, to
farm out as much of this as possible to make this as easy as possible for
consumers.

For this example, we will be creating a binding to the system's zlib library.
This is a library that is commonly found on most Unix-like systems that
provides data compression. This is already wrapped up in the libz-sys
crate, but for this example, we'll do an extremely simplified version. Check
out the source code for the full example.

To make it easy to find the location of the library, we will use the
pkg-config crate. This crate uses the system's pkg-config utility to
discover information about a library. It will automatically tell Cargo what is
needed to link the library. This will likely only work on Unix-like systems
with pkg-config installed. Let's start by setting up the manifest:

Cargo.toml

[package]
name = "libz-sys"
version = "0.1.0"
edition = "2024"
links = "z"

[build-dependencies]
pkg-config = "0.3.16"

Take note that we included the links key in the package table. This tells
Cargo that we are linking to the libz library. See "Using another sys
crate" for an example that will leverage this.

The build script is fairly simple:

// build.rs

fn main() {
 pkg_config::Config::new().probe("zlib").unwrap();
 println!("cargo::rerun-if-changed=build.rs");
}

Let's round out the example with a basic FFI binding:

// src/lib.rs

use std::os::raw::{c_uint, c_ulong};

unsafe extern "C" {
 pub fn crc32(crc: c_ulong, buf: *const u8, len: c_uint) -> c_ulong;
}

#[test]
fn test_crc32() {
 let s = "hello";
 unsafe {
 assert_eq!(crc32(0, s.as_ptr(), s.len() as c_uint), 0x3610a686);
 }
}

Run cargo build -vv to see the output from the build script. On a system
with libz already installed, it may look something like this:

[libz-sys 0.1.0] cargo::rustc-link-search=native=/usr/lib
[libz-sys 0.1.0] cargo::rustc-link-lib=z
[libz-sys 0.1.0] cargo::rerun-if-changed=build.rs

Nice! pkg-config did all the work of finding the library and telling Cargo
where it is.

It is not unusual for packages to include the source for the library, and
build it statically if it is not found on the system, or if a feature or
environment variable is set. For example, the real libz-sys crate checks the
environment variable LIBZ_SYS_STATIC or the static feature to build it
from source instead of using the system library. Check out the
source for a more complete example.

Using another sys crate

When using the links key, crates may set metadata that can be read by other
crates that depend on it. This provides a mechanism to communicate information
between crates. In this example, we'll be creating a C library that makes use
of zlib from the real libz-sys crate.

If you have a C library that depends on zlib, you can leverage the libz-sys
crate to automatically find it or build it. This is great for cross-platform
support, such as Windows where zlib is not usually installed. libz-sys sets
the include
metadata
to tell other packages where to find the header files for zlib. Our build
script can read that metadata with the DEP_Z_INCLUDE environment variable.
Here's an example:

Cargo.toml

[package]
name = "zuser"
version = "0.1.0"
edition = "2024"

[dependencies]
libz-sys = "1.0.25"

[build-dependencies]
cc = "1.0.46"

Here we have included libz-sys which will ensure that there is only one
libz used in the final library, and give us access to it from our build
script:

// build.rs

fn main() {
 let mut cfg = cc::Build::new();
 cfg.file("src/zuser.c");
 if let Some(include) = std::env::var_os("DEP_Z_INCLUDE") {
 cfg.include(include);
 }
 cfg.compile("zuser");
 println!("cargo::rerun-if-changed=src/zuser.c");
}

With libz-sys doing all the heavy lifting, the C source code may now include
the zlib header, and it should find the header, even on systems where it isn't
already installed.

// src/zuser.c

#include "zlib.h"

// … rest of code that makes use of zlib.

Conditional compilation

A build script may emit rustc-cfg instructions which can enable conditions
that can be checked at compile time. In this example, we'll take a look at how
the openssl crate uses this to support multiple versions of the OpenSSL
library.

The openssl-sys crate implements building and linking the OpenSSL library.
It supports multiple different implementations (like LibreSSL) and multiple
versions. It makes use of the links key so that it may pass information to
other build scripts. One of the things it passes is the version_number key,
which is the version of OpenSSL that was detected. The code in the build
script looks something like
this:

println!("cargo::metadata=version_number={openssl_version:x}");

This instruction causes the DEP_OPENSSL_VERSION_NUMBER environment variable
to be set in any crates that directly depend on openssl-sys.

The openssl crate, which provides the higher-level interface, specifies
openssl-sys as a dependency. The openssl build script can read the
version information generated by the openssl-sys build script with the
DEP_OPENSSL_VERSION_NUMBER environment variable. It uses this to generate
some cfg
values:

// (portion of build.rs)

println!("cargo::rustc-check-cfg=cfg(ossl101,ossl102)");
println!("cargo::rustc-check-cfg=cfg(ossl110,ossl110g,ossl111)");

if let Ok(version) = env::var("DEP_OPENSSL_VERSION_NUMBER") {
 let version = u64::from_str_radix(&version, 16).unwrap();

 if version >= 0x1_00_01_00_0 {
 println!("cargo::rustc-cfg=ossl101");
 }
 if version >= 0x1_00_02_00_0 {
 println!("cargo::rustc-cfg=ossl102");
 }
 if version >= 0x1_01_00_00_0 {
 println!("cargo::rustc-cfg=ossl110");
 }
 if version >= 0x1_01_00_07_0 {
 println!("cargo::rustc-cfg=ossl110g");
 }
 if version >= 0x1_01_01_00_0 {
 println!("cargo::rustc-cfg=ossl111");
 }
}

These cfg values can then be used with the cfg attribute or the cfg
macro to conditionally include code. For example, SHA3 support was added in
OpenSSL 1.1.1, so it is conditionally
excluded
for older versions:

// (portion of openssl crate)

#[cfg(ossl111)]
pub fn sha3_224() -> MessageDigest {
 unsafe { MessageDigest(ffi::EVP_sha3_224()) }
}

Of course, one should be careful when using this, since it makes the resulting
binary even more dependent on the build environment. In this example, if the
binary is distributed to another system, it may not have the exact same shared
libraries, which could cause problems.

 Build Cache

 Build cache

Cargo stores the output of a build into the "target" directory. By default,
this is the directory named target in the root of your
workspace. To change the location, you can set the
CARGO_TARGET_DIR environment variable, the build.target-dir config
value, or the --target-dir command-line flag.

The directory layout depends on whether or not you are using the --target
flag to build for a specific platform. If --target is not specified, Cargo
runs in a mode where it builds for the host architecture. The output goes into
the root of the target directory, with each profile stored in a separate
subdirectory:

	Directory	Description

	target/debug/	Contains output for the dev profile.

	target/release/	Contains output for the release profile (with the --release option).

	target/foo/	Contains build output for the foo profile (with the --profile=foo option).

For historical reasons, the dev and test profiles are stored in the
debug directory, and the release and bench profiles are stored in the
release directory. User-defined profiles are stored in a directory with the
same name as the profile.

When building for another target with --target, the output is placed in a
directory with the name of the target:

	Directory	Example

	target/<triple>/debug/	target/thumbv7em-none-eabihf/debug/

	target/<triple>/release/	target/thumbv7em-none-eabihf/release/

Note: When not using --target, this has a consequence that Cargo will
share your dependencies with build scripts and proc macros. RUSTFLAGS
will be shared with every rustc invocation. With the --target flag,
build scripts and proc macros are built separately (for the host
architecture), and do not share RUSTFLAGS.

Within the profile directory (such as debug or release), artifacts are
placed into the following directories:

	Directory	Description

	target/debug/	Contains the output of the package being built (the binary executables and library targets).

	target/debug/examples/	Contains example targets.

Some commands place their output in dedicated directories in the top level of
the target directory:

	Directory	Description

	target/doc/	Contains rustdoc documentation (cargo doc).

	target/package/	Contains the output of the cargo package and cargo publish commands.

Cargo also creates several other directories and files needed for the build
process. Their layout is considered internal to Cargo, and is subject to
change. Some of these directories are:

	Directory	Description

	target/debug/deps/	Dependencies and other artifacts.

	target/debug/incremental/	rustc incremental output, a cache used to speed up subsequent builds.

	target/debug/build/	Output from build scripts.

Dep-info files

Next to each compiled artifact is a file called a "dep info" file with a .d
suffix. This file is a Makefile-like syntax that indicates all of the file
dependencies required to rebuild the artifact. These are intended to be used
with external build systems so that they can detect if Cargo needs to be
re-executed. The paths in the file are absolute by default. See the
build.dep-info-basedir config option to use relative paths.

Example dep-info file found in target/debug/foo.d
/path/to/myproj/target/debug/foo: /path/to/myproj/src/lib.rs /path/to/myproj/src/main.rs

Shared cache

A third party tool, sccache, can be used to share built dependencies across
different workspaces.

To setup sccache, install it with cargo install sccache and set
RUSTC_WRAPPER environment variable to sccache before invoking Cargo. If
you use bash, it makes sense to add export RUSTC_WRAPPER=sccache to
.bashrc. Alternatively, you can set build.rustc-wrapper in the Cargo
configuration. Refer to sccache documentation for more details.

 Package ID Specifications

 Package ID Specifications

Package ID specifications

Subcommands of Cargo frequently need to refer to a particular package within a
dependency graph for various operations like updating, cleaning, building, etc.
To solve this problem, Cargo supports Package ID Specifications. A specification
is a string which is used to uniquely refer to one package within a graph of
packages.

The specification may be fully qualified, such as
https://github.com/rust-lang/crates.io-index#regex@1.4.3 or it may be
abbreviated, such as regex. The abbreviated form may be used as long as it
uniquely identifies a single package in the dependency graph. If there is
ambiguity, additional qualifiers can be added to make it unique. For example,
if there are two versions of the regex package in the graph, then it can be
qualified with a version to make it unique, such as regex@1.4.3.

Specification grammar

The formal grammar for a Package Id Specification is:

spec := pkgname |
 [kind "+"] proto "://" hostname-and-path ["?" query] ["#" (pkgname | semver)]
query = ("branch" | "tag" | "rev") "=" ref
pkgname := name [("@" | ":") semver]
semver := digits ["." digits ["." digits ["-" prerelease] ["+" build]]]

kind = "registry" | "git" | "path"
proto := "http" | "git" | "file" | ...

Here, brackets indicate that the contents are optional.

The URL form can be used for git dependencies, or to differentiate packages
that come from different sources such as different registries.

Example specifications

The following are references to the regex package on crates.io:

	Spec	Name	Version

	regex	regex	*

	regex@1.4	regex	1.4.*

	regex@1.4.3	regex	1.4.3

	https://github.com/rust-lang/crates.io-index#regex	regex	*

	https://github.com/rust-lang/crates.io-index#regex@1.4.3	regex	1.4.3

	registry+https://github.com/rust-lang/crates.io-index#regex@1.4.3	regex	1.4.3

The following are some examples of specs for several different git dependencies:

	Spec	Name	Version

	https://github.com/rust-lang/cargo#0.52.0	cargo	0.52.0

	https://github.com/rust-lang/cargo#cargo-platform@0.1.2	cargo-platform	0.1.2

	ssh://git@github.com/rust-lang/regex.git#regex@1.4.3	regex	1.4.3

	git+ssh://git@github.com/rust-lang/regex.git#regex@1.4.3	regex	1.4.3

	git+ssh://git@github.com/rust-lang/regex.git?branch=dev#regex@1.4.3	regex	1.4.3

Local packages on the filesystem can use file:// URLs to reference them:

	Spec	Name	Version

	file:///path/to/my/project/foo	foo	*

	file:///path/to/my/project/foo#1.1.8	foo	1.1.8

	path+file:///path/to/my/project/foo#1.1.8	foo	1.1.8

Brevity of specifications

The goal of this is to enable both succinct and exhaustive syntaxes for
referring to packages in a dependency graph. Ambiguous references may refer to
one or more packages. Most commands generate an error if more than one package
could be referred to with the same specification.

 External Tools

 External tools

One of the goals of Cargo is simple integration with third-party tools, like
IDEs and other build systems. To make integration easier, Cargo has several
facilities:

	
a cargo metadata command, which outputs package structure and dependencies
information in JSON,

	
a --message-format flag, which outputs information about a particular build,
and

	
support for custom subcommands.

Information about package structure

You can use cargo metadata command to get information about package
structure and dependencies. See the cargo metadata documentation
for details on the format of the output.

The format is stable and versioned. When calling cargo metadata, you should
pass --format-version flag explicitly to avoid forward incompatibility
hazard.

If you are using Rust, the cargo_metadata crate can be used to parse the
output.

JSON messages

When passing --message-format=json, Cargo will output the following
information during the build:

	
compiler errors and warnings,

	
produced artifacts,

	
results of the build scripts (for example, native dependencies).

The output goes to stdout in the JSON object per line format. The reason field
distinguishes different kinds of messages.
The package_id field is a unique identifier for referring to the package, and
as the --package argument to many commands. The syntax grammar can be found in
chapter Package ID Specifications.

Note: --message-format=json only controls Cargo and Rustc's output.
This cannot control the output of other tools,
e.g. cargo run --message-format=json,
or arbitrary output from procedural macros.
A possible workaround in these situations is to only interpret a line as JSON if it starts with {.

The --message-format option can also take additional formatting values which
alter the way the JSON messages are computed and rendered. See the description
of the --message-format option in the build command documentation for more
details.

If you are using Rust, the cargo_metadata crate can be used to parse these
messages.

MSRV: 1.77 is required for package_id to be a Package ID Specification. Before that, it was opaque.

Compiler messages

The "compiler-message" message includes output from the compiler, such as
warnings and errors. See the rustc JSON chapter for
details on rustc's message format, which is embedded in the following
structure:

{
 /* The "reason" indicates the kind of message. */
 "reason": "compiler-message",
 /* The Package ID, a unique identifier for referring to the package. */
 "package_id": "file:///path/to/my-package#0.1.0",
 /* Absolute path to the package manifest. */
 "manifest_path": "/path/to/my-package/Cargo.toml",
 /* The Cargo target (lib, bin, example, etc.) that generated the message. */
 "target": {
 /* Array of target kinds.
 - lib targets list the `crate-type` values from the
 manifest such as "lib", "rlib", "dylib",
 "proc-macro", etc. (default ["lib"])
 - binary is ["bin"]
 - example is ["example"]
 - integration test is ["test"]
 - benchmark is ["bench"]
 - build script is ["custom-build"]
 */
 "kind": [
 "lib"
],
 /* Array of crate types.
 - lib and example libraries list the `crate-type` values
 from the manifest such as "lib", "rlib", "dylib",
 "proc-macro", etc. (default ["lib"])
 - all other target kinds are ["bin"]
 */
 "crate_types": [
 "lib"
],
 /* The name of the target.
 For lib targets, dashes will be replaced with underscores.
 */
 "name": "my_package",
 /* Absolute path to the root source file of the target. */
 "src_path": "/path/to/my-package/src/lib.rs",
 /* The Rust edition of the target.
 Defaults to the package edition.
 */
 "edition": "2018",
 /* Array of required features.
 This property is not included if no required features are set.
 */
 "required-features": ["feat1"],
 /* Whether the target should be documented by `cargo doc`. */
 "doc": true,
 /* Whether or not this target has doc tests enabled, and
 the target is compatible with doc testing.
 */
 "doctest": true
 /* Whether or not this target should be built and run with `--test`
 */
 "test": true
 },
 /* The message emitted by the compiler.

 See https://doc.rust-lang.org/rustc/json.html for details.
 */
 "message": {
 /* ... */
 }
}

Artifact messages

For every compilation step, a "compiler-artifact" message is emitted with the
following structure:

{
 /* The "reason" indicates the kind of message. */
 "reason": "compiler-artifact",
 /* The Package ID, a unique identifier for referring to the package. */
 "package_id": "file:///path/to/my-package#0.1.0",
 /* Absolute path to the package manifest. */
 "manifest_path": "/path/to/my-package/Cargo.toml",
 /* The Cargo target (lib, bin, example, etc.) that generated the artifacts.
 See the definition above for `compiler-message` for details.
 */
 "target": {
 "kind": [
 "lib"
],
 "crate_types": [
 "lib"
],
 "name": "my_package",
 "src_path": "/path/to/my-package/src/lib.rs",
 "edition": "2018",
 "doc": true,
 "doctest": true,
 "test": true
 },
 /* The profile indicates which compiler settings were used. */
 "profile": {
 /* The optimization level. */
 "opt_level": "0",
 /* The debug level, an integer of 0, 1, or 2, or a string
 "line-directives-only" or "line-tables-only". If `null`, it implies
 rustc's default of 0.
 */
 "debuginfo": 2,
 /* Whether or not debug assertions are enabled. */
 "debug_assertions": true,
 /* Whether or not overflow checks are enabled. */
 "overflow_checks": true,
 /* Whether or not the `--test` flag is used. */
 "test": false
 },
 /* Array of features enabled. */
 "features": ["feat1", "feat2"],
 /* Array of files generated by this step. */
 "filenames": [
 "/path/to/my-package/target/debug/libmy_package.rlib",
 "/path/to/my-package/target/debug/deps/libmy_package-be9f3faac0a26ef0.rmeta"
],
 /* A string of the path to the executable that was created, or null if
 this step did not generate an executable.
 */
 "executable": null,
 /* Whether or not this step was actually executed.
 When `true`, this means that the pre-existing artifacts were
 up-to-date, and `rustc` was not executed. When `false`, this means that
 `rustc` was run to generate the artifacts.
 */
 "fresh": true
}

Build script output

The "build-script-executed" message includes the parsed output of a build
script. Note that this is emitted even if the build script is not run; it will
display the previously cached value. More details about build script output
may be found in the chapter on build scripts.

{
 /* The "reason" indicates the kind of message. */
 "reason": "build-script-executed",
 /* The Package ID, a unique identifier for referring to the package. */
 "package_id": "file:///path/to/my-package#0.1.0",
 /* Array of libraries to link, as indicated by the `cargo::rustc-link-lib`
 instruction. Note that this may include a "KIND=" prefix in the string
 where KIND is the library kind.
 */
 "linked_libs": ["foo", "static=bar"],
 /* Array of paths to include in the library search path, as indicated by
 the `cargo::rustc-link-search` instruction. Note that this may include a
 "KIND=" prefix in the string where KIND is the library kind.
 */
 "linked_paths": ["/some/path", "native=/another/path"],
 /* Array of cfg values to enable, as indicated by the `cargo::rustc-cfg`
 instruction.
 */
 "cfgs": ["cfg1", "cfg2=\"string\""],
 /* Array of [KEY, VALUE] arrays of environment variables to set, as
 indicated by the `cargo::rustc-env` instruction.
 */
 "env": [
 ["SOME_KEY", "some value"],
 ["ANOTHER_KEY", "another value"]
],
 /* An absolute path which is used as a value of `OUT_DIR` environmental
 variable when compiling current package.
 */
 "out_dir": "/some/path/in/target/dir"
}

Build finished

The "build-finished" message is emitted at the end of the build.

{
 /* The "reason" indicates the kind of message. */
 "reason": "build-finished",
 /* Whether or not the build finished successfully. */
 "success": true,
}

This message can be helpful for tools to know when to stop reading JSON
messages. Commands such as cargo test or cargo run can produce additional
output after the build has finished. This message lets a tool know that Cargo
will not produce additional JSON messages, but there may be additional output
that may be generated afterwards (such as the output generated by the program
executed by cargo run).

Note: There is experimental nightly-only support for JSON output for tests,
so additional test-specific JSON messages may begin arriving after the
"build-finished" message if that is enabled.

Custom subcommands

Cargo is designed to be extensible with new subcommands without having to modify
Cargo itself. This is achieved by translating a cargo invocation of the form
cargo (?<command>[^]+) into an invocation of an external tool
cargo-${command}. The external tool must be present in one of the user's
$PATH directories.

Note: Cargo defaults to prioritizing external tools in $CARGO_HOME/bin
over $PATH. Users can override this precedence by adding $CARGO_HOME/bin
to $PATH.

When Cargo invokes a custom subcommand, the first argument to the subcommand
will be the filename of the custom subcommand, as usual. The second argument
will be the subcommand name itself. For example, the second argument would be
${command} when invoking cargo-${command}. Any additional arguments on the
command line will be forwarded unchanged.

Cargo can also display the help output of a custom subcommand with cargo help ${command}. Cargo assumes that the subcommand will print a help message if its
third argument is --help. So, cargo help ${command} would invoke
cargo-${command} ${command} --help.

Custom subcommands may use the CARGO environment variable to call back to
Cargo. Alternatively, it can link to cargo crate as a library, but this
approach has drawbacks:

	Cargo as a library is unstable: the API may change without deprecation

	versions of the linked Cargo library may be different from the Cargo binary

Instead, it is encouraged to use the CLI interface to drive Cargo. The cargo metadata command can be used to obtain information about the current project
(the cargo_metadata crate provides a Rust interface to this command).

 Registries

 Registries

Cargo installs crates and fetches dependencies from a "registry". The default
registry is crates.io. A registry contains an "index" which contains a
searchable list of available crates. A registry may also provide a web API to
support publishing new crates directly from Cargo.

Note: If you are interested in mirroring or vendoring an existing registry,
take a look at Source Replacement.

If you are implementing a registry server, see Running a Registry for more
details about the protocol between Cargo and a registry.

If you're using a registry that requires authentication, see Registry Authentication.
If you are implementing a credential provider, see Credential Provider Protocol
for details.

Using an Alternate Registry

To use a registry other than crates.io, the name and index URL of the
registry must be added to a .cargo/config.toml file. The registries
table has a key for each registry, for example:

[registries]
my-registry = { index = "https://my-intranet:8080/git/index" }

The index key should be a URL to a git repository with the registry's index or a
Cargo sparse registry URL with the sparse+ prefix.

A crate can then depend on a crate from another registry by specifying the
registry key and a value of the registry's name in that dependency's entry
in Cargo.toml:

Sample Cargo.toml
[package]
name = "my-project"
version = "0.1.0"
edition = "2024"

[dependencies]
other-crate = { version = "1.0", registry = "my-registry" }

As with most config values, the index may be specified with an environment
variable instead of a config file. For example, setting the following
environment variable will accomplish the same thing as defining a config file:

CARGO_REGISTRIES_MY_REGISTRY_INDEX=https://my-intranet:8080/git/index

Note: crates.io does not accept packages that depend on crates from other
registries.

Publishing to an Alternate Registry

If the registry supports web API access, then packages can be published
directly to the registry from Cargo. Several of Cargo's commands such as
cargo publish take a --registry command-line flag to indicate which
registry to use. For example, to publish the package in the current directory:

	
cargo login --registry=my-registry

This only needs to be done once. You must enter the secret API token
retrieved from the registry's website. Alternatively the token may be
passed directly to the publish command with the --token command-line
flag or an environment variable with the name of the registry such as
CARGO_REGISTRIES_MY_REGISTRY_TOKEN.

	
cargo publish --registry=my-registry

Instead of always passing the --registry command-line option, the default
registry may be set in .cargo/config.toml with the registry.default
key. For example:

[registry]
default = "my-registry"

Setting the package.publish key in the Cargo.toml manifest restricts which
registries the package is allowed to be published to. This is useful to
prevent accidentally publishing a closed-source package to crates.io. The
value may be a list of registry names, for example:

[package]
...
publish = ["my-registry"]

The publish value may also be false to restrict all publishing, which is
the same as an empty list.

The authentication information saved by cargo login is stored in the
credentials.toml file in the Cargo home directory (default $HOME/.cargo). It
has a separate table for each registry, for example:

[registries.my-registry]
token = "854DvwSlUwEHtIo3kWy6x7UCPKHfzCmy"

Registry Protocols

Cargo supports two remote registry protocols: git and sparse. If the registry
index URL starts with sparse+, Cargo uses the sparse protocol. Otherwise
Cargo uses the git protocol.

The git protocol stores index metadata in a git repository and requires Cargo to clone
the entire repo.

The sparse protocol fetches individual metadata files using plain HTTP requests.
Since Cargo only downloads the metadata for relevant crates, the sparse protocol can
save significant time and bandwidth.

The crates.io registry supports both protocols. The protocol for crates.io is
controlled via the registries.crates-io.protocol config key.

 Registry Authentication

 Registry Authentication

Cargo authenticates to registries with credential providers. These
credential providers are external executables or built-in providers that Cargo
uses to store and retrieve credentials.

Using alternative registries with authentication requires a credential provider to be configured
to avoid unknowingly storing unencrypted credentials on disk. For historical reasons, public
(non-authenticated) registries do not require credential provider configuration, and the cargo:token
provider is used if no providers are configured.

Cargo also includes platform-specific providers that use the operating system to securely store
tokens. The cargo:token provider is also included which stores credentials in unencrypted plain
text in the credentials file.

Recommended configuration

It's recommended to configure a global credential provider list in $CARGO_HOME/config.toml
which defaults to:

	Windows: %USERPROFILE%\.cargo\config.toml

	Unix: ~/.cargo/config.toml

This recommended configuration uses the operating system provider, with a fallback to cargo:token
to look in Cargo's credentials file or environment variables:

~/.cargo/config.toml
[registry]
global-credential-providers = ["cargo:token", "cargo:libsecret", "cargo:macos-keychain", "cargo:wincred"]

Note that later entries have higher precedence.
See registry.global-credential-providers
for more details.

Some private registries may also recommend a registry-specific credential-provider. Check your
registry's documentation to see if this is the case.

Built-in providers

Cargo includes several built-in credential providers. The available built-in providers
may change in future Cargo releases (though there are currently no plans to do so).

cargo:token

Uses Cargo's credentials file to store tokens unencrypted in plain text.
When retrieving tokens, checks the CARGO_REGISTRIES_<NAME>_TOKEN environment variable.
If this credential provider is not listed, then the *_TOKEN environment variables will not work.

cargo:wincred

Uses the Windows Credential Manager to store tokens.

The credentials are stored as cargo-registry:<index-url> in the Credential Manager
under "Windows Credentials".

cargo:macos-keychain

Uses the macOS Keychain to store tokens.

The Keychain Access app can be used to view stored tokens.

cargo:libsecret

Uses libsecret to store tokens.

Any password manager with libsecret support can be used to view stored tokens.
The following are a few examples (non-exhaustive):

	GNOME Keyring

	KDE Wallet Manager (since KDE Frameworks 5.97.0)

	KeePassXC (since 2.5.0)

cargo:token-from-stdout <command> <args>

Launch a subprocess that returns a token on stdout. Newlines will be trimmed.

	The process inherits the user's stdin and stderr.

	It should exit 0 on success, and nonzero on error.

	cargo login and cargo logout are not supported and return an error if used.

The following environment variables will be provided to the executed command:

	CARGO --- Path to the cargo binary executing the command.

	CARGO_REGISTRY_INDEX_URL --- The URL of the registry index.

	CARGO_REGISTRY_NAME_OPT --- Optional name of the registry. Should not be used as a lookup key.

Arguments will be passed on to the subcommand.

Credential plugins

For credential provider plugins that follow Cargo's credential provider protocol,
the configuration value should be a string with the path to the executable (or the executable name if on the PATH).

For example, to install cargo-credential-1password
from crates.io do the following:

Install the provider with cargo install cargo-credential-1password

In the config, add to (or create) registry.global-credential-providers:

[registry]
global-credential-providers = ["cargo:token", "cargo-credential-1password --account my.1password.com"]

The values in global-credential-providers are split on spaces into path and command-line arguments. To
define a global credential provider where the path or arguments contain spaces, use
the [credential-alias] table.

 Credential Provider Protocol

 Credential Provider Protocol

This document describes information for building a Cargo credential provider. For information on
setting up or using a credential provider, see Registry Authentication.

When using an external credential provider, Cargo communicates with the credential
provider using stdin/stdout messages passed as single lines of JSON.

Cargo will always execute the credential provider with the --cargo-plugin argument.
This enables a credential provider executable to have additional functionality beyond
what Cargo needs. Additional arguments are included in the JSON via the args field.

JSON messages

The JSON messages in this document have newlines added for readability.
Actual messages must not contain newlines.

Credential hello

	Sent by: credential provider

	Purpose: used to identify the supported protocols on process startup

{
 "v":[1]
}

Requests sent by Cargo will include a v field set to one of the versions listed here.
If Cargo does not support any of the versions offered by the credential provider, it will issue an
error and shut down the credential process.

Registry information

	Sent by: Cargo
Not a message by itself. Included in all messages sent by Cargo as the registry field.

{
 // Index URL of the registry
 "index-url":"https://github.com/rust-lang/crates.io-index",
 // Name of the registry in configuration (optional)
 "name": "crates-io",
 // HTTP headers received from attempting to access an authenticated registry (optional)
 "headers": ["WWW-Authenticate: cargo"]
}

Login request

	Sent by: Cargo

	Purpose: collect and store credentials

{
 // Protocol version
 "v":1,
 // Action to perform: login
 "kind":"login",
 // Registry information (see Registry information)
 "registry":{"index-url":"sparse+https://registry-url/index/", "name": "my-registry"},
 // User-specified token from stdin or command line (optional)
 "token": "<the token value>",
 // URL that the user could visit to get a token (optional)
 "login-url": "http://registry-url/login",
 // Additional command-line args (optional)
 "args":[]
}

If the token field is set, then the credential provider should use the token provided. If
the token is not set, then the credential provider should prompt the user for a token.

In addition to the arguments that may be passed to the credential provider in
configuration, cargo login also supports passing additional command line args
via cargo login -- <additional args>. These additional arguments will be included
in the args field after any args from Cargo configuration.

Read request

	Sent by: Cargo

	Purpose: Get the credential for reading crate information

{
 // Protocol version
 "v":1,
 // Request kind: get credentials
 "kind":"get",
 // Action to perform: read crate information
 "operation":"read",
 // Registry information (see Registry information)
 "registry":{"index-url":"sparse+https://registry-url/index/", "name": "my-registry"},
 // Additional command-line args (optional)
 "args":[]
}

Publish request

	Sent by: Cargo

	Purpose: Get the credential for publishing a crate

{
 // Protocol version
 "v":1,
 // Request kind: get credentials
 "kind":"get",
 // Action to perform: publish crate
 "operation":"publish",
 // Crate name
 "name":"sample",
 // Crate version
 "vers":"0.1.0",
 // Crate checksum
 "cksum":"...",
 // Registry information (see Registry information)
 "registry":{"index-url":"sparse+https://registry-url/index/", "name": "my-registry"},
 // Additional command-line args (optional)
 "args":[]
}

Get success response

	Sent by: credential provider

	Purpose: Gives the credential to Cargo

{"Ok":{
 // Response kind: this was a get request
 "kind":"get",
 // Token to send to the registry
 "token":"...",
 // Cache control. Can be one of the following:
 // * "never": do not cache
 // * "session": cache for the current cargo session
 // * "expires": cache for the current cargo session until expiration
 "cache":"expires",
 // Unix timestamp (only for "cache": "expires")
 "expiration":1693942857,
 // Is the token operation independent?
 "operation_independent":true
}}

The token will be sent to the registry as the value of the Authorization HTTP header.

operation_independent indicates whether the token can be cached across different
operations (such as publishing or fetching). In general, this should be true unless
the provider wants to generate tokens that are scoped to specific operations.

