
The Cargo Book

Cargo is the Rust package manager. Cargo downloads your Rust
package's dependencies, compiles your packages, makes distributable
packages, and uploads them to crates.io, the Rust community’s package
registry. You can contribute to this book on GitHub.

https://www.rust-lang.org/
clbr://internal.invalid/book/OEBPS/appendix/glossary.md#package-manager
clbr://internal.invalid/book/OEBPS/appendix/glossary.md#package
https://crates.io/
clbr://internal.invalid/book/OEBPS/appendix/glossary.md#package-registry
https://github.com/rust-lang/cargo/tree/master/src/doc

Sections
Getting Started
To get started with Cargo, install Cargo (and Rust) and set up your first

crate.
Cargo Guide
The guide will give you all you need to know about how to use Cargo to

develop Rust packages.
Cargo Reference
The reference covers the details of various areas of Cargo.
Cargo Commands
The commands will let you interact with Cargo using its command-line

interface.
Frequently Asked Questions
Appendices:

Glossary
Git Authentication

Other Documentation:

Changelog --- Detailed notes about changes in Cargo in each release.
Rust documentation website --- Links to official Rust documentation
and tools.

clbr://internal.invalid/book/OEBPS/getting-started/index.md
clbr://internal.invalid/book/OEBPS/appendix/glossary.md#crate
clbr://internal.invalid/book/OEBPS/guide/index.md
clbr://internal.invalid/book/OEBPS/reference/index.md
clbr://internal.invalid/book/OEBPS/commands/index.md
clbr://internal.invalid/book/OEBPS/faq.md
clbr://internal.invalid/book/OEBPS/appendix/glossary.md
clbr://internal.invalid/book/OEBPS/appendix/git-authentication.md
clbr://internal.invalid/book/OEBPS/CHANGELOG.md
https://doc.rust-lang.org/

Getting Started
To get started with Cargo, install Cargo (and Rust) and set up your first

crate.

Installation
First steps with Cargo

clbr://internal.invalid/book/OEBPS/appendix/glossary.md#crate
clbr://internal.invalid/book/OEBPS/getting-started/installation.md
clbr://internal.invalid/book/OEBPS/getting-started/first-steps.md

Installation

Install Rust and Cargo
The easiest way to get Cargo is to install the current stable release of

Rust by using rustup. Installing Rust using rustup will also install cargo .
On Linux and macOS systems, this is done as follows:

curl https://sh.rustup.rs -sSf | sh

It will download a script, and start the installation. If everything goes
well, you’ll see this appear:
Rust is installed now. Great!

On Windows, download and run rustup-init.exe. It will start the
installation in a console and present the above message on success.

After this, you can use the rustup command to also install beta or
nightly channels for Rust and Cargo.

For other installation options and information, visit the install page of
the Rust website.

https://www.rust-lang.org/
https://rustup.rs/
https://win.rustup.rs/
https://www.rust-lang.org/tools/install

Build and Install Cargo from Source
Alternatively, you can build Cargo from source.

https://github.com/rust-lang/cargo#compiling-from-source

First Steps with Cargo
This section provides a quick sense for the cargo command line tool.

We demonstrate its ability to generate a new package for us, its ability to
compile the crate within the package, and its ability to run the resulting
program.

To start a new package with Cargo, use cargo new :
$ cargo new hello_world

Cargo defaults to --bin to make a binary program. To make a library,
we would pass --lib , instead.

Let’s check out what Cargo has generated for us:
$ cd hello_world
$ tree .
.
├── Cargo.toml
└── src
 └── main.rs

1 directory, 2 files

This is all we need to get started. First, let’s check out Cargo.toml :
[package]
name = "hello_world"
version = "0.1.0"
edition = "2024"

[dependencies]

This is called a manifest, and it contains all of the metadata that Cargo
needs to compile your package.

Here’s what’s in src/main.rs :
fn main() {
 println!("Hello, world!");

clbr://internal.invalid/book/OEBPS/appendix/glossary.md#package
clbr://internal.invalid/book/OEBPS/appendix/glossary.md#crate
clbr://internal.invalid/book/OEBPS/appendix/glossary.md#manifest

}

Cargo generated a “hello world” program for us, otherwise known as a
binary crate. Let’s compile it:
$ cargo build
 Compiling hello_world v0.1.0
(file:///path/to/package/hello_world)

And then run it:
$./target/debug/hello_world
Hello, world!

We can also use cargo run to compile and then run it, all in one step:
$ cargo run
 Fresh hello_world v0.1.0
(file:///path/to/package/hello_world)
 Running `target/hello_world`
Hello, world!

clbr://internal.invalid/book/OEBPS/appendix/glossary.md#crate

Going further
For more details on using Cargo, check out the Cargo Guide

clbr://internal.invalid/book/OEBPS/guide/index.md

Cargo Guide
This guide will give you all that you need to know about how to use

Cargo to develop Rust packages.

Why Cargo Exists
Creating a New Package
Working on an Existing Cargo Package
Dependencies
Package Layout
Cargo.toml vs Cargo.lock
Tests
Continuous Integration
Publishing on crates.io
Cargo Home

clbr://internal.invalid/book/OEBPS/guide/why-cargo-exists.md
clbr://internal.invalid/book/OEBPS/guide/creating-a-new-project.md
clbr://internal.invalid/book/OEBPS/guide/working-on-an-existing-project.md
clbr://internal.invalid/book/OEBPS/guide/dependencies.md
clbr://internal.invalid/book/OEBPS/guide/project-layout.md
clbr://internal.invalid/book/OEBPS/guide/cargo-toml-vs-cargo-lock.md
clbr://internal.invalid/book/OEBPS/guide/tests.md
clbr://internal.invalid/book/OEBPS/guide/continuous-integration.md
clbr://internal.invalid/book/OEBPS/reference/publishing.md
clbr://internal.invalid/book/OEBPS/guide/cargo-home.md

Why Cargo Exists

Preliminaries
In Rust, as you may know, a library or executable program is called a

crate. Crates are compiled using the Rust compiler, rustc . When starting
with Rust, the first source code most people encounter is that of the classic
“hello world” program, which they compile by invoking rustc directly:
$ rustc hello.rs
$./hello
Hello, world!

Note that the above command required that you specify the file name
explicitly. If you were to directly use rustc to compile a different program,
a different command line invocation would be required. If you needed to
specify any specific compiler flags or include external dependencies, then
the needed command would be even more specific (and complex).

Furthermore, most non-trivial programs will likely have dependencies
on external libraries, and will therefore also depend transitively on their
dependencies. Obtaining the correct versions of all the necessary
dependencies and keeping them up to date would be hard and error-prone if
done by hand.

Rather than work only with crates and rustc , you can avoid the
difficulties involved with performing the above tasks by introducing a
higher-level "package" abstraction and by using a package manager.

clbr://internal.invalid/book/OEBPS/appendix/glossary.md#crate
clbr://internal.invalid/book/OEBPS/appendix/glossary.md#package
clbr://internal.invalid/book/OEBPS/appendix/glossary.md#package-manager

Enter: Cargo
Cargo is the Rust package manager. It is a tool that allows Rust

packages to declare their various dependencies and ensure that you’ll
always get a repeatable build.

To accomplish this goal, Cargo does four things:

Introduces two metadata files with various bits of package
information.
Fetches and builds your package’s dependencies.
Invokes rustc or another build tool with the correct parameters to
build your package.
Introduces conventions to make working with Rust packages easier.

To a large extent, Cargo normalizes the commands needed to build a
given program or library; this is one aspect to the above mentioned
conventions. As we show later, the same command can be used to build
different artifacts, regardless of their names. Rather than invoke rustc
directly, you can instead invoke something generic such as cargo build
and let cargo worry about constructing the correct rustc invocation.
Furthermore, Cargo will automatically fetch any dependencies you have
defined for your artifact from a registry, and arrange for them to be added
into your build as needed.

It is only a slight exaggeration to say that once you know how to build
one Cargo-based project, you know how to build all of them.

clbr://internal.invalid/book/OEBPS/appendix/glossary.md#package
clbr://internal.invalid/book/OEBPS/appendix/glossary.md#artifact
clbr://internal.invalid/book/OEBPS/appendix/glossary.md#registry

Creating a New Package
To start a new package with Cargo, use cargo new :

$ cargo new hello_world --bin

We’re passing --bin because we’re making a binary program: if we
were making a library, we’d pass --lib . This also initializes a new git
repository by default. If you don't want it to do that, pass --vcs none .

Let’s check out what Cargo has generated for us:
$ cd hello_world
$ tree .
.
├── Cargo.toml
└── src
 └── main.rs

1 directory, 2 files

Let’s take a closer look at Cargo.toml :
[package]
name = "hello_world"
version = "0.1.0"
edition = "2024"

[dependencies]

This is called a manifest, and it contains all of the metadata that Cargo
needs to compile your package. This file is written in the TOML format
(pronounced /tɑməl/).

Here’s what’s in src/main.rs :
fn main() {
 println!("Hello, world!");
}

clbr://internal.invalid/book/OEBPS/appendix/glossary.md#package
clbr://internal.invalid/book/OEBPS/appendix/glossary.md#manifest
https://toml.io/

Cargo generated a “hello world” program for you, otherwise known as a
binary crate. Let’s compile it:
$ cargo build
 Compiling hello_world v0.1.0
(file:///path/to/package/hello_world)

And then run it:
$./target/debug/hello_world
Hello, world!