Login success response

	Sent by: credential provider

	Purpose: Indicates the login was successful

{"Ok":{
 // Response kind: this was a login request
 "kind":"login"
}}

Logout success response

	Sent by: credential provider

	Purpose: Indicates the logout was successful

{"Ok":{
 // Response kind: this was a logout request
 "kind":"logout"
}}

Failure response (URL not supported)

	Sent by: credential provider

	Purpose: Gives error information to Cargo

{"Err":{
 "kind":"url-not-supported"
}}

Sent if the credential provider is designed
to only handle specific registry URLs and the given URL
is not supported. Cargo will attempt another provider if
available.

Failure response (not found)

	Sent by: credential provider

	Purpose: Gives error information to Cargo

{"Err":{
 // Error: The credential could not be found in the provider.
 "kind":"not-found"
}}

Sent if the credential could not be found. This is expected for
get requests where the credential is not available, or logout
requests where there is nothing found to erase.

Failure response (operation not supported)

	Sent by: credential provider

	Purpose: Gives error information to Cargo

{"Err":{
 // Error: The credential could not be found in the provider.
 "kind":"operation-not-supported"
}}

Sent if the credential provider does not support the requested operation.
If a provider only supports get and a login is requested, the
provider should respond with this error.

Failure response (other)

	Sent by: credential provider

	Purpose: Gives error information to Cargo

{"Err":{
 // Error: something else has failed
 "kind":"other",
 // Error message string to be displayed
 "message": "free form string error message",
 // Detailed cause chain for the error (optional)
 "caused-by": ["cause 1", "cause 2"]
}}

Example communication to request a token for reading:

	Cargo spawns the credential process, capturing stdin and stdout.

	Credential process sends the Hello message to Cargo
{ "v": [1] }

	Cargo sends the CredentialRequest message to the credential process (newlines added for readability).
{
 "v": 1,
 "kind": "get",
 "operation": "read",
 "registry":{"index-url":"sparse+https://registry-url/index/"}
}

	Credential process sends the CredentialResponse to Cargo (newlines added for readability).
{
 "token": "...",
 "cache": "session",
 "operation_independent": true
}

	Cargo closes the stdin pipe to the credential provider and it exits.

	Cargo uses the token for the remainder of the session (until Cargo exits) when interacting with this registry.

 Running a Registry

 Running a Registry

A minimal registry can be implemented by having a git repository that contains
an index, and a server that contains the compressed .crate files created by
cargo package. Users won't be able to use Cargo to publish to it, but this
may be sufficient for closed environments. The index format is described in
Registry Index.

A full-featured registry that supports publishing will additionally need to
have a web API service that conforms to the API used by Cargo. The web API is
described in Registry Web API.

Commercial and community projects are available for building and running a
registry. See https://github.com/rust-lang/cargo/wiki/Third-party-registries
for a list of what is available.

 Registry Index

 Index Format

The following defines the format of the index. New features are occasionally
added, which are only understood starting with the version of Cargo that
introduced them. Older versions of Cargo may not be able to use packages that
make use of new features. However, the format for older packages should not
change, so older versions of Cargo should be able to use them.

Index Configuration

The root of the index contains a file named config.json which contains JSON
information used by Cargo for accessing the registry. This is an example of
what the crates.io config file looks like:

{
 "dl": "https://crates.io/api/v1/crates",
 "api": "https://crates.io"
}

The keys are:

	
dl: This is the URL for downloading crates listed in the index. The value
may have the following markers which will be replaced with their
corresponding value:

	{crate}: The name of crate.

	{version}: The crate version.

	{prefix}: A directory prefix computed from the crate name. For example,
a crate named cargo has a prefix of ca/rg. See below for details.

	{lowerprefix}: Lowercase variant of {prefix}.

	{sha256-checksum}: The crate's sha256 checksum.

If none of the markers are present, then the value
/{crate}/{version}/download is appended to the end.

	
api: This is the base URL for the web API. This key is optional, but if it
is not specified, commands such as cargo publish will not work. The web
API is described below.

	
auth-required: indicates whether this is a private registry that requires
all operations to be authenticated including API requests, crate downloads
and sparse index updates.

Download Endpoint

The download endpoint should send the .crate file for the requested package.
Cargo supports https, http, and file URLs, HTTP redirects, HTTP1 and HTTP2.
The exact specifics of TLS support depend on the platform that Cargo is
running on, the version of Cargo, and how it was compiled.

If auth-required: true is set in config.json, the Authorization header
will be included with http(s) download requests.

Index files

The rest of the index repository contains one file for each package, where the
filename is the name of the package in lowercase. Each version of the package
has a separate line in the file. The files are organized in a tier of
directories:

	Packages with 1 character names are placed in a directory named 1.

	Packages with 2 character names are placed in a directory named 2.

	Packages with 3 character names are placed in the directory
3/{first-character} where {first-character} is the first character of
the package name.

	All other packages are stored in directories named
{first-two}/{second-two} where the top directory is the first two
characters of the package name, and the next subdirectory is the third and
fourth characters of the package name. For example, cargo would be stored
in a file named ca/rg/cargo.

Note: Although the index filenames are in lowercase, the fields that contain
package names in Cargo.toml and the index JSON data are case-sensitive and
may contain upper and lower case characters.

The directory name above is calculated based on the package name converted to
lowercase; it is represented by the marker {lowerprefix}. When the original
package name is used without case conversion, the resulting directory name is
represented by the marker {prefix}. For example, the package MyCrate would
have a {prefix} of My/Cr and a {lowerprefix} of my/cr. In general,
using {prefix} is recommended over {lowerprefix}, but there are pros and
cons to each choice. Using {prefix} on case-insensitive filesystems results
in (harmless-but-inelegant) directory aliasing. For example, crate and
CrateTwo have {prefix} values of cr/at and Cr/at; these are distinct on
Unix machines but alias to the same directory on Windows. Using directories
with normalized case avoids aliasing, but on case-sensitive filesystems it's
harder to support older versions of Cargo that lack {prefix}/{lowerprefix}.
For example, nginx rewrite rules can easily construct {prefix} but can't
perform case-conversion to construct {lowerprefix}.

Name restrictions

Registries should consider enforcing limitations on package names added to
their index. Cargo itself allows names with any alphanumeric, -, or _
characters. crates.io imposes its own limitations, including the following:

	Only allows ASCII characters.

	Only alphanumeric, -, and _ characters.

	First character must be alphabetic.

	Case-insensitive collision detection.

	Prevent differences of - vs _.

	Under a specific length (max 64).

	Rejects reserved names, such as Windows special filenames like "nul".

Registries should consider incorporating similar restrictions, and consider
the security implications, such as IDN homograph
attacks and other
concerns in UTR36 and
UTS39.

Version uniqueness

Indexes must ensure that each version only appears once for each package.
This includes ignoring SemVer build metadata.
For example, the index must not contain two entries with a version 1.0.7 and 1.0.7+extra.

JSON schema

Each line in a package file contains a JSON object that describes a published
version of the package. The following is a pretty-printed example with comments
explaining the format of the entry.

{
 // The name of the package.
 // This must only contain alphanumeric, `-`, or `_` characters.
 "name": "foo",
 // The version of the package this row is describing.
 // This must be a valid version number according to the Semantic
 // Versioning 2.0.0 spec at https://semver.org/.
 "vers": "0.1.0",
 // Array of direct dependencies of the package.
 "deps": [
 {
 // Name of the dependency.
 // If the dependency is renamed from the original package name,
 // this is the new name. The original package name is stored in
 // the `package` field.
 "name": "rand",
 // The SemVer requirement for this dependency.
 // This must be a valid version requirement defined at
 // https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html.
 "req": "^0.6",
 // Array of features (as strings) enabled for this dependency.
 // May be omitted since Cargo 1.84.
 "features": ["i128_support"],
 // Boolean of whether or not this is an optional dependency.
 // Since Cargo 1.84, defaults to `false` if not specified.
 "optional": false,
 // Boolean of whether or not default features are enabled.
 // Since Cargo 1.84, defaults to `true` if not specified.
 "default_features": true,
 // The target platform for the dependency.
 // If not specified or `null`, it is not a target dependency.
 // Otherwise, a string such as "cfg(windows)".
 "target": null,
 // The dependency kind.
 // "dev", "build", or "normal".
 // If not specified or `null`, it defaults to "normal".
 "kind": "normal",
 // The URL of the index of the registry where this dependency is
 // from as a string. If not specified or `null`, it is assumed the
 // dependency is in the current registry.
 "registry": null,
 // If the dependency is renamed, this is a string of the actual
 // package name. If not specified or `null`, this dependency is not
 // renamed.
 "package": null,
 }
],
 // A SHA256 checksum of the `.crate` file.
 "cksum": "d867001db0e2b6e0496f9fac96930e2d42233ecd3ca0413e0753d4c7695d289c",
 // Set of features defined for the package.
 // Each feature maps to an array of features or dependencies it enables.
 // May be omitted since Cargo 1.84.
 "features": {
 "extras": ["rand/simd_support"]
 },
 // Boolean of whether or not this version has been yanked.
 "yanked": false,
 // The `links` string value from the package's manifest, or null if not
 // specified. This field is optional and defaults to null.
 "links": null,
 // An unsigned 32-bit integer value indicating the schema version of this
 // entry.
 //
 // If this is not specified, it should be interpreted as the default of 1.
 //
 // Cargo (starting with version 1.51) will ignore versions it does not
 // recognize. This provides a method to safely introduce changes to index
 // entries and allow older versions of cargo to ignore newer entries it
 // doesn't understand. Versions older than 1.51 ignore this field, and
 // thus may misinterpret the meaning of the index entry.
 //
 // The current values are:
 //
 // * 1: The schema as documented here, not including newer additions.
 // This is honored in Rust version 1.51 and newer.
 // * 2: The addition of the `features2` field.
 // This is honored in Rust version 1.60 and newer.
 "v": 2,
 // This optional field contains features with new, extended syntax.
 // Specifically, namespaced features (`dep:`) and weak dependencies
 // (`pkg?/feat`).
 //
 // This is separated from `features` because versions older than 1.19
 // will fail to load due to not being able to parse the new syntax, even
 // with a `Cargo.lock` file.
 //
 // Cargo will merge any values listed here with the "features" field.
 //
 // If this field is included, the "v" field should be set to at least 2.
 //
 // Registries are not required to use this field for extended feature
 // syntax, they are allowed to include those in the "features" field.
 // Using this is only necessary if the registry wants to support cargo
 // versions older than 1.19, which in practice is only crates.io since
 // those older versions do not support other registries.
 "features2": {
 "serde": ["dep:serde", "chrono?/serde"]
 }
 // The minimal supported Rust version (optional)
 // This must be a valid version requirement without an operator (e.g. no `=`)
 "rust_version": "1.60"
}

The JSON objects should not be modified after they are added except for the
yanked field whose value may change at any time.

Note: The index JSON format has subtle differences from the JSON format of the Publish API and cargo metadata.
If you are using one of those as a source to generate index entries, you are encouraged to carefully inspect the documentation differences between them.

For the Publish API, the differences are:

	deps

	name --- When the dependency is renamed in Cargo.toml, the publish API puts the original package name in the name field and the aliased name in the explicit_name_in_toml field.
The index places the aliased name in the name field, and the original package name in the package field.

	req --- The Publish API field is called version_req.

	cksum --- The publish API does not specify the checksum, it must be computed by the registry before adding to the index.

	features --- Some features may be placed in the features2 field.
Note: This is only a legacy requirement for crates.io; other registries should not need to bother with modifying the features map.
The v field indicates the presence of the features2 field.

	The publish API includes several other fields, such as description and readme, which don't appear in the index.
These are intended to make it easier for a registry to obtain the metadata about the crate to display on a website without needing to extract and parse the .crate file.
This additional information is typically added to a database on the registry server.

	Although rust_version is included here, crates.io will ignore this field
and instead read it from the Cargo.toml contained in the .crate file.

For cargo metadata, the differences are:

	vers --- The cargo metadata field is called version.

	deps

	name --- When the dependency is renamed in Cargo.toml, cargo metadata puts the original package name in the name field and the aliased name in the rename field.
The index places the aliased name in the name field, and the original package name in the package field.

	default_features --- The cargo metadata field is called uses_default_features.

	registry --- cargo metadata uses a value of null to indicate that the dependency comes from crates.io.
The index uses a value of null to indicate that the dependency comes from the same registry as the index.
When creating an index entry, a registry other than crates.io should translate a value of null to be https://github.com/rust-lang/crates.io-index and translate a URL that matches the current index to be null.

	cargo metadata includes some extra fields, such as source and path.

	The index includes additional fields such as yanked, cksum, and v.

Index Protocols

Cargo supports two remote registry protocols: git and sparse. The git protocol
stores index files in a git repository and the sparse protocol fetches individual
files over HTTP.

Git Protocol

The git protocol has no protocol prefix in the index url. For example the git index URL
for crates.io is https://github.com/rust-lang/crates.io-index.

Cargo caches the git repository on disk so that it can efficiently incrementally fetch
updates.

Sparse Protocol

The sparse protocol uses the sparse+ protocol prefix in the registry URL. For example,
the sparse index URL for crates.io is sparse+https://index.crates.io/.

The sparse protocol downloads each index file using an individual HTTP request. Since
this results in a large number of small HTTP requests, performance is significantly
improved with a server that supports pipelining and HTTP/2.

Sparse authentication

Cargo will attempt to fetch the config.json file before
fetching any other files. If the server responds with an HTTP 401, then Cargo will assume
that the registry requires authentication and re-attempt the request for config.json
with the authentication token included.

On authentication failure (or a missing authentication token) the server may include a
www-authenticate header with a Cargo login_url="<URL>" challenge to indicate where the user
can go to get a token.

Registries that require authentication must set auth-required: true in config.json.

Caching

Cargo caches the crate metadata files, and captures the ETag or Last-Modified
HTTP header from the server for each entry. When refreshing crate metadata, Cargo
sends the If-None-Match or If-Modified-Since header to allow the server to respond
with HTTP 304 "Not Modified" if the local cache is valid, saving time and bandwidth.
If both ETag and Last-Modified headers are present, Cargo uses the ETag only.

Cache Invalidation

If a registry is using some kind of CDN or proxy which caches access to the index files,
then it is recommended that registries implement some form of cache invalidation when
the files are updated. If these caches are not updated, then users may not be able to
access new crates until the cache is cleared.

Nonexistent Crates

For crates that do not exist, the registry should respond with a 404 "Not Found", 410 "Gone"
or 451 "Unavailable For Legal Reasons" code.

Sparse Limitations

Since the URL of the registry is stored in the lockfile, it's not recommended to offer
a registry with both protocols. Discussion about a transition plan is ongoing in issue
#10964. The crates.io registry is an exception, since Cargo internally substitutes
the equivalent git URL when the sparse protocol is used.

If a registry does offer both protocols, it's currently recommended to choose one protocol
as the canonical protocol and use source replacement for the other protocol.

 Registry Web API

 Web API

A registry may host a web API at the location defined in config.json to
support any of the actions listed below.

Cargo includes the Authorization header for requests that require
authentication. The header value is the API token. The server should respond
with a 403 response code if the token is not valid. Users are expected to
visit the registry's website to obtain a token, and Cargo can store the token
using the cargo login command, or by passing the token on the
command-line.

Responses use a 2xx response code for success.
Errors should use an appropriate response code, such as 404.
Failure
responses should have a JSON object with the following structure:

{
 // Array of errors to display to the user.
 "errors": [
 {
 // The error message as a string.
 "detail": "error message text"
 }
]
}

If the response has this structure Cargo will display the detailed message to the user, even if the response code is 200.
If the response code indicates an error and the content does not have this structure, Cargo will display to the user a
message intended to help debugging the server error. A server returning an errors object allows a registry to provide a more
detailed or user-centric error message.

For backwards compatibility, servers should ignore any unexpected query
parameters or JSON fields. If a JSON field is missing, it should be assumed to
be null. The endpoints are versioned with the v1 component of the path, and
Cargo is responsible for handling backwards compatibility fallbacks should any
be required in the future.

Cargo sets the following headers for all requests:

	Content-Type: application/json (for requests with a body payload)

	Accept: application/json

	User-Agent: The Cargo version such as cargo/1.32.0 (8610973aa 2019-01-02). This may be modified by the user in a configuration value.
Added in 1.29.

Publish

	Endpoint: /api/v1/crates/new

	Method: PUT

	Authorization: Included

The publish endpoint is used to publish a new version of a crate. The server
should validate the crate, make it available for download, and add it to the
index.

It is not required for the index to be updated before the successful response is sent.
After a successful response, Cargo will poll the index for a short period of time to identify that the new crate has been added.
If the crate does not appear in the index after a short period of time, then Cargo will display a warning letting the user know that the new crate is not yet available.

The body of the data sent by Cargo is:

	32-bit unsigned little-endian integer of the length of JSON data.

	Metadata of the package as a JSON object.

	32-bit unsigned little-endian integer of the length of the .crate file.

	The .crate file.

The following is a commented example of the JSON object. Some notes of some
restrictions imposed by crates.io are included only to illustrate some
suggestions on types of validation that may be done, and should not be
considered as an exhaustive list of restrictions crates.io imposes.

{
 // The name of the package.
 "name": "foo",
 // The version of the package being published.
 "vers": "0.1.0",
 // Array of direct dependencies of the package.
 "deps": [
 {
 // Name of the dependency.
 // If the dependency is renamed from the original package name,
 // this is the original name. The new package name is stored in
 // the `explicit_name_in_toml` field.
 "name": "rand",
 // The semver requirement for this dependency.
 "version_req": "^0.6",
 // Array of features (as strings) enabled for this dependency.
 "features": ["i128_support"],
 // Boolean of whether or not this is an optional dependency.
 "optional": false,
 // Boolean of whether or not default features are enabled.
 "default_features": true,
 // The target platform for the dependency.
 // null if not a target dependency.
 // Otherwise, a string such as "cfg(windows)".
 "target": null,
 // The dependency kind.
 // "dev", "build", or "normal".
 "kind": "normal",
 // The URL of the index of the registry where this dependency is
 // from as a string. If not specified or null, it is assumed the
 // dependency is in the current registry.
 "registry": null,
 // If the dependency is renamed, this is a string of the new
 // package name. If not specified or null, this dependency is not
 // renamed.
 "explicit_name_in_toml": null,
 }
],
 // Set of features defined for the package.
 // Each feature maps to an array of features or dependencies it enables.
 // Cargo does not impose limitations on feature names, but crates.io
 // requires alphanumeric ASCII, `_` or `-` characters.
 "features": {
 "extras": ["rand/simd_support"]
 },
 // List of strings of the authors.
 // May be empty.
 "authors": ["Alice <a@example.com>"],
 // Description field from the manifest.
 // May be null. crates.io requires at least some content.
 "description": null,
 // String of the URL to the website for this package's documentation.
 // May be null.
 "documentation": null,
 // String of the URL to the website for this package's home page.
 // May be null.
 "homepage": null,
 // String of the content of the README file.
 // May be null.
 "readme": null,
 // String of a relative path to a README file in the crate.
 // May be null.
 "readme_file": null,
 // Array of strings of keywords for the package.
 "keywords": [],
 // Array of strings of categories for the package.
 "categories": [],
 // String of the license for the package.
 // May be null. crates.io requires either `license` or `license_file` to be set.
 "license": null,
 // String of a relative path to a license file in the crate.
 // May be null.
 "license_file": null,
 // String of the URL to the website for the source repository of this package.
 // May be null.
 "repository": null,
 // Optional object of "status" badges. Each value is an object of
 // arbitrary string to string mappings.
 // crates.io has special interpretation of the format of the badges.
 "badges": {
 "travis-ci": {
 "branch": "master",
 "repository": "rust-lang/cargo"
 }
 },
 // The `links` string value from the package's manifest, or null if not
 // specified. This field is optional and defaults to null.
 "links": null,
 // The minimal supported Rust version (optional)
 // This must be a valid version requirement without an operator (e.g. no `=`)
 "rust_version": null
}

A successful response includes the JSON object:

{
 // Optional object of warnings to display to the user.
 "warnings": {
 // Array of strings of categories that are invalid and ignored.
 "invalid_categories": [],
 // Array of strings of badge names that are invalid and ignored.
 "invalid_badges": [],
 // Array of strings of arbitrary warnings to display to the user.
 "other": []
 }
}

Yank

	Endpoint: /api/v1/crates/{crate_name}/{version}/yank

	Method: DELETE

	Authorization: Included

The yank endpoint will set the yank field of the given version of a crate to
true in the index.

A successful response includes the JSON object:

{
 // Indicates the yank succeeded, always true.
 "ok": true,
}

Unyank

	Endpoint: /api/v1/crates/{crate_name}/{version}/unyank

	Method: PUT

	Authorization: Included

The unyank endpoint will set the yank field of the given version of a crate
to false in the index.

A successful response includes the JSON object:

{
 // Indicates the unyank succeeded, always true.
 "ok": true,
}

Owners

Cargo does not have an inherent notion of users and owners, but it does
provide the owner command to assist managing who has authorization to
control a crate. It is up to the registry to decide exactly how users and
owners are handled. See the publishing documentation for a description of
how crates.io handles owners via GitHub users and teams.

Owners: List

	Endpoint: /api/v1/crates/{crate_name}/owners

	Method: GET

	Authorization: Included

The owners endpoint returns a list of owners of the crate.

A successful response includes the JSON object:

{
 // Array of owners of the crate.
 "users": [
 {
 // Unique unsigned 32-bit integer of the owner.
 "id": 70,
 // The unique username of the owner.
 "login": "github:rust-lang:core",
 // Name of the owner.
 // This is optional and may be null.
 "name": "Core",
 }
]
}

Owners: Add

	Endpoint: /api/v1/crates/{crate_name}/owners

	Method: PUT

	Authorization: Included

A PUT request will send a request to the registry to add a new owner to a
crate. It is up to the registry how to handle the request. For example,
crates.io sends an invite to the user that they must accept before being
added.

The request should include the following JSON object:

{
 // Array of `login` strings of owners to add.
 "users": ["login_name"]
}

A successful response includes the JSON object:

{
 // Indicates the add succeeded, always true.
 "ok": true,
 // A string to be displayed to the user.
 "msg": "user ehuss has been invited to be an owner of crate cargo"
}

Owners: Remove

	Endpoint: /api/v1/crates/{crate_name}/owners

	Method: DELETE

	Authorization: Included

A DELETE request will remove an owner from a crate. The request should include
the following JSON object:

{
 // Array of `login` strings of owners to remove.
 "users": ["login_name"]
}

A successful response includes the JSON object:

{
 // Indicates the remove succeeded, always true.
 "ok": true
 // A string to be displayed to the user. Currently ignored by cargo.
 "msg": "owners successfully removed",
}

Search

	Endpoint: /api/v1/crates

	Method: GET

	Query Parameters:

	q: The search query string.

	per_page: Number of results, default 10, max 100.

The search request will perform a search for crates, using criteria defined on
the server.

A successful response includes the JSON object:

{
 // Array of results.
 "crates": [
 {
 // Name of the crate.
 "name": "rand",
 // The highest version available.
 "max_version": "0.6.1",
 // Textual description of the crate.
 "description": "Random number generators and other randomness functionality.\n",
 }
],
 "meta": {
 // Total number of results available on the server.
 "total": 119
 }
}

Login

	Endpoint: /me

The "login" endpoint is not an actual API request. It exists solely for the
cargo login command to display a URL to instruct a user to visit in a web
browser to log in and retrieve an API token.

 SemVer Compatibility

 SemVer Compatibility

This chapter provides details on what is conventionally considered a
compatible or breaking SemVer change for new releases of a package. See the
SemVer compatibility section for details on what SemVer is, and how Cargo
uses it to ensure compatibility of libraries.

These are only guidelines, and not necessarily hard-and-fast rules that all
projects will obey. The Change categories section details how this guide
classifies the level and severity of a change. Most of this guide focuses on
changes that will cause cargo and rustc to fail to build something that
previously worked. Almost every change carries some risk that it will
negatively affect the runtime behavior, and for those cases it is usually a
judgment call by the project maintainers whether or not it is a
SemVer-incompatible change.

Change categories

All of the policies listed below are categorized by the level of change:

	Major change: a change that requires a major SemVer bump.

	Minor change: a change that requires only a minor SemVer bump.

	Possibly-breaking change: a change that some projects may consider major
and others consider minor.

The "Possibly-breaking" category covers changes that have the potential to
break during an update, but may not necessarily cause a breakage. The impact
of these changes should be considered carefully. The exact nature will depend
on the change and the principles of the project maintainers.

Some projects may choose to only bump the patch number on a minor change. It
is encouraged to follow the SemVer spec, and only apply bug fixes in patch
releases. However, a bug fix may require an API change that is marked as a
"minor change", and shouldn't affect compatibility. This guide does not take a
stance on how each individual "minor change" should be treated, as the
difference between minor and patch changes are conventions that depend on the
nature of the change.

Some changes are marked as "minor", even though they carry the potential risk
of breaking a build. This is for situations where the potential is extremely
low, and the potentially breaking code is unlikely to be written in idiomatic
Rust, or is specifically discouraged from use.

This guide uses the terms "major" and "minor" assuming this relates to a
"1.0.0" release or later. Initial development releases starting with "0.y.z"
can treat changes in "y" as a major release, and "z" as a minor release.
"0.0.z" releases are always major changes. This is because Cargo uses the
convention that only changes in the left-most non-zero component are
considered incompatible.

	API compatibility

	Items

	Major: renaming/moving/removing any public items

	Minor: adding new public items

	Types

	Major: Changing the alignment, layout, or size of a well-defined type

	Structs

	Major: adding a private struct field when all current fields are public

	Major: adding a public field when no private field exists

	Minor: adding or removing private fields when at least one already exists

	Minor: going from a tuple struct with all private fields (with at least one field) to a normal struct, or vice versa

	Enums

	Major: adding new enum variants (without non_exhaustive)

	Major: adding new fields to an enum variant

	Traits

	Major: adding a non-defaulted trait item

	Major: any change to trait item signatures

	Possibly-breaking: adding a defaulted trait item

	Major: adding a trait item that makes the trait non-object safe

	Major: adding a type parameter without a default

	Minor: adding a defaulted trait type parameter

	Implementations

	Possibly-breaking change: adding any inherent items

	Generics

	Major: tightening generic bounds

	Minor: loosening generic bounds

	Minor: adding defaulted type parameters

	Minor: generalizing a type to use generics (with identical types)

	Major: generalizing a type to use generics (with possibly different types)

	Minor: changing a generic type to a more generic type

	Major: capturing more generic parameters in RPIT

	Functions

	Major: adding/removing function parameters

	Possibly-breaking: introducing a new function type parameter

	Minor: generalizing a function to use generics (supporting original type)

	Major: generalizing a function to use generics with type mismatch

	Minor: making an unsafe function safe

	Attributes

	Major: switching from no_std support to requiring std

	Major: adding non_exhaustive to an existing enum, variant, or struct with no private fields

	Tooling and environment compatibility

	Possibly-breaking: changing the minimum version of Rust required

	Possibly-breaking: changing the platform and environment requirements

	Minor: introducing new lints

	Cargo

	Minor: adding a new Cargo feature

	Major: removing a Cargo feature

	Major: removing a feature from a feature list if that changes functionality or public items

	Possibly-breaking: removing an optional dependency

	Minor: changing dependency features

	Minor: adding dependencies

	Application compatibility

API compatibility

All of the examples below contain three parts: the original code, the code
after it has been modified, and an example usage of the code that could appear
in another project. In a minor change, the example usage should successfully
build with both the before and after versions.

Major: renaming/moving/removing any public items {#item-remove}

The absence of a publicly exposed item will cause any uses of that item to
fail to compile.

// MAJOR CHANGE

///
// Before
pub fn foo() {}

///
// After
// ... item has been removed

///
// Example usage that will break.
fn main() {
 updated_crate::foo(); // Error: cannot find function `foo`
}

This includes adding any sort of cfg attribute which can change which
items or behavior is available based on conditional compilation.

Mitigating strategies:

	Mark items to be removed as deprecated, and then remove them at a later
date in a SemVer-breaking release.

	Mark renamed items as deprecated, and use a pub use item to re-export
to the old name.

Minor: adding new public items {#item-new}

Adding new, public items is a minor change.

// MINOR CHANGE

///
// Before
// ... absence of item

///
// After
pub fn foo() {}

///
// Example use of the library that will safely work.
// `foo` is not used since it didn't previously exist.

Note that in some rare cases this can be a breaking change due to glob
imports. For example, if you add a new trait, and a project has used a glob
import that brings that trait into scope, and the new trait introduces an
associated item that conflicts with any types it is implemented on, this can
cause a compile-time error due to the ambiguity. Example:

// Breaking change example

///
// Before
// ... absence of trait

///
// After
pub trait NewTrait {
 fn foo(&self) {}
}

impl NewTrait for i32 {}

///
// Example usage that will break.
use updated_crate::*;

pub trait LocalTrait {
 fn foo(&self) {}
}

impl LocalTrait for i32 {}

fn main() {
 123i32.foo(); // Error: multiple applicable items in scope
}

This is not considered a major change because conventionally glob imports are
a known forwards-compatibility hazard. Glob imports of items from external
crates should be avoided.

Major: Changing the alignment, layout, or size of a well-defined type {#type-layout}

It is a breaking change to change the alignment, layout, or size of a type that was previously well-defined.

In general, types that use the the default representation do not have a well-defined alignment, layout, or size.
The compiler is free to alter the alignment, layout, or size, so code should not make any assumptions about it.

Note: It may be possible for external crates to break if they make assumptions about the alignment, layout, or size of a type even if it is not well-defined.
This is not considered a SemVer breaking change since those assumptions should not be made.

Some examples of changes that are not a breaking change are (assuming no other rules in this guide are violated):

	Adding, removing, reordering, or changing fields of a default representation struct, union, or enum in such a way that the change follows the other rules in this guide (for example, using non_exhaustive to allow those changes, or changes to private fields that are already private).
See struct-add-private-field-when-public, struct-add-public-field-when-no-private, struct-private-fields-with-private, enum-fields-new.