You can also use cargo run to compile and then run it, all in one step
(You won't see the Compiling line if you have not made any changes since
you last compiled):
$ cargo run
 Compiling hello_world v0.1.0
(file:///path/to/package/hello_world)
 Running `target/debug/hello_world`
Hello, world!

You’ll now notice a new file, Cargo.lock . It contains information about
your dependencies. Since there are none yet, it’s not very interesting.

Once you’re ready for release, you can use cargo build --release to
compile your files with optimizations turned on:
$ cargo build --release
 Compiling hello_world v0.1.0
(file:///path/to/package/hello_world)

cargo build --release puts the resulting binary in target/release
instead of target/debug .

Compiling in debug mode is the default for development. Compilation
time is shorter since the compiler doesn't do optimizations, but the code will
run slower. Release mode takes longer to compile, but the code will run
faster.

clbr://internal.invalid/book/OEBPS/appendix/glossary.md#crate

Working on an Existing Cargo
Package

If you download an existing package that uses Cargo, it’s really easy to
get going.

First, get the package from somewhere. In this example, we’ll use
regex cloned from its repository on GitHub:
$ git clone https://github.com/rust-lang/regex.git
$ cd regex

To build, use cargo build :
$ cargo build
 Compiling regex v1.5.0 (file:///path/to/package/regex)

This will fetch all of the dependencies and then build them, along with
the package.

clbr://internal.invalid/book/OEBPS/appendix/glossary.md#package

Dependencies
crates.io is the Rust community's central package registry that serves as

a location to discover and download packages. cargo is configured to use it
by default to find requested packages.

To depend on a library hosted on crates.io, add it to your Cargo.toml .

https://crates.io/
clbr://internal.invalid/book/OEBPS/appendix/glossary.md#package-registry
clbr://internal.invalid/book/OEBPS/appendix/glossary.md#package
https://crates.io/

Adding a dependency
If your Cargo.toml doesn't already have a [dependencies] section,

add that, then list the crate name and version that you would like to use.
This example adds a dependency on the time crate:
[dependencies]
time = "0.1.12"

The version string is a SemVer version requirement. The specifying
dependencies docs have more information about the options you have here.

If you also wanted to add a dependency on the regex crate, you would
not need to add [dependencies] for each crate listed. Here's what your
whole Cargo.toml file would look like with dependencies on the time and
regex crates:
[package]
name = "hello_world"
version = "0.1.0"
edition = "2024"

[dependencies]
time = "0.1.12"
regex = "0.1.41"

Re-run cargo build , and Cargo will fetch the new dependencies and all
of their dependencies, compile them all, and update the Cargo.lock :
$ cargo build
 Updating crates.io index
 Downloading memchr v0.1.5
 Downloading libc v0.1.10
 Downloading regex-syntax v0.2.1
 Downloading memchr v0.1.5
 Downloading aho-corasick v0.3.0
 Downloading regex v0.1.41
 Compiling memchr v0.1.5
 Compiling libc v0.1.10

clbr://internal.invalid/book/OEBPS/appendix/glossary.md#crate
https://semver.org/
clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md

 Compiling regex-syntax v0.2.1
 Compiling memchr v0.1.5
 Compiling aho-corasick v0.3.0
 Compiling regex v0.1.41
 Compiling hello_world v0.1.0
(file:///path/to/package/hello_world)

Cargo.lock contains the exact information about which revision was
used for all of these dependencies.

Now, if regex gets updated, you will still build with the same revision
until you choose to run cargo update .

You can now use the regex library in main.rs .
use regex::Regex;

fn main() {
 let re = Regex::new(r"^\d{4}-\d{2}-\d{2}$").unwrap();
 println!("Did our date match? {}", re.is_match("2014-01-
01"));
}

Running it will show:
$ cargo run
 Running `target/hello_world`
Did our date match? true

Package Layout
Cargo uses conventions for file placement to make it easy to dive into a

new Cargo package:
.
├── Cargo.lock
├── Cargo.toml
├── src/
│ ├── lib.rs
│ ├── main.rs
│ └── bin/
│ ├── named-executable.rs
│ ├── another-executable.rs
│ └── multi-file-executable/
│ ├── main.rs
│ └── some_module.rs
├── benches/
│ ├── large-input.rs
│ └── multi-file-bench/
│ ├── main.rs
│ └── bench_module.rs
├── examples/
│ ├── simple.rs
│ └── multi-file-example/
│ ├── main.rs
│ └── ex_module.rs
└── tests/
 ├── some-integration-tests.rs
 └── multi-file-test/
 ├── main.rs
 └── test_module.rs

Cargo.toml and Cargo.lock are stored in the root of your package
(package root).

clbr://internal.invalid/book/OEBPS/appendix/glossary.md#package

Source code goes in the src directory.
The default library file is src/lib.rs .
The default executable file is src/main.rs .

Other executables can be placed in src/bin/ .
Benchmarks go in the benches directory.
Examples go in the examples directory.
Integration tests go in the tests directory.

If a binary, example, bench, or integration test consists of multiple
source files, place a main.rs file along with the extra modules within a
subdirectory of the src/bin , examples , benches , or tests directory. The
name of the executable will be the directory name.

Note: By convention, binaries, examples, benches and integration
tests follow kebab-case naming style, unless there are compatibility
reasons to do otherwise (e.g. compatibility with a pre-existing binary
name). Modules within those targets are snake_case following the
Rust standard.

You can learn more about Rust's module system in the book.
See Configuring a target for more details on manually configuring

targets. See Target auto-discovery for more information on controlling how
Cargo automatically infers target names.

clbr://internal.invalid/book/OEBPS/appendix/glossary.md#module
https://rust-lang.github.io/rfcs/0430-finalizing-naming-conventions.html
clbr://internal.invalid/book/book/ch07-00-managing-growing-projects-with-packages-crates-and-modules.html
clbr://internal.invalid/book/OEBPS/reference/cargo-targets.md#configuring-a-target
clbr://internal.invalid/book/OEBPS/reference/cargo-targets.md#target-auto-discovery

Cargo.toml vs Cargo.lock
Cargo.toml and Cargo.lock serve two different purposes. Before we

talk about them, here’s a summary:

Cargo.toml is about describing your dependencies in a broad sense,
and is written by you.
Cargo.lock contains exact information about your dependencies. It is
maintained by Cargo and should not be manually edited.

When in doubt, check Cargo.lock into the version control system (e.g.
Git). For a better understanding of why and what the alternatives might be,
see “Why have Cargo.lock in version control?” in the FAQ. We recommend
pairing this with Verifying Latest Dependencies

Let’s dig in a little bit more.
Cargo.toml is a manifest file in which you can specify a bunch of

different metadata about your package. For example, you can say that you
depend on another package:
[package]
name = "hello_world"
version = "0.1.0"

[dependencies]
regex = { git = "https://github.com/rust-lang/regex.git" }

This package has a single dependency, on the regex library. It states in
this case to rely on a particular Git repository that lives on GitHub. Since
you haven’t specified any other information, Cargo assumes that you intend
to use the latest commit on the default branch to build our package.

Sound good? Well, there’s one problem: If you build this package today,
and then you send a copy to me, and I build this package tomorrow,
something bad could happen. There could be more commits to regex in the
meantime, and my build would include new commits while yours would
not. Therefore, we would get different builds. This would be bad because
we want reproducible builds.

clbr://internal.invalid/book/OEBPS/faq.md#why-have-cargolock-in-version-control
clbr://internal.invalid/book/OEBPS/guide/continuous-integration.md#verifying-latest-dependencies
clbr://internal.invalid/book/OEBPS/appendix/glossary.md#manifest

You could fix this problem by defining a specific rev value in our
Cargo.toml , so Cargo could know exactly which revision to use when
building the package:
[dependencies]
regex = { git = "https://github.com/rust-lang/regex.git", rev
= "9f9f693" }

Now our builds will be the same. But there’s a big drawback: now you
have to manually think about SHA-1s every time you want to update our
library. This is both tedious and error prone.

Enter the Cargo.lock . Because of its existence, you don’t need to
manually keep track of the exact revisions: Cargo will do it for you. When
you have a manifest like this:
[package]
name = "hello_world"
version = "0.1.0"

[dependencies]
regex = { git = "https://github.com/rust-lang/regex.git" }

Cargo will take the latest commit and write that information out into
your Cargo.lock when you build for the first time. That file will look like
this:
[[package]]
name = "hello_world"
version = "0.1.0"
dependencies = [
 "regex 1.5.0 (git+https://github.com/rust-
lang/regex.git#9f9f693768c584971a4d53bc3c586c33ed3a6831)",
]

[[package]]
name = "regex"
version = "1.5.0"

source = "git+https://github.com/rust-
lang/regex.git#9f9f693768c584971a4d53bc3c586c33ed3a6831"

You can see that there’s a lot more information here, including the exact
revision you used to build. Now when you give your package to someone
else, they’ll use the exact same SHA, even though you didn’t specify it in
your Cargo.toml .

When you're ready to opt in to a new version of the library, Cargo can
re-calculate the dependencies and update things for you:
$ cargo update # updates all dependencies
$ cargo update regex # updates just “regex”

This will write out a new Cargo.lock with the new version information.
Note that the argument to cargo update is actually a Package ID
Specification and regex is just a short specification.

clbr://internal.invalid/book/OEBPS/reference/pkgid-spec.md

Tests
Cargo can run your tests with the cargo test command. Cargo looks

for tests to run in two places: in each of your src files and any tests in
tests/ . Tests in your src files should be unit tests and documentation
tests. Tests in tests/ should be integration-style tests. As such, you’ll need
to import your crates into the files in tests .

Here's an example of running cargo test in our package, which
currently has no tests:
$ cargo test
 Compiling regex v1.5.0 (https://github.com/rust-
lang/regex.git#9f9f693)
 Compiling hello_world v0.1.0
(file:///path/to/package/hello_world)
 Running target/test/hello_world-9c2b65bbb79eabce

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0
filtered out

If your package had tests, you would see more output with the correct
number of tests.

You can also run a specific test by passing a filter:
$ cargo test foo

This will run any test with foo in its name.
cargo test runs additional checks as well. It will compile any

examples you’ve included to ensure they still compile. It also runs
documentation tests to ensure your code samples from documentation
comments compile. Please see the testing guide in the Rust documentation
for a general view of writing and organizing tests. See Cargo Targets: Tests
to learn more about different styles of tests in Cargo.

clbr://internal.invalid/book/rustdoc/write-documentation/documentation-tests.html
clbr://internal.invalid/book/OEBPS/appendix/glossary.md#package
clbr://internal.invalid/book/book/ch11-00-testing.html

Continuous Integration

Getting Started
A basic CI will build and test your projects:

GitHub Actions
To test your package on GitHub Actions, here is a sample

.github/workflows/ci.yml file:
name: Cargo Build & Test

on:
 push:
 pull_request:

env:
 CARGO_TERM_COLOR: always

jobs:
 build_and_test:
 name: Rust project - latest
 runs-on: ubuntu-latest
 strategy:
 matrix:
 toolchain:
 - stable
 - beta
 - nightly
 steps:
 - uses: actions/checkout@v4
 - run: rustup update ${{ matrix.toolchain }} && rustup
default ${{ matrix.toolchain }}
 - run: cargo build --verbose
 - run: cargo test --verbose

This will test all three release channels (note a failure in any toolchain
version will fail the entire job). You can also click "Actions" > "new
workflow" in the GitHub UI and select Rust to add the default
configuration to your repo. See GitHub Actions documentation for more
information.

GitLab CI
To test your package on GitLab CI, here is a sample .gitlab-ci.yml

file:
stages:
 - build

rust-latest:
 stage: build
 image: rust:latest
 script:
 - cargo build --verbose
 - cargo test --verbose

rust-nightly:
 stage: build
 image: rustlang/rust:nightly
 script:
 - cargo build --verbose
 - cargo test --verbose
 allow_failure: true

This will test on the stable channel and nightly channel, but any
breakage in nightly will not fail your overall build. Please see the GitLab CI
documentation for more information.

builds.sr.ht
To test your package on sr.ht, here is a sample .build.yml file. Be sure

to change <your repo> and <your project> to the repo to clone and the
directory where it was cloned.

https://github.com/actions/starter-workflows/blob/main/ci/rust.yml
https://docs.github.com/en/actions
https://docs.gitlab.com/ce/ci/yaml/index.html

image: archlinux
packages:
 - rustup
sources:
 - <your repo>
tasks:
 - setup: |
 rustup toolchain install nightly stable
 cd <your project>/
 rustup run stable cargo fetch
 - stable: |
 rustup default stable
 cd <your project>/
 cargo build --verbose
 cargo test --verbose
 - nightly: |
 rustup default nightly
 cd <your project>/
 cargo build --verbose ||:
 cargo test --verbose ||:
 - docs: |
 cd <your project>/
 rustup run stable cargo doc --no-deps
 rustup run nightly cargo doc --no-deps ||:

This will test and build documentation on the stable channel and nightly
channel, but any breakage in nightly will not fail your overall build. Please
see the builds.sr.ht documentation for more information.

CircleCI
To test your package on CircleCI, here is a sample

.circleci/config.yml file:
version: 2.1
jobs:
 build:
 docker:

https://man.sr.ht/builds.sr.ht/

 # check
https://circleci.com/developer/images/image/cimg/rust#image-
tags for latest
 - image: cimg/rust:1.77.2
 steps:
 - checkout
 - run: cargo test

To run more complex pipelines, including flaky test detection, caching,
and artifact management, please see CircleCI Configuration Reference.

https://circleci.com/docs/configuration-reference/

Verifying Latest Dependencies
When specifying dependencies in Cargo.toml , they generally match a

range of versions. Exhaustively testing all version combination would be
unwieldy. Verifying the latest versions would at least test for users who run
cargo add or cargo install .

When testing the latest versions some considerations are:

Minimizing external factors affecting local development or CI
Rate of new dependencies being published
Level of risk a project is willing to accept
CI costs, including indirect costs like if a CI service has a maximum
for parallel runners, causing new jobs to be serialized when at the
maximum.

Some potential solutions include:

Not checking in the Cargo.lock

Depending on PR velocity, many versions may go untested
This comes at the cost of determinism

Have a CI job verify the latest dependencies but mark it to "continue
on failure"

Depending on the CI service, failures might not be obvious
Depending on PR velocity, may use more resources than
necessary

Have a scheduled CI job to verify latest dependencies

A hosted CI service may disable scheduled jobs for repositories
that haven't been touched in a while, affecting passively
maintained packages
Depending on the CI service, notifications might not be routed to
people who can act on the failure
If not balanced with dependency publish rate, may not test
enough versions or may do redundant testing

clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md
clbr://internal.invalid/book/OEBPS/commands/cargo-add.md
clbr://internal.invalid/book/OEBPS/commands/cargo-install.md
clbr://internal.invalid/book/OEBPS/faq.md#why-have-cargolock-in-version-control

Regularly update dependencies through PRs, like with Dependabot or
RenovateBot

Can isolate dependencies to their own PR or roll them up into a
single PR
Only uses the resources necessary
Can configure the frequency to balance CI resources and
coverage of dependency versions

An example CI job to verify latest dependencies, using GitHub Actions:
jobs:
 latest_deps:
 name: Latest Dependencies
 runs-on: ubuntu-latest
 continue-on-error: true
 env:
 CARGO_RESOLVER_INCOMPATIBLE_RUST_VERSIONS: allow
 steps:
 - uses: actions/checkout@v4
 - run: rustup update stable && rustup default stable
 - run: cargo update --verbose
 - run: cargo build --verbose
 - run: cargo test --verbose

Notes:

CARGO_RESOLVER_INCOMPATIBLE_RUST_VERSIONS is set to ensure the
resolver doesn't limit selected dependencies because of your project's
Rust version.

For projects with higher risks of per-platform or per-Rust version
failures, more combinations may want to be tested.

https://docs.github.com/en/code-security/dependabot/working-with-dependabot
https://renovatebot.com/
clbr://internal.invalid/book/OEBPS/reference/config.md#resolverincompatible-rust-versions
clbr://internal.invalid/book/OEBPS/reference/resolver.md
clbr://internal.invalid/book/OEBPS/reference/rust-version.md

Verifying rust-version
When publishing packages that specify rust-version , it is important to

verify the correctness of that field.
Some third-party tools that can help with this include:

cargo-msrv

cargo-hack

An example of one way to do this, using GitHub Actions:
jobs:
 msrv:
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v4
 - uses: taiki-e/install-action@cargo-hack
 - run: cargo hack check --rust-version --workspace --all-
targets --ignore-private

This tries to balance thoroughness with turnaround time:

A single platform is used as most projects are platform-agnostic,
trusting platform-specific dependencies to verify their behavior.
cargo check is used as most issues contributors will run into are API
availability and not behavior.
Unpublished packages are skipped as this assumes only consumers of
the verified project, through a registry, will care about rust-version .

clbr://internal.invalid/book/OEBPS/reference/manifest.md#the-rust-version-field
https://crates.io/crates/cargo-msrv
https://crates.io/crates/cargo-hack

Publishing on crates.io
Once you've got a library that you'd like to share with the world, it's time

to publish it on crates.io! Publishing a crate is when a specific version is
uploaded to be hosted on crates.io.

Take care when publishing a crate, because a publish is permanent. The
version can never be overwritten, and the code cannot be deleted. There is no
limit to the number of versions which can be published, however.

https://crates.io/
https://crates.io/

Before your first publish
First things first, you’ll need an account on crates.io to acquire an API

token. To do so, visit the home page and log in via a GitHub account (required
for now). You will also need to provide and verify your email address on the
Account Settings page. Once that is done create an API token, make sure you
copy it. Once you leave the page you will not be able to see it again.

Then run the cargo login command.
$ cargo login

Then at the prompt put in the token specified.
please paste the API Token found on https://crates.io/me below
abcdefghijklmnopqrstuvwxyz012345

This command will inform Cargo of your API token and store it locally in
your ~/.cargo/credentials.toml . Note that this token is a secret and
should not be shared with anyone else. If it leaks for any reason, you should
revoke it immediately.

Note: The cargo logout command can be used to remove the token
from credentials.toml . This can be useful if you no longer need it
stored on the local machine.

https://crates.io/
https://crates.io/
https://crates.io/settings/profile
https://crates.io/settings/tokens
clbr://internal.invalid/book/OEBPS/commands/cargo-login.md
clbr://internal.invalid/book/OEBPS/commands/cargo-logout.md

Before publishing a new crate
Keep in mind that crate names on crates.io are allocated on a first-come-

first-serve basis. Once a crate name is taken, it cannot be used for another
crate.