	Adding variants to a default representation enum, if the enum uses non_exhaustive.
This may change the alignment or size of the enumeration, but those are not well-defined.
See enum-variant-new.

	Adding, removing, reordering, or changing private fields of a repr(C) struct, union, or enum, following the other rules in this guide (for example, using non_exhaustive, or adding private fields when other private fields already exist).
See repr-c-private-change.

	Adding variants to a repr(C) enum, if the enum uses non_exhaustive.
See repr-c-enum-variant-new.

	Adding repr(C) to a default representation struct, union, or enum.
See repr-c-add.

	Adding repr(<int>) primitive representation to an enum.
See repr-int-enum-add.

	Adding repr(transparent) to a default representation struct or enum.
See repr-transparent-add.

Types that use the repr attribute can be said to have an alignment and layout that is defined in some way that code may make some assumptions about that may break as a result of changing that type.

In some cases, types with a repr attribute may not have an alignment, layout, or size that is well-defined.
In these cases, it may be safe to make changes to the types, though care should be exercised.
For example, types with private fields that do not otherwise document their alignment, layout, or size guarantees cannot be relied upon by external crates since the public API does not fully define the alignment, layout, or size of the type.

A common example where a type with private fields is well-defined is a type with a single private field with a generic type, using repr(transparent),
and the prose of the documentation discusses that it is transparent to the generic type.
For example, see UnsafeCell.

Some examples of breaking changes are:

	Adding repr(packed) to a struct or union.
See repr-packed-add.

	Adding repr(align) to a struct, union, or enum.
See repr-align-add.

	Removing repr(packed) from a struct or union.
See repr-packed-remove.

	Changing the value N of repr(packed(N)) if that changes the alignment or layout.
See repr-packed-n-change.

	Changing the value N of repr(align(N)) if that changes the alignment.
See repr-align-n-change.

	Removing repr(align) from a struct, union, or enum.
See repr-align-remove.

	Changing the order of public fields of a repr(C) type.
See repr-c-shuffle.

	Removing repr(C) from a struct, union, or enum.
See repr-c-remove.

	Removing repr(<int>) from an enum.
See repr-int-enum-remove.

	Changing the primitive representation of a repr(<int>) enum.
See repr-int-enum-change.

	Removing repr(transparent) from a struct or enum.
See repr-transparent-remove.

Minor: repr(C) add, remove, or change a private field {#repr-c-private-change}

It is usually safe to add, remove, or change a private field of a repr(C) struct, union, or enum, assuming it follows the other guidelines in this guide (see struct-add-private-field-when-public, struct-add-public-field-when-no-private, struct-private-fields-with-private, enum-fields-new).

For example, adding private fields can only be done if there are already other private fields, or it is non_exhaustive.
Public fields may be added if there are private fields, or it is non_exhaustive, and the addition does not alter the layout of the other fields.

However, this may change the size and alignment of the type.
Care should be taken if the size or alignment changes.
Code should not make assumptions about the size or alignment of types with private fields or non_exhaustive unless it has a documented size or alignment.

// MINOR CHANGE

///
// Before
#[derive(Default)]
#[repr(C)]
pub struct Example {
 pub f1: i32,
 f2: i32, // a private field
}

///
// After
#[derive(Default)]
#[repr(C)]
pub struct Example {
 pub f1: i32,
 f2: i32,
 f3: i32, // a new field
}

///
// Example use of the library that will safely work.
fn main() {
 // NOTE: Users should not make assumptions about the size or alignment
 // since they are not documented.
 let f = updated_crate::Example::default();
}

Minor: repr(C) add enum variant {#repr-c-enum-variant-new}

It is usually safe to add variants to a repr(C) enum, if the enum uses non_exhaustive.
See enum-variant-new for more discussion.

Note that this may be a breaking change since it changes the size and alignment of the type.
See repr-c-private-change for similar concerns.

// MINOR CHANGE

///
// Before
#[repr(C)]
#[non_exhaustive]
pub enum Example {
 Variant1 { f1: i16 },
 Variant2 { f1: i32 },
}

///
// After
#[repr(C)]
#[non_exhaustive]
pub enum Example {
 Variant1 { f1: i16 },
 Variant2 { f1: i32 },
 Variant3 { f1: i64 }, // added
}

///
// Example use of the library that will safely work.
fn main() {
 // NOTE: Users should not make assumptions about the size or alignment
 // since they are not specified. For example, this raised the size from 8
 // to 16 bytes.
 let f = updated_crate::Example::Variant2 { f1: 123 };
}

Minor: Adding repr(C) to a default representation {#repr-c-add}

It is safe to add repr(C) to a struct, union, or enum with the default representation.
This is safe because users should not make assumptions about the alignment, layout, or size of types with the default representation.

// MINOR CHANGE

///
// Before
pub struct Example {
 pub f1: i32,
 pub f2: i16,
}

///
// After
#[repr(C)] // added
pub struct Example {
 pub f1: i32,
 pub f2: i16,
}

///
// Example use of the library that will safely work.
fn main() {
 let f = updated_crate::Example { f1: 123, f2: 456 };
}

Minor: Adding repr(<int>) to an enum {#repr-int-enum-add}

It is safe to add repr(<int>) primitive representation to an enum with the default representation.
This is safe because users should not make assumptions about the alignment, layout, or size of an enum with the default representation.

// MINOR CHANGE

///
// Before
pub enum E {
 Variant1,
 Variant2(i32),
 Variant3 { f1: f64 },
}

///
// After
#[repr(i32)] // added
pub enum E {
 Variant1,
 Variant2(i32),
 Variant3 { f1: f64 },
}

///
// Example use of the library that will safely work.
fn main() {
 let x = updated_crate::E::Variant3 { f1: 1.23 };
}

Minor: Adding repr(transparent) to a default representation struct or enum {#repr-transparent-add}

It is safe to add repr(transparent) to a struct or enum with the default representation.
This is safe because users should not make assumptions about the alignment, layout, or size of a struct or enum with the default representation.

// MINOR CHANGE

///
// Before
#[derive(Default)]
pub struct Example<T>(T);

///
// After
#[derive(Default)]
#[repr(transparent)] // added
pub struct Example<T>(T);

///
// Example use of the library that will safely work.
fn main() {
 let x = updated_crate::Example::<i32>::default();
}

Major: Adding repr(packed) to a struct or union {#repr-packed-add}

It is a breaking change to add repr(packed) to a struct or union.
Making a type repr(packed) makes changes that can break code, such as being invalid to take a reference to a field, or causing truncation of disjoint closure captures.

// MAJOR CHANGE

///
// Before
pub struct Example {
 pub f1: u8,
 pub f2: u16,
}

///
// After
#[repr(packed)] // added
pub struct Example {
 pub f1: u8,
 pub f2: u16,
}

///
// Example usage that will break.
fn main() {
 let f = updated_crate::Example { f1: 1, f2: 2 };
 let x = &f.f2; // Error: reference to packed field is unaligned
}

// MAJOR CHANGE

///
// Before
pub struct Example(pub i32, pub i32);

///
// After
#[repr(packed)]
pub struct Example(pub i32, pub i32);

///
// Example usage that will break.
fn main() {
 let mut f = updated_crate::Example(123, 456);
 let c = || {
 // Without repr(packed), the closure precisely captures `&f.0`.
 // With repr(packed), the closure captures `&f` to avoid undefined behavior.
 let a = f.0;
 };
 f.1 = 789; // Error: cannot assign to `f.1` because it is borrowed
 c();
}

Major: Adding repr(align) to a struct, union, or enum {#repr-align-add}

It is a breaking change to add repr(align) to a struct, union, or enum.
Making a type repr(align) would break any use of that type in a repr(packed) type because that combination is not allowed.

// MAJOR CHANGE

///
// Before
pub struct Aligned {
 pub a: i32,
}

///
// After
#[repr(align(8))] // added
pub struct Aligned {
 pub a: i32,
}

///
// Example usage that will break.
use updated_crate::Aligned;

#[repr(packed)]
pub struct Packed { // Error: packed type cannot transitively contain a `#[repr(align)]` type
 f1: Aligned,
}

fn main() {
 let p = Packed {
 f1: Aligned { a: 123 },
 };
}

Major: Removing repr(packed) from a struct or union {#repr-packed-remove}

It is a breaking change to remove repr(packed) from a struct or union.
This may change the alignment or layout that extern crates are relying on.

If any fields are public, then removing repr(packed) may change the way disjoint closure captures work.
In some cases, this can cause code to break, similar to those outlined in the edition guide.

// MAJOR CHANGE

///
// Before
#[repr(C, packed)]
pub struct Packed {
 pub a: u8,
 pub b: u16,
}

///
// After
#[repr(C)] // removed packed
pub struct Packed {
 pub a: u8,
 pub b: u16,
}

///
// Example usage that will break.
use updated_crate::Packed;

fn main() {
 let p = Packed { a: 1, b: 2 };
 // Some assumption about the size of the type.
 // Without `packed`, this fails since the size is 4.
 const _: () = assert!(std::mem::size_of::<Packed>() == 3); // Error: evaluation of constant value failed
}

// MAJOR CHANGE

///
// Before
#[repr(C, packed)]
pub struct Packed {
 pub a: *mut i32,
 pub b: i32,
}
unsafe impl Send for Packed {}

///
// After
#[repr(C)] // removed packed
pub struct Packed {
 pub a: *mut i32,
 pub b: i32,
}
unsafe impl Send for Packed {}

///
// Example usage that will break.
use updated_crate::Packed;

fn main() {
 let mut x = 123;

 let p = Packed {
 a: &mut x as *mut i32,
 b: 456,
 };

 // When the structure was packed, the closure captures `p` which is Send.
 // When `packed` is removed, this ends up capturing `p.a` which is not Send.
 std::thread::spawn(move || unsafe {
 *(p.a) += 1; // Error: cannot be sent between threads safely
 });
}

Major: Changing the value N of repr(packed(N)) if that changes the alignment or layout {#repr-packed-n-change}

It is a breaking change to change the value of N of repr(packed(N)) if that changes the alignment or layout.
This may change the alignment or layout that external crates are relying on.

If the value N is lowered below the alignment of a public field, then that would break any code that attempts to take a reference of that field.

Note that some changes to N may not change the alignment or layout, for example increasing it when the current value is already equal to the natural alignment of the type.

// MAJOR CHANGE

///
// Before
#[repr(packed(4))]
pub struct Packed {
 pub a: u8,
 pub b: u32,
}

///
// After
#[repr(packed(2))] // changed to 2
pub struct Packed {
 pub a: u8,
 pub b: u32,
}

///
// Example usage that will break.
use updated_crate::Packed;

fn main() {
 let p = Packed { a: 1, b: 2 };
 let x = &p.b; // Error: reference to packed field is unaligned
}

Major: Changing the value N of repr(align(N)) if that changes the alignment {#repr-align-n-change}

It is a breaking change to change the value N of repr(align(N)) if that changes the alignment.
This may change the alignment that external crates are relying on.

This change should be safe to make if the type is not well-defined as discussed in type layout (such as having any private fields and having an undocumented alignment or layout).

Note that some changes to N may not change the alignment or layout, for example decreasing it when the current value is already equal to or less than the natural alignment of the type.

// MAJOR CHANGE

///
// Before
#[repr(align(8))]
pub struct Packed {
 pub a: u8,
 pub b: u32,
}

///
// After
#[repr(align(4))] // changed to 4
pub struct Packed {
 pub a: u8,
 pub b: u32,
}

///
// Example usage that will break.
use updated_crate::Packed;

fn main() {
 let p = Packed { a: 1, b: 2 };
 // Some assumption about the size of the type.
 // The alignment has changed from 8 to 4.
 const _: () = assert!(std::mem::align_of::<Packed>() == 8); // Error: evaluation of constant value failed
}

Major: Removing repr(align) from a struct, union, or enum {#repr-align-remove}

It is a breaking change to remove repr(align) from a struct, union, or enum, if their layout was well-defined.
This may change the alignment or layout that external crates are relying on.

This change should be safe to make if the type is not well-defined as discussed in type layout (such as having any private fields and having an undocumented alignment).

// MAJOR CHANGE

///
// Before
#[repr(C, align(8))]
pub struct Packed {
 pub a: u8,
 pub b: u32,
}

///
// After
#[repr(C)] // removed align
pub struct Packed {
 pub a: u8,
 pub b: u32,
}

///
// Example usage that will break.
use updated_crate::Packed;

fn main() {
 let p = Packed { a: 1, b: 2 };
 // Some assumption about the size of the type.
 // The alignment has changed from 8 to 4.
 const _: () = assert!(std::mem::align_of::<Packed>() == 8); // Error: evaluation of constant value failed
}

Major: Changing the order of public fields of a repr(C) type {#repr-c-shuffle}

It is a breaking change to change the order of public fields of a repr(C) type.
External crates may be relying on the specific ordering of the fields.

// MAJOR CHANGE

///
// Before
#[repr(C)]
pub struct SpecificLayout {
 pub a: u8,
 pub b: u32,
}

///
// After
#[repr(C)]
pub struct SpecificLayout {
 pub b: u32, // changed order
 pub a: u8,
}

///
// Example usage that will break.
use updated_crate::SpecificLayout;

unsafe extern "C" {
 // This C function is assuming a specific layout defined in a C header.
 fn c_fn_get_b(x: &SpecificLayout) -> u32;
}

fn main() {
 let p = SpecificLayout { a: 1, b: 2 };
 unsafe { assert_eq!(c_fn_get_b(&p), 2) } // Error: value not equal to 2
}

mod cdep {
// This simulates what would normally be something included from a build script.
// This definition would be in a C header.
#[repr(C)]
pub struct SpecificLayout {
pub a: u8,
pub b: u32,
}
#
#[no_mangle]
pub fn c_fn_get_b(x: &SpecificLayout) -> u32 {
x.b
}
}

Major: Removing repr(C) from a struct, union, or enum {#repr-c-remove}

It is a breaking change to remove repr(C) from a struct, union, or enum.
External crates may be relying on the specific layout of the type.

// MAJOR CHANGE

///
// Before
#[repr(C)]
pub struct SpecificLayout {
 pub a: u8,
 pub b: u32,
}

///
// After
// removed repr(C)
pub struct SpecificLayout {
 pub a: u8,
 pub b: u32,
}

///
// Example usage that will break.
use updated_crate::SpecificLayout;

unsafe extern "C" {
 // This C function is assuming a specific layout defined in a C header.
 fn c_fn_get_b(x: &SpecificLayout) -> u32; // Error: is not FFI-safe
}

fn main() {
 let p = SpecificLayout { a: 1, b: 2 };
 unsafe { assert_eq!(c_fn_get_b(&p), 2) }
}

mod cdep {
// This simulates what would normally be something included from a build script.
// This definition would be in a C header.
#[repr(C)]
pub struct SpecificLayout {
pub a: u8,
pub b: u32,
}
#
#[no_mangle]
pub fn c_fn_get_b(x: &SpecificLayout) -> u32 {
x.b
}
}

Major: Removing repr(<int>) from an enum {#repr-int-enum-remove}

It is a breaking change to remove repr(<int>) from an enum.
External crates may be assuming that the discriminant is a specific size.
For example, std::mem::transmute of an enum may fail.

// MAJOR CHANGE

///
// Before
#[repr(u16)]
pub enum Example {
 Variant1,
 Variant2,
 Variant3,
}

///
// After
// removed repr(u16)
pub enum Example {
 Variant1,
 Variant2,
 Variant3,
}

///
// Example usage that will break.

fn main() {
 let e = updated_crate::Example::Variant2;
 let i: u16 = unsafe { std::mem::transmute(e) }; // Error: cannot transmute between types of different sizes
}

Major: Changing the primitive representation of a repr(<int>) enum {#repr-int-enum-change}

It is a breaking change to change the primitive representation of a repr(<int>) enum.
External crates may be assuming that the discriminant is a specific size.
For example, std::mem::transmute of an enum may fail.

// MAJOR CHANGE

///
// Before
#[repr(u16)]
pub enum Example {
 Variant1,
 Variant2,
 Variant3,
}

///
// After
#[repr(u8)] // changed repr size
pub enum Example {
 Variant1,
 Variant2,
 Variant3,
}

///
// Example usage that will break.

fn main() {
 let e = updated_crate::Example::Variant2;
 let i: u16 = unsafe { std::mem::transmute(e) }; // Error: cannot transmute between types of different sizes
}

Major: Removing repr(transparent) from a struct or enum {#repr-transparent-remove}

It is a breaking change to remove repr(transparent) from a struct or enum.
External crates may be relying on the type having the alignment, layout, or size of the transparent field.

// MAJOR CHANGE

///
// Before
#[repr(transparent)]
pub struct Transparent<T>(T);

///
// After
// removed repr
pub struct Transparent<T>(T);

///
// Example usage that will break.
#![deny(improper_ctypes)]
use updated_crate::Transparent;

unsafe extern "C" {
 fn c_fn() -> Transparent<f64>; // Error: is not FFI-safe
}

fn main() {}

Major: adding a private struct field when all current fields are public {#struct-add-private-field-when-public}

When a private field is added to a struct that previously had all public fields,
this will break any code that attempts to construct it with a struct literal.

// MAJOR CHANGE

///
// Before
pub struct Foo {
 pub f1: i32,
}

///
// After
pub struct Foo {
 pub f1: i32,
 f2: i32,
}

///
// Example usage that will break.
fn main() {
 let x = updated_crate::Foo { f1: 123 }; // Error: cannot construct `Foo`
}

Mitigation strategies:

	Do not add new fields to all-public field structs.

	Mark structs as #[non_exhaustive] when first introducing
a struct to prevent users from using struct literal syntax, and instead
provide a constructor method and/or Default implementation.

Major: adding a public field when no private field exists {#struct-add-public-field-when-no-private}

When a public field is added to a struct that has all public fields, this will
break any code that attempts to construct it with a struct literal.

// MAJOR CHANGE

///
// Before
pub struct Foo {
 pub f1: i32,
}

///
// After
pub struct Foo {
 pub f1: i32,
 pub f2: i32,
}

///
// Example usage that will break.
fn main() {
 let x = updated_crate::Foo { f1: 123 }; // Error: missing field `f2`
}

Mitigation strategies:

	Do not add new fields to all-public field structs.

	Mark structs as #[non_exhaustive] when first introducing
a struct to prevent users from using struct literal syntax, and instead
provide a constructor method and/or Default implementation.

Minor: adding or removing private fields when at least one already exists {#struct-private-fields-with-private}

It is safe to add or remove private fields from a struct when the struct
already has at least one private field.

// MINOR CHANGE

///
// Before
#[derive(Default)]
pub struct Foo {
 f1: i32,
}

///
// After
#[derive(Default)]
pub struct Foo {
 f2: f64,
}

///
// Example use of the library that will safely work.
fn main() {
 // Cannot access private fields.
 let x = updated_crate::Foo::default();
}

This is safe because existing code cannot use a struct literal to construct
it, nor exhaustively match its contents.

Note that for tuple structs, this is a major change if the tuple contains
public fields, and the addition or removal of a private field changes the
index of any public field.

// MAJOR CHANGE

///
// Before
#[derive(Default)]
pub struct Foo(pub i32, i32);

///
// After
#[derive(Default)]
pub struct Foo(f64, pub i32, i32);

///
// Example usage that will break.
fn main() {
 let x = updated_crate::Foo::default();
 let y = x.0; // Error: is private
}

Minor: going from a tuple struct with all private fields (with at least one field) to a normal struct, or vice versa {#struct-tuple-normal-with-private}

Changing a tuple struct to a normal struct (or vice-versa) is safe if all
fields are private.

// MINOR CHANGE

///
// Before
#[derive(Default)]
pub struct Foo(i32);

///
// After
#[derive(Default)]
pub struct Foo {
 f1: i32,
}

///
// Example use of the library that will safely work.
fn main() {
 // Cannot access private fields.
 let x = updated_crate::Foo::default();
}

This is safe because existing code cannot use a struct literal to construct
it, nor match its contents.

Major: adding new enum variants (without non_exhaustive) {#enum-variant-new}

It is a breaking change to add a new enum variant if the enum does not use the
#[non_exhaustive] attribute.

// MAJOR CHANGE

///
// Before
pub enum E {
 Variant1,
}

///
// After
pub enum E {
 Variant1,
 Variant2,
}

///
// Example usage that will break.
fn main() {
 use updated_crate::E;
 let x = E::Variant1;
 match x { // Error: `E::Variant2` not covered
 E::Variant1 => {}
 }
}

Mitigation strategies:

	When introducing the enum, mark it as #[non_exhaustive]
to force users to use wildcard patterns to catch new variants.

Major: adding new fields to an enum variant {#enum-fields-new}

It is a breaking change to add new fields to an enum variant because all
fields are public, and constructors and matching will fail to compile.

// MAJOR CHANGE

///
// Before
pub enum E {
 Variant1 { f1: i32 },
}

///
// After
pub enum E {
 Variant1 { f1: i32, f2: i32 },
}

///
// Example usage that will break.
fn main() {
 use updated_crate::E;
 let x = E::Variant1 { f1: 1 }; // Error: missing f2
 match x {
 E::Variant1 { f1 } => {} // Error: missing f2
 }
}

Mitigation strategies:

	When introducing the enum, mark the variant as non_exhaustive
so that it cannot be constructed or matched without wildcards.
pub enum E {
 #[non_exhaustive]
 Variant1{f1: i32}
}

	When introducing the enum, use an explicit struct as a value, where you can
have control over the field visibility.
pub struct Foo {
 f1: i32,
 f2: i32,
}
pub enum E {
 Variant1(Foo)
}

Major: adding a non-defaulted trait item {#trait-new-item-no-default}

It is a breaking change to add a non-defaulted item to a trait. This will
break any implementors of the trait.

// MAJOR CHANGE

///
// Before
pub trait Trait {}

///
// After
pub trait Trait {
 fn foo(&self);
}

///
// Example usage that will break.
use updated_crate::Trait;
struct Foo;

impl Trait for Foo {} // Error: not all trait items implemented

Mitigation strategies:

	Always provide a default implementation or value for new associated trait
items.

	When introducing the trait, use the sealed trait technique to prevent
users outside of the crate from implementing the trait.

Major: any change to trait item signatures {#trait-item-signature}

It is a breaking change to make any change to a trait item signature. This can
break external implementors of the trait.

// MAJOR CHANGE

///
// Before
pub trait Trait {
 fn f(&self, x: i32) {}
}

///
// After
pub trait Trait {
 // For sealed traits or normal functions, this would be a minor change
 // because generalizing with generics strictly expands the possible uses.
 // But in this case, trait implementations must use the same signature.
 fn f<V>(&self, x: V) {}
}

///
// Example usage that will break.
use updated_crate::Trait;
struct Foo;

impl Trait for Foo {
 fn f(&self, x: i32) {} // Error: trait declaration has 1 type parameter
}

Mitigation strategies:

	Introduce new items with default implementations to cover the new
functionality instead of modifying existing items.

	When introducing the trait, use the sealed trait technique to prevent
users outside of the crate from implementing the trait.

Possibly-breaking: adding a defaulted trait item {#trait-new-default-item}

It is usually safe to add a defaulted trait item. However, this can sometimes
cause a compile error. For example, this can introduce an ambiguity if a
method of the same name exists in another trait.

// Breaking change example

///
// Before
pub trait Trait {}

///
// After
pub trait Trait {
 fn foo(&self) {}
}

///
// Example usage that will break.
use updated_crate::Trait;
struct Foo;

trait LocalTrait {
 fn foo(&self) {}
}

impl Trait for Foo {}
impl LocalTrait for Foo {}

fn main() {
 let x = Foo;
 x.foo(); // Error: multiple applicable items in scope
}

Note that this ambiguity does not exist for name collisions on inherent
implementations, as they take priority over trait items.

See trait-object-safety for a special case to consider
when adding trait items.

Mitigation strategies:

	Some projects may deem this acceptable breakage, particularly if the new
item name is unlikely to collide with any existing code. Choose names
carefully to help avoid these collisions. Additionally, it may be acceptable
to require downstream users to add disambiguation syntax to select the
correct function when updating the dependency.

Major: adding a trait item that makes the trait non-object safe {#trait-object-safety}

It is a breaking change to add a trait item that changes the trait to not be
object safe.

// MAJOR CHANGE

///
// Before
pub trait Trait {}

///
// After
pub trait Trait {
 // An associated const makes the trait not object-safe.
 const CONST: i32 = 123;
}

///
// Example usage that will break.
use updated_crate::Trait;
struct Foo;

impl Trait for Foo {}

fn main() {
 let obj: Box<dyn Trait> = Box::new(Foo); // Error: the trait `Trait` is not dyn compatible
}

It is safe to do the converse (making a non-object safe trait into a safe
one).

Major: adding a type parameter without a default {#trait-new-parameter-no-default}

It is a breaking change to add a type parameter without a default to a trait.

// MAJOR CHANGE

///
// Before
pub trait Trait {}

///
// After
pub trait Trait<T> {}

///
// Example usage that will break.
use updated_crate::Trait;
struct Foo;

impl Trait for Foo {} // Error: missing generics

Mitigating strategies:

	See adding a defaulted trait type parameter.

Minor: adding a defaulted trait type parameter {#trait-new-parameter-default}

It is safe to add a type parameter to a trait as long as it has a default.
External implementors will use the default without needing to specify the
parameter.

// MINOR CHANGE

///
// Before
pub trait Trait {}

///
// After
pub trait Trait<T = i32> {}

///
// Example use of the library that will safely work.
use updated_crate::Trait;
struct Foo;

impl Trait for Foo {}

Possibly-breaking change: adding any inherent items {#impl-item-new}

Usually adding inherent items to an implementation should be safe because
inherent items take priority over trait items. However, in some cases the
collision can cause problems if the name is the same as an implemented trait
item with a different signature.

// Breaking change example

///
// Before
pub struct Foo;

///
// After
pub struct Foo;

impl Foo {
 pub fn foo(&self) {}
}

///
// Example usage that will break.
use updated_crate::Foo;

trait Trait {
 fn foo(&self, x: i32) {}
}

impl Trait for Foo {}

fn main() {
 let x = Foo;
 x.foo(1); // Error: this method takes 0 arguments but 1 argument was supplied
}

Note that if the signatures match, there would not be a compile-time error,
but possibly a silent change in runtime behavior (because it is now executing
a different function).

Mitigation strategies:

	Some projects may deem this acceptable breakage, particularly if the new
item name is unlikely to collide with any existing code. Choose names
carefully to help avoid these collisions. Additionally, it may be acceptable
to require downstream users to add disambiguation syntax to select the
correct function when updating the dependency.

Major: tightening generic bounds {#generic-bounds-tighten}

It is a breaking change to tighten generic bounds on a type since this can
break users expecting the looser bounds.

// MAJOR CHANGE

///
// Before
pub struct Foo<A> {
 pub f1: A,
}

///
// After
pub struct Foo<A: Eq> {
 pub f1: A,
}

///
// Example usage that will break.
use updated_crate::Foo;

fn main() {
 let s = Foo { f1: 1.23 }; // Error: the trait bound `{float}: Eq` is not satisfied
}

Minor: loosening generic bounds {#generic-bounds-loosen}

It is safe to loosen the generic bounds on a type, as it only expands what is
allowed.

// MINOR CHANGE

///
// Before
pub struct Foo<A: Clone> {
 pub f1: A,
}

///
// After
pub struct Foo<A> {
 pub f1: A,
}

///
// Example use of the library that will safely work.
use updated_crate::Foo;

fn main() {
 let s = Foo { f1: 123 };
}

Minor: adding defaulted type parameters {#generic-new-default}

It is safe to add a type parameter to a type as long as it has a default. All
existing references will use the default without needing to specify the
parameter.

// MINOR CHANGE

///
// Before
#[derive(Default)]
pub struct Foo {}

///
// After
#[derive(Default)]
pub struct Foo<A = i32> {
 f1: A,
}

///
// Example use of the library that will safely work.
use updated_crate::Foo;

fn main() {
 let s: Foo = Default::default();
}

Minor: generalizing a type to use generics (with identical types) {#generic-generalize-identical}

A struct or enum field can change from a concrete type to a generic type
parameter, provided that the change results in an identical type for all
existing use cases. For example, the following change is permitted:

// MINOR CHANGE

///
// Before
pub struct Foo(pub u8);

///
// After
pub struct Foo<T = u8>(pub T);

///
// Example use of the library that will safely work.
use updated_crate::Foo;

fn main() {
 let s: Foo = Foo(123);
}

because existing uses of Foo are shorthand for Foo<u8> which yields the
identical field type.

Major: generalizing a type to use generics (with possibly different types) {#generic-generalize-different}

Changing a struct or enum field from a concrete type to a generic type
parameter can break if the type can change.

// MAJOR CHANGE

///
// Before
pub struct Foo<T = u8>(pub T, pub u8);

///
// After
pub struct Foo<T = u8>(pub T, pub T);

///
// Example usage that will break.
use updated_crate::Foo;

fn main() {
 let s: Foo<f32> = Foo(3.14, 123); // Error: mismatched types
}

Minor: changing a generic type to a more generic type {#generic-more-generic}

It is safe to change a generic type to a more generic one. For example, the
following adds a generic parameter that defaults to the original type, which
is safe because all existing users will be using the same type for both
fields, the defaulted parameter does not need to be specified.

// MINOR CHANGE

///
// Before
pub struct Foo<T>(pub T, pub T);

///
// After
pub struct Foo<T, U = T>(pub T, pub U);

///
// Example use of the library that will safely work.
use updated_crate::Foo;

fn main() {
 let s: Foo<f32> = Foo(1.0, 2.0);
}

Major: capturing more generic parameters in RPIT {#generic-rpit-capture}

It is a breaking change to capture additional generic parameters in an RPIT (return-position impl trait).

// MAJOR CHANGE

///
// Before
pub fn f<'a, 'b>(x: &'a str, y: &'b str) -> impl Iterator<Item = char> + use<'a> {
 x.chars()
}

///
// After
pub fn f<'a, 'b>(x: &'a str, y: &'b str) -> impl Iterator<Item = char> + use<'a, 'b> {
 x.chars().chain(y.chars())
}

///
// Example usage that will break.
fn main() {
 let a = String::new();
 let b = String::new();
 let iter = updated_crate::f(&a, &b);
 drop(b); // Error: cannot move out of `b` because it is borrowed
}

Adding generic parameters to an RPIT places additional constraints on how the resulting type may be used.