Check out the metadata you can specify in Cargo.toml to ensure your
crate can be discovered more easily! Before publishing, make sure you have
filled out the following fields:

license or license-file
description

homepage

repository

readme

It would also be a good idea to include some keywords and categories ,
though they are not required.

If you are publishing a library, you may also want to consult the Rust API
Guidelines.

Packaging a crate
The next step is to package up your crate and upload it to crates.io. For this

we’ll use the cargo publish subcommand. This command performs the
following steps:

1. Perform some verification checks on your package.
2. Compress your source code into a .crate file.
3. Extract the .crate file into a temporary directory and verify that it

compiles.
4. Upload the .crate file to crates.io.
5. The registry will perform some additional checks on the uploaded

package before adding it.
It is recommended that you first run cargo publish --dry-run (or

cargo package which is equivalent) to ensure there aren't any warnings or
errors before publishing. This will perform the first three steps listed above.

https://crates.io/
clbr://internal.invalid/book/OEBPS/reference/manifest.md
clbr://internal.invalid/book/OEBPS/reference/manifest.md#the-license-and-license-file-fields
clbr://internal.invalid/book/OEBPS/reference/manifest.md#the-description-field
clbr://internal.invalid/book/OEBPS/reference/manifest.md#the-homepage-field
clbr://internal.invalid/book/OEBPS/reference/manifest.md#the-repository-field
clbr://internal.invalid/book/OEBPS/reference/manifest.md#the-readme-field
clbr://internal.invalid/book/OEBPS/reference/manifest.md#the-keywords-field
clbr://internal.invalid/book/OEBPS/reference/manifest.md#the-categories-field
https://rust-lang.github.io/api-guidelines/
https://crates.io/
clbr://internal.invalid/book/OEBPS/commands/cargo-publish.md
https://crates.io/
clbr://internal.invalid/book/OEBPS/commands/cargo-package.md

$ cargo publish --dry-run

You can inspect the generated .crate file in the target/package

directory. crates.io currently has a 10MB size limit on the .crate file. You
may want to check the size of the .crate file to ensure you didn't
accidentally package up large assets that are not required to build your
package, such as test data, website documentation, or code generation. You
can check which files are included with the following command:
$ cargo package --list

Cargo will automatically ignore files ignored by your version control
system when packaging, but if you want to specify an extra set of files to
ignore you can use the exclude key in the manifest:
[package]
...
exclude = [
 "public/assets/*",
 "videos/*",
]

If you’d rather explicitly list the files to include, Cargo also supports an
include key, which if set, overrides the exclude key:
[package]
...
include = [
 "**/*.rs",
]

https://crates.io/
clbr://internal.invalid/book/OEBPS/reference/manifest.md#the-exclude-and-include-fields
clbr://internal.invalid/book/OEBPS/reference/manifest.md#the-exclude-and-include-fields

Uploading the crate
When you are ready to publish, use the cargo publish command to

upload to crates.io:
$ cargo publish

And that’s it, you’ve now published your first crate!

clbr://internal.invalid/book/OEBPS/commands/cargo-publish.md
https://crates.io/

Publishing a new version of an existing crate
In order to release a new version, change the version value specified in

your Cargo.toml manifest. Keep in mind the SemVer rules which provide
guidelines on what is a compatible change. Then run cargo publish as
described above to upload the new version.

Recommendation: Consider the full release process and automate
what you can.

Each version should include:

A changelog entry, preferably manually curated though a generated
one is better than nothing
A git tag pointing to the published commit

Examples of third-party tools that are representative of different
workflows include (in alphabetical order):

cargo-release
cargo-smart-release
release-plz

For more, see crates.io.

clbr://internal.invalid/book/OEBPS/reference/manifest.md#the-version-field
clbr://internal.invalid/book/OEBPS/reference/semver.md
clbr://internal.invalid/book/OEBPS/commands/cargo-publish.md
https://keepachangelog.com/en/1.0.0/
https://git-scm.com/book/en/v2/Git-Basics-Tagging
https://crates.io/crates/cargo-release
https://crates.io/crates/cargo-smart-release
https://crates.io/crates/release-plz
https://crates.io/search?q=cargo%20release

Managing a crates.io-based crate
Management of crates is primarily done through the command line cargo

tool rather than the crates.io web interface. For this, there are a few
subcommands to manage a crate.

cargo yank
Occasions may arise where you publish a version of a crate that actually

ends up being broken for one reason or another (syntax error, forgot to include
a file, etc.). For situations such as this, Cargo supports a “yank” of a version
of a crate.
$ cargo yank --version 1.0.1
$ cargo yank --version 1.0.1 --undo

A yank does not delete any code. This feature is not intended for deleting
accidentally uploaded secrets, for example. If that happens, you must reset
those secrets immediately.

The semantics of a yanked version are that no new dependencies can be
created against that version, but all existing dependencies continue to work.
One of the major goals of crates.io is to act as a permanent archive of crates
that does not change over time, and allowing deletion of a version would go
against this goal. Essentially a yank means that all packages with a
Cargo.lock will not break, while any future Cargo.lock files generated will
not list the yanked version.

cargo owner
A crate is often developed by more than one person, or the primary

maintainer may change over time! The owner of a crate is the only person
allowed to publish new versions of the crate, but an owner may designate
additional owners.
$ cargo owner --add github-handle
$ cargo owner --remove github-handle
$ cargo owner --add github:rust-lang:owners
$ cargo owner --remove github:rust-lang:owners

The owner IDs given to these commands must be GitHub user names or
GitHub teams.

https://crates.io/
https://crates.io/

If a user name is given to --add , that user is invited as a “named” owner,
with full rights to the crate. In addition to being able to publish or yank
versions of the crate, they have the ability to add or remove owners, including
the owner that made them an owner. Needless to say, you shouldn’t make
people you don’t fully trust into a named owner. In order to become a named
owner, a user must have logged into crates.io previously.

If a team name is given to --add , that team is invited as a “team” owner,
with restricted right to the crate. While they have permission to publish or
yank versions of the crate, they do not have the ability to add or remove
owners. In addition to being more convenient for managing groups of owners,
teams are just a bit more secure against owners becoming malicious.

The syntax for teams is currently github:org:team (see examples above).
In order to invite a team as an owner one must be a member of that team. No
such restriction applies to removing a team as an owner.

https://crates.io/

GitHub permissions
Team membership is not something GitHub provides simple public access

to, and it is likely for you to encounter the following message when working
with them:

It looks like you don’t have permission to query a necessary property
from GitHub to complete this request. You may need to re-authenticate
on crates.io to grant permission to read GitHub org memberships.

This is basically a catch-all for “you tried to query a team, and one of the
five levels of membership access control denied this”. That is not an
exaggeration. GitHub’s support for team access control is Enterprise Grade.

The most likely cause of this is simply that you last logged in before this
feature was added. We originally requested no permissions from GitHub when
authenticating users, because we didn’t actually ever use the user’s token for
anything other than logging them in. However to query team membership on
your behalf, we now require the read:org scope.

You are free to deny us this scope, and everything that worked before
teams were introduced will keep working. However you will never be able to
add a team as an owner, or publish a crate as a team owner. If you ever
attempt to do this, you will get the error above. You may also see this error if
you ever try to publish a crate that you don’t own at all, but otherwise happens
to have a team.

If you ever change your mind, or just aren’t sure if crates.io has sufficient
permission, you can always go to https://crates.io/ and re-authenticate, which
will prompt you for permission if crates.io doesn’t have all the scopes it
would like to.

An additional barrier to querying GitHub is that the organization may be
actively denying third party access. To check this, you can go to:
https://github.com/organizations/:org/settings/oauth_applicatio
n_policy

where :org is the name of the organization (e.g., rust-lang). You may
see something like:

https://crates.io/
https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/
https://crates.io/
https://crates.io/
https://crates.io/

Where you may choose to explicitly remove crates.io from your
organization’s blacklist, or simply press the “Remove Restrictions” button to
allow all third party applications to access this data.

Alternatively, when crates.io requested the read:org scope, you could
have explicitly whitelisted crates.io querying the org in question by pressing
the “Grant Access” button next to its name:

Troubleshooting GitHub team access errors

https://crates.io/
https://crates.io/
https://crates.io/

When trying to add a GitHub team as crate owner, you may see an error
like:
error: failed to invite owners to crate <crate_name>: api
errors (status 200 OK): could not find the github team org/repo

In that case, you should go to the GitHub Application settings page and
check if crates.io is listed in the Authorized OAuth Apps tab. If it isn't, you
should go to https://crates.io/ and authorize it. Then go back to the
Application Settings page on GitHub, click on the crates.io application in the
list, and make sure you or your organization is listed in the "Organization
access" list with a green check mark. If there's a button labeled Grant or
Request , you should grant the access or request the org owner to do so.

https://github.com/settings/applications
https://crates.io/

Cargo Home
The "Cargo home" functions as a download and source cache. When

building a crate, Cargo stores downloaded build dependencies in the Cargo
home. You can alter the location of the Cargo home by setting the
CARGO_HOME environmental variable. The home crate provides an API for
getting this location if you need this information inside your Rust crate. By
default, the Cargo home is located in $HOME/.cargo/ .

Please note that the internal structure of the Cargo home is not stabilized
and may be subject to change at any time.

The Cargo home consists of following components:

clbr://internal.invalid/book/OEBPS/appendix/glossary.md#crate
clbr://internal.invalid/book/OEBPS/reference/environment-variables.md
https://crates.io/crates/home

Files:

config.toml Cargo's global configuration file, see the config entry
in the reference.

credentials.toml Private login credentials from cargo login in
order to log in to a registry.

.crates.toml , .crates2.json These hidden files contain
package information of crates installed via cargo install . Do NOT
edit by hand!

clbr://internal.invalid/book/OEBPS/reference/config.md
clbr://internal.invalid/book/OEBPS/commands/cargo-login.md
clbr://internal.invalid/book/OEBPS/appendix/glossary.md#registry
clbr://internal.invalid/book/OEBPS/appendix/glossary.md#package
clbr://internal.invalid/book/OEBPS/commands/cargo-install.md

Directories:

bin The bin directory contains executables of crates that were
installed via cargo install or rustup . To be able to make these
binaries accessible, add the path of the directory to your $PATH
environment variable.

git Git sources are stored here:

git/db When a crate depends on a git repository, Cargo
clones the repo as a bare repo into this directory and updates it if
necessary.

git/checkouts If a git source is used, the required commit of
the repo is checked out from the bare repo inside git/db into this
directory. This provides the compiler with the actual files
contained in the repo of the commit specified for that dependency.
Multiple checkouts of different commits of the same repo are
possible.

registry Packages and metadata of crate registries (such as
crates.io) are located here.

registry/index The index is a bare git repository which
contains the metadata (versions, dependencies etc) of all available
crates of a registry.

registry/cache Downloaded dependencies are stored in the
cache. The crates are compressed gzip archives named with a
.crate extension.

registry/src If a downloaded .crate archive is required by
a package, it is unpacked into registry/src folder where rustc
will find the .rs files.

clbr://internal.invalid/book/OEBPS/commands/cargo-install.md
https://rust-lang.github.io/rustup/
https://crates.io/

Caching the Cargo home in CI
To avoid redownloading all crate dependencies during continuous

integration, you can cache the $CARGO_HOME directory. However, caching
the entire directory is often inefficient as it will contain downloaded sources
twice. If we depend on a crate such as serde 1.0.92 and cache the entire
$CARGO_HOME we would actually cache the sources twice, the serde-

1.0.92.crate inside registry/cache and the extracted .rs files of serde
inside registry/src . That can unnecessarily slow down the build as
downloading, extracting, recompressing and reuploading the cache to the CI
servers can take some time.

If you wish to cache binaries installed with cargo install , you need to
cache the bin/ folder and the .crates.toml and .crates2.json files.

It should be sufficient to cache the following files and directories across
builds:

.crates.toml

.crates2.json

bin/

registry/index/

registry/cache/

git/db/

clbr://internal.invalid/book/OEBPS/commands/cargo-install.md

Vendoring all dependencies of a project
See the cargo vendor subcommand.

clbr://internal.invalid/book/OEBPS/commands/cargo-vendor.md

Clearing the cache
In theory, you can always remove any part of the cache and Cargo will

do its best to restore sources if a crate needs them either by reextracting an
archive or checking out a bare repo or by simply redownloading the sources
from the web.

Alternatively, the cargo-cache crate provides a simple CLI tool to only
clear selected parts of the cache or show sizes of its components in your
command-line.

https://crates.io/crates/cargo-cache

Cargo Reference
The reference covers the details of various areas of Cargo.

The Manifest Format

Cargo Targets
Rust version

Workspaces
Specifying Dependencies

Overriding Dependencies
Source Replacement
Dependency Resolution

Features

Features Examples
Profiles
Configuration
Environment Variables
Build Scripts

Build Script Examples
Build Cache
Package ID Specifications
External Tools
Registries

Registry Authentication

Credential Provider Protocol
Running a Registry

Registry Index
Registry Web API

SemVer Compatibility

clbr://internal.invalid/book/OEBPS/reference/manifest.md
clbr://internal.invalid/book/OEBPS/reference/cargo-targets.md
clbr://internal.invalid/book/OEBPS/reference/rust-version.md
clbr://internal.invalid/book/OEBPS/reference/workspaces.md
clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md
clbr://internal.invalid/book/OEBPS/reference/overriding-dependencies.md
clbr://internal.invalid/book/OEBPS/reference/source-replacement.md
clbr://internal.invalid/book/OEBPS/reference/resolver.md
clbr://internal.invalid/book/OEBPS/reference/features.md
clbr://internal.invalid/book/OEBPS/reference/features-examples.md
clbr://internal.invalid/book/OEBPS/reference/profiles.md
clbr://internal.invalid/book/OEBPS/reference/config.md
clbr://internal.invalid/book/OEBPS/reference/environment-variables.md
clbr://internal.invalid/book/OEBPS/reference/build-scripts.md
clbr://internal.invalid/book/OEBPS/reference/build-script-examples.md
clbr://internal.invalid/book/OEBPS/reference/build-cache.md
clbr://internal.invalid/book/OEBPS/reference/pkgid-spec.md
clbr://internal.invalid/book/OEBPS/reference/external-tools.md
clbr://internal.invalid/book/OEBPS/reference/registries.md
clbr://internal.invalid/book/OEBPS/reference/registry-authentication.md
clbr://internal.invalid/book/OEBPS/reference/credential-provider-protocol.md
clbr://internal.invalid/book/OEBPS/reference/running-a-registry.md
clbr://internal.invalid/book/OEBPS/reference/registry-index.md
clbr://internal.invalid/book/OEBPS/reference/registry-web-api.md
clbr://internal.invalid/book/OEBPS/reference/semver.md

Future incompat report
Reporting build timings
Lints
Unstable Features

clbr://internal.invalid/book/OEBPS/reference/future-incompat-report.md
clbr://internal.invalid/book/OEBPS/reference/timings.md
clbr://internal.invalid/book/OEBPS/reference/lints.md
clbr://internal.invalid/book/OEBPS/reference/unstable.md

The Manifest Format
The Cargo.toml file for each package is called its manifest. It is written

in the TOML format. It contains metadata that is needed to compile the
package. Checkout the cargo locate-project section for more detail on
how cargo finds the manifest file.

Every manifest file consists of the following sections:

cargo-features --- Unstable, nightly-only features.
[package] --- Defines a package.

name --- The name of the package.
version --- The version of the package.
authors --- The authors of the package.
edition --- The Rust edition.
rust-version --- The minimal supported Rust version.
description --- A description of the package.
documentation --- URL of the package documentation.
readme --- Path to the package's README file.
homepage --- URL of the package homepage.
repository --- URL of the package source repository.
license --- The package license.
license-file --- Path to the text of the license.
keywords --- Keywords for the package.
categories --- Categories of the package.
workspace --- Path to the workspace for the package.
build --- Path to the package build script.
links --- Name of the native library the package links with.
exclude --- Files to exclude when publishing.
include --- Files to include when publishing.
publish --- Can be used to prevent publishing the package.
metadata --- Extra settings for external tools.

https://toml.io/
clbr://internal.invalid/book/OEBPS/reference/unstable.md
clbr://internal.invalid/book/OEBPS/reference/rust-version.md

default-run --- The default binary to run by cargo run .
autolib --- Disables library auto discovery.
autobins --- Disables binary auto discovery.
autoexamples --- Disables example auto discovery.
autotests --- Disables test auto discovery.
autobenches --- Disables bench auto discovery.
resolver --- Sets the dependency resolver to use.

Target tables: (see configuration for settings)

[lib] --- Library target settings.
[[bin]] --- Binary target settings.
[[example]] --- Example target settings.
[[test]] --- Test target settings.
[[bench]] --- Benchmark target settings.

Dependency tables:

[dependencies] --- Package library dependencies.
[dev-dependencies] --- Dependencies for examples, tests, and
benchmarks.
[build-dependencies] --- Dependencies for build scripts.
[target] --- Platform-specific dependencies.

[badges] --- Badges to display on a registry.
[features] --- Conditional compilation features.
[lints] --- Configure linters for this package.
[patch] --- Override dependencies.
[replace] --- Override dependencies (deprecated).
[profile] --- Compiler settings and optimizations.
[workspace] --- The workspace definition.

clbr://internal.invalid/book/OEBPS/commands/cargo-run.md
clbr://internal.invalid/book/OEBPS/reference/cargo-targets.md#target-auto-discovery
clbr://internal.invalid/book/OEBPS/reference/cargo-targets.md#target-auto-discovery
clbr://internal.invalid/book/OEBPS/reference/cargo-targets.md#target-auto-discovery
clbr://internal.invalid/book/OEBPS/reference/cargo-targets.md#target-auto-discovery
clbr://internal.invalid/book/OEBPS/reference/cargo-targets.md#target-auto-discovery
clbr://internal.invalid/book/OEBPS/reference/resolver.md#resolver-versions
clbr://internal.invalid/book/OEBPS/reference/cargo-targets.md#configuring-a-target
clbr://internal.invalid/book/OEBPS/reference/cargo-targets.md#library
clbr://internal.invalid/book/OEBPS/reference/cargo-targets.md#binaries
clbr://internal.invalid/book/OEBPS/reference/cargo-targets.md#examples
clbr://internal.invalid/book/OEBPS/reference/cargo-targets.md#tests
clbr://internal.invalid/book/OEBPS/reference/cargo-targets.md#benchmarks
clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md
clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md#development-dependencies
clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md#build-dependencies
clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md#platform-specific-dependencies
clbr://internal.invalid/book/OEBPS/reference/features.md
clbr://internal.invalid/book/OEBPS/reference/overriding-dependencies.md#the-patch-section
clbr://internal.invalid/book/OEBPS/reference/overriding-dependencies.md#the-replace-section
clbr://internal.invalid/book/OEBPS/reference/profiles.md
clbr://internal.invalid/book/OEBPS/reference/workspaces.md

The [package] section
The first section in a Cargo.toml is [package] .