Note that there are implicit captures when the use<> syntax is not specified. In Rust 2021 and earlier editions, the lifetime parameters are only captured if they appear syntactically within a bound in the RPIT type signature. Starting in Rust 2024, all lifetime parameters are unconditionally captured. This means that starting in Rust 2024, the default is maximally compatible, requiring you to be explicit when you want to capture less, which is a SemVer commitment.

See the edition guide and the reference for more information on RPIT capturing.

It is a minor change to capture fewer generic parameters in an RPIT.

Note: All in-scope type and const generic parameters must be either implicitly captured (no + use<…> specified) or explicitly captured (must be listed in + use<…>), and thus currently it is not allowed to change what is captured of those kinds of generics.

Major: adding/removing function parameters {#fn-change-arity}

Changing the arity of a function is a breaking change.

// MAJOR CHANGE

///
// Before
pub fn foo() {}

///
// After
pub fn foo(x: i32) {}

///
// Example usage that will break.
fn main() {
 updated_crate::foo(); // Error: this function takes 1 argument
}

Mitigating strategies:

	Introduce a new function with the new signature and possibly
deprecate the old one.

	Introduce functions that take a struct argument, where the struct is built
with the builder pattern. This allows new fields to be added to the struct
in the future.

Possibly-breaking: introducing a new function type parameter {#fn-generic-new}

Usually, adding a non-defaulted type parameter is safe, but in some
cases it can be a breaking change:

// Breaking change example

///
// Before
pub fn foo<T>() {}

///
// After
pub fn foo<T, U>() {}

///
// Example usage that will break.
use updated_crate::foo;

fn main() {
 foo::<u8>(); // Error: function takes 2 generic arguments but 1 generic argument was supplied
}

However, such explicit calls are rare enough (and can usually be written in
other ways) that this breakage is usually acceptable. One should take into
account how likely it is that the function in question is being called with
explicit type arguments.

Minor: generalizing a function to use generics (supporting original type) {#fn-generalize-compatible}

The type of a parameter to a function, or its return value, can be
generalized to use generics, including by introducing a new type parameter,
as long as it can be instantiated to the original type. For example, the
following changes are allowed:

// MINOR CHANGE

///
// Before
pub fn foo(x: u8) -> u8 {
 x
}
pub fn bar<T: Iterator<Item = u8>>(t: T) {}

///
// After
use std::ops::Add;
pub fn foo<T: Add>(x: T) -> T {
 x
}
pub fn bar<T: IntoIterator<Item = u8>>(t: T) {}

///
// Example use of the library that will safely work.
use updated_crate::{bar, foo};

fn main() {
 foo(1);
 bar(vec![1, 2, 3].into_iter());
}

because all existing uses are instantiations of the new signature.

Perhaps somewhat surprisingly, generalization applies to trait objects as
well, given that every trait implements itself:

// MINOR CHANGE

///
// Before
pub trait Trait {}
pub fn foo(t: &dyn Trait) {}

///
// After
pub trait Trait {}
pub fn foo<T: Trait + ?Sized>(t: &T) {}

///
// Example use of the library that will safely work.
use updated_crate::{foo, Trait};

struct Foo;
impl Trait for Foo {}

fn main() {
 let obj = Foo;
 foo(&obj);
}

(The use of ?Sized is essential; otherwise you couldn't recover the original
signature.)

Introducing generics in this way can potentially create type inference
failures. These are usually rare, and may be acceptable breakage for some
projects, as this can be fixed with additional type annotations.

// Breaking change example

///
// Before
pub fn foo() -> i32 {
 0
}

///
// After
pub fn foo<T: Default>() -> T {
 Default::default()
}

///
// Example usage that will break.
use updated_crate::foo;

fn main() {
 let x = foo(); // Error: type annotations needed
}

Major: generalizing a function to use generics with type mismatch {#fn-generalize-mismatch}

It is a breaking change to change a function parameter or return type if the
generic type constrains or changes the types previously allowed. For example,
the following adds a generic constraint that may not be satisfied by existing
code:

// MAJOR CHANGE

///
// Before
pub fn foo(x: Vec<u8>) {}

///
// After
pub fn foo<T: Copy + IntoIterator<Item = u8>>(x: T) {}

///
// Example usage that will break.
use updated_crate::foo;

fn main() {
 foo(vec![1, 2, 3]); // Error: `Copy` is not implemented for `Vec<u8>`
}

Minor: making an unsafe function safe {#fn-unsafe-safe}

A previously unsafe function can be made safe without breaking code.

Note however that it may cause the unused_unsafe lint to
trigger as in the example below, which will cause local crates that have
specified #![deny(warnings)] to stop compiling. Per introducing new
lints, it is allowed for updates to introduce new warnings.

Going the other way (making a safe function unsafe) is a breaking change.

// MINOR CHANGE

///
// Before
pub unsafe fn foo() {}

///
// After
pub fn foo() {}

///
// Example use of the library that will trigger a lint.
use updated_crate::foo;

unsafe fn bar(f: unsafe fn()) {
 f()
}

fn main() {
 unsafe { foo() }; // The `unused_unsafe` lint will trigger here
 unsafe { bar(foo) };
}

Making a previously unsafe associated function or method on structs / enums
safe is also a minor change, while the same is not true for associated
function on traits (see any change to trait item signatures).

Major: switching from no_std support to requiring std {#attr-no-std-to-std}

If your library specifically supports a no_std environment, it is a
breaking change to make a new release that requires std.

// MAJOR CHANGE

///
// Before
#![no_std]
pub fn foo() {}

///
// After
pub fn foo() {
 std::time::SystemTime::now();
}

///
// Example usage that will break.
// This will fail to link for no_std targets because they don't have a `std` crate.
#![no_std]
use updated_crate::foo;

fn example() {
 foo();
}

Mitigation strategies:

	A common idiom to avoid this is to include a std Cargo feature that
optionally enables std support, and when the feature is off, the library
can be used in a no_std environment.

Major: adding non_exhaustive to an existing enum, variant, or struct with no private fields {#attr-adding-non-exhaustive}

Making items #[non_exhaustive] changes how they may
be used outside the crate where they are defined:

	Non-exhaustive structs and enum variants cannot be constructed
using struct literal syntax, including functional update syntax.

	Pattern matching on non-exhaustive structs requires .. and
matching on enums does not count towards exhaustiveness.

	Casting enum variants to their discriminant with as is not allowed.

Structs with private fields cannot be constructed using struct literal syntax
regardless of whether #[non_exhaustive] is used.
Adding #[non_exhaustive] to such a struct is not
a breaking change.

// MAJOR CHANGE

///
// Before
pub struct Foo {
 pub bar: usize,
}

pub enum Bar {
 X,
 Y(usize),
 Z { a: usize },
}

pub enum Quux {
 Var,
}

///
// After
#[non_exhaustive]
pub struct Foo {
 pub bar: usize,
}

pub enum Bar {
 #[non_exhaustive]
 X,

 #[non_exhaustive]
 Y(usize),

 #[non_exhaustive]
 Z { a: usize },
}

#[non_exhaustive]
pub enum Quux {
 Var,
}

///
// Example usage that will break.
use updated_crate::{Bar, Foo, Quux};

fn main() {
 let foo = Foo { bar: 0 }; // Error: cannot create non-exhaustive struct using struct expression

 let bar_x = Bar::X; // Error: unit variant `X` is private
 let bar_y = Bar::Y(0); // Error: tuple variant `Y` is private
 let bar_z = Bar::Z { a: 0 }; // Error: cannot create non-exhaustive variant using struct expression

 let q = Quux::Var;
 match q {
 Quux::Var => 0,
 // Error: non-exhaustive patterns: `_` not covered
 };
}

Mitigation strategies:

	Mark structs, enums, and enum variants as
#[non_exhaustive] when first introducing them,
rather than adding #[non_exhaustive] later on.

Tooling and environment compatibility

Possibly-breaking: changing the minimum version of Rust required {#env-new-rust}

Introducing the use of new features in a new release of Rust can break
projects that are using older versions of Rust. This also includes using new
features in a new release of Cargo, and requiring the use of a nightly-only
feature in a crate that previously worked on stable.

It is generally recommended to treat this as a minor change, rather than as
a major change, for various reasons. It
is usually relatively easy to update to a newer version of Rust. Rust also has
a rapid 6-week release cycle, and some projects will provide compatibility
within a window of releases (such as the current stable release plus N
previous releases). Just keep in mind that some large projects may not be able
to update their Rust toolchain rapidly.

Mitigation strategies:

	Use Cargo features to make the new features opt-in.

	Provide a large window of support for older releases.

	Copy the source of new standard library items if possible so that you
can continue to use an older version but take advantage of the new feature.

	Provide a separate branch of older minor releases that can receive backports
of important bugfixes.

	Keep an eye out for the [cfg(version(..))] and
#[cfg(accessible(..))] features which provide an opt-in
mechanism for new features. These are currently unstable and only available
in the nightly channel.

Possibly-breaking: changing the platform and environment requirements {#env-change-requirements}

There is a very wide range of assumptions a library makes about the
environment that it runs in, such as the host platform, operating system
version, available services, filesystem support, etc. It can be a breaking
change if you make a new release that restricts what was previously supported,
for example requiring a newer version of an operating system. These changes
can be difficult to track, since you may not always know if a change breaks in
an environment that is not automatically tested.

Some projects may deem this acceptable breakage, particularly if the breakage
is unlikely for most users, or the project doesn't have the resources to
support all environments. Another notable situation is when a vendor
discontinues support for some hardware or OS, the project may deem it
reasonable to also discontinue support.

Mitigation strategies:

	Document the platforms and environments you specifically support.

	Test your code on a wide range of environments in CI.

Minor: introducing new lints {#new-lints}

Some changes to a library may cause new lints to be triggered in users of that library.
This should generally be considered a compatible change.

// MINOR CHANGE

///
// Before
pub fn foo() {}

///
// After
#[deprecated]
pub fn foo() {}

///
// Example use of the library that will safely work.

fn main() {
 updated_crate::foo(); // Warning: use of deprecated function
}

Beware that it may be possible for this to technically cause a project to fail if they have explicitly denied the warning, and the updated crate is a direct dependency.
Denying warnings should be done with care and the understanding that new lints may be introduced over time.
However, library authors should be cautious about introducing new warnings and may want to consider the potential impact on their users.

The following lints are examples of those that may be introduced when updating a dependency:

	deprecated --- Introduced when a dependency adds the #[deprecated] attribute to an item you are using.

	unused_must_use --- Introduced when a dependency adds the #[must_use] attribute to an item where you are not consuming the result.

	unused_unsafe --- Introduced when a dependency removes the unsafe qualifier from a function, and that is the only unsafe function called in an unsafe block.

Additionally, updating rustc to a new version may introduce new lints.

Transitive dependencies which introduce new lints should not usually cause a failure because Cargo uses --cap-lints to suppress all lints in dependencies.

Mitigating strategies:

	If you build with warnings denied, understand you may need to deal with resolving new warnings whenever you update your dependencies.
If using RUSTFLAGS to pass -Dwarnings, also add the -A flag to allow lints that are likely to cause issues, such as -Adeprecated.

	Introduce deprecations behind a feature.
For example #[cfg_attr(feature = "deprecated", deprecated="use bar instead")].
Then, when you plan to remove an item in a future SemVer breaking change, you can communicate with your users that they should enable the deprecated feature before updating to remove the use of the deprecated items.
This allows users to choose when to respond to deprecations without needing to immediately respond to them.
A downside is that it can be difficult to communicate to users that they need to take these manual steps to prepare for a major update.

Cargo

Minor: adding a new Cargo feature {#cargo-feature-add}

It is usually safe to add new Cargo features. If the feature introduces new
changes that cause a breaking change, this can cause difficulties for projects
that have stricter backwards-compatibility needs. In that scenario, avoid
adding the feature to the "default" list, and possibly document the
consequences of enabling the feature.

MINOR CHANGE

###
Before
[features]
..empty

###
After
[features]
std = []

Major: removing a Cargo feature {#cargo-feature-remove}

It is usually a breaking change to remove Cargo features. This will cause
an error for any project that enabled the feature.

MAJOR CHANGE

###
Before
[features]
logging = []

###
After
[dependencies]
..logging removed

Mitigation strategies:

	Clearly document your features. If there is an internal or experimental
feature, mark it as such, so that users know the status of the feature.

	Leave the old feature in Cargo.toml, but otherwise remove its
functionality. Document that the feature is deprecated, and remove it in a
future major SemVer release.

Major: removing a feature from a feature list if that changes functionality or public items {#cargo-feature-remove-another}

If removing a feature from another feature, this can break existing users if
they are expecting that functionality to be available through that feature.

Breaking change example

###
Before
[features]
default = ["std"]
std = []

###
After
[features]
default = [] # This may cause packages to fail if they are expecting std to be enabled.
std = []

Possibly-breaking: removing an optional dependency {#cargo-remove-opt-dep}

Removing an optional dependency can break a project using your library because
another project may be enabling that dependency via Cargo features.

When there is an optional dependency, cargo implicitly defines a feature of
the same name to provide a mechanism to enable the dependency and to check
when it is enabled. This problem can be avoided by using the dep: syntax in
the [features] table, which disables this implicit feature. Using dep:
makes it possible to hide the existence of optional dependencies under more
semantically-relevant names which can be more safely modified.

Breaking change example

###
Before
[dependencies]
curl = { version = "0.4.31", optional = true }

###
After
[dependencies]
..curl removed

MINOR CHANGE
#
This example shows how to avoid breaking changes with optional dependencies.

###
Before
[dependencies]
curl = { version = "0.4.31", optional = true }

[features]
networking = ["dep:curl"]

###
After
[dependencies]
Here, one optional dependency was replaced with another.
hyper = { version = "0.14.27", optional = true }

[features]
networking = ["dep:hyper"]

Mitigation strategies:

	Use the dep: syntax in the [features] table to avoid exposing optional
dependencies in the first place. See optional dependencies for
more information.

	Clearly document your features. If the optional dependency is not included
in the documented list of features, then you may decide to consider it safe
to change undocumented entries.

	Leave the optional dependency, and just don't use it within your library.

	Replace the optional dependency with a Cargo feature that does nothing,
and document that it is deprecated.

	Use high-level features which enable optional dependencies, and document
those as the preferred way to enable the extended functionality. For
example, if your library has optional support for something like
"networking", create a generic feature name "networking" that enables the
optional dependencies necessary to implement "networking". Then document the
"networking" feature.

Minor: changing dependency features {#cargo-change-dep-feature}

It is usually safe to change the features on a dependency, as long as the
feature does not introduce a breaking change.

MINOR CHANGE

###
Before
[dependencies]
rand = { version = "0.7.3", features = ["small_rng"] }

###
After
[dependencies]
rand = "0.7.3"

Minor: adding dependencies {#cargo-dep-add}

It is usually safe to add new dependencies, as long as the new dependency
does not introduce new requirements that result in a breaking change.
For example, adding a new dependency that requires nightly in a project
that previously worked on stable is a major change.

MINOR CHANGE

###
Before
[dependencies]
..empty

###
After
[dependencies]
log = "0.4.11"

Application compatibility

Cargo projects may also include executable binaries which have their own
interfaces (such as a CLI interface, OS-level interaction, etc.). Since these
are part of the Cargo package, they often use and share the same version as
the package. You will need to decide if and how you want to employ a SemVer
contract with your users in the changes you make to your application. The
potential breaking and compatible changes to an application are too numerous
to list, so you are encouraged to use the spirit of the SemVer spec to guide
your decisions on how to apply versioning to your application, or at least
document what your commitments are.

 Future incompat report

 Future incompat report

Cargo checks for future-incompatible warnings in all dependencies. These are warnings for
changes that may become hard errors in the future, causing the dependency to
stop building in a future version of rustc. If any warnings are found, a small
notice is displayed indicating that the warnings were found, and provides
instructions on how to display a full report.

For example, you may see something like this at the end of a build:

warning: the following packages contain code that will be rejected by a future
 version of Rust: rental v0.5.5
note: to see what the problems were, use the option `--future-incompat-report`,
 or run `cargo report future-incompatibilities --id 1`

A full report can be displayed with the cargo report future-incompatibilities --id ID command, or by running the build again with
the --future-incompat-report flag. The developer should then update their
dependencies to a version where the issue is fixed, or work with the
developers of the dependencies to help resolve the issue.

Configuration

This feature can be configured through a [future-incompat-report]
section in .cargo/config.toml. Currently, the supported options are:

[future-incompat-report]
frequency = "always"

The supported values for the frequency are "always" and "never", which control
whether or not a message is printed out at the end of cargo build / cargo check.

 Reporting build timings

 Reporting build timings

The --timings option gives some information about how long each compilation
takes, and tracks concurrency information over time.

cargo build --timings

This writes an HTML report in target/cargo-timings/cargo-timing.html. This
also writes a copy of the report to the same directory with a timestamp in the
filename, if you want to look at older runs.

Reading the graphs

There are two tables and two graphs in the output.

The first table displays the build information of the project, including the
number of units built, the maximum number of concurrency, build time, and the
version information of the currently used compiler.

[image: build-info]

The "unit" graph shows the duration of each unit over time. A "unit" is a single
compiler invocation. There are lines that show which additional units are
"unlocked" when a unit finishes. That is, it shows the new units that are now
allowed to run because their dependencies are all finished. Hover the mouse over
a unit to highlight the lines. This can help visualize the critical path of
dependencies. This may change between runs because the units may finish in
different orders.

The "codegen" times are highlighted in a lavender color. In some cases, build
pipelining allows units to start when their dependencies are performing code
generation. This information is not always displayed (for example, binary
units do not show when code generation starts).

The "custom build" units are build.rs scripts, which when run are
highlighted in orange.

[image: build-unit-time]

The second graph shows Cargo's concurrency over time. The background
indicates CPU usage. The three lines are:

	"Waiting" (red) --- This is the number of units waiting for a CPU slot to
open.

	"Inactive" (blue) --- This is the number of units that are waiting for their
dependencies to finish.

	"Active" (green) --- This is the number of units currently running.

[image: cargo-concurrency-over-time]

Note: This does not show the concurrency in the compiler itself. rustc
coordinates with Cargo via the "job server" to stay within the concurrency
limit. This currently mostly applies to the code generation phase.

Tips for addressing compile times:

	Look for slow dependencies.

	Check if they have features that you may wish to consider disabling.

	Consider trying to remove the dependency completely.

	Look for a crate being built multiple times with different versions. Try to
remove the older versions from the dependency graph.

	Split large crates into smaller pieces.

	If there are a large number of crates bottlenecked on a single crate, focus
your attention on improving that one crate to improve parallelism.

The last table lists the total time and "codegen" time spent on each unit,
as well as the features that were enabled during each unit's compilation.

 Lints

 Lints

Note: Cargo's linting system is unstable and can only be used on nightly toolchains

Warn-by-default

These lints are all set to the 'warn' level by default.

	unknown_lints

unknown_lints

Set to warn by default

What it does

Checks for unknown lints in the [lints.cargo] table

Why it is bad

	The lint name could be misspelled, leading to confusion as to why it is
not working as expected

	The unknown lint could end up causing an error if cargo decides to make
a lint with the same name in the future

Example

[lints.cargo]
this-lint-does-not-exist = "warn"

 Unstable Features

 Unstable Features

Experimental Cargo features are only available on the nightly channel. You
are encouraged to experiment with these features to see if they meet your
needs, and if there are any issues or problems. Check the linked tracking
issues listed below for more information on the feature, and click the GitHub
subscribe button if you want future updates.

After some period of time, if the feature does not have any major concerns, it
can be stabilized, which will make it available on stable once the current
nightly release reaches the stable channel (anywhere from 6 to 12 weeks).

There are three different ways that unstable features can be enabled based on
how the feature works:

	
New syntax in Cargo.toml requires a cargo-features key at the top of
Cargo.toml, before any tables. For example:

This specifies which new Cargo.toml features are enabled.
cargo-features = ["test-dummy-unstable"]

[package]
name = "my-package"
version = "0.1.0"
im-a-teapot = true # This is a new option enabled by test-dummy-unstable.

	
New command-line flags, options, and subcommands require the -Z unstable-options CLI option to also be included. For example, the new
--artifact-dir option is only available on nightly:

cargo +nightly build --artifact-dir=out -Z unstable-options

	
-Z command-line flags are used to enable new functionality that may not
have an interface, or the interface has not yet been designed, or for more
complex features that affect multiple parts of Cargo. For example, the
mtime-on-use feature can be enabled with:

cargo +nightly build -Z mtime-on-use

Run cargo -Z help to see a list of flags available.

Anything which can be configured with a -Z flag can also be set in the
cargo config file (.cargo/config.toml) in the unstable table. For
example:

[unstable]
mtime-on-use = true
build-std = ["core", "alloc"]

Each new feature described below should explain how to use it.

For the latest nightly, see the nightly version of this page.

List of unstable features

	Unstable-specific features

	-Z allow-features --- Provides a way to restrict which unstable features are used.

	Build scripts and linking

	Metabuild --- Provides declarative build scripts.

	Multiple Build Scripts --- Allows use of multiple build scripts.

	Resolver and features

	no-index-update --- Prevents cargo from updating the index cache.

	avoid-dev-deps --- Prevents the resolver from including dev-dependencies during resolution.

	minimal-versions --- Forces the resolver to use the lowest compatible version instead of the highest.

	direct-minimal-versions — Forces the resolver to use the lowest compatible version instead of the highest.

	public-dependency --- Allows dependencies to be classified as either public or private.

	msrv-policy --- MSRV-aware resolver and version selection

	precise-pre-release --- Allows pre-release versions to be selected with update --precise

	sbom --- Generates SBOM pre-cursor files for compiled artifacts

	update-breaking --- Allows upgrading to breaking versions with update --breaking

	feature-unification --- Enable new feature unification modes in workspaces

	Output behavior

	artifact-dir --- Adds a directory where artifacts are copied to.

	build-dir --- Adds a directory where intermediate build artifacts are stored.

	Different binary name --- Assign a name to the built binary that is separate from the crate name.

	root-dir --- Controls the root directory relative to which paths are printed

	Compile behavior

	mtime-on-use --- Updates the last-modified timestamp on every dependency every time it is used, to provide a mechanism to delete unused artifacts.

	build-std --- Builds the standard library instead of using pre-built binaries.

	build-std-features --- Sets features to use with the standard library.

	binary-dep-depinfo --- Causes the dep-info file to track binary dependencies.

	checksum-freshness --- When passed, the decision as to whether a crate needs to be rebuilt is made using file checksums instead of the file mtime.

	panic-abort-tests --- Allows running tests with the "abort" panic strategy.

	host-config --- Allows setting [target]-like configuration settings for host build targets.

	no-embed-metadata --- Passes -Zembed-metadata=no to the compiler, which avoid embedding metadata into rlib and dylib artifacts, to save disk space.

	target-applies-to-host --- Alters whether certain flags will be passed to host build targets.

	gc --- Global cache garbage collection.

	open-namespaces --- Allow multiple packages to participate in the same API namespace

	rustdoc

	rustdoc-map --- Provides mappings for documentation to link to external sites like docs.rs.

	scrape-examples --- Shows examples within documentation.

	output-format --- Allows documentation to also be emitted in the experimental JSON format.

	rustdoc-depinfo --- Use dep-info files in rustdoc rebuild detection.

	Cargo.toml extensions

	Profile rustflags option --- Passed directly to rustc.

	Profile hint-mostly-unused option --- Hint that a dependency is mostly unused, to optimize compilation time.

	codegen-backend --- Select the codegen backend used by rustc.

	per-package-target --- Sets the --target to use for each individual package.

	artifact dependencies --- Allow build artifacts to be included into other build artifacts and build them for different targets.

	Profile trim-paths option --- Control the sanitization of file paths in build outputs.

	[lints.cargo] --- Allows configuring lints for Cargo.

	path bases --- Named base directories for path dependencies.

	unstable-editions --- Allows use of editions that are not yet stable.

	Information and metadata

	Build-plan --- Emits JSON information on which commands will be run.

	unit-graph --- Emits JSON for Cargo's internal graph structure.

	cargo rustc --print --- Calls rustc with --print to display information from rustc.

	Configuration

	config-include --- Adds the ability for config files to include other files.

	cargo config --- Adds a new subcommand for viewing config files.

	Registries

	publish-timeout --- Controls the timeout between uploading the crate and being available in the index

	asymmetric-token --- Adds support for authentication tokens using asymmetric cryptography (cargo:paseto provider).

	Other

	gitoxide --- Use gitoxide instead of git2 for a set of operations.

	script --- Enable support for single-file .rs packages.

	lockfile-path --- Allows to specify a path to lockfile other than the default path <workspace_root>/Cargo.lock.

	package-workspace --- Allows for packaging and publishing multiple crates in a workspace.

	native-completions --- Move cargo shell completions to native completions.

	warnings --- controls warning behavior; options for allowing or denying warnings.

	Package message format --- Message format for cargo package.

	fix-edition --- A permanently unstable edition migration helper.

allow-features

This permanently-unstable flag makes it so that only a listed set of
unstable features can be used. Specifically, if you pass
-Zallow-features=foo,bar, you'll continue to be able to pass -Zfoo
and -Zbar to cargo, but you will be unable to pass -Zbaz. You can
pass an empty string (-Zallow-features=) to disallow all unstable
features.

-Zallow-features also restricts which unstable features can be passed
to the cargo-features entry in Cargo.toml. If, for example, you want
to allow

cargo-features = ["test-dummy-unstable"]

where test-dummy-unstable is unstable, that features would also be
disallowed by -Zallow-features=, and allowed with
-Zallow-features=test-dummy-unstable.

The list of features passed to cargo's -Zallow-features is also passed
to any Rust tools that cargo ends up calling (like rustc or
rustdoc). Thus, if you run cargo -Zallow-features=, no unstable
Cargo or Rust features can be used.

no-index-update

	Original Issue: #3479

	Tracking Issue: #7404

The -Z no-index-update flag ensures that Cargo does not attempt to update
the registry index. This is intended for tools such as Crater that issue many
Cargo commands, and you want to avoid the network latency for updating the
index each time.

mtime-on-use

	Original Issue: #6477

	Cache usage meta tracking issue: #7150

The -Z mtime-on-use flag is an experiment to have Cargo update the mtime of
used files to make it easier for tools like cargo-sweep to detect which files
are stale. For many workflows this needs to be set on all invocations of cargo.
To make this more practical setting the unstable.mtime_on_use flag in .cargo/config.toml
or the corresponding ENV variable will apply the -Z mtime-on-use to all
invocations of nightly cargo. (the config flag is ignored by stable)

avoid-dev-deps

	Original Issue: #4988

	Tracking Issue: #5133

When running commands such as cargo install or cargo build, Cargo
currently requires dev-dependencies to be downloaded, even if they are not
used. The -Z avoid-dev-deps flag allows Cargo to avoid downloading
dev-dependencies if they are not needed. The Cargo.lock file will not be
generated if dev-dependencies are skipped.

minimal-versions

	Original Issue: #4100

	Tracking Issue: #5657

Note: It is not recommended to use this feature. Because it enforces minimal
versions for all transitive dependencies, its usefulness is limited since
not all external dependencies declare proper lower version bounds. It is
intended that it will be changed in the future to only enforce minimal
versions for direct dependencies.

When a Cargo.lock file is generated, the -Z minimal-versions flag will
resolve the dependencies to the minimum SemVer version that will satisfy the
requirements (instead of the greatest version).

The intended use-case of this flag is to check, during continuous integration,
that the versions specified in Cargo.toml are a correct reflection of the
minimum versions that you are actually using. That is, if Cargo.toml says
foo = "1.0.0" that you don't accidentally depend on features added only in
foo 1.5.0.

direct-minimal-versions

	Original Issue: #4100

	Tracking Issue: #5657

When a Cargo.lock file is generated, the -Z direct-minimal-versions flag will
resolve the dependencies to the minimum SemVer version that will satisfy the
requirements (instead of the greatest version) for direct dependencies only.

The intended use-case of this flag is to check, during continuous integration,
that the versions specified in Cargo.toml are a correct reflection of the
minimum versions that you are actually using. That is, if Cargo.toml says
foo = "1.0.0" that you don't accidentally depend on features added only in
foo 1.5.0.

Indirect dependencies are resolved as normal so as not to be blocked on their
minimal version validation.

artifact-dir

	Original Issue: #4875

	Tracking Issue: #6790

This feature allows you to specify the directory where artifacts will be copied
to after they are built. Typically artifacts are only written to the
target/release or target/debug directories. However, determining the exact
filename can be tricky since you need to parse JSON output. The --artifact-dir
flag makes it easier to predictably access the artifacts. Note that the
artifacts are copied, so the originals are still in the target directory.
Example:

cargo +nightly build --artifact-dir=out -Z unstable-options

This can also be specified in .cargo/config.toml files.

[build]
artifact-dir = "out"

build-dir

	Original Issue: #14125

	Tracking Issue: #14125

The directory where intermediate build artifacts will be stored.
Intermediate artifacts are produced by Rustc/Cargo during the build process.

[build]
build-dir = "out"

build.build-dir

	Type: string (path)

	Default: Defaults to the value of build.target-dir

	Environment: CARGO_BUILD_BUILD_DIR

The path to where internal files used as part of the build are placed.

This option supports path templating.

Available template variables:

	{workspace-root} resolves to root of the current workspace.

	{cargo-cache-home} resolves to CARGO_HOME

	{workspace-path-hash} resolves to a hash of the manifest path

root-dir

	Original Issue: #9887

	Tracking Issue: None (not currently slated for stabilization)

The -Zroot-dir flag sets the root directory relative to which paths are printed.
This affects both diagnostics and paths emitted by the file!() macro.

Build-plan

	Tracking Issue: #5579

The build-plan feature is deprecated and may be removed in a future version.
See https://github.com/rust-lang/cargo/issues/7614.

The --build-plan argument for the build command will output JSON with
information about which commands would be run without actually executing
anything. This can be useful when integrating with another build tool.
Example:

cargo +nightly build --build-plan -Z unstable-options

Metabuild

	Tracking Issue: rust-lang/rust#49803

	RFC: #2196

Metabuild is a feature to have declarative build scripts. Instead of writing
a build.rs script, you specify a list of build dependencies in the
metabuild key in Cargo.toml. A build script is automatically generated
that runs each build dependency in order. Metabuild packages can then read
metadata from Cargo.toml to specify their behavior.

Include cargo-features at the top of Cargo.toml, a metabuild key in the
package, list the dependencies in build-dependencies, and add any metadata
that the metabuild packages require under package.metadata. Example:

cargo-features = ["metabuild"]

[package]
name = "mypackage"
version = "0.0.1"
metabuild = ["foo", "bar"]

[build-dependencies]
foo = "1.0"
bar = "1.0"

[package.metadata.foo]
extra-info = "qwerty"

Metabuild packages should have a public function called metabuild that
performs the same actions as a regular build.rs script would perform.

Multiple Build Scripts

	Tracking Issue: #14903

	Original Pull Request: #15630

Multiple Build Scripts feature allows you to have multiple build scripts in your package.

Include cargo-features at the top of Cargo.toml and add multiple-build-scripts to enable feature.
Add the paths of the build scripts as an array in package.build. For example:

cargo-features = ["multiple-build-scripts"]

[package]
name = "mypackage"
version = "0.0.1"
build = ["foo.rs", "bar.rs"]

public-dependency

	Tracking Issue: #44663

The 'public-dependency' feature allows marking dependencies as 'public'
or 'private'. When this feature is enabled, additional information is passed to rustc to allow
the exported_private_dependencies lint to function properly.

To enable this feature, you can either use -Zpublic-dependency

cargo +nightly run -Zpublic-dependency

or [unstable] table, for example,

.cargo/config.toml
[unstable]
public-dependency = true

public-dependency could also be enabled in cargo-features, though this is deprecated and will be removed soon.

cargo-features = ["public-dependency"]

[dependencies]
my_dep = { version = "1.2.3", public = true }
private_dep = "2.0.0" # Will be 'private' by default

Documentation updates:

	For workspace's "The dependencies table" section, include public as an unsupported field for workspace.dependencies

msrv-policy

	RFC: MSRV-aware Resolver

	#9930 (MSRV-aware resolver)

Catch-all unstable feature for MSRV-aware cargo features under
RFC 2495.

MSRV-aware cargo add

This was stabilized in 1.79 in #13608.

MSRV-aware resolver

This was stabilized in 1.84 in #14639.

Convert incompatible_toolchain error into a lint

Unimplemented

--update-rust-version flag for cargo add, cargo update

Unimplemented

package.rust-version = "toolchain"

Unimplemented

Update cargo new template to set package.rust-version = "toolchain"

Unimplemented

precise-pre-release

	Tracking Issue: #13290

	RFC: #3493

The precise-pre-release feature allows pre-release versions to be selected with update --precise
even when a pre-release is not specified by a projects Cargo.toml.

Take for example this Cargo.toml.

[dependencies]
my-dependency = "0.1.1"

It's possible to update my-dependency to a pre-release with update -Zunstable-options my-dependency --precise 0.1.2-pre.0.
This is because 0.1.2-pre.0 is considered compatible with 0.1.1.
It would not be possible to upgrade to 0.2.0-pre.0 from 0.1.1 in the same way.

sbom

	Tracking Issue: #13709

	RFC: #3553

The sbom build config allows to generate so-called SBOM pre-cursor files
alongside each compiled artifact. A Software Bill Of Material (SBOM) tool can
incorporate these generated files to collect important information from the cargo
build process that are difficult or impossible to obtain in another way.

To enable this feature either set the sbom field in the .cargo/config.toml

[unstable]
sbom = true

[build]
sbom = true

or set the CARGO_BUILD_SBOM environment variable to true. The functionality
is available behind the flag -Z sbom.

The generated output files are in JSON format and follow the naming scheme
<artifact>.cargo-sbom.json. The JSON file contains information about dependencies,
target, features and the used rustc compiler.

SBOM pre-cursor files are generated for all executable and linkable outputs
that are uplifted into the target or artifact directories.

Environment variables Cargo sets for crates

	CARGO_SBOM_PATH -- a list of generated SBOM precursor files, separated by the platform PATH separator. The list can be split with std::env::split_paths.

SBOM pre-cursor schema

{
 // Schema version.
 "version": 1,
 // Index into the crates array for the root crate.
 "root": 0,
 // Array of all crates. There may be duplicates of the same crate if that
 // crate is compiled differently (different opt-level, features, etc).
 "crates": [
 {
 // Package ID specification
 "id": "path+file:///sample-package#0.1.0",
 // List of target kinds: bin, lib, rlib, dylib, cdylib, staticlib, proc-macro, example, test, bench, custom-build
 "kind": ["bin"],
 // Enabled feature flags.
 "features": [],
 // Dependencies for this crate.
 "dependencies": [
 {
 // Index in to the crates array.
 "index": 1,
 // Dependency kind:
 // Normal: A dependency linked to the artifact produced by this crate.
 // Build: A compile-time dependency used to build this crate (build-script or proc-macro).
 "kind": "normal"
 },
 {
 // A crate can depend on another crate with both normal and build edges.
 "index": 1,
 "kind": "build"
 }
]
 },
 {
 "id": "registry+https://github.com/rust-lang/crates.io-index#zerocopy@0.8.16",
 "kind": ["bin"],
 "features": [],
 "dependencies": []
 }
],
 // Information about rustc used to perform the compilation.
 "rustc": {
 // Compiler version
 "version": "1.86.0-nightly",
 // Compiler wrapper
 "wrapper": null,
 // Compiler workspace wrapper
 "workspace_wrapper": null,
 // Commit hash for rustc
 "commit_hash": "bef3c3b01f690de16738b1c9f36470fbfc6ac623",
 // Host target triple
 "host": "x86_64-pc-windows-msvc",
 // Verbose version string: `rustc -vV`
 "verbose_version": "rustc 1.86.0-nightly (bef3c3b01 2025-02-04)\nbinary: rustc\ncommit-hash: bef3c3b01f690de16738b1c9f36470fbfc6ac623\ncommit-date: 2025-02-04\nhost: x86_64-pc-windows-msvc\nrelease: 1.86.0-nightly\nLLVM version: 19.1.7\n"
 }
}

update-breaking

	Tracking Issue: #12425

Allow upgrading dependencies version requirements in Cargo.toml across SemVer
incompatible versions using with the --breaking flag.

This only applies to dependencies when

	The package is a dependency of a workspace member

	The dependency is not renamed

	A SemVer-incompatible version is available

	The "SemVer operator" is used (^ which is the default)

Users may further restrict which packages get upgraded by specifying them on
the command line.

Example:

$ cargo +nightly -Zunstable-options update --breaking
$ cargo +nightly -Zunstable-options update --breaking clap

This is meant to fill a similar role as cargo-upgrade

build-std

	Tracking Repository: https://github.com/rust-lang/wg-cargo-std-aware

The build-std feature enables Cargo to compile the standard library itself as
part of a crate graph compilation. This feature has also historically been known
as "std-aware Cargo". This feature is still in very early stages of development,
and is also a possible massive feature addition to Cargo. This is a very large
feature to document, even in the minimal form that it exists in today, so if
you're curious to stay up to date you'll want to follow the tracking
repository and its set of
issues.

The functionality implemented today is behind a flag called -Z build-std. This
flag indicates that Cargo should compile the standard library from source code
using the same profile as the main build itself. Note that for this to work you
need to have the source code for the standard library available, and at this
time the only supported method of doing so is to add the rust-src rust rustup
component:

$ rustup component add rust-src --toolchain nightly

Usage looks like:

$ cargo new foo
$ cd foo
$ cargo +nightly run -Z build-std --target x86_64-unknown-linux-gnu
 Compiling core v0.0.0 (...)
 ...
 Compiling foo v0.1.0 (...)
 Finished dev [unoptimized + debuginfo] target(s) in 21.00s
 Running `target/x86_64-unknown-linux-gnu/debug/foo`
Hello, world!

Here we recompiled the standard library in debug mode with debug assertions
(like src/main.rs is compiled) and everything was linked together at the end.

Using -Z build-std will implicitly compile the stable crates core, std,
alloc, and proc_macro. If you're using cargo test it will also compile the
test crate. If you're working with an environment which does not support some
of these crates, then you can pass an argument to -Zbuild-std as well:

$ cargo +nightly build -Z build-std=core,alloc

The value here is a comma-separated list of standard library crates to build.

Requirements

As a summary, a list of requirements today to use -Z build-std are:

	You must install libstd's source code through rustup component add rust-src

	You must use both a nightly Cargo and a nightly rustc

	The -Z build-std flag must be passed to all cargo invocations.

Reporting bugs and helping out

The -Z build-std feature is in the very early stages of development! This
feature for Cargo has an extremely long history and is very large in scope, and
this is just the beginning. If you'd like to report bugs please either report
them to:

	Cargo --- https://github.com/rust-lang/cargo/issues/new --- for implementation bugs

	The tracking repository ---
https://github.com/rust-lang/wg-cargo-std-aware/issues/new --- for larger design
questions.

Also if you'd like to see a feature that's not yet implemented and/or if
something doesn't quite work the way you'd like it to, feel free to check out
the issue tracker of
the tracking repository, and if it's not there please file a new issue!

build-std-features

	Tracking Repository: https://github.com/rust-lang/wg-cargo-std-aware

This flag is a sibling to the -Zbuild-std feature flag. This will configure
the features enabled for the standard library itself when building the standard
library. The default enabled features, at this time, are backtrace and
panic-unwind. This flag expects a comma-separated list and, if provided, will
override the default list of features enabled.

binary-dep-depinfo

	Tracking rustc issue: #63012

The -Z binary-dep-depinfo flag causes Cargo to forward the same flag to
rustc which will then cause rustc to include the paths of all binary
dependencies in the "dep info" file (with the .d extension). Cargo then uses
that information for change-detection (if any binary dependency changes, then
the crate will be rebuilt). The primary use case is for building the compiler
itself, which has implicit dependencies on the standard library that would
otherwise be untracked for change-detection.

checksum-freshness

	Tracking issue: #14136

The -Z checksum-freshness flag will replace the use of file mtimes in cargo's
fingerprints with a file checksum value. This is most useful on systems with a poor
mtime implementation, or in CI/CD. The checksum algorithm can change without notice
between cargo versions. Fingerprints are used by cargo to determine when a crate needs to be rebuilt.

For the time being files ingested by build script will continue to use mtimes, even when checksum-freshness
is enabled. This is not intended as a long term solution.

panic-abort-tests

	Tracking Issue: #67650

	Original Pull Request: #7460

The -Z panic-abort-tests flag will enable nightly support to compile test
harness crates with -Cpanic=abort. Without this flag Cargo will compile tests,
and everything they depend on, with -Cpanic=unwind because it's the only way
test-the-crate knows how to operate. As of rust-lang/rust#64158, however,
the test crate supports -C panic=abort with a test-per-process, and can help
avoid compiling crate graphs multiple times.

It's currently unclear how this feature will be stabilized in Cargo, but we'd
like to stabilize it somehow!

config-include

	Tracking Issue: #7723

This feature requires the -Zconfig-include command-line option.

The include key in a config file can be used to load another config file. It
takes a string for a path to another file relative to the config file, or an
array of config file paths. Only path ending with .toml is accepted.

a path ending with `.toml`
include = "path/to/mordor.toml"

or an array of paths
include = ["frodo.toml", "samwise.toml"]

Unlike other config values, the merge behavior of the include key is
different. When a config file contains an include key:

	The config values are first loaded from the include path.

	If the value of the include key is an array of paths, the config values
are loaded and merged from left to right for each path.

	Recurse this step if the config values from the include path also
contain an include key.

	Then, the config file's own values are merged on top of the config
from the include path.

target-applies-to-host

	Original Pull Request: #9322

	Tracking Issue: #9453

Historically, Cargo's behavior for whether the linker and rustflags
configuration options from environment variables and
[target] are respected for build scripts, plugins,
and other artifacts that are always built for the host platform has
been somewhat inconsistent.
When --target is not passed, Cargo respects the same linker and
rustflags for build scripts as for all other compile artifacts. When
--target is passed, however, Cargo respects linker from
[target.<host triple>], and does not
pick up any rustflags configuration.
This dual behavior is confusing, but also makes it difficult to correctly
configure builds where the host triple and the target triple happen to
be the same, but artifacts intended to run on the build host should still
be configured differently.

-Ztarget-applies-to-host enables the top-level
target-applies-to-host setting in Cargo configuration files which
allows users to opt into different (and more consistent) behavior for
these properties. When target-applies-to-host is unset, or set to
true, in the configuration file, the existing Cargo behavior is
preserved (though see -Zhost-config, which changes that default). When
it is set to false, no options from [target.<host triple>],
RUSTFLAGS, or [build] are respected for host artifacts regardless of
whether --target is passed to Cargo. To customize artifacts intended
to be run on the host, use [host] (host-config).

In the future, target-applies-to-host may end up defaulting to false
to provide more sane and consistent default behavior.

config.toml
target-applies-to-host = false

cargo +nightly -Ztarget-applies-to-host build --target x86_64-unknown-linux-gnu

host-config

	Original Pull Request: #9322

	Tracking Issue: #9452

The host key in a config file can be used to pass flags to host build targets
such as build scripts that must run on the host system instead of the target
system when cross compiling. It supports both generic and host arch specific
tables. Matching host arch tables take precedence over generic host tables.

It requires the -Zhost-config and -Ztarget-applies-to-host
command-line options to be set, and that target-applies-to-host = false is set in the Cargo configuration file.

config.toml
[host]
linker = "/path/to/host/linker"
[host.x86_64-unknown-linux-gnu]
linker = "/path/to/host/arch/linker"
rustflags = ["-Clink-arg=--verbose"]
[target.x86_64-unknown-linux-gnu]
linker = "/path/to/target/linker"

The generic host table above will be entirely ignored when building on an
x86_64-unknown-linux-gnu host as the host.x86_64-unknown-linux-gnu table
takes precedence.

Setting -Zhost-config changes the default for target-applies-to-host to
false from true.

cargo +nightly -Ztarget-applies-to-host -Zhost-config build --target x86_64-unknown-linux-gnu

unit-graph

	Tracking Issue: #8002

The --unit-graph flag can be passed to any build command (build, check,
run, test, bench, doc, etc.) to emit a JSON object to stdout which
represents Cargo's internal unit graph. Nothing is actually built, and the
command returns immediately after printing. Each "unit" corresponds to an
execution of the compiler. These objects also include which unit each unit
depends on.

cargo +nightly build --unit-graph -Z unstable-options

This structure provides a more complete view of the dependency relationship as
Cargo sees it. In particular, the "features" field supports the new feature
resolver where a dependency can be built multiple times with different
features. cargo metadata fundamentally cannot represent the relationship of
features between different dependency kinds, and features now depend on which
command is run and which packages and targets are selected. Additionally it
can provide details about intra-package dependencies like build scripts or
tests.

The following is a description of the JSON structure:

{
 /* Version of the JSON output structure. If any backwards incompatible
 changes are made, this value will be increased.
 */
 "version": 1,
 /* Array of all build units. */
 "units": [
 {
 /* An opaque string which indicates the package.
 Information about the package can be obtained from `cargo metadata`.
 */
 "pkg_id": "my-package 0.1.0 (path+file:///path/to/my-package)",
 /* The Cargo target. See the `cargo metadata` documentation for more
 information about these fields.
 https://doc.rust-lang.org/cargo/commands/cargo-metadata.html
 */
 "target": {
 "kind": ["lib"],
 "crate_types": ["lib"],
 "name": "my_package",
 "src_path": "/path/to/my-package/src/lib.rs",
 "edition": "2018",
 "test": true,
 "doctest": true
 },
 /* The profile settings for this unit.
 These values may not match the profile defined in the manifest.
 Units can use modified profile settings. For example, the "panic"
 setting can be overridden for tests to force it to "unwind".
 */
 "profile": {
 /* The profile name these settings are derived from. */
 "name": "dev",
 /* The optimization level as a string. */
 "opt_level": "0",
 /* The LTO setting as a string. */
 "lto": "false",
 /* The codegen units as an integer.
 `null` if it should use the compiler's default.
 */
 "codegen_units": null,
 /* The debug information level as an integer.
 `null` if it should use the compiler's default (0).
 */
 "debuginfo": 2,
 /* Whether or not debug-assertions are enabled. */
 "debug_assertions": true,
 /* Whether or not overflow-checks are enabled. */
 "overflow_checks": true,
 /* Whether or not rpath is enabled. */
 "rpath": false,
 /* Whether or not incremental is enabled. */
 "incremental": true,
 /* The panic strategy, "unwind" or "abort". */
 "panic": "unwind"
 },
 /* Which platform this target is being built for.
 A value of `null` indicates it is for the host.
 Otherwise it is a string of the target triple (such as
 "x86_64-unknown-linux-gnu").
 */
 "platform": null,
 /* The "mode" for this unit. Valid values:

 * "test" --- Build using `rustc` as a test.
 * "build" --- Build using `rustc`.
 * "check" --- Build using `rustc` in "check" mode.
 * "doc" --- Build using `rustdoc`.
 * "doctest" --- Test using `rustdoc`.
 * "run-custom-build" --- Represents the execution of a build script.
 */
 "mode": "build",
 /* Array of features enabled on this unit as strings. */
 "features": ["somefeat"],
 /* Whether or not this is a standard-library unit,
 part of the unstable build-std feature.
 If not set, treat as `false`.
 */
 "is_std": false,
 /* Array of dependencies of this unit. */
 "dependencies": [
 {
 /* Index in the "units" array for the dependency. */
 "index": 1,
 /* The name that this dependency will be referred as. */
 "extern_crate_name": "unicode_xid",
 /* Whether or not this dependency is "public",
 part of the unstable public-dependency feature.
 If not set, the public-dependency feature is not enabled.
 */
 "public": false,
 /* Whether or not this dependency is injected into the prelude,
 currently used by the build-std feature.
 If not set, treat as `false`.
 */
 "noprelude": false
 }
]
 },
 // ...
],
 /* Array of indices in the "units" array that are the "roots" of the
 dependency graph.
 */
 "roots": [0],
}

Profile rustflags option

	Original Issue: rust-lang/cargo#7878

	Tracking Issue: rust-lang/cargo#10271

This feature provides a new option in the [profile] section to specify flags
that are passed directly to rustc.
This can be enabled like so:

cargo-features = ["profile-rustflags"]

[package]
...

[profile.release]
rustflags = ["-C", "..."]

To set this in a profile in Cargo configuration, you need to use either
-Z profile-rustflags or [unstable] table to enable it. For example,

.cargo/config.toml
[unstable]
profile-rustflags = true

[profile.release]
rustflags = ["-C", "..."]

Profile hint-mostly-unused option

	Tracking Issue: #15644

This feature provides a new option in the [profile] section to enable the
rustc hint-mostly-unused option. This is primarily useful to enable for
specific dependencies:

[profile.dev.package.huge-mostly-unused-dependency]
hint-mostly-unused = true

To enable this feature, pass -Zprofile-hint-mostly-unused. However, since
this option is a hint, using it without passing -Zprofile-hint-mostly-unused
will only warn and ignore the profile option. Versions of Cargo prior to the
introduction of this feature will give an "unused manifest key" warning, but
will otherwise function without erroring. This allows using the hint in a
crate's Cargo.toml without mandating the use of a newer Cargo to build it.

rustdoc-map

	Tracking Issue: #8296

This feature adds configuration settings that are passed to rustdoc so that
it can generate links to dependencies whose documentation is hosted elsewhere
when the dependency is not documented. First, add this to .cargo/config:

[doc.extern-map.registries]
crates-io = "https://docs.rs/"

Then, when building documentation, use the following flags to cause links
to dependencies to link to docs.rs:

cargo +nightly doc --no-deps -Zrustdoc-map

The registries table contains a mapping of registry name to the URL to link
to. The URL may have the markers {pkg_name} and {version} which will get
replaced with the corresponding values. If neither are specified, then Cargo
defaults to appending {pkg_name}/{version}/ to the end of the URL.

Another config setting is available to redirect standard library links. By
default, rustdoc creates links to https://doc.rust-lang.org/nightly/. To
change this behavior, use the doc.extern-map.std setting:

[doc.extern-map]
std = "local"

A value of "local" means to link to the documentation found in the rustc
sysroot. If you are using rustup, this documentation can be installed with
rustup component add rust-docs.

The default value is "remote".

The value may also take a URL for a custom location.

per-package-target

	Tracking Issue: #9406

	Original Pull Request: #9030

	Original Issue: #7004

The per-package-target feature adds two keys to the manifest:
package.default-target and package.forced-target. The first makes
the package be compiled by default (ie. when no --target argument is
passed) for some target. The second one makes the package always be
compiled for the target.

Example:

[package]
forced-target = "wasm32-unknown-unknown"

In this example, the crate is always built for
wasm32-unknown-unknown, for instance because it is going to be used
as a plugin for a main program that runs on the host (or provided on
the command line) target.

artifact-dependencies

	Tracking Issue: #9096

	Original Pull Request: #9992

Artifact dependencies allow Cargo packages to depend on bin, cdylib, and staticlib crates,
and use the artifacts built by those crates at compile time.

Run cargo with -Z bindeps to enable this functionality.

artifact-dependencies: Dependency declarations

Artifact-dependencies adds the following keys to a dependency declaration in Cargo.toml:

	
artifact --- This specifies the Cargo Target to build.
Normally without this field, Cargo will only build the [lib] target from a dependency.
This field allows specifying which target will be built, and made available as a binary at build time:

	"bin" --- Compiled executable binaries, corresponding to all of the [[bin]] sections in the dependency's manifest.

	"bin:<bin-name>" --- Compiled executable binary, corresponding to a specific binary target specified by the given <bin-name>.

	"cdylib" --- A C-compatible dynamic library, corresponding to a [lib] section with crate-type = ["cdylib"] in the dependency's manifest.

	"staticlib" --- A C-compatible static library, corresponding to a [lib] section with crate-type = ["staticlib"] in the dependency's manifest.

The artifact value can be a string, or it can be an array of strings to specify multiple targets.

Example:

[dependencies]
bar = { version = "1.0", artifact = "staticlib" }
zoo = { version = "1.0", artifact = ["bin:cat", "bin:dog"]}

	
lib --- This is a Boolean value which indicates whether or not to also build the dependency's library as a normal Rust lib dependency.
This field can only be specified when artifact is specified.

The default for this field is false when artifact is specified.
If this is set to true, then the dependency's [lib] target will also be built for the platform target the declaring package is being built for.
This allows the package to use the dependency from Rust code like a normal dependency in addition to an artifact dependency.

Example:

[dependencies]
bar = { version = "1.0", artifact = "bin", lib = true }

	
target --- The platform target to build the dependency for.
This field can only be specified when artifact is specified.

The default if this is not specified depends on the dependency kind.
For build dependencies, it will be built for the host target.
For all other dependencies, it will be built for the same targets the declaring package is built for.

For a build dependency, this can also take the special value of "target" which means to build the dependency for the same targets that the package is being built for.

[build-dependencies]
bar = { version = "1.0", artifact = "cdylib", target = "wasm32-unknown-unknown"}
same-target = { version = "1.0", artifact = "bin", target = "target" }

artifact-dependencies: Environment variables

After building an artifact dependency, Cargo provides the following environment variables that you can use to access the artifact:

	
CARGO_<ARTIFACT-TYPE>_DIR_<DEP> --- This is the directory containing all the artifacts from the dependency.

<ARTIFACT-TYPE> is the artifact specified for the dependency (uppercased as in CDYLIB, STATICLIB, or BIN) and <DEP> is the name of the dependency.
As with other Cargo environment variables, dependency names are converted to uppercase, with dashes replaced by underscores.

If your manifest renames the dependency, <DEP> corresponds to the name you specify, not the original package name.

	
CARGO_<ARTIFACT-TYPE>_FILE_<DEP>_<NAME> --- This is the full path to the artifact.

<ARTIFACT-TYPE> is the artifact specified for the dependency (uppercased as above), <DEP> is the name of the dependency (transformed as above), and <NAME> is the name of the artifact from the dependency.

Note that <NAME> is not modified in any way from the name specified in the crate supplying the artifact, or the crate name if not specified; for instance, it may be in lowercase, or contain dashes.

For convenience, if the artifact name matches the original package name, cargo additionally supplies a copy of this variable with the _<NAME> suffix omitted.
For instance, if the cmake crate supplies a binary named cmake, Cargo supplies both CARGO_BIN_FILE_CMAKE and CARGO_BIN_FILE_CMAKE_cmake.

For each kind of dependency, these variables are supplied to the same part of the build process that has access to that kind of dependency:

	For build-dependencies, these variables are supplied to the build.rs script, and can be accessed using std::env::var_os.
(As with any OS file path, these may or may not be valid UTF-8.)

	For normal dependencies, these variables are supplied during the compilation of the crate, and can be accessed using the env! macro.

	For dev-dependencies, these variables are supplied during the compilation of examples, tests, and benchmarks, and can be accessed using the env! macro.

artifact-dependencies: Examples

Example: use a binary executable from a build script

In the Cargo.toml file, you can specify a dependency on a binary to make available for a build script:

[build-dependencies]
some-build-tool = { version = "1.0", artifact = "bin" }

Then inside the build script, the binary can be executed at build time:

fn main() {
 let build_tool = std::env::var_os("CARGO_BIN_FILE_SOME_BUILD_TOOL").unwrap();
 let status = std::process::Command::new(build_tool)
 .arg("do-stuff")
 .status()
 .unwrap();
 if !status.success() {
 eprintln!("failed!");
 std::process::exit(1);
 }
}

Example: use cdylib artifact in build script

The Cargo.toml in the consuming package, building the bar library as cdylib
for a specific build target…

[build-dependencies]
bar = { artifact = "cdylib", version = "1.0", target = "wasm32-unknown-unknown" }

…along with the build script in build.rs.

fn main() {
 wasm::run_file(std::env::var("CARGO_CDYLIB_FILE_BAR").unwrap());
}

Example: use binary artifact and its library in a binary

The Cargo.toml in the consuming package, building the bar binary for inclusion
as artifact while making it available as library as well…

[dependencies]
bar = { artifact = "bin", version = "1.0", lib = true }

…along with the executable using main.rs.

fn main() {
 bar::init();
 command::run(env!("CARGO_BIN_FILE_BAR"));
}

publish-timeout

	Tracking Issue: 11222

The publish.timeout key in a config file can be used to control how long
cargo publish waits between posting a package to the registry and it being
available in the local index.

A timeout of 0 prevents any checks from occurring. The current default is
60 seconds.

It requires the -Zpublish-timeout command-line options to be set.

config.toml
[publish]
timeout = 300 # in seconds

asymmetric-token

	Tracking Issue: 10519

	RFC: #3231

The -Z asymmetric-token flag enables the cargo:paseto credential provider which allows Cargo to authenticate to registries without sending secrets over the network.

In config.toml and credentials.toml files there is a field called private-key, which is a private key formatted in the secret subset of PASERK and is used to sign asymmetric tokens

A keypair can be generated with cargo login --generate-keypair which will:

	generate a public/private keypair in the currently recommended fashion.

	save the private key in credentials.toml.

	print the public key in PASERK public format.

It is recommended that the private-key be saved in credentials.toml. It is also supported in config.toml, primarily so that it can be set using the associated environment variable, which is the recommended way to provide it in CI contexts. This setup is what we have for the token field for setting a secret token.

There is also an optional field called private-key-subject which is a string chosen by the registry.
This string will be included as part of an asymmetric token and should not be secret.
It is intended for the rare use cases like "cryptographic proof that the central CA server authorized this action". Cargo requires it to be non-whitespace printable ASCII. Registries that need non-ASCII data should base64 encode it.

Both fields can be set with cargo login --registry=name --private-key --private-key-subject="subject" which will prompt you to put in the key value.

A registry can have at most one of private-key or token set.

All PASETOs will include iat, the current time in ISO 8601 format. Cargo will include the following where appropriate:

	sub an optional, non-secret string chosen by the registry that is expected to be claimed with every request. The value will be the private-key-subject from the config.toml file.

	mutation if present, indicates that this request is a mutating operation (or a read-only operation if not present), must be one of the strings publish, yank, or unyank.

	name name of the crate related to this request.

	vers version string of the crate related to this request.

	cksum the SHA256 hash of the crate contents, as a string of 64 lowercase hexadecimal digits, must be present only when mutation is equal to publish

	challenge the challenge string received from a 401/403 from this server this session. Registries that issue challenges must track which challenges have been issued/used and never accept a given challenge more than once within the same validity period (avoiding the need to track every challenge ever issued).

The "footer" (which is part of the signature) will be a JSON string in UTF-8 and include:

	url the RFC 3986 compliant URL where cargo got the config.json file,

	If this is a registry with an HTTP index, then this is the base URL that all index queries are relative to.

	If this is a registry with a GIT index, it is the URL Cargo used to clone the index.

	kid the identifier of the private key used to sign the request, using the PASERK IDs standard.

PASETO includes the message that was signed, so the server does not have to reconstruct the exact string from the request in order to check the signature. The server does need to check that the signature is valid for the string in the PASETO and that the contents of that string matches the request.
If a claim should be expected for the request but is missing in the PASETO then the request must be rejected.

cargo config

	Original Issue: #2362

	Tracking Issue: #9301

The cargo config subcommand provides a way to display the configuration
files that cargo loads. It currently includes the get subcommand which
can take an optional config value to display.

cargo +nightly -Zunstable-options config get build.rustflags

If no config value is included, it will display all config values. See the
--help output for more options available.

rustc --print

	Tracking Issue: #9357

cargo rustc --print=VAL forwards the --print flag to rustc in order to
extract information from rustc. This runs rustc with the corresponding
--print
flag, and then immediately exits without compiling. Exposing this as a cargo
flag allows cargo to inject the correct target and RUSTFLAGS based on the
current configuration.

The primary use case is to run cargo rustc --print=cfg to get config values
for the appropriate target and influenced by any other RUSTFLAGS.

Different binary name

	Tracking Issue: #9778

	PR: #9627

The different-binary-name feature allows setting the filename of the binary without having to obey the
restrictions placed on crate names. For example, the crate name must use only alphanumeric characters
or - or _, and cannot be empty.

The filename parameter should not include the binary extension, cargo will figure out the appropriate
extension and use that for the binary on its own.

The filename parameter is only available in the [[bin]] section of the manifest.

cargo-features = ["different-binary-name"]

[package]
name = "foo"
version = "0.0.1"

[[bin]]
name = "foo"
filename = "007bar"
path = "src/main.rs"

scrape-examples

	RFC: #3123

	Tracking Issue: #9910

The -Z rustdoc-scrape-examples flag tells Rustdoc to search crates in the current workspace
for calls to functions. Those call-sites are then included as documentation. You can use the flag
like this:

cargo doc -Z unstable-options -Z rustdoc-scrape-examples

By default, Cargo will scrape examples from the example targets of packages being documented.
You can individually enable or disable targets from being scraped with the doc-scrape-examples flag, such as:

Enable scraping examples from a library
[lib]
doc-scrape-examples = true

Disable scraping examples from an example target
[[example]]
name = "my-example"
doc-scrape-examples = false

Note on tests: enabling doc-scrape-examples on test targets will not currently have any effect. Scraping
examples from tests is a work-in-progress.