[package]
name = "hello_world" # the name of the package
version = "0.1.0" # the current version, obeying semver

The only field required by Cargo is name . If publishing to a registry, the
registry may require additional fields. See the notes below and the
publishing chapter for requirements for publishing to crates.io.

The name field
The package name is an identifier used to refer to the package. It is used

when listed as a dependency in another package, and as the default name of
inferred lib and bin targets.

The name must use only alphanumeric characters or - or _ , and cannot
be empty.

Note that cargo new and cargo init impose some additional
restrictions on the package name, such as enforcing that it is a valid Rust
identifier and not a keyword. crates.io imposes even more restrictions, such
as:

Only ASCII characters are allowed.
Do not use reserved names.
Do not use special Windows names such as "nul".
Use a maximum of 64 characters of length.

The version field
The version field is formatted according to the SemVer specification:
Versions must have three numeric parts, the major version, the minor

version, and the patch version.
A pre-release part can be added after a dash such as 1.0.0-alpha . The

pre-release part may be separated with periods to distinguish separate
components. Numeric components will use numeric comparison while

clbr://internal.invalid/book/OEBPS/reference/publishing.md
https://crates.io/
clbr://internal.invalid/book/std/primitive.char.html#method.is_alphanumeric
clbr://internal.invalid/book/OEBPS/commands/cargo-new.md
clbr://internal.invalid/book/OEBPS/commands/cargo-init.md
https://crates.io/
https://semver.org/

everything else will be compared lexicographically. For example, 1.0.0-
alpha.11 is higher than 1.0.0-alpha.4 .

A metadata part can be added after a plus, such as 1.0.0+21AF26D3 .
This is for informational purposes only and is generally ignored by Cargo.

Cargo bakes in the concept of Semantic Versioning, so versions are
considered compatible if their left-most non-zero major/minor/patch
component is the same. See the Resolver chapter for more information on
how Cargo uses versions to resolve dependencies.

This field is optional and defaults to 0.0.0 . The field is required for
publishing packages.

MSRV: Before 1.75, this field was required

The authors field
Warning: This field is deprecated

The optional authors field lists in an array the people or organizations
that are considered the "authors" of the package. An optional email address
may be included within angled brackets at the end of each author entry.
[package]
...
authors = ["Graydon Hoare", "Fnu Lnu <no-reply@rust-
lang.org>"]

This field is surfaced in package metadata and in the
CARGO_PKG_AUTHORS environment variable within build.rs for backwards
compatibility.

The edition field
The edition key is an optional key that affects which Rust Edition your

package is compiled with. Setting the edition key in [package] will
affect all targets/crates in the package, including test suites, benchmarks,
binaries, examples, etc.
[package]
...

https://semver.org/
clbr://internal.invalid/book/OEBPS/reference/semver.md
clbr://internal.invalid/book/OEBPS/reference/resolver.md
clbr://internal.invalid/book/edition-guide/index.html

edition = '2024'

Most manifests have the edition field filled in automatically by cargo
new with the latest stable edition. By default cargo new creates a manifest
with the 2024 edition currently.

If the edition field is not present in Cargo.toml , then the 2015 edition
is assumed for backwards compatibility. Note that all manifests created with
cargo new will not use this historical fallback because they will have
edition explicitly specified to a newer value.

The rust-version field
The rust-version field tells cargo what version of the Rust toolchain

you support for your package. See the Rust version chapter for more detail.

The description field
The description is a short blurb about the package. crates.io will display

this with your package. This should be plain text (not Markdown).
[package]
...
description = "A short description of my package"

Note: crates.io requires the description to be set.

The documentation field
The documentation field specifies a URL to a website hosting the

crate's documentation. If no URL is specified in the manifest file, crates.io
will automatically link your crate to the corresponding docs.rs page when
the documentation has been built and is available (see docs.rs queue).
[package]
...
documentation = "https://docs.rs/bitflags"

The readme field

clbr://internal.invalid/book/OEBPS/commands/cargo-new.md
clbr://internal.invalid/book/OEBPS/commands/cargo-new.md
clbr://internal.invalid/book/OEBPS/reference/rust-version.md
https://crates.io/
https://crates.io/
https://crates.io/
https://docs.rs/
https://docs.rs/releases/queue

The readme field should be the path to a file in the package root
(relative to this Cargo.toml) that contains general information about the
package. This file will be transferred to the registry when you publish.
crates.io will interpret it as Markdown and render it on the crate's page.
[package]
...
readme = "README.md"

If no value is specified for this field, and a file named README.md ,
README.txt or README exists in the package root, then the name of that
file will be used. You can suppress this behavior by setting this field to
false . If the field is set to true , a default value of README.md will be
assumed.

The homepage field
The homepage field should be a URL to a site that is the home page for

your package.
[package]
...
homepage = "https://serde.rs"

A value should only be set for homepage if there is a dedicated website
for the crate other than the source repository or API documentation. Do not
make homepage redundant with either the documentation or repository
values.

The repository field
The repository field should be a URL to the source repository for your

package.
[package]
...
repository = "https://github.com/rust-lang/cargo"

The license and license-file fields

https://crates.io/

The license field contains the name of the software license that the
package is released under. The license-file field contains the path to a
file containing the text of the license (relative to this Cargo.toml).

crates.io interprets the license field as an SPDX 2.3 license expression.
The name must be a known license from the SPDX license list 3.20. See the
SPDX site for more information.

SPDX license expressions support AND and OR operators to combine
multiple licenses.1

[package]
...
license = "MIT OR Apache-2.0"

Using OR indicates the user may choose either license. Using AND

indicates the user must comply with both licenses simultaneously. The
WITH operator indicates a license with a special exception. Some examples:

MIT OR Apache-2.0

LGPL-2.1-only AND MIT AND BSD-2-Clause

GPL-2.0-or-later WITH Bison-exception-2.2

If a package is using a nonstandard license, then the license-file field
may be specified in lieu of the license field.
[package]
...
license-file = "LICENSE.txt"

Note: crates.io requires either license or license-file to be set.
1

Previously multiple licenses could be separated with a / , but that usage
is deprecated.

The keywords field
The keywords field is an array of strings that describe this package.

This can help when searching for the package on a registry, and you may

https://crates.io/
https://spdx.github.io/spdx-spec/v2.3/SPDX-license-expressions/
https://github.com/spdx/license-list-data/tree/v3.20
https://spdx.org/
https://crates.io/

choose any words that would help someone find this crate.
[package]
...
keywords = ["gamedev", "graphics"]

Note: crates.io allows a maximum of 5 keywords. Each keyword
must be ASCII text, have at most 20 characters, start with an
alphanumeric character, and only contain letters, numbers, _ , - or + .

The categories field
The categories field is an array of strings of the categories this

package belongs to.
categories = ["command-line-utilities", "development-
tools::cargo-plugins"]

Note: crates.io has a maximum of 5 categories. Each category
should match one of the strings available at
https://crates.io/category_slugs, and must match exactly.

The workspace field
The workspace field can be used to configure the workspace that this

package will be a member of. If not specified this will be inferred as the
first Cargo.toml with [workspace] upwards in the filesystem. Setting this
is useful if the member is not inside a subdirectory of the workspace root.
[package]
...
workspace = "path/to/workspace/root"

This field cannot be specified if the manifest already has a [workspace]
table defined. That is, a crate cannot both be a root crate in a workspace
(contain [workspace]) and also be a member crate of another workspace
(contain package.workspace).

For more information, see the workspaces chapter.

The build field

https://crates.io/
https://crates.io/
https://crates.io/category_slugs
clbr://internal.invalid/book/OEBPS/reference/workspaces.md

The build field specifies a file in the package root which is a build
script for building native code. More information can be found in the build
script guide.
[package]
...
build = "build.rs"

The default is "build.rs" , which loads the script from a file named
build.rs in the root of the package. Use build =

"custom_build_name.rs" to specify a path to a different file or build =
false to disable automatic detection of the build script.

The links field
The links field specifies the name of a native library that is being

linked to. More information can be found in the links section of the build
script guide.

For example, a crate that links a native library called "git2" (e.g.
libgit2.a on Linux) may specify:
[package]
...
links = "git2"

The exclude and include fields
The exclude and include fields can be used to explicitly specify

which files are included when packaging a project to be published, and
certain kinds of change tracking (described below). The patterns specified
in the exclude field identify a set of files that are not included, and the
patterns in include specify files that are explicitly included. You may run
cargo package --list to verify which files will be included in the
package.
[package]
...
exclude = ["/ci", "images/", ".*"]

clbr://internal.invalid/book/OEBPS/reference/build-scripts.md
clbr://internal.invalid/book/OEBPS/reference/build-scripts.md
clbr://internal.invalid/book/OEBPS/reference/build-scripts.md#the-links-manifest-key
clbr://internal.invalid/book/OEBPS/reference/publishing.md
clbr://internal.invalid/book/OEBPS/commands/cargo-package.md

[package]
...
include = ["/src", "COPYRIGHT", "/examples",
"!/examples/big_example"]

The default if neither field is specified is to include all files from the root
of the package, except for the exclusions listed below.