Note on dev-dependencies: documenting a library does not normally require the crate's dev-dependencies. However,
example targets require dev-deps. For backwards compatibility, -Z rustdoc-scrape-examples will not introduce a
dev-deps requirement for cargo doc. Therefore examples will not be scraped from example targets under the
following conditions:

	No target being documented requires dev-deps, AND

	At least one crate with targets being documented has dev-deps, AND

	The doc-scrape-examples parameter is unset or false for all [[example]] targets.

If you want examples to be scraped from example targets, then you must not satisfy one of the above conditions.
For example, you can set doc-scrape-examples to true for one example target, and that signals to Cargo that
you are ok with dev-deps being build for cargo doc.

output-format for rustdoc

	Tracking Issue: #13283

This flag determines the output format of cargo rustdoc, accepting html or json, providing tools with a way to lean on rustdoc's experimental JSON format.

You can use the flag like this:

cargo rustdoc -Z unstable-options --output-format json

codegen-backend

The codegen-backend feature makes it possible to select the codegen backend used by rustc using a profile.

Example:

[package]
name = "foo"

[dependencies]
serde = "1.0.117"

[profile.dev.package.foo]
codegen-backend = "cranelift"

To set this in a profile in Cargo configuration, you need to use either
-Z codegen-backend or [unstable] table to enable it. For example,

.cargo/config.toml
[unstable]
codegen-backend = true

[profile.dev.package.foo]
codegen-backend = "cranelift"

gitoxide

	Tracking Issue: #11813

With the 'gitoxide' unstable feature, all or the specified git operations will be performed by
the gitoxide crate instead of git2.

While -Zgitoxide enables all currently implemented features, one can individually select git operations
to run with gitoxide with the -Zgitoxide=operation[,operationN] syntax.

Valid operations are the following:

	fetch - All fetches are done with gitoxide, which includes git dependencies as well as the crates index.

	checkout (planned) - checkout the worktree, with support for filters and submodules.

git

	Tracking Issue: #13285

With the 'git' unstable feature, both gitoxide and git2 will perform shallow fetches of the crate
index and git dependencies.

While -Zgit enables all currently implemented features, one can individually select when to perform
shallow fetches with the -Zgit=operation[,operationN] syntax.

Valid operations are the following:

	shallow-index - perform a shallow clone of the index.

	shallow-deps - perform a shallow clone of git dependencies.

Details on shallow clones

	To enable shallow clones, add -Zgit=shallow-deps for fetching git dependencies or -Zgit=shallow-index for fetching registry index.

	Shallow-cloned and shallow-checked-out git repositories reside at their own -shallow suffixed directories, i.e,

	~/.cargo/registry/index/*-shallow

	~/.cargo/git/db/*-shallow

	~/.cargo/git/checkouts/*-shallow

	When the unstable feature is on, fetching/cloning a git repository is always a shallow fetch. This roughly equals to git fetch --depth 1 everywhere.

	Even with the presence of Cargo.lock or specifying a commit { rev = "…" }, gitoxide and libgit2 are still smart enough to shallow fetch without unshallowing the existing repository.

script

	Tracking Issue: #12207

Cargo can directly run .rs files as:

$ cargo +nightly -Zscript file.rs

where file.rs can be as simple as:

fn main() {}

A user may optionally specify a manifest in a cargo code fence in a module-level comment, like:

#!/usr/bin/env -S cargo +nightly -Zscript
---cargo
[dependencies]
clap = { version = "4.2", features = ["derive"] }

use clap::Parser;

#[derive(Parser, Debug)]
#[clap(version)]
struct Args {
 #[clap(short, long, help = "Path to config")]
 config: Option<std::path::PathBuf>,
}

fn main() {
 let args = Args::parse();
 println!("{:?}", args);
}

Single-file packages

In addition to today's multi-file packages (Cargo.toml file with other .rs
files), we are adding the concept of single-file packages which may contain an
embedded manifest. There is no required distinguishment for a single-file
.rs package from any other .rs file.

Single-file packages may be selected via --manifest-path, like
cargo test --manifest-path foo.rs. Unlike Cargo.toml, these files cannot be auto-discovered.

A single-file package may contain an embedded manifest. An embedded manifest
is stored using TOML in rust "frontmatter", a markdown code-fence with cargo
at the start of the infostring at the top of the file.

Inferred / defaulted manifest fields:

	package.name = <slugified file stem>

	package.edition = <current> to avoid always having to add an embedded
manifest at the cost of potentially breaking scripts on rust upgrades

	Warn when edition is unspecified to raise awareness of this

Disallowed manifest fields:

	[workspace], [lib], [[bin]], [[example]], [[test]], [[bench]]

	package.workspace, package.build, package.links, package.autolib, package.autobins, package.autoexamples, package.autotests, package.autobenches

The default CARGO_TARGET_DIR for single-file packages is at $CARGO_HOME/target/<hash>:

	Avoid conflicts from multiple single-file packages being in the same directory

	Avoid problems with the single-file package's parent directory being read-only

	Avoid cluttering the user's directory

The lockfile for single-file packages will be placed in CARGO_TARGET_DIR. In
the future, when workspaces are supported, that will allow a user to have a
persistent lockfile.

Manifest-commands

You may pass a manifest directly to the cargo command, without a subcommand,
like foo/Cargo.toml or a single-file package like foo.rs. This is mostly
intended for being put in #! lines.

The precedence for how to interpret cargo <subcommand> is

	Built-in xor single-file packages

	Aliases

	External subcommands

A parameter is identified as a manifest-command if it has one of:

	Path separators

	A .rs extension

	The file name is Cargo.toml

Differences between cargo run --manifest-path <path> and cargo <path>

	cargo <path> runs with the config for <path> and not the current dir, more like cargo install --path <path>

	cargo <path> is at a verbosity level below the normal default. Pass -v to get normal output.

Documentation Updates

Profile trim-paths option

	Tracking Issue: rust-lang/cargo#12137

	Tracking Rustc Issue: rust-lang/rust#111540

This adds a new profile setting to control how paths are sanitized in the resulting binary.
This can be enabled like so:

cargo-features = ["trim-paths"]

[package]
...

[profile.release]
trim-paths = ["diagnostics", "object"]

To set this in a profile in Cargo configuration,
you need to use either -Z trim-paths or [unstable] table to enable it.
For example,

.cargo/config.toml
[unstable]
trim-paths = true

[profile.release]
trim-paths = ["diagnostics", "object"]

Documentation updates

trim-paths

as a new "Profiles settings" entry

trim-paths is a profile setting which enables and controls the sanitization of file paths in build outputs.
It takes the following values:

	"none" and false --- disable path sanitization

	"macro" --- sanitize paths in the expansion of std::file!() macro.
This is where paths in embedded panic messages come from

	"diagnostics" --- sanitize paths in printed compiler diagnostics

	"object" --- sanitize paths in compiled executables or libraries

	"all" and true --- sanitize paths in all possible locations

It also takes an array with the combinations of "macro", "diagnostics", and "object".

It is defaulted to none for the dev profile, and object for the release profile.
You can manually override it by specifying this option in Cargo.toml:

[profile.dev]
trim-paths = "all"

[profile.release]
trim-paths = ["object", "diagnostics"]

The default release profile setting (object) sanitizes only the paths in emitted executable or library files.
It always affects paths from macros such as panic messages, and in debug information only if they will be embedded together with the binary
(the default on platforms with ELF binaries, such as Linux and windows-gnu),
but will not touch them if they are in separate files (the default on Windows MSVC and macOS).
But the paths to these separate files are sanitized.

If trim-paths is not none or false, then the following paths are sanitized if they appear in a selected scope:

	Path to the source files of the standard and core library (sysroot) will begin with /rustc/[rustc commit hash],
e.g. /home/username/.rustup/toolchains/nightly-x86_64-unknown-linux-gnu/lib/rustlib/src/rust/library/core/src/result.rs ->
/rustc/fe72845f7bb6a77b9e671e6a4f32fe714962cec4/library/core/src/result.rs

	Path to the current package will be stripped, relatively to the current workspace root, e.g. /home/username/crate/src/lib.rs -> src/lib.rs.

	Path to dependency packages will be replaced with [package name]-[version]. E.g. /home/username/deps/foo/src/lib.rs -> foo-0.1.0/src/lib.rs

When a path to the source files of the standard and core library is not in scope for sanitization,
the emitted path will depend on if rust-src component is present.
If it is, then some paths will point to the copy of the source files on your file system;
if it isn't, then they will show up as /rustc/[rustc commit hash]/library/...
(just like when it is selected for sanitization).
Paths to all other source files will not be affected.

This will not affect any hard-coded paths in the source code, such as in strings.

Environment variable

as a new entry of "Environment variables Cargo sets for build scripts"

	CARGO_TRIM_PATHS --- The value of trim-paths profile option.
false, "none", and empty arrays would be converted to none.
true and "all" become all.
Values in a non-empty array would be joined into a comma-separated list.
If the build script introduces absolute paths to built artifacts (such as by invoking a compiler),
the user may request them to be sanitized in different types of artifacts.
Common paths requiring sanitization include OUT_DIR, CARGO_MANIFEST_DIR and CARGO_MANIFEST_PATH,
plus any other introduced by the build script, such as include directories.

gc

	Tracking Issue: #12633

The -Zgc flag is used to enable certain features related to garbage-collection of cargo's global cache within the cargo home directory.

Automatic gc configuration

The -Zgc flag will enable Cargo to read extra configuration options related to garbage collection.
The settings available are:

Example config.toml file.

Sub-table for defining specific settings for cleaning the global cache.
[cache.global-clean]
Anything older than this duration will be deleted in the source cache.
max-src-age = "1 month"
Anything older than this duration will be deleted in the compressed crate cache.
max-crate-age = "3 months"
Any index older than this duration will be deleted from the index cache.
max-index-age = "3 months"
Any git checkout older than this duration will be deleted from the checkout cache.
max-git-co-age = "1 month"
Any git clone older than this duration will be deleted from the git cache.
max-git-db-age = "3 months"

Note that the cache.auto-clean-frequency option was stabilized in Rust 1.88.

Manual garbage collection with cargo clean

Manual deletion can be done with the cargo clean gc -Zgc command.
Deletion of cache contents can be performed by passing one of the cache options:

	--max-src-age=DURATION --- Deletes source cache files that have not been used since the given age.

	--max-crate-age=DURATION --- Deletes crate cache files that have not been used since the given age.

	--max-index-age=DURATION --- Deletes registry indexes that have not been used since then given age (including their .crate and src files).

	--max-git-co-age=DURATION --- Deletes git dependency checkouts that have not been used since then given age.

	--max-git-db-age=DURATION --- Deletes git dependency clones that have not been used since then given age.

	--max-download-age=DURATION --- Deletes any downloaded cache data that has not been used since then given age.

	--max-src-size=SIZE --- Deletes the oldest source cache files until the cache is under the given size.

	--max-crate-size=SIZE --- Deletes the oldest crate cache files until the cache is under the given size.

	--max-git-size=SIZE --- Deletes the oldest git dependency caches until the cache is under the given size.

	--max-download-size=SIZE --- Deletes the oldest downloaded cache data until the cache is under the given size.

A DURATION is specified in the form "N seconds/minutes/days/weeks/months" where N is an integer.

A SIZE is specified in the form "N suffix" where suffix is B, kB, MB, GB, kiB, MiB, or GiB, and N is an integer or floating point number. If no suffix is specified, the number is the number of bytes.

cargo clean gc -Zgc
cargo clean gc -Zgc --max-download-age=1week
cargo clean gc -Zgc --max-git-size=0 --max-download-size=100MB

open-namespaces

	Tracking Issue: #13576

Allow multiple packages to participate in the same API namespace

This can be enabled like so:

cargo-features = ["open-namespaces"]

[package]
...

[lints.cargo]

	Tracking Issue: #12235

A new lints tool table for cargo that can be used to configure lints emitted
by cargo itself when -Zcargo-lints is used

[lints.cargo]
implicit-features = "warn"

This will work with
RFC 2906 workspace-deduplicate:

[workspace.lints.cargo]
implicit-features = "warn"

[lints]
workspace = true

Path Bases

	Tracking Issue: #14355

A path dependency may optionally specify a base by setting the base key to
the name of a path base from the [path-bases] table in either the
configuration or one of the built-in path bases.
The value of that path base is prepended to the path value (along with a path
separator if necessary) to produce the actual location where Cargo will look for
the dependency.

For example, if the Cargo.toml contains:

cargo-features = ["path-bases"]

[dependencies]
foo = { base = "dev", path = "foo" }

Given a [path-bases] table in the configuration that contains:

[path-bases]
dev = "/home/user/dev/rust/libraries/"

This will produce a path dependency foo located at
/home/user/dev/rust/libraries/foo.

Path bases can be either absolute or relative. Relative path bases are relative
to the parent directory of the configuration file that declared that path base.

The name of a path base must use only alphanumeric
characters or - or _, must start with an alphabetic
character, and must not be empty.

If the name of path base used in a dependency is neither in the configuration
nor one of the built-in path base, then Cargo will raise an error.

Built-in path bases

Cargo provides implicit path bases that can be used without the need to specify
them in a [path-bases] table.

	workspace - If a project is a workspace or workspace member
then this path base is defined as the parent directory of the root Cargo.toml
of the workspace.

If a built-in path base name is also declared in the configuration, then Cargo
will prefer the value in the configuration. The allows Cargo to add new built-in
path bases without compatibility issues (as existing uses will shadow the
built-in name).

lockfile-path

	Original Issue: #5707

	Tracking Issue: #14421

This feature allows you to specify the path of lockfile Cargo.lock.
By default, lockfile is written into <workspace_root>/Cargo.lock.
However, when sources are stored in read-only directory, most of the cargo commands
would fail, trying to write a lockfile. The --lockfile-path
flag makes it easier to work with readonly sources.
Note, that currently path must end with Cargo.lock. Meaning, if you want to use
this feature in multiple projects, lockfiles should be stored in different directories.
Example:

cargo +nightly metadata --lockfile-path=$LOCKFILES_ROOT/my-project/Cargo.lock -Z unstable-options

package-workspace

	Tracking Issue: #10948

This allows cargo to package (or publish) multiple crates in a workspace, even
if they have inter-dependencies. For example, consider a workspace containing
packages foo and dep, where foo depends on dep. Then

cargo +nightly -Zpackage-workspace package -p foo -p dep

will package both foo and dep, while

cargo +nightly -Zpackage-workspace publish -p foo -p dep

will publish both foo and dep.
If foo and dep are the only crates in the workspace, you can use the --workspace
flag instead of specifying the crates individually:

cargo +nightly -Zpackage-workspace package --workspace
cargo +nightly -Zpackage-workspace publish --workspace

Lock-file behavior

When packaging a binary at the same time as one of its dependencies, the binary
will be packaged with a lock-file pointing at the dependency's registry entry
as though the dependency were already published, even though it has not yet
been. In this case, cargo needs to know the registry that the dependency
will eventually be published on. cargo will attempt to infer this registry
by examining the the publish field, falling back
to crates.io if no publish field is set. To explicitly set the registry,
pass a --registry or --index flag.

cargo +nightly -Zpackage-workspace --registry=my-registry package -p foo -p dep
cargo +nightly -Zpackage-workspace --index=https://example.com package -p foo -p dep

native-completions

	Original Issue: #6645

	Tracking Issue: #14520

This feature moves the handwritten completion scripts to Rust native, making it
easier for us to add, extend and test new completions. This feature is enabled with the
nightly channel, without requiring additional -Z options.

Areas of particular interest for feedback

	Arguments that need escaping or quoting that aren't handled correctly

	Inaccuracies in the information

	Bugs in parsing of the command-line

	Arguments that don't report their completions

	If a known issue is being problematic

Feedback can be broken down into

	What completion candidates are reported

	Known issues: #14520, A-completions

	Report an issue or discuss the behavior

	Shell integration, command-line parsing, and completion filtering

	Known issues: clap#3166, clap's A-completions

	Report an issue or discuss the behavior

When in doubt, you can discuss this in #14520 or on zulip

How to use native-completions feature:

	
bash:
Add source <(CARGO_COMPLETE=bash cargo +nightly) to ~/.local/share/bash-completion/completions/cargo.

	
zsh:
Add source <(CARGO_COMPLETE=zsh cargo +nightly) to your .zshrc.

	
fish:
Add source (CARGO_COMPLETE=fish cargo +nightly | psub) to $XDG_CONFIG_HOME/fish/completions/cargo.fish

	
elvish:
Add eval (E:CARGO_COMPLETE=elvish cargo +nightly | slurp) to $XDG_CONFIG_HOME/elvish/rc.elv

	
powershell:
Add CARGO_COMPLETE=powershell cargo +nightly | Invoke-Expression to $PROFILE.

warnings

	Original Issue: #8424

	Tracking Issue: #14802

The -Z warnings feature enables the build.warnings configuration option to control how
Cargo handles warnings. If the -Z warnings unstable flag is not enabled, then
the build.warnings config will be ignored.

This setting currently only applies to rustc warnings. It may apply to additional warnings (such as Cargo lints or Cargo warnings)
in the future.

build.warnings

	Type: string

	Default: warn

	Environment: CARGO_BUILD_WARNINGS

Controls how Cargo handles warnings. Allowed values are:

	warn: warnings are emitted as warnings (default).

	allow: warnings are hidden.

	deny: if warnings are emitted, an error will be raised at the end of the operation and the process will exit with a failure exit code.

feature unification

	RFC: #3692

	Tracking Issue: #14774

The -Z feature-unification enables the resolver.feature-unification
configuration option to control how features are unified across a workspace.
If the -Z feature-unification unstable flag is not enabled,
then the resolver.feature-unification configuration will be ignored.

resolver.feature-unification

	Type: string

	Default: "selected"

	Environment: CARGO_RESOLVER_FEATURE_UNIFICATION

Specify which packages participate in feature unification.

	selected: Merge dependency features from all packages specified for the current build.

	workspace: Merge dependency features across all workspace members,
regardless of which packages are specified for the current build.

	package: Dependency features are considered on a package-by-package basis,
preferring duplicate builds of dependencies when different sets of features are activated by the packages.

Package message format

	Original Issue: #11666

	Tracking Issue: #15353

The --message-format flag in cargo package controls the output message format.
Currently, it only works with the --list flag and affects the file listing format,
Requires -Zunstable-options.
See cargo package --message-format
for more information.

rustdoc depinfo

	Original Issue: #12266

	Tracking Issue: #15370

The -Z rustdoc-depinfo flag leverages rustdoc's dep-info files to determine
whether documentations are required to re-generate. This can be combined with
-Z checksum-freshness to detect checksum changes rather than file mtime.

no-embed-metadata

	Original Pull Request: #15378

	Tracking Issue: #15495

The default behavior of Rust is to embed crate metadata into rlib and dylib artifacts.
Since Cargo also passes --emit=metadata to these intermediate artifacts to enable pipelined
compilation, this means that a lot of metadata ends up being duplicated on disk, which wastes
disk space in the target directory.

This feature tells Cargo to pass the -Zembed-metadata=no flag to the compiler, which instructs
it not to embed metadata within rlib and dylib artifacts. In this case, the metadata will only
be stored in .rmeta files.

cargo +nightly -Zno-embed-metadata build

unstable-editions

The unstable-editions value in the cargo-features list allows a Cargo.toml manifest to specify an edition that is not yet stable.

cargo-features = ["unstable-editions"]

[package]
name = "my-package"
edition = "future"

When new editions are introduced, the unstable-editions feature is required until the edition is stabilized.

The special "future" edition is a home for new features that are under development, and is permanently unstable. The "future" edition also has no new behavior by itself. Each change in the future edition requires an opt-in such as a #![feature(...)] attribute.

fix-edition

-Zfix-edition is a permanently unstable flag to assist with testing edition migrations, particularly with the use of crater. It only works with the cargo fix subcommand. It takes two different forms:

	-Zfix-edition=start=$INITIAL --- This form checks if the current edition is equal to the given number. If not, it exits with success (because we want to ignore older editions). If it is, then it runs the equivalent of cargo check. This is intended to be used with crater's "start" toolchain to set a baseline for the "before" toolchain.

	-Zfix-edition=end=$INITIAL,$NEXT --- This form checks if the current edition is equal to the given $INITIAL value. If not, it exits with success. If it is, then it performs an edition migration to the edition specified in $NEXT. Afterwards, it will modify Cargo.toml to add the appropriate cargo-features = ["unstable-edition"], update the edition field, and run the equivalent of cargo check to verify that the migration works on the new edition.

For example:

cargo +nightly fix -Zfix-edition=end=2024,future

Stabilized and removed features

Compile progress

The compile-progress feature has been stabilized in the 1.30 release.
Progress bars are now enabled by default.
See term.progress for more information about
controlling this feature.

Edition

Specifying the edition in Cargo.toml has been stabilized in the 1.31 release.
See the edition field for more information
about specifying this field.

rename-dependency

Specifying renamed dependencies in Cargo.toml has been stabilized in the 1.31 release.
See renaming dependencies
for more information about renaming dependencies.

Alternate Registries

Support for alternate registries has been stabilized in the 1.34 release.
See the Registries chapter for more information about alternate registries.

Offline Mode

The offline feature has been stabilized in the 1.36 release.
See the --offline flag for
more information on using the offline mode.

publish-lockfile

The publish-lockfile feature has been removed in the 1.37 release.
The Cargo.lock file is always included when a package is published if the
package contains a binary target. cargo install requires the --locked flag
to use the Cargo.lock file.
See cargo package and
cargo install for more information.

default-run

The default-run feature has been stabilized in the 1.37 release.
See the default-run field for more
information about specifying the default target to run.

cache-messages

Compiler message caching has been stabilized in the 1.40 release.
Compiler warnings are now cached by default and will be replayed automatically
when re-running Cargo.

install-upgrade

The install-upgrade feature has been stabilized in the 1.41 release.
cargo install will now automatically upgrade packages if they appear to be
out-of-date. See the cargo install documentation for more information.

Profile Overrides

Profile overrides have been stabilized in the 1.41 release.
See Profile Overrides for more information on using
overrides.

Config Profiles

Specifying profiles in Cargo config files and environment variables has been
stabilized in the 1.43 release.
See the config [profile] table for more information
about specifying profiles in config files.

crate-versions

The -Z crate-versions flag has been stabilized in the 1.47 release.
The crate version is now automatically included in the
cargo doc documentation sidebar.

Features

The -Z features flag has been stabilized in the 1.51 release.
See feature resolver version 2
for more information on using the new feature resolver.

package-features

The -Z package-features flag has been stabilized in the 1.51 release.
See the resolver version 2 command-line flags
for more information on using the features CLI options.

Resolver

The resolver feature in Cargo.toml has been stabilized in the 1.51 release.
See the resolver versions for more
information about specifying resolvers.

extra-link-arg

The extra-link-arg feature to specify additional linker arguments in build
scripts has been stabilized in the 1.56 release. See the build script
documentation for more
information on specifying extra linker arguments.

configurable-env

The configurable-env feature to specify environment variables in Cargo
configuration has been stabilized in the 1.56 release. See the config
documentation for more information about configuring
environment variables.

rust-version

The rust-version field in Cargo.toml has been stabilized in the 1.56 release.
See the rust-version field for more
information on using the rust-version field and the --ignore-rust-version option.

patch-in-config

The -Z patch-in-config flag, and the corresponding support for
[patch] section in Cargo configuration files has been stabilized in
the 1.56 release. See the patch field for more
information.

edition 2021

The 2021 edition has been stabilized in the 1.56 release.
See the edition field for more information on setting the edition.
See cargo fix --edition and The Edition Guide for more information on migrating existing projects.

Custom named profiles

Custom named profiles have been stabilized in the 1.57 release. See the
profiles chapter for more information.

Profile strip option

The profile strip option has been stabilized in the 1.59 release. See the
profiles chapter for more information.

Future incompat report

Support for generating a future-incompat report has been stabilized
in the 1.59 release. See the future incompat report chapter
for more information.

Namespaced features

Namespaced features has been stabilized in the 1.60 release.
See the Features chapter for more information.

Weak dependency features

Weak dependency features has been stabilized in the 1.60 release.
See the Features chapter for more information.

timings

The -Ztimings option has been stabilized as --timings in the 1.60 release.
(--timings=html and the machine-readable --timings=json output remain
unstable and require -Zunstable-options.)

config-cli

The --config CLI option has been stabilized in the 1.63 release. See
the config documentation for more
information.

multitarget

The -Z multitarget option has been stabilized in the 1.64 release.
See build.target for more information about
setting the default target platform triples.

crate-type

The --crate-type flag for cargo rustc has been stabilized in the 1.64
release. See the cargo rustc documentation
for more information.

Workspace Inheritance

Workspace Inheritance has been stabilized in the 1.64 release.
See workspace.package,
workspace.dependencies,
and inheriting-a-dependency-from-a-workspace
for more information.

terminal-width

The -Z terminal-width option has been stabilized in the 1.68 release.
The terminal width is always passed to the compiler when running from a
terminal where Cargo can automatically detect the width.

sparse-registry

Sparse registry support has been stabilized in the 1.68 release.
See Registry Protocols for more information.

cargo logout

The cargo logout command has been stabilized in the 1.70 release.

doctest-in-workspace

The -Z doctest-in-workspace option for cargo test has been stabilized and
enabled by default in the 1.72 release. See the
cargo test documentation
for more information about the working directory for compiling and running tests.

keep-going

The --keep-going option has been stabilized in the 1.74 release. See the
--keep-going flag
in cargo build as an example for more details.

[lints]

[lints] (enabled via -Zlints) has been stabilized in the 1.74 release.

credential-process

The -Z credential-process feature has been stabilized in the 1.74 release.

See Registry Authentication documentation for details.

registry-auth

The -Z registry-auth feature has been stabilized in the 1.74 release with the additional
requirement that a credential-provider is configured.

See Registry Authentication documentation for details.

check-cfg

The -Z check-cfg feature has been stabilized in the 1.80 release by making it the
default behavior.

See the build script documentation for information
about specifying custom cfgs.

Edition 2024

The 2024 edition has been stabilized in the 1.85 release.
See the edition field for more information on setting the edition.
See cargo fix --edition and The Edition Guide for more information on migrating existing projects.

Automatic garbage collection

Support for automatically deleting old files was stabilized in Rust 1.88.
More information can be found in the config chapter.

doctest-xcompile

Doctest cross-compiling is now unconditionally enabled starting in Rust 1.89. Running doctests with cargo test will now honor the --target flag.

compile-time-deps

This permanently-unstable flag to only build proc-macros and build scripts (and their required dependencies),
as well as run the build scripts.

It is intended for use by tools like rust-analyzer and will never be stabilized.

Example:

cargo +nightly build --compile-time-deps -Z unstable-options
cargo +nightly check --compile-time-deps --all-targets -Z unstable-options

 Cargo Commands

 Cargo Commands

	General Commands

	Build Commands

	Manifest Commands

	Package Commands

	Publishing Commands

	Deprecated and Removed

 General Commands

 General Commands

	cargo

	cargo help

	cargo version

 cargo

 cargo(1)

NAME

cargo --- The Rust package manager

SYNOPSIS

cargo [options] command [args]

cargo [options] --version

cargo [options] --list

cargo [options] --help

cargo [options] --explain code

DESCRIPTION

This program is a package manager and build tool for the Rust language,
available at https://rust-lang.org.

COMMANDS

Build Commands

cargo-bench(1)

 Execute benchmarks of a package.

cargo-build(1)

 Compile a package.

cargo-check(1)

 Check a local package and all of its dependencies for errors.

cargo-clean(1)

 Remove artifacts that Cargo has generated in the past.

cargo-doc(1)

 Build a package's documentation.

cargo-fetch(1)

 Fetch dependencies of a package from the network.

cargo-fix(1)

 Automatically fix lint warnings reported by rustc.

cargo-run(1)

 Run a binary or example of the local package.

cargo-rustc(1)

 Compile a package, and pass extra options to the compiler.

cargo-rustdoc(1)

 Build a package's documentation, using specified custom flags.

cargo-test(1)

 Execute unit and integration tests of a package.

Manifest Commands

cargo-add(1)

 Add dependencies to a Cargo.toml manifest file.

cargo-generate-lockfile(1)

 Generate Cargo.lock for a project.

cargo-info(1)

 Display information about a package in the registry. Default registry is crates.io.

cargo-locate-project(1)

 Print a JSON representation of a Cargo.toml file's location.

cargo-metadata(1)

 Output the resolved dependencies of a package in machine-readable format.

cargo-pkgid(1)

 Print a fully qualified package specification.

cargo-remove(1)

 Remove dependencies from a Cargo.toml manifest file.

cargo-tree(1)

 Display a tree visualization of a dependency graph.

cargo-update(1)

 Update dependencies as recorded in the local lock file.

cargo-vendor(1)

 Vendor all dependencies locally.

Package Commands

cargo-init(1)

 Create a new Cargo package in an existing directory.

cargo-install(1)

 Build and install a Rust binary.

cargo-new(1)

 Create a new Cargo package.

cargo-search(1)

 Search packages in crates.io.

cargo-uninstall(1)

 Remove a Rust binary.

Publishing Commands

cargo-login(1)

 Save an API token from the registry locally.

cargo-logout(1)

 Remove an API token from the registry locally.

cargo-owner(1)

 Manage the owners of a crate on the registry.

cargo-package(1)

 Assemble the local package into a distributable tarball.

cargo-publish(1)

 Upload a package to the registry.

cargo-yank(1)

 Remove a pushed crate from the index.

General Commands

cargo-help(1)

 Display help information about Cargo.

cargo-version(1)

 Show version information.

OPTIONS

Special Options

	-V

	--version

	Print version info and exit. If used with --verbose, prints extra
information.

	--list

	List all installed Cargo subcommands. If used with --verbose, prints extra
information.

	--explain code

	Run rustc --explain CODE which will print out a detailed explanation of an
error message (for example, E0004).

Display Options

	-v

	--verbose

	Use verbose output. May be specified twice for “very verbose” output which
includes extra output such as dependency warnings and build script output.
May also be specified with the term.verbose
config value.

	-q

	--quiet

	Do not print cargo log messages.
May also be specified with the term.quiet
config value.

	--color when

	Control when colored output is used. Valid values:

 cargo help

 cargo-help(1)

NAME

cargo-help --- Get help for a Cargo command

SYNOPSIS

cargo help [subcommand]

DESCRIPTION

Prints a help message for the given command.