If include is not specified, then the following files will be excluded:

If the package is not in a git repository, all "hidden" files starting with
a dot will be skipped.
If the package is in a git repository, any files that are ignored by the
gitignore rules of the repository and global git configuration will be
skipped.

Regardless of whether exclude or include is specified, the following
files are always excluded:

Any sub-packages will be skipped (any subdirectory that contains a
Cargo.toml file).
A directory named target in the root of the package will be skipped.

The following files are always included:

The Cargo.toml file of the package itself is always included, it does
not need to be listed in include .
A minimized Cargo.lock is automatically included. See cargo
package for more information.
If a license-file is specified, it is always included.

The options are mutually exclusive; setting include will override an
exclude . If you need to have exclusions to a set of include files, use the
! operator described below.

The patterns should be gitignore-style patterns. Briefly:

foo matches any file or directory with the name foo anywhere in the
package. This is equivalent to the pattern **/foo .

https://git-scm.com/docs/gitignore
clbr://internal.invalid/book/OEBPS/commands/cargo-package.md
https://git-scm.com/docs/gitignore

/foo matches any file or directory with the name foo only in the root
of the package.
foo/ matches any directory with the name foo anywhere in the
package.
Common glob patterns like * , ? , and [] are supported:

* matches zero or more characters except / . For example,
*.html matches any file or directory with the .html extension
anywhere in the package.
? matches any character except / . For example, foo? matches
food , but not foo .
[] allows for matching a range of characters. For example, [ab]
matches either a or b . [a-z] matches letters a through z.

**/ prefix matches in any directory. For example, **/foo/bar
matches the file or directory bar anywhere that is directly under
directory foo .
/** suffix matches everything inside. For example, foo/** matches
all files inside directory foo , including all files in subdirectories
below foo .
/**/ matches zero or more directories. For example, a/**/b matches
a/b , a/x/b , a/x/y/b , and so on.
! prefix negates a pattern. For example, a pattern of src/*.rs and
!foo.rs would match all files with the .rs extension inside the src
directory, except for any file named foo.rs .

The include/exclude list is also used for change tracking in some
situations. For targets built with rustdoc , it is used to determine the list of
files to track to determine if the target should be rebuilt. If the package has a
build script that does not emit any rerun-if-* directives, then the
include/exclude list is used for tracking if the build script should be re-run if
any of those files change.

The publish field

clbr://internal.invalid/book/OEBPS/reference/build-scripts.md

The publish field can be used to control which registries names the
package may be published to:
[package]
...
publish = ["some-registry-name"]

To prevent a package from being published to a registry (like crates.io)
by mistake, for instance to keep a package private in a company, you can
omit the version field. If you'd like to be more explicit, you can disable
publishing:
[package]
...
publish = false

If publish array contains a single registry, cargo publish command
will use it when --registry flag is not specified.

The metadata table
Cargo by default will warn about unused keys in Cargo.toml to assist in

detecting typos and such. The package.metadata table, however, is
completely ignored by Cargo and will not be warned about. This section
can be used for tools which would like to store package configuration in
Cargo.toml . For example:
[package]
name = "..."
...

Metadata used when generating an Android APK, for example.
[package.metadata.android]
package-name = "my-awesome-android-app"
assets = "path/to/static"

You'll need to look in the documentation for your tool to see how to use
this field. For Rust Projects that use package.metadata tables, see:

docs.rs

https://docs.rs/about/metadata

There is a similar table at the workspace level at workspace.metadata .
While cargo does not specify a format for the content of either of these
tables, it is suggested that external tools may wish to use them in a
consistent fashion, such as referring to the data in workspace.metadata if
data is missing from package.metadata , if that makes sense for the tool in
question.

The default-run field
The default-run field in the [package] section of the manifest can be

used to specify a default binary picked by cargo run . For example, when
there is both src/bin/a.rs and src/bin/b.rs :
[package]
default-run = "a"

clbr://internal.invalid/book/OEBPS/reference/workspaces.md#the-metadata-table
clbr://internal.invalid/book/OEBPS/commands/cargo-run.md

The [lints] section
Override the default level of lints from different tools by assigning them

to a new level in a table, for example:
[lints.rust]
unsafe_code = "forbid"

This is short-hand for:
[lints.rust]
unsafe_code = { level = "forbid", priority = 0 }

level corresponds to the lint levels in rustc :

forbid

deny

warn

allow

priority is a signed integer that controls which lints or lint groups
override other lint groups:

lower (particularly negative) numbers have lower priority, being
overridden by higher numbers, and show up first on the command-line
to tools like rustc

To know which table under [lints] a particular lint belongs under, it is
the part before :: in the lint name. If there isn't a :: , then the tool is rust .
For example a warning about unsafe_code would be
lints.rust.unsafe_code but a lint about clippy::enum_glob_use

would be lints.clippy.enum_glob_use .
For example:

[lints.rust]
unsafe_code = "forbid"

[lints.clippy]
enum_glob_use = "deny"

https://doc.rust-lang.org/rustc/lints/levels.html

Generally, these will only affect local development of the current
package. Cargo only applies these to the current package and not to
dependencies. As for dependents, Cargo suppresses lints from non-path
dependencies with features like --cap-lints .

MSRV: Respected as of 1.74

clbr://internal.invalid/book/rustc/lints/levels.html#capping-lints

The [badges] section
The [badges] section is for specifying status badges that can be

displayed on a registry website when the package is published.

Note: crates.io previously displayed badges next to a crate on its
website, but that functionality has been removed. Packages should
place badges in its README file which will be displayed on crates.io
(see the readme field).

[badges]
The `maintenance` table indicates the status of the
maintenance of
the crate. This may be used by a registry, but is currently
not
used by crates.io. See https://github.com/rust-
lang/crates.io/issues/2437
and https://github.com/rust-lang/crates.io/issues/2438 for
more details.

The `status` field is required. Available options are:
- `actively-developed`: New features are being added and
bugs are being fixed.
- `passively-maintained`: There are no plans for new
features, but the maintainer intends to
respond to issues that get filed.
- `as-is`: The crate is feature complete, the maintainer
does not intend to continue working on
it or providing support, but it works for the purposes it
was designed for.
- `experimental`: The author wants to share it with the
community but is not intending to meet
anyone's particular use case.
- `looking-for-maintainer`: The current maintainer would
like to transfer the crate to someone
else.

https://crates.io/
https://crates.io/

- `deprecated`: The maintainer does not recommend using this
crate (the description of the crate
can describe why, there could be a better solution
available or there could be problems with
the crate that the author does not want to fix).
- `none`: Displays no badge on crates.io, since the
maintainer has not chosen to specify
their intentions, potential crate users will need to
investigate on their own.
maintenance = { status = "..." }

Dependency sections
See the specifying dependencies page for information on the

[dependencies] , [dev-dependencies] , [build-dependencies] , and
target-specific [target.*.dependencies] sections.

clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md

The [profile.*] sections
The [profile] tables provide a way to customize compiler settings

such as optimizations and debug settings. See the Profiles chapter for more
detail.

clbr://internal.invalid/book/OEBPS/reference/profiles.md

Cargo Targets
Cargo packages consist of targets which correspond to source files

which can be compiled into a crate. Packages can have library, binary,
example, test, and benchmark targets. The list of targets can be configured
in the Cargo.toml manifest, often inferred automatically by the directory
layout of the source files.

See Configuring a target below for details on configuring the settings for
a target.

clbr://internal.invalid/book/OEBPS/guide/project-layout.md

Library
The library target defines a "library" that can be used and linked by other

libraries and executables. The filename defaults to src/lib.rs , and the
name of the library defaults to the name of the package, with any dashes
replaced with underscores. A package can have only one library. The
settings for the library can be customized in the [lib] table in
Cargo.toml .
Example of customizing the library in Cargo.toml.
[lib]
crate-type = ["cdylib"]
bench = false

Binaries
Binary targets are executable programs that can be run after being

compiled. A binary's source can be src/main.rs and/or stored in the
src/bin/ directory. For src/main.rs , the default binary name is the
package name. The settings for each binary can be customized in
the [[bin]] tables in Cargo.toml .

Binaries can use the public API of the package's library. They are also
linked with the [dependencies] defined in Cargo.toml .

You can run individual binaries with the cargo run command with the
--bin <bin-name> option. cargo install can be used to copy the
executable to a common location.
Example of customizing binaries in Cargo.toml.
[[bin]]
name = "cool-tool"
test = false
bench = false

[[bin]]
name = "frobnicator"
required-features = ["frobnicate"]

clbr://internal.invalid/book/OEBPS/guide/project-layout.md
clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md
clbr://internal.invalid/book/OEBPS/commands/cargo-run.md
clbr://internal.invalid/book/OEBPS/commands/cargo-install.md

Examples
Files located under the examples directory are example uses of the

functionality provided by the library. When compiled, they are placed in the
target/debug/examples directory.

Examples can use the public API of the package's library. They are also
linked with the [dependencies] and [dev-dependencies] defined in
Cargo.toml .