EXAMPLES

	
Get help for a command:

cargo help build

	
Help is also available with the --help flag:

cargo build --help

SEE ALSO

cargo(1)

 cargo version

 cargo-version(1)

NAME

cargo-version --- Show version information

SYNOPSIS

cargo version [options]

DESCRIPTION

Displays the version of Cargo.

OPTIONS

	-v

	--verbose

	Display additional version information.

EXAMPLES

	
Display the version:

cargo version

	
The version is also available via flags:

cargo --version
cargo -V

	
Display extra version information:

cargo -Vv

SEE ALSO

cargo(1)

 Build Commands

 Build Commands

	cargo bench

	cargo build

	cargo check

	cargo clean

	cargo clippy

	cargo doc

	cargo fetch

	cargo fix

	cargo fmt

	cargo miri

	cargo report

	cargo run

	cargo rustc

	cargo rustdoc

	cargo test

 cargo bench

 cargo-bench(1)

NAME

cargo-bench --- Execute benchmarks of a package

SYNOPSIS

cargo bench [options] [benchname] [-- bench-options]

DESCRIPTION

Compile and execute benchmarks.

The benchmark filtering argument benchname and all the arguments following
the two dashes (--) are passed to the benchmark binaries and thus to
libtest (rustc's built in unit-test and micro-benchmarking framework). If
you are passing arguments to both Cargo and the binary, the ones after -- go
to the binary, the ones before go to Cargo. For details about libtest's
arguments see the output of cargo bench -- --help and check out the rustc
book's chapter on how tests work at
https://doc.rust-lang.org/rustc/tests/index.html.

As an example, this will run only the benchmark named foo (and skip other
similarly named benchmarks like foobar):

cargo bench -- foo --exact

Benchmarks are built with the --test option to rustc which creates a
special executable by linking your code with libtest. The executable
automatically runs all functions annotated with the #[bench] attribute.
Cargo passes the --bench flag to the test harness to tell it to run
only benchmarks, regardless of whether the harness is libtest or a custom harness.

The libtest harness may be disabled by setting harness = false in the target
manifest settings, in which case your code will need to provide its own main
function to handle running benchmarks.

Note: The
#[bench] attribute
is currently unstable and only available on the
nightly channel.
There are some packages available on
crates.io that may help with
running benchmarks on the stable channel, such as
Criterion.

By default, cargo bench uses the bench profile, which enables
optimizations and disables debugging information. If you need to debug a
benchmark, you can use the --profile=dev command-line option to switch to
the dev profile. You can then run the debug-enabled benchmark within a
debugger.

Working directory of benchmarks

The working directory of every benchmark is set to the root directory of the
package the benchmark belongs to.
Setting the working directory of benchmarks to the package's root directory
makes it possible for benchmarks to reliably access the package's files using
relative paths, regardless from where cargo bench was executed from.

OPTIONS

Benchmark Options

	--no-run

	Compile, but don’t run benchmarks.

	--no-fail-fast

	Run all benchmarks regardless of failure. Without this flag, Cargo will exit
after the first executable fails. The Rust test harness will run all benchmarks
within the executable to completion, this flag only applies to the executable
as a whole.

Package Selection

By default, when no package selection options are given, the packages selected
depend on the selected manifest file (based on the current working directory if
--manifest-path is not given). If the manifest is the root of a workspace then
the workspaces default members are selected, otherwise only the package defined
by the manifest will be selected.

The default members of a workspace can be set explicitly with the
workspace.default-members key in the root manifest. If this is not set, a
virtual workspace will include all workspace members (equivalent to passing
--workspace), and a non-virtual workspace will include only the root crate itself.

	-p spec…

	--package spec…

	Benchmark only the specified packages. See cargo-pkgid(1) for the
SPEC format. This flag may be specified multiple times and supports common Unix
glob patterns like *, ? and []. However, to avoid your shell accidentally
expanding glob patterns before Cargo handles them, you must use single quotes or
double quotes around each pattern.

	--workspace

	Benchmark all members in the workspace.

	--all

	Deprecated alias for --workspace.

	--exclude SPEC…

	Exclude the specified packages. Must be used in conjunction with the
--workspace flag. This flag may be specified multiple times and supports
common Unix glob patterns like *, ? and []. However, to avoid your shell
accidentally expanding glob patterns before Cargo handles them, you must use
single quotes or double quotes around each pattern.

Target Selection

When no target selection options are given, cargo bench will build the
following targets of the selected packages:

	lib --- used to link with binaries and benchmarks

	bins (only if benchmark targets are built and required features are
available)

	lib as a benchmark

	bins as benchmarks

	benchmark targets

The default behavior can be changed by setting the bench flag for the target
in the manifest settings. Setting examples to bench = true will build and
run the example as a benchmark, replacing the example's main function with
the libtest harness.

Setting targets to bench = false will stop them from being benchmarked by
default. Target selection options that take a target by name (such as
--example foo) ignore the bench flag and will always benchmark the given
target.

See Configuring a target
for more information on per-target settings.

Binary targets are automatically built if there is an integration test or
benchmark being selected to benchmark. This allows an integration
test to execute the binary to exercise and test its behavior.
The CARGO_BIN_EXE_<name>
environment variable
is set when the integration test is built so that it can use the
env macro to locate the
executable.

Passing target selection flags will benchmark only the specified
targets.

Note that --bin, --example, --test and --bench flags also
support common Unix glob patterns like *, ? and []. However, to avoid your
shell accidentally expanding glob patterns before Cargo handles them, you must
use single quotes or double quotes around each glob pattern.

	--lib

	Benchmark the package’s library.

	--bin name…

	Benchmark the specified binary. This flag may be specified multiple times
and supports common Unix glob patterns.

	--bins

	Benchmark all binary targets.

	--example name…

	Benchmark the specified example. This flag may be specified multiple times
and supports common Unix glob patterns.

	--examples

	Benchmark all example targets.

	--test name…

	Benchmark the specified integration test. This flag may be specified
multiple times and supports common Unix glob patterns.

	--tests

	Benchmark all targets that have the test = true manifest
flag set. By default this includes the library and binaries built as
unittests, and integration tests. Be aware that this will also build any
required dependencies, so the lib target may be built twice (once as a
unittest, and once as a dependency for binaries, integration tests, etc.).
Targets may be enabled or disabled by setting the test flag in the
manifest settings for the target.

	--bench name…

	Benchmark the specified benchmark. This flag may be specified multiple
times and supports common Unix glob patterns.

	--benches

	Benchmark all targets that have the bench = true
manifest flag set. By default this includes the library and binaries built
as benchmarks, and bench targets. Be aware that this will also build any
required dependencies, so the lib target may be built twice (once as a
benchmark, and once as a dependency for binaries, benchmarks, etc.).
Targets may be enabled or disabled by setting the bench flag in the
manifest settings for the target.

	--all-targets

	Benchmark all targets. This is equivalent to specifying --lib --bins --tests --benches --examples.

Feature Selection

The feature flags allow you to control which features are enabled. When no
feature options are given, the default feature is activated for every
selected package.

See the features documentation
for more details.

	-F features

	--features features

	Space or comma separated list of features to activate. Features of workspace
members may be enabled with package-name/feature-name syntax. This flag may
be specified multiple times, which enables all specified features.

	--all-features

	Activate all available features of all selected packages.

	--no-default-features

	Do not activate the default feature of the selected packages.

Compilation Options

	--target triple

	Benchmark for the given architecture. The default is the host architecture. The general format of the triple is
<arch><sub>-<vendor>-<sys>-<abi>. Run rustc --print target-list for a
list of supported targets. This flag may be specified multiple times.

 cargo build

 cargo-build(1)

NAME

cargo-build --- Compile the current package

SYNOPSIS

cargo build [options]

DESCRIPTION

Compile local packages and all of their dependencies.

OPTIONS

Package Selection

By default, when no package selection options are given, the packages selected
depend on the selected manifest file (based on the current working directory if
--manifest-path is not given). If the manifest is the root of a workspace then
the workspaces default members are selected, otherwise only the package defined
by the manifest will be selected.

The default members of a workspace can be set explicitly with the
workspace.default-members key in the root manifest. If this is not set, a
virtual workspace will include all workspace members (equivalent to passing
--workspace), and a non-virtual workspace will include only the root crate itself.

	-p spec…

	--package spec…

	Build only the specified packages. See cargo-pkgid(1) for the
SPEC format. This flag may be specified multiple times and supports common Unix
glob patterns like *, ? and []. However, to avoid your shell accidentally
expanding glob patterns before Cargo handles them, you must use single quotes or
double quotes around each pattern.

	--workspace

	Build all members in the workspace.

	--all

	Deprecated alias for --workspace.

	--exclude SPEC…

	Exclude the specified packages. Must be used in conjunction with the
--workspace flag. This flag may be specified multiple times and supports
common Unix glob patterns like *, ? and []. However, to avoid your shell
accidentally expanding glob patterns before Cargo handles them, you must use
single quotes or double quotes around each pattern.

Target Selection

When no target selection options are given, cargo build will build all
binary and library targets of the selected packages. Binaries are skipped if
they have required-features that are missing.

Binary targets are automatically built if there is an integration test or
benchmark being selected to build. This allows an integration
test to execute the binary to exercise and test its behavior.
The CARGO_BIN_EXE_<name>
environment variable
is set when the integration test is built so that it can use the
env macro to locate the
executable.

Passing target selection flags will build only the specified
targets.

Note that --bin, --example, --test and --bench flags also
support common Unix glob patterns like *, ? and []. However, to avoid your
shell accidentally expanding glob patterns before Cargo handles them, you must
use single quotes or double quotes around each glob pattern.

	--lib

	Build the package’s library.

	--bin name…

	Build the specified binary. This flag may be specified multiple times
and supports common Unix glob patterns.

	--bins

	Build all binary targets.

	--example name…

	Build the specified example. This flag may be specified multiple times
and supports common Unix glob patterns.

	--examples

	Build all example targets.

	--test name…

	Build the specified integration test. This flag may be specified
multiple times and supports common Unix glob patterns.

	--tests

	Build all targets that have the test = true manifest
flag set. By default this includes the library and binaries built as
unittests, and integration tests. Be aware that this will also build any
required dependencies, so the lib target may be built twice (once as a
unittest, and once as a dependency for binaries, integration tests, etc.).
Targets may be enabled or disabled by setting the test flag in the
manifest settings for the target.

	--bench name…

	Build the specified benchmark. This flag may be specified multiple
times and supports common Unix glob patterns.

	--benches

	Build all targets that have the bench = true
manifest flag set. By default this includes the library and binaries built
as benchmarks, and bench targets. Be aware that this will also build any
required dependencies, so the lib target may be built twice (once as a
benchmark, and once as a dependency for binaries, benchmarks, etc.).
Targets may be enabled or disabled by setting the bench flag in the
manifest settings for the target.

	--all-targets

	Build all targets. This is equivalent to specifying --lib --bins --tests --benches --examples.

Feature Selection

The feature flags allow you to control which features are enabled. When no
feature options are given, the default feature is activated for every
selected package.

See the features documentation
for more details.

	-F features

	--features features

	Space or comma separated list of features to activate. Features of workspace
members may be enabled with package-name/feature-name syntax. This flag may
be specified multiple times, which enables all specified features.

	--all-features

	Activate all available features of all selected packages.

	--no-default-features

	Do not activate the default feature of the selected packages.

Compilation Options

	--target triple

	Build for the given architecture. The default is the host architecture. The general format of the triple is
<arch><sub>-<vendor>-<sys>-<abi>. Run rustc --print target-list for a
list of supported targets. This flag may be specified multiple times.

 cargo check

 cargo-check(1)

NAME

cargo-check --- Check the current package

SYNOPSIS

cargo check [options]

DESCRIPTION

Check a local package and all of its dependencies for errors. This will
essentially compile the packages without performing the final step of code
generation, which is faster than running cargo build. The compiler will save
metadata files to disk so that future runs will reuse them if the source has
not been modified. Some diagnostics and errors are only emitted during code
generation, so they inherently won't be reported with cargo check.

OPTIONS

Package Selection

By default, when no package selection options are given, the packages selected
depend on the selected manifest file (based on the current working directory if
--manifest-path is not given). If the manifest is the root of a workspace then
the workspaces default members are selected, otherwise only the package defined
by the manifest will be selected.

The default members of a workspace can be set explicitly with the
workspace.default-members key in the root manifest. If this is not set, a
virtual workspace will include all workspace members (equivalent to passing
--workspace), and a non-virtual workspace will include only the root crate itself.

	-p spec…

	--package spec…

	Check only the specified packages. See cargo-pkgid(1) for the
SPEC format. This flag may be specified multiple times and supports common Unix
glob patterns like *, ? and []. However, to avoid your shell accidentally
expanding glob patterns before Cargo handles them, you must use single quotes or
double quotes around each pattern.

	--workspace

	Check all members in the workspace.

	--all

	Deprecated alias for --workspace.

	--exclude SPEC…

	Exclude the specified packages. Must be used in conjunction with the
--workspace flag. This flag may be specified multiple times and supports
common Unix glob patterns like *, ? and []. However, to avoid your shell
accidentally expanding glob patterns before Cargo handles them, you must use
single quotes or double quotes around each pattern.

Target Selection

When no target selection options are given, cargo check will check all
binary and library targets of the selected packages. Binaries are skipped if
they have required-features that are missing.

Passing target selection flags will check only the specified
targets.

Note that --bin, --example, --test and --bench flags also
support common Unix glob patterns like *, ? and []. However, to avoid your
shell accidentally expanding glob patterns before Cargo handles them, you must
use single quotes or double quotes around each glob pattern.

	--lib

	Check the package’s library.

	--bin name…

	Check the specified binary. This flag may be specified multiple times
and supports common Unix glob patterns.

	--bins

	Check all binary targets.

	--example name…

	Check the specified example. This flag may be specified multiple times
and supports common Unix glob patterns.

	--examples

	Check all example targets.

	--test name…

	Check the specified integration test. This flag may be specified
multiple times and supports common Unix glob patterns.

	--tests

	Check all targets that have the test = true manifest
flag set. By default this includes the library and binaries built as
unittests, and integration tests. Be aware that this will also build any
required dependencies, so the lib target may be built twice (once as a
unittest, and once as a dependency for binaries, integration tests, etc.).
Targets may be enabled or disabled by setting the test flag in the
manifest settings for the target.

	--bench name…

	Check the specified benchmark. This flag may be specified multiple
times and supports common Unix glob patterns.

	--benches

	Check all targets that have the bench = true
manifest flag set. By default this includes the library and binaries built
as benchmarks, and bench targets. Be aware that this will also build any
required dependencies, so the lib target may be built twice (once as a
benchmark, and once as a dependency for binaries, benchmarks, etc.).
Targets may be enabled or disabled by setting the bench flag in the
manifest settings for the target.

	--all-targets

	Check all targets. This is equivalent to specifying --lib --bins --tests --benches --examples.

Feature Selection

The feature flags allow you to control which features are enabled. When no
feature options are given, the default feature is activated for every
selected package.

See the features documentation
for more details.

	-F features

	--features features

	Space or comma separated list of features to activate. Features of workspace
members may be enabled with package-name/feature-name syntax. This flag may
be specified multiple times, which enables all specified features.

	--all-features

	Activate all available features of all selected packages.

	--no-default-features

	Do not activate the default feature of the selected packages.

Compilation Options

	--target triple

	Check for the given architecture. The default is the host architecture. The general format of the triple is
<arch><sub>-<vendor>-<sys>-<abi>. Run rustc --print target-list for a
list of supported targets. This flag may be specified multiple times.

 cargo clean

 cargo-clean(1)

NAME

cargo-clean --- Remove generated artifacts

SYNOPSIS

cargo clean [options]

DESCRIPTION

Remove artifacts from the target directory that Cargo has generated in the
past.

With no options, cargo clean will delete the entire target directory.

OPTIONS

Package Selection

When no packages are selected, all packages and all dependencies in the
workspace are cleaned.

	-p spec…

	--package spec…

	Clean only the specified packages. This flag may be specified
multiple times. See cargo-pkgid(1) for the SPEC format.

Clean Options

	--dry-run

	Displays a summary of what would be deleted without deleting anything.
Use with --verbose to display the actual files that would be deleted.

	--doc

	This option will cause cargo clean to remove only the doc directory in
the target directory.

	--release

	Remove all artifacts in the release directory.

	--profile name

	Remove all artifacts in the directory with the given profile name.

	--target-dir directory

	Directory for all generated artifacts and intermediate files. May also be
specified with the CARGO_TARGET_DIR environment variable, or the
build.target-dir config value.
Defaults to target in the root of the workspace.

	--target triple

	Clean for the given architecture. The default is the host architecture. The general format of the triple is
<arch><sub>-<vendor>-<sys>-<abi>. Run rustc --print target-list for a
list of supported targets. This flag may be specified multiple times.

 cargo clippy

 cargo-clippy(1)

NAME

cargo-clippy --- Checks a package to catch common mistakes and improve your Rust code

DESCRIPTION

This is an external command distributed with the Rust toolchain as an optional component.
It is not built into Cargo, and may require additional installation.

For information about usage and installation,
see Clippy Documentation.

SEE ALSO

cargo(1),
cargo-fix(1),
cargo-fmt(1),
Custom subcommands

 cargo doc

 cargo-doc(1)

NAME

cargo-doc --- Build a package's documentation

SYNOPSIS

cargo doc [options]

DESCRIPTION

Build the documentation for the local package and all dependencies. The output
is placed in target/doc in rustdoc's usual format.

OPTIONS

Documentation Options

	--open

	Open the docs in a browser after building them. This will use your default
browser unless you define another one in the BROWSER environment variable
or use the doc.browser configuration
option.

	--no-deps

	Do not build documentation for dependencies.

	--document-private-items

	Include non-public items in the documentation. This will be enabled by default if documenting a binary target.

Package Selection

By default, when no package selection options are given, the packages selected
depend on the selected manifest file (based on the current working directory if
--manifest-path is not given). If the manifest is the root of a workspace then
the workspaces default members are selected, otherwise only the package defined
by the manifest will be selected.

The default members of a workspace can be set explicitly with the
workspace.default-members key in the root manifest. If this is not set, a
virtual workspace will include all workspace members (equivalent to passing
--workspace), and a non-virtual workspace will include only the root crate itself.

	-p spec…

	--package spec…

	Document only the specified packages. See cargo-pkgid(1) for the
SPEC format. This flag may be specified multiple times and supports common Unix
glob patterns like *, ? and []. However, to avoid your shell accidentally
expanding glob patterns before Cargo handles them, you must use single quotes or
double quotes around each pattern.

	--workspace

	Document all members in the workspace.

	--all

	Deprecated alias for --workspace.

	--exclude SPEC…

	Exclude the specified packages. Must be used in conjunction with the
--workspace flag. This flag may be specified multiple times and supports
common Unix glob patterns like *, ? and []. However, to avoid your shell
accidentally expanding glob patterns before Cargo handles them, you must use
single quotes or double quotes around each pattern.

Target Selection

When no target selection options are given, cargo doc will document all
binary and library targets of the selected package. The binary will be skipped
if its name is the same as the lib target. Binaries are skipped if they have
required-features that are missing.

The default behavior can be changed by setting doc = false for the target in
the manifest settings. Using target selection options will ignore the doc
flag and will always document the given target.

	--lib

	Document the package’s library.

	--bin name…

	Document the specified binary. This flag may be specified multiple times
and supports common Unix glob patterns.

	--bins

	Document all binary targets.

	--example name…

	Document the specified example. This flag may be specified multiple times
and supports common Unix glob patterns.

	--examples

	Document all example targets.

Feature Selection

The feature flags allow you to control which features are enabled. When no
feature options are given, the default feature is activated for every
selected package.

See the features documentation
for more details.

	-F features

	--features features

	Space or comma separated list of features to activate. Features of workspace
members may be enabled with package-name/feature-name syntax. This flag may
be specified multiple times, which enables all specified features.

	--all-features

	Activate all available features of all selected packages.

	--no-default-features

	Do not activate the default feature of the selected packages.

Compilation Options

	--target triple

	Document for the given architecture. The default is the host architecture. The general format of the triple is
<arch><sub>-<vendor>-<sys>-<abi>. Run rustc --print target-list for a
list of supported targets. This flag may be specified multiple times.

 cargo fetch

 cargo-fetch(1)

NAME

cargo-fetch --- Fetch dependencies of a package from the network

SYNOPSIS

cargo fetch [options]

DESCRIPTION

If a Cargo.lock file is available, this command will ensure that all of the
git dependencies and/or registry dependencies are downloaded and locally
available. Subsequent Cargo commands will be able to run offline after a cargo fetch unless the lock file changes.

If the lock file is not available, then this command will generate the lock
file before fetching the dependencies.

If --target is not specified, then all target dependencies are fetched.

See also the cargo-prefetch
plugin which adds a command to download popular crates. This may be useful if
you plan to use Cargo without a network with the --offline flag.

OPTIONS

Fetch options

	--target triple

	Fetch for the given architecture. The default is all architectures. The general format of the triple is
<arch><sub>-<vendor>-<sys>-<abi>. Run rustc --print target-list for a
list of supported targets. This flag may be specified multiple times.

 cargo fix

 cargo-fix(1)

NAME

cargo-fix --- Automatically fix lint warnings reported by rustc

SYNOPSIS

cargo fix [options]

DESCRIPTION

This Cargo subcommand will automatically take rustc's suggestions from
diagnostics like warnings and apply them to your source code. This is intended
to help automate tasks that rustc itself already knows how to tell you to fix!

Executing cargo fix will under the hood execute cargo-check(1). Any warnings
applicable to your crate will be automatically fixed (if possible) and all
remaining warnings will be displayed when the check process is finished. For
example if you'd like to apply all fixes to the current package, you can run:

cargo fix

which behaves the same as cargo check --all-targets.

cargo fix is only capable of fixing code that is normally compiled with
cargo check. If code is conditionally enabled with optional features, you
will need to enable those features for that code to be analyzed:

cargo fix --features foo

Similarly, other cfg expressions like platform-specific code will need to
pass --target to fix code for the given target.

cargo fix --target x86_64-pc-windows-gnu

If you encounter any problems with cargo fix or otherwise have any questions
or feature requests please don't hesitate to file an issue at
https://github.com/rust-lang/cargo.

Edition migration

The cargo fix subcommand can also be used to migrate a package from one
edition to the next. The general procedure is:

	Run cargo fix --edition. Consider also using the --all-features flag if
your project has multiple features. You may also want to run cargo fix --edition multiple times with different --target flags if your project
has platform-specific code gated by cfg attributes.

	Modify Cargo.toml to set the edition field to the new edition.

	Run your project tests to verify that everything still works. If new
warnings are issued, you may want to consider running cargo fix again
(without the --edition flag) to apply any suggestions given by the
compiler.

And hopefully that's it! Just keep in mind of the caveats mentioned above that
cargo fix cannot update code for inactive features or cfg expressions.
Also, in some rare cases the compiler is unable to automatically migrate all
code to the new edition, and this may require manual changes after building
with the new edition.

OPTIONS

Fix options

	--broken-code

	Fix code even if it already has compiler errors. This is useful if cargo fix
fails to apply the changes. It will apply the changes and leave the broken
code in the working directory for you to inspect and manually fix.

	--edition

	Apply changes that will update the code to the next edition. This will not
update the edition in the Cargo.toml manifest, which must be updated
manually after cargo fix --edition has finished.

	--edition-idioms

	Apply suggestions that will update code to the preferred style for the current
edition.

	--allow-no-vcs

	Fix code even if a VCS was not detected.

	--allow-dirty

	Fix code even if the working directory has changes (including staged changes).

	--allow-staged

	Fix code even if the working directory has staged changes.

Package Selection

By default, when no package selection options are given, the packages selected
depend on the selected manifest file (based on the current working directory if
--manifest-path is not given). If the manifest is the root of a workspace then
the workspaces default members are selected, otherwise only the package defined
by the manifest will be selected.

The default members of a workspace can be set explicitly with the
workspace.default-members key in the root manifest. If this is not set, a
virtual workspace will include all workspace members (equivalent to passing
--workspace), and a non-virtual workspace will include only the root crate itself.

	-p spec…

	--package spec…

	Fix only the specified packages. See cargo-pkgid(1) for the
SPEC format. This flag may be specified multiple times and supports common Unix
glob patterns like *, ? and []. However, to avoid your shell accidentally
expanding glob patterns before Cargo handles them, you must use single quotes or
double quotes around each pattern.

	--workspace

	Fix all members in the workspace.

	--all

	Deprecated alias for --workspace.

	--exclude SPEC…

	Exclude the specified packages. Must be used in conjunction with the
--workspace flag. This flag may be specified multiple times and supports
common Unix glob patterns like *, ? and []. However, to avoid your shell
accidentally expanding glob patterns before Cargo handles them, you must use
single quotes or double quotes around each pattern.

Target Selection

When no target selection options are given, cargo fix will fix all targets
(--all-targets implied). Binaries are skipped if they have
required-features that are missing.

Passing target selection flags will fix only the specified
targets.

Note that --bin, --example, --test and --bench flags also
support common Unix glob patterns like *, ? and []. However, to avoid your
shell accidentally expanding glob patterns before Cargo handles them, you must
use single quotes or double quotes around each glob pattern.

	--lib

	Fix the package’s library.

	--bin name…

	Fix the specified binary. This flag may be specified multiple times
and supports common Unix glob patterns.

	--bins

	Fix all binary targets.

	--example name…

	Fix the specified example. This flag may be specified multiple times
and supports common Unix glob patterns.

	--examples

	Fix all example targets.

	--test name…

	Fix the specified integration test. This flag may be specified
multiple times and supports common Unix glob patterns.

	--tests

	Fix all targets that have the test = true manifest
flag set. By default this includes the library and binaries built as
unittests, and integration tests. Be aware that this will also build any
required dependencies, so the lib target may be built twice (once as a
unittest, and once as a dependency for binaries, integration tests, etc.).
Targets may be enabled or disabled by setting the test flag in the
manifest settings for the target.

	--bench name…

	Fix the specified benchmark. This flag may be specified multiple
times and supports common Unix glob patterns.

	--benches

	Fix all targets that have the bench = true
manifest flag set. By default this includes the library and binaries built
as benchmarks, and bench targets. Be aware that this will also build any
required dependencies, so the lib target may be built twice (once as a
benchmark, and once as a dependency for binaries, benchmarks, etc.).
Targets may be enabled or disabled by setting the bench flag in the
manifest settings for the target.

	--all-targets

	Fix all targets. This is equivalent to specifying --lib --bins --tests --benches --examples.

Feature Selection

The feature flags allow you to control which features are enabled. When no
feature options are given, the default feature is activated for every
selected package.

See the features documentation
for more details.

	-F features

	--features features

	Space or comma separated list of features to activate. Features of workspace
members may be enabled with package-name/feature-name syntax. This flag may
be specified multiple times, which enables all specified features.

	--all-features

	Activate all available features of all selected packages.

	--no-default-features

	Do not activate the default feature of the selected packages.

Compilation Options

	--target triple

	Fix for the given architecture. The default is the host architecture. The general format of the triple is
<arch><sub>-<vendor>-<sys>-<abi>. Run rustc --print target-list for a
list of supported targets. This flag may be specified multiple times.

 cargo fmt

 cargo-fmt(1)

NAME

cargo-fmt --- Formats all bin and lib files of the current crate using rustfmt

DESCRIPTION

This is an external command distributed with the Rust toolchain as an optional component.
It is not built into Cargo, and may require additional installation.

For information about usage and installation,
see https://github.com/rust-lang/rustfmt.

SEE ALSO

cargo(1),
cargo-fix(1),
cargo-clippy(1),
Custom subcommands

 cargo miri

 cargo-miri(1)

NAME

cargo-miri --- Runs binary crates and tests in Miri

DESCRIPTION

This is an external command distributed with the Rust toolchain as an optional component.
It is not built into Cargo, and may require additional installation.

This command is only available on the nightly channel.

For information about usage and installation,
see https://github.com/rust-lang/miri.

SEE ALSO

cargo(1),
cargo-run(1),
cargo-test(1),
Custom subcommands

 cargo report

 cargo-report(1)

NAME

cargo-report --- Generate and display various kinds of reports

SYNOPSIS

cargo report type [options]

DESCRIPTION

Displays a report of the given type --- currently, only future-incompat is supported

OPTIONS

	--id id

	Show the report with the specified Cargo-generated id

	-p spec…

	--package spec…

	Only display a report for the specified package

EXAMPLES

	
Display the latest future-incompat report:

cargo report future-incompat

	
Display the latest future-incompat report for a specific package:

cargo report future-incompat --package my-dep:0.0.1

SEE ALSO

Future incompat report

cargo(1)

 cargo run

 cargo-run(1)

NAME

cargo-run --- Run the current package

SYNOPSIS

cargo run [options] [-- args]

DESCRIPTION

Run a binary or example of the local package.

All the arguments following the two dashes (--) are passed to the binary to
run. If you're passing arguments to both Cargo and the binary, the ones after
-- go to the binary, the ones before go to Cargo.

Unlike cargo-test(1) and cargo-bench(1), cargo run sets the
working directory of the binary executed to the current working directory, same
as if it was executed in the shell directly.

OPTIONS

Package Selection

By default, the package in the current working directory is selected. The -p
flag can be used to choose a different package in a workspace.

	-p spec

	--package spec

	The package to run. See cargo-pkgid(1) for the SPEC
format.

Target Selection

When no target selection options are given, cargo run will run the binary
target. If there are multiple binary targets, you must pass a target flag to
choose one. Or, the default-run field may be specified in the [package]
section of Cargo.toml to choose the name of the binary to run by default.

	--bin name

	Run the specified binary.

	--example name

	Run the specified example.

Feature Selection

The feature flags allow you to control which features are enabled. When no
feature options are given, the default feature is activated for every
selected package.

See the features documentation
for more details.

	-F features

	--features features

	Space or comma separated list of features to activate. Features of workspace
members may be enabled with package-name/feature-name syntax. This flag may
be specified multiple times, which enables all specified features.

	--all-features

	Activate all available features of all selected packages.

	--no-default-features

	Do not activate the default feature of the selected packages.

Compilation Options

	--target triple

	Run for the given architecture. The default is the host architecture. The general format of the triple is
<arch><sub>-<vendor>-<sys>-<abi>. Run rustc --print target-list for a
list of supported targets.

 cargo rustc

 cargo-rustc(1)

NAME

cargo-rustc --- Compile the current package, and pass extra options to the compiler

SYNOPSIS

cargo rustc [options] [-- args]

DESCRIPTION

The specified target for the current package (or package specified by -p if
provided) will be compiled along with all of its dependencies. The specified
args will all be passed to the final compiler invocation, not any of the
dependencies. Note that the compiler will still unconditionally receive
arguments such as -L, --extern, and --crate-type, and the specified
args will simply be added to the compiler invocation.

See https://doc.rust-lang.org/rustc/index.html for documentation on rustc
flags.

This command requires that only one target is being compiled when additional
arguments are provided. If more than one target is available for the current
package the filters of --lib, --bin, etc, must be used to select which
target is compiled.

To pass flags to all compiler processes spawned by Cargo, use the RUSTFLAGS
environment variable or the
build.rustflags config value.

OPTIONS

Package Selection

By default, the package in the current working directory is selected. The -p
flag can be used to choose a different package in a workspace.

	-p spec

	--package spec

	The package to build. See cargo-pkgid(1) for the SPEC
format.

Target Selection

When no target selection options are given, cargo rustc will build all
binary and library targets of the selected package.

Binary targets are automatically built if there is an integration test or
benchmark being selected to build. This allows an integration
test to execute the binary to exercise and test its behavior.
The CARGO_BIN_EXE_<name>
environment variable
is set when the integration test is built so that it can use the
env macro to locate the
executable.

Passing target selection flags will build only the specified
targets.

Note that --bin, --example, --test and --bench flags also
support common Unix glob patterns like *, ? and []. However, to avoid your
shell accidentally expanding glob patterns before Cargo handles them, you must
use single quotes or double quotes around each glob pattern.

	--lib

	Build the package’s library.

	--bin name…

	Build the specified binary. This flag may be specified multiple times
and supports common Unix glob patterns.

	--bins

	Build all binary targets.

	--example name…

	Build the specified example. This flag may be specified multiple times
and supports common Unix glob patterns.

	--examples

	Build all example targets.

	--test name…

	Build the specified integration test. This flag may be specified
multiple times and supports common Unix glob patterns.

	--tests

	Build all targets that have the test = true manifest
flag set. By default this includes the library and binaries built as
unittests, and integration tests. Be aware that this will also build any
required dependencies, so the lib target may be built twice (once as a
unittest, and once as a dependency for binaries, integration tests, etc.).
Targets may be enabled or disabled by setting the test flag in the
manifest settings for the target.

	--bench name…

	Build the specified benchmark. This flag may be specified multiple
times and supports common Unix glob patterns.

	--benches

	Build all targets that have the bench = true
manifest flag set. By default this includes the library and binaries built
as benchmarks, and bench targets. Be aware that this will also build any
required dependencies, so the lib target may be built twice (once as a
benchmark, and once as a dependency for binaries, benchmarks, etc.).
Targets may be enabled or disabled by setting the bench flag in the
manifest settings for the target.

	--all-targets

	Build all targets. This is equivalent to specifying --lib --bins --tests --benches --examples.

Feature Selection

The feature flags allow you to control which features are enabled. When no
feature options are given, the default feature is activated for every
selected package.

See the features documentation
for more details.

	-F features

	--features features

	Space or comma separated list of features to activate. Features of workspace
members may be enabled with package-name/feature-name syntax. This flag may
be specified multiple times, which enables all specified features.

	--all-features

	Activate all available features of all selected packages.

	--no-default-features

	Do not activate the default feature of the selected packages.

Compilation Options

	--target triple

	Build for the given architecture. The default is the host architecture. The general format of the triple is
<arch><sub>-<vendor>-<sys>-<abi>. Run rustc --print target-list for a
list of supported targets. This flag may be specified multiple times.

 cargo rustdoc

 cargo-rustdoc(1)

NAME

cargo-rustdoc --- Build a package's documentation, using specified custom flags

SYNOPSIS

cargo rustdoc [options] [-- args]

DESCRIPTION

The specified target for the current package (or package specified by -p if
provided) will be documented with the specified args being passed to the
final rustdoc invocation. Dependencies will not be documented as part of this
command. Note that rustdoc will still unconditionally receive arguments such
as -L, --extern, and --crate-type, and the specified args will simply
be added to the rustdoc invocation.

See https://doc.rust-lang.org/rustdoc/index.html for documentation on rustdoc
flags.

This command requires that only one target is being compiled when additional
arguments are provided. If more than one target is available for the current
package the filters of --lib, --bin, etc, must be used to select which
target is compiled.

To pass flags to all rustdoc processes spawned by Cargo, use the
RUSTDOCFLAGS environment variable
or the build.rustdocflags config value.

OPTIONS

Documentation Options

	--open

	Open the docs in a browser after building them. This will use your default
browser unless you define another one in the BROWSER environment variable
or use the doc.browser configuration
option.

Package Selection

By default, the package in the current working directory is selected. The -p
flag can be used to choose a different package in a workspace.

	-p spec

	--package spec

	The package to document. See cargo-pkgid(1) for the SPEC
format.

Target Selection

When no target selection options are given, cargo rustdoc will document all
binary and library targets of the selected package. The binary will be skipped
if its name is the same as the lib target. Binaries are skipped if they have
required-features that are missing.

Passing target selection flags will document only the specified
targets.

Note that --bin, --example, --test and --bench flags also
support common Unix glob patterns like *, ? and []. However, to avoid your
shell accidentally expanding glob patterns before Cargo handles them, you must
use single quotes or double quotes around each glob pattern.

	--lib

	Document the package’s library.

	--bin name…

	Document the specified binary. This flag may be specified multiple times
and supports common Unix glob patterns.

	--bins

	Document all binary targets.

	--example name…

	Document the specified example. This flag may be specified multiple times
and supports common Unix glob patterns.

	--examples

	Document all example targets.

	--test name…

	Document the specified integration test. This flag may be specified
multiple times and supports common Unix glob patterns.

	--tests

	Document all targets that have the test = true manifest
flag set. By default this includes the library and binaries built as
unittests, and integration tests. Be aware that this will also build any
required dependencies, so the lib target may be built twice (once as a
unittest, and once as a dependency for binaries, integration tests, etc.).
Targets may be enabled or disabled by setting the test flag in the
manifest settings for the target.

	--bench name…

	Document the specified benchmark. This flag may be specified multiple
times and supports common Unix glob patterns.

	--benches

	Document all targets that have the bench = true
manifest flag set. By default this includes the library and binaries built
as benchmarks, and bench targets. Be aware that this will also build any
required dependencies, so the lib target may be built twice (once as a
benchmark, and once as a dependency for binaries, benchmarks, etc.).
Targets may be enabled or disabled by setting the bench flag in the
manifest settings for the target.

	--all-targets

	Document all targets. This is equivalent to specifying --lib --bins --tests --benches --examples.

Feature Selection

The feature flags allow you to control which features are enabled. When no
feature options are given, the default feature is activated for every
selected package.

See the features documentation
for more details.

	-F features

	--features features

	Space or comma separated list of features to activate. Features of workspace
members may be enabled with package-name/feature-name syntax. This flag may
be specified multiple times, which enables all specified features.

	--all-features

	Activate all available features of all selected packages.

	--no-default-features

	Do not activate the default feature of the selected packages.

Compilation Options

	--target triple

	Document for the given architecture. The default is the host architecture. The general format of the triple is
<arch><sub>-<vendor>-<sys>-<abi>. Run rustc --print target-list for a
list of supported targets. This flag may be specified multiple times.

 cargo test

 cargo-test(1)

NAME

cargo-test --- Execute unit and integration tests of a package

SYNOPSIS

cargo test [options] [testname] [-- test-options]

DESCRIPTION

Compile and execute unit, integration, and documentation tests.

The test filtering argument TESTNAME and all the arguments following the two
dashes (--) are passed to the test binaries and thus to libtest (rustc's
built in unit-test and micro-benchmarking framework). If you're passing
arguments to both Cargo and the binary, the ones after -- go to the binary,
the ones before go to Cargo. For details about libtest's arguments see the
output of cargo test -- --help and check out the rustc book's chapter on
how tests work at https://doc.rust-lang.org/rustc/tests/index.html.

As an example, this will filter for tests with foo in their name and run them
on 3 threads in parallel:

cargo test foo -- --test-threads 3

Tests are built with the --test option to rustc which creates a special
executable by linking your code with libtest. The executable automatically
runs all functions annotated with the #[test] attribute in multiple threads.
#[bench] annotated functions will also be run with one iteration to verify
that they are functional.

If the package contains multiple test targets, each target compiles to a
special executable as aforementioned, and then is run serially.

The libtest harness may be disabled by setting harness = false in the target
manifest settings, in which case your code will need to provide its own main
function to handle running tests.

Documentation tests

Documentation tests are also run by default, which is handled by rustdoc. It
extracts code samples from documentation comments of the library target, and
then executes them.

Different from normal test targets, each code block compiles to a doctest
executable on the fly with rustc. These executables run in parallel in
separate processes. The compilation of a code block is in fact a part of test
function controlled by libtest, so some options such as --jobs might not
take effect. Note that this execution model of doctests is not guaranteed
and may change in the future; beware of depending on it.

See the rustdoc book for more information
on writing doc tests.

Working directory of tests

The working directory when running each unit and integration test is set to the
root directory of the package the test belongs to.
Setting the working directory of tests to the package's root directory makes it
possible for tests to reliably access the package's files using relative paths,
regardless from where cargo test was executed from.

For documentation tests, the working directory when invoking rustdoc is set to
the workspace root directory, and is also the directory rustdoc uses as the
compilation directory of each documentation test.
The working directory when running each documentation test is set to the root
directory of the package the test belongs to, and is controlled via rustdoc's
--test-run-directory option.

OPTIONS

Test Options

	--no-run

	Compile, but don’t run tests.

	--no-fail-fast

	Run all tests regardless of failure. Without this flag, Cargo will exit
after the first executable fails. The Rust test harness will run all tests
within the executable to completion, this flag only applies to the executable
as a whole.

Package Selection

By default, when no package selection options are given, the packages selected
depend on the selected manifest file (based on the current working directory if
--manifest-path is not given). If the manifest is the root of a workspace then
the workspaces default members are selected, otherwise only the package defined
by the manifest will be selected.

The default members of a workspace can be set explicitly with the
workspace.default-members key in the root manifest. If this is not set, a
virtual workspace will include all workspace members (equivalent to passing
--workspace), and a non-virtual workspace will include only the root crate itself.

	-p spec…

	--package spec…

	Test only the specified packages. See cargo-pkgid(1) for the
SPEC format. This flag may be specified multiple times and supports common Unix
glob patterns like *, ? and []. However, to avoid your shell accidentally
expanding glob patterns before Cargo handles them, you must use single quotes or
double quotes around each pattern.

	--workspace

	Test all members in the workspace.

	--all

	Deprecated alias for --workspace.

	--exclude SPEC…

	Exclude the specified packages. Must be used in conjunction with the
--workspace flag. This flag may be specified multiple times and supports
common Unix glob patterns like *, ? and []. However, to avoid your shell
accidentally expanding glob patterns before Cargo handles them, you must use
single quotes or double quotes around each pattern.

Target Selection

When no target selection options are given, cargo test will build the
following targets of the selected packages:

	lib --- used to link with binaries, examples, integration tests, and doc tests

	bins (only if integration tests are built and required features are
available)

	examples --- to ensure they compile

	lib as a unit test

	bins as unit tests

	integration tests

	doc tests for the lib target

The default behavior can be changed by setting the test flag for the target
in the manifest settings. Setting examples to test = true will build and run
the example as a test, replacing the example's main function with the
libtest harness. If you don't want the main function replaced, also include
harness = false, in which case the example will be built and executed as-is.

Setting targets to test = false will stop them from being tested by default.
Target selection options that take a target by name (such as --example foo)
ignore the test flag and will always test the given target.

Doc tests for libraries may be disabled by setting doctest = false for the
library in the manifest.

See Configuring a target
for more information on per-target settings.

Binary targets are automatically built if there is an integration test or
benchmark being selected to test. This allows an integration
test to execute the binary to exercise and test its behavior.
The CARGO_BIN_EXE_<name>
environment variable
is set when the integration test is built so that it can use the
env macro to locate the
executable.

Passing target selection flags will test only the specified
targets.

Note that --bin, --example, --test and --bench flags also
support common Unix glob patterns like *, ? and []. However, to avoid your
shell accidentally expanding glob patterns before Cargo handles them, you must
use single quotes or double quotes around each glob pattern.

	--lib

	Test the package’s library.

	--bin name…

	Test the specified binary. This flag may be specified multiple times
and supports common Unix glob patterns.

	--bins

	Test all binary targets.

	--example name…

	Test the specified example. This flag may be specified multiple times
and supports common Unix glob patterns.

	--examples

	Test all example targets.

	--test name…

	Test the specified integration test. This flag may be specified
multiple times and supports common Unix glob patterns.

	--tests

	Test all targets that have the test = true manifest
flag set. By default this includes the library and binaries built as
unittests, and integration tests. Be aware that this will also build any
required dependencies, so the lib target may be built twice (once as a
unittest, and once as a dependency for binaries, integration tests, etc.).
Targets may be enabled or disabled by setting the test flag in the
manifest settings for the target.

	--bench name…

	Test the specified benchmark. This flag may be specified multiple
times and supports common Unix glob patterns.

	--benches

	Test all targets that have the bench = true
manifest flag set. By default this includes the library and binaries built
as benchmarks, and bench targets. Be aware that this will also build any
required dependencies, so the lib target may be built twice (once as a
benchmark, and once as a dependency for binaries, benchmarks, etc.).
Targets may be enabled or disabled by setting the bench flag in the
manifest settings for the target.

	--all-targets

	Test all targets. This is equivalent to specifying --lib --bins --tests --benches --examples.

	--doc

	Test only the library’s documentation. This cannot be mixed with other
target options.

Feature Selection

The feature flags allow you to control which features are enabled. When no
feature options are given, the default feature is activated for every
selected package.

See the features documentation
for more details.

	-F features

	--features features

	Space or comma separated list of features to activate. Features of workspace
members may be enabled with package-name/feature-name syntax. This flag may
be specified multiple times, which enables all specified features.

	--all-features

	Activate all available features of all selected packages.

	--no-default-features

	Do not activate the default feature of the selected packages.

Compilation Options

	--target triple

	Test for the given architecture. The default is the host architecture. The general format of the triple is
<arch><sub>-<vendor>-<sys>-<abi>. Run rustc --print target-list for a
list of supported targets. This flag may be specified multiple times.

 Manifest Commands

 Manifest Commands

	cargo add

	cargo_info

	cargo generate-lockfile

	cargo locate-project

	cargo metadata

	cargo pkgid

	cargo remove

	cargo tree

	cargo update

	cargo vendor

 cargo add

 cargo-add(1)

NAME

cargo-add --- Add dependencies to a Cargo.toml manifest file

SYNOPSIS

cargo add [options] crate...

cargo add [options] --path path

cargo add [options] --git url [crate...]

DESCRIPTION

This command can add or modify dependencies.

The source for the dependency can be specified with:

	crate@version: Fetch from a registry with a version constraint of "version"

	--path path: Fetch from the specified path

	--git url: Pull from a git repo at url

If no source is specified, then a best effort will be made to select one, including:

	Existing dependencies in other tables (like dev-dependencies)

	Workspace members

	Latest release in the registry

When you add a package that is already present, the existing entry will be updated with the flags specified.

Upon successful invocation, the enabled (+) and disabled (-) features of the specified
dependency will be listed in the command's output.

OPTIONS

Source options

	--git url

	Git URL to add the specified crate from.

	--branch branch

	Branch to use when adding from git.

	--tag tag

	Tag to use when adding from git.

	--rev sha

	Specific commit to use when adding from git.

	--path path

	Filesystem path to local crate to add.

	--base base

	The path base to use when adding a local crate.

 cargo generate-lockfile

 cargo-generate-lockfile(1)

NAME

cargo-generate-lockfile --- Generate the lockfile for a package

SYNOPSIS

cargo generate-lockfile [options]

DESCRIPTION

This command will create the Cargo.lock lockfile for the current package or
workspace. If the lockfile already exists, it will be rebuilt with the latest
available version of every package.

See also cargo-update(1) which is also capable of creating a Cargo.lock
lockfile and has more options for controlling update behavior.

OPTIONS

Display Options

	-v

	--verbose

	Use verbose output. May be specified twice for “very verbose” output which
includes extra output such as dependency warnings and build script output.
May also be specified with the term.verbose
config value.

	-q

	--quiet

	Do not print cargo log messages.
May also be specified with the term.quiet
config value.

	--color when

	Control when colored output is used. Valid values:

 cargo info

 cargo-info(1)

NAME

cargo-info --- Display information about a package.

SYNOPSIS

cargo info [options] spec

DESCRIPTION

This command displays information about a package. It fetches data from the package's Cargo.toml file
and presents it in a human-readable format.

OPTIONS

Info Options

	spec

	Fetch information about the specified package. The spec can be a package ID, see cargo-pkgid(1) for the SPEC
format.
If the specified package is part of the current workspace, information from the local Cargo.toml file will be displayed.
If the Cargo.lock file does not exist, it will be created. If no version is specified, the appropriate version will be
selected based on the Minimum Supported Rust Version (MSRV).

	--index index

	The URL of the registry index to use.

	--registry registry

	Name of the registry to use. Registry names are defined in Cargo config
files. If not specified, the default registry is used,
which is defined by the registry.default config key which defaults to
crates-io.

Display Options

	-v

	--verbose

	Use verbose output. May be specified twice for “very verbose” output which
includes extra output such as dependency warnings and build script output.
May also be specified with the term.verbose
config value.

	-q

	--quiet

	Do not print cargo log messages.
May also be specified with the term.quiet
config value.

	--color when

	Control when colored output is used. Valid values:

 cargo locate-project

 cargo-locate-project(1)

NAME

cargo-locate-project --- Print a JSON representation of a Cargo.toml file's location

SYNOPSIS

cargo locate-project [options]

DESCRIPTION

This command will print a JSON object to stdout with the full path to the manifest. The
manifest is found by searching upward for a file named Cargo.toml starting from the current
working directory.

If the project happens to be a part of a workspace, the manifest of the project, rather than
the workspace root, is output. This can be overridden by the --workspace flag. The root
workspace is found by traversing further upward or by using the field package.workspace after
locating the manifest of a workspace member.

OPTIONS

	--workspace

	Locate the Cargo.toml at the root of the workspace, as opposed to the current
workspace member.

Display Options

	--message-format fmt

	The representation in which to print the project location. Valid values:

 cargo metadata

 cargo-metadata(1)

NAME

cargo-metadata --- Machine-readable metadata about the current package

SYNOPSIS

cargo metadata [options]

DESCRIPTION

Output JSON to stdout containing information about the workspace members and
resolved dependencies of the current package.

The output format is subject to change in future versions of Cargo. It
is recommended to include the --format-version flag to future-proof your code
and ensure the output is in the format you are expecting. For more on the
expectations, see "Compatibility".

See the cargo_metadata crate
for a Rust API for reading the metadata.

OUTPUT FORMAT

Compatibility

Within the same output format version, the compatibility is maintained, except
some scenarios. The following is a non-exhaustive list of changes that are not
considered as incompatible:

	Adding new fields — New fields will be added when needed. Reserving this
helps Cargo evolve without bumping the format version too often.

	Adding new values for enum-like fields — Same as adding new fields. It
keeps metadata evolving without stagnation.

	Changing opaque representations — The inner representations of some
fields are implementation details. For example, fields related to
"Source ID" are treated as opaque identifiers to differentiate packages or
sources. Consumers shouldn't rely on those representations unless specified.

JSON format

The JSON output has the following format:

{
 /* Array of all packages in the workspace.
 It also includes all feature-enabled dependencies unless --no-deps is used.
 */
 "packages": [
 {
 /* The name of the package. */
 "name": "my-package",
 /* The version of the package. */
 "version": "0.1.0",
 /* The Package ID for referring to the
 package within the document and as the `--package` argument to many commands
 */
 "id": "file:///path/to/my-package#0.1.0",
 /* The license value from the manifest, or null. */
 "license": "MIT/Apache-2.0",
 /* The license-file value from the manifest, or null. */
 "license_file": "LICENSE",
 /* The description value from the manifest, or null. */
 "description": "Package description.",
 /* The source ID of the package, an "opaque" identifier representing
 where a package is retrieved from. See "Compatibility" above for
 the stability guarantee.

 This is null for path dependencies and workspace members.

 For other dependencies, it is a string with the format:
 - "registry+URL" for registry-based dependencies.
 Example: "registry+https://github.com/rust-lang/crates.io-index"
 - "git+URL" for git-based dependencies.
 Example: "git+https://github.com/rust-lang/cargo?rev=5e85ba14aaa20f8133863373404cb0af69eeef2c#5e85ba14aaa20f8133863373404cb0af69eeef2c"
 - "sparse+URL" for dependencies from a sparse registry
 Example: "sparse+https://my-sparse-registry.org"

 The value after the `+` is not explicitly defined, and may change
 between versions of Cargo and may not directly correlate to other
 things, such as registry definitions in a config file. New source
 kinds may be added in the future which will have different `+`
 prefixed identifiers.
 */
 "source": null,
 /* Array of dependencies declared in the package's manifest. */
 "dependencies": [
 {
 /* The name of the dependency. */
 "name": "bitflags",
 /* The source ID of the dependency. May be null, see
 description for the package source.
 */
 "source": "registry+https://github.com/rust-lang/crates.io-index",
 /* The version requirement for the dependency.
 Dependencies without a version requirement have a value of "*".
 */
 "req": "^1.0",
 /* The dependency kind.
 "dev", "build", or null for a normal dependency.
 */
 "kind": null,
 /* If the dependency is renamed, this is the new name for
 the dependency as a string. null if it is not renamed.
 */
 "rename": null,
 /* Boolean of whether or not this is an optional dependency. */
 "optional": false,
 /* Boolean of whether or not default features are enabled. */
 "uses_default_features": true,
 /* Array of features enabled. */
 "features": [],
 /* The target platform for the dependency.
 null if not a target dependency.
 */
 "target": "cfg(windows)",
 /* The file system path for a local path dependency.
 not present if not a path dependency.
 */
 "path": "/path/to/dep",
 /* A string of the URL of the registry this dependency is from.
 If not specified or null, the dependency is from the default
 registry (crates.io).
 */
 "registry": null,
 /* (unstable) Boolean flag of whether or not this is a pulbic
 dependency. This field is only present when
 `-Zpublic-dependency` is enabled.
 */
 "public": false
 }
],
 /* Array of Cargo targets. */
 "targets": [
 {
 /* Array of target kinds.
 - lib targets list the `crate-type` values from the
 manifest such as "lib", "rlib", "dylib",
 "proc-macro", etc. (default ["lib"])
 - binary is ["bin"]
 - example is ["example"]
 - integration test is ["test"]
 - benchmark is ["bench"]
 - build script is ["custom-build"]
 */
 "kind": [
 "bin"
],
 /* Array of crate types.
 - lib and example libraries list the `crate-type` values
 from the manifest such as "lib", "rlib", "dylib",
 "proc-macro", etc. (default ["lib"])
 - all other target kinds are ["bin"]
 */
 "crate_types": [
 "bin"
],
 /* The name of the target.
 For lib targets, dashes will be replaced with underscores.
 */
 "name": "my-package",
 /* Absolute path to the root source file of the target. */
 "src_path": "/path/to/my-package/src/main.rs",
 /* The Rust edition of the target.
 Defaults to the package edition.
 */
 "edition": "2018",
 /* Array of required features.
 This property is not included if no required features are set.
 */
 "required-features": ["feat1"],
 /* Whether the target should be documented by `cargo doc`. */
 "doc": true,
 /* Whether or not this target has doc tests enabled, and
 the target is compatible with doc testing.
 */
 "doctest": false,
 /* Whether or not this target should be built and run with `--test`
 */
 "test": true
 }
],
 /* Set of features defined for the package.
 Each feature maps to an array of features or dependencies it
 enables.
 */
 "features": {
 "default": [
 "feat1"
],
 "feat1": [],
 "feat2": []
 },
 /* Absolute path to this package's manifest. */
 "manifest_path": "/path/to/my-package/Cargo.toml",
 /* Package metadata.
 This is null if no metadata is specified.
 */
 "metadata": {
 "docs": {
 "rs": {
 "all-features": true
 }
 }
 },
 /* List of registries to which this package may be published.
 Publishing is unrestricted if null, and forbidden if an empty array. */
 "publish": [
 "crates-io"
],
 /* Array of authors from the manifest.
 Empty array if no authors specified.
 */
 "authors": [
 "Jane Doe <user@example.com>"
],
 /* Array of categories from the manifest. */
 "categories": [
 "command-line-utilities"
],
 /* Optional string that is the default binary picked by cargo run. */
 "default_run": null,
 /* Optional string that is the minimum supported rust version */
 "rust_version": "1.56",
 /* Array of keywords from the manifest. */
 "keywords": [
 "cli"
],
 /* The readme value from the manifest or null if not specified. */
 "readme": "README.md",
 /* The repository value from the manifest or null if not specified. */
 "repository": "https://github.com/rust-lang/cargo",
 /* The homepage value from the manifest or null if not specified. */
 "homepage": "https://rust-lang.org",
 /* The documentation value from the manifest or null if not specified. */
 "documentation": "https://doc.rust-lang.org/stable/std",
 /* The default edition of the package.
 Note that individual targets may have different editions.
 */
 "edition": "2018",
 /* Optional string that is the name of a native library the package
 is linking to.
 */
 "links": null,
 }
],
 /* Array of members of the workspace.
 Each entry is the Package ID for the package.
 */
 "workspace_members": [
 "file:///path/to/my-package#0.1.0",
],
 /* Array of default members of the workspace.
 Each entry is the Package ID for the package.
 */
 "workspace_default_members": [
 "file:///path/to/my-package#0.1.0",
],
 // The resolved dependency graph for the entire workspace. The enabled
 // features are based on the enabled features for the "current" package.
 // Inactivated optional dependencies are not listed.
 //
 // This is null if --no-deps is specified.
 //
 // By default, this includes all dependencies for all target platforms.
 // The `--filter-platform` flag may be used to narrow to a specific
 // target triple.
 "resolve": {
 /* Array of nodes within the dependency graph.
 Each node is a package.
 */
 "nodes": [
 {
 /* The Package ID of this node. */
 "id": "file:///path/to/my-package#0.1.0",
 /* The dependencies of this package, an array of Package IDs. */
 "dependencies": [
 "https://github.com/rust-lang/crates.io-index#bitflags@1.0.4"
],
 /* The dependencies of this package. This is an alternative to
 "dependencies" which contains additional information. In
 particular, this handles renamed dependencies.
 */
 "deps": [
 {
 /* The name of the dependency's library target.
 If this is a renamed dependency, this is the new
 name.
 */
 "name": "bitflags",
 /* The Package ID of the dependency. */
 "pkg": "https://github.com/rust-lang/crates.io-index#bitflags@1.0.4"
 /* Array of dependency kinds. Added in Cargo 1.40. */
 "dep_kinds": [
 {
 /* The dependency kind.
 "dev", "build", or null for a normal dependency.
 */
 "kind": null,
 /* The target platform for the dependency.
 null if not a target dependency.
 */
 "target": "cfg(windows)"
 }
]
 }
],
 /* Array of features enabled on this package. */
 "features": [
 "default"
]
 }
],
 /* The package in the current working directory (if --manifest-path is not given).
 This is null if there is a virtual workspace. Otherwise it is
 the Package ID of the package.
 */
 "root": "file:///path/to/my-package#0.1.0",
 },
 /* The absolute path to the target directory where Cargo places its output. */
 "target_directory": "/path/to/my-package/target",
 /* The absolute path to the build directory where Cargo places intermediate build artifacts. (unstable) */
 "build_directory": "/path/to/my-package/build-dir",
 /* The version of the schema for this metadata structure.
 This will be changed if incompatible changes are ever made.
 */
 "version": 1,
 /* The absolute path to the root of the workspace. */
 "workspace_root": "/path/to/my-package"
 /* Workspace metadata.
 This is null if no metadata is specified. */
 "metadata": {
 "docs": {
 "rs": {
 "all-features": true
 }
 }
 }
}

Notes:

	For "id" field syntax, see Package ID Specifications in the reference.

OPTIONS

Output Options

	--no-deps

	Output information only about the workspace members and don’t fetch
dependencies.

	--format-version version

	Specify the version of the output format to use. Currently 1 is the only
possible value.

	--filter-platform triple

	This filters the resolve output to only include dependencies for the
given target triple.
Without this flag, the resolve includes all targets.

 cargo pkgid

 cargo-pkgid(1)

NAME

cargo-pkgid --- Print a fully qualified package specification

SYNOPSIS

cargo pkgid [options] [spec]

DESCRIPTION

Given a spec argument, print out the fully qualified package ID specifier
for a package or dependency in the current workspace. This command will
generate an error if spec is ambiguous as to which package it refers to in
the dependency graph. If no spec is given, then the specifier for the local
package is printed.

This command requires that a lockfile is available and dependencies have been
fetched.

A package specifier consists of a name, version, and source URL. You are
allowed to use partial specifiers to succinctly match a specific package as
long as it matches only one package. This specifier is also used by other parts
in Cargo, such as cargo-metadata(1) and JSON messages emitted by Cargo.

The format of a spec can be one of the following:

	SPEC Structure	Example SPEC

	name	bitflags

	name@version	bitflags@1.0.4

	url	https://github.com/rust-lang/cargo

	url#version	https://github.com/rust-lang/cargo#0.33.0

	url#name	https://github.com/rust-lang/crates.io-index#bitflags

	url#name@version	https://github.com/rust-lang/cargo#crates-io@0.21.0

The specification grammar can be found in chapter Package ID Specifications.

OPTIONS

Package Selection

	-p spec

	--package spec

	Get the package ID for the given package instead of the current package.

Display Options

	-v

	--verbose

	Use verbose output. May be specified twice for “very verbose” output which
includes extra output such as dependency warnings and build script output.
May also be specified with the term.verbose
config value.

	-q

	--quiet

	Do not print cargo log messages.
May also be specified with the term.quiet
config value.

	--color when

	Control when colored output is used. Valid values:

 cargo remove

 cargo-remove(1)

NAME

cargo-remove --- Remove dependencies from a Cargo.toml manifest file

SYNOPSIS

cargo remove [options] dependency...

DESCRIPTION

Remove one or more dependencies from a Cargo.toml manifest.

OPTIONS

Section options

	--dev

	Remove as a development dependency.

	--build

	Remove as a build dependency.

	--target target

	Remo