By default, examples are executable binaries (with a main() function).
You can specify the crate-type field to make an example be compiled as
a library:
[[example]]
name = "foo"
crate-type = ["staticlib"]

You can run individual executable examples with the cargo run

command with the --example <example-name> option. Library examples
can be built with cargo build with the --example <example-name>

option. cargo install with the --example <example-name> option can
be used to copy executable binaries to a common location. Examples are
compiled by cargo test by default to protect them from bit-rotting. Set
the test field to true if you have #[test] functions in the example that
you want to run with cargo test .

clbr://internal.invalid/book/OEBPS/guide/project-layout.md
clbr://internal.invalid/book/OEBPS/reference/build-cache.md
clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md
clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md#development-dependencies
clbr://internal.invalid/book/OEBPS/commands/cargo-run.md
clbr://internal.invalid/book/OEBPS/commands/cargo-build.md
clbr://internal.invalid/book/OEBPS/commands/cargo-install.md
clbr://internal.invalid/book/OEBPS/commands/cargo-test.md
clbr://internal.invalid/book/OEBPS/commands/cargo-test.md

Tests
There are two styles of tests within a Cargo project:

Unit tests which are functions marked with the #[test] attribute
located within your library or binaries (or any target enabled with the
test field). These tests have access to private APIs located within the
target they are defined in.
Integration tests which is a separate executable binary, also containing
#[test] functions, which is linked with the project's library and has
access to its public API.

Tests are run with the cargo test command. By default, Cargo and
rustc use the libtest harness which is responsible for collecting functions
annotated with the #[test] attribute and executing them in parallel,
reporting the success and failure of each test. See the harness field if you
want to use a different harness or test strategy.

Note: There is another special style of test in Cargo: documentation
tests. They are handled by rustdoc and have a slightly different
execution model. For more information, please see cargo test .

Integration tests
Files located under the tests directory are integration tests. When you

run cargo test , Cargo will compile each of these files as a separate crate,
and execute them.

Integration tests can use the public API of the package's library. They are
also linked with the [dependencies] and [dev-dependencies] defined in
Cargo.toml .

If you want to share code among multiple integration tests, you can
place it in a separate module such as tests/common/mod.rs and then put
mod common; in each test to import it.

Each integration test results in a separate executable binary, and cargo
test will run them serially. In some cases this can be inefficient, as it can

clbr://internal.invalid/book/reference/attributes/testing.html#the-test-attribute
clbr://internal.invalid/book/OEBPS/commands/cargo-test.md
clbr://internal.invalid/book/rustc/tests/index.html
clbr://internal.invalid/book/reference/attributes/testing.html#the-test-attribute
clbr://internal.invalid/book/rustdoc/documentation-tests.html
clbr://internal.invalid/book/OEBPS/commands/cargo-test.md#documentation-tests
clbr://internal.invalid/book/OEBPS/guide/project-layout.md
clbr://internal.invalid/book/OEBPS/commands/cargo-test.md
clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md
clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md#development-dependencies
clbr://internal.invalid/book/OEBPS/commands/cargo-test.md

take longer to compile, and may not make full use of multiple CPUs when
running the tests. If you have a lot of integration tests, you may want to
consider creating a single integration test, and split the tests into multiple
modules. The libtest harness will automatically find all of the #[test]
annotated functions and run them in parallel. You can pass module names to
cargo test to only run the tests within that module.

Binary targets are automatically built if there is an integration test. This
allows an integration test to execute the binary to exercise and test its
behavior. The CARGO_BIN_EXE_<name> environment variable is set when
the integration test is built so that it can use the env macro to locate the
executable.

clbr://internal.invalid/book/OEBPS/commands/cargo-test.md
clbr://internal.invalid/book/OEBPS/reference/environment-variables.md#environment-variables-cargo-sets-for-crates
clbr://internal.invalid/book/std/macro.env.html

Benchmarks
Benchmarks provide a way to test the performance of your code using

the cargo bench command. They follow the same structure as tests, with
each benchmark function annotated with the #[bench] attribute. Similarly
to tests:

Benchmarks are placed in the benches directory.
Benchmark functions defined in libraries and binaries have access to
the private API within the target they are defined in. Benchmarks in
the benches directory may use the public API.
The bench field can be used to define which targets are benchmarked
by default.
The harness field can be used to disable the built-in harness.

Note: The #[bench] attribute is currently unstable and only
available on the nightly channel. There are some packages available on
crates.io that may help with running benchmarks on the stable channel,
such as Criterion.

clbr://internal.invalid/book/OEBPS/commands/cargo-bench.md
clbr://internal.invalid/book/OEBPS/guide/project-layout.md
clbr://internal.invalid/book/unstable-book/library-features/test.html
clbr://internal.invalid/book/book/appendix-07-nightly-rust.html
https://crates.io/keywords/benchmark
https://crates.io/crates/criterion

Configuring a target
All of the [lib] , [[bin]] , [[example]] , [[test]] , and [[bench]]

sections in Cargo.toml support similar configuration for specifying how a
target should be built. The double-bracket sections like [[bin]] are array-
of-table of TOML, which means you can write more than one [[bin]]
section to make several executables in your crate. You can only specify one
library, so [lib] is a normal TOML table.

The following is an overview of the TOML settings for each target, with
each field described in detail below.
[lib]
name = "foo" # The name of the target.
path = "src/lib.rs" # The source file of the target.
test = true # Is tested by default.
doctest = true # Documentation examples are tested by
default.
bench = true # Is benchmarked by default.
doc = true # Is documented by default.
proc-macro = false # Set to `true` for a proc-macro
library.
harness = true # Use libtest harness.
crate-type = ["lib"] # The crate types to generate.
required-features = [] # Features required to build this
target (N/A for lib).

The name field
The name field specifies the name of the target, which corresponds to

the filename of the artifact that will be generated. For a library, this is the
crate name that dependencies will use to reference it.

For the library target, this defaults to the name of the package , with any
dashes replaced with underscores. For the default binary (src/main.rs), it
also defaults to the name of the package, with no replacement for dashes.
For auto discovered targets, it defaults to the directory or file name.

https://toml.io/en/v1.0.0-rc.3#array-of-tables

This is required for all targets except [lib] .

The path field
The path field specifies where the source for the crate is located,

relative to the Cargo.toml file.
If not specified, the inferred path is used based on the target name.

The test field
The test field indicates whether or not the target is tested by default by

cargo test . The default is true for lib, bins, and tests.

Note: Examples are built by cargo test by default to ensure they
continue to compile, but they are not tested by default. Setting test =
true for an example will also build it as a test and run any #[test]
functions defined in the example.

The doctest field
The doctest field indicates whether or not documentation examples are

tested by default by cargo test . This is only relevant for libraries, it has
no effect on other sections. The default is true for the library.

The bench field
The bench field indicates whether or not the target is benchmarked by

default by cargo bench . The default is true for lib, bins, and benchmarks.

The doc field
The doc field indicates whether or not the target is included in the

documentation generated by cargo doc by default. The default is true for
libraries and binaries.

Note: The binary will be skipped if its name is the same as the lib
target.

The plugin field

clbr://internal.invalid/book/OEBPS/commands/cargo-test.md
clbr://internal.invalid/book/OEBPS/commands/cargo-test.md
clbr://internal.invalid/book/reference/attributes/testing.html#the-test-attribute
clbr://internal.invalid/book/rustdoc/documentation-tests.html
clbr://internal.invalid/book/OEBPS/commands/cargo-test.md
clbr://internal.invalid/book/OEBPS/commands/cargo-bench.md
clbr://internal.invalid/book/OEBPS/commands/cargo-doc.md

This option is deprecated and unused.

The proc-macro field
The proc-macro field indicates that the library is a procedural macro

(reference). This is only valid for the [lib] target.

The harness field
The harness field indicates that the --test flag will be passed to

rustc which will automatically include the libtest library which is the
driver for collecting and running tests marked with the #[test] attribute or
benchmarks with the #[bench] attribute. The default is true for all
targets.

If set to false , then you are responsible for defining a main() function
to run tests and benchmarks.

Tests have the cfg(test) conditional expression enabled whether or not
the harness is enabled.

The crate-type field
The crate-type field defines the crate types that will be generated by

the target. It is an array of strings, allowing you to specify multiple crate
types for a single target. This can only be specified for libraries and
examples. Binaries, tests, and benchmarks are always the "bin" crate type.
The defaults are:

Target Crate Type
Normal library "lib"

Proc-macro library "proc-macro"

Example "bin"

The available options are bin , lib , rlib , dylib , cdylib ,
staticlib , and proc-macro . You can read more about the different crate
types in the Rust Reference Manual.

clbr://internal.invalid/book/book/ch19-06-macros.html
clbr://internal.invalid/book/reference/procedural-macros.html
clbr://internal.invalid/book/rustc/command-line-arguments.html#option-test
clbr://internal.invalid/book/reference/attributes/testing.html#the-test-attribute
clbr://internal.invalid/book/reference/conditional-compilation.html#test
clbr://internal.invalid/book/reference/linkage.html
clbr://internal.invalid/book/reference/linkage.html

The required-features field
The required-features field specifies which features the target needs

in order to be built. If any of the required features are not enabled, the target
will be skipped. This is only relevant for the [[bin]] , [[bench]] ,
[[test]] , and [[example]] sections, it has no effect on [lib] .
[features]
...
postgres = []
sqlite = []
tools = []

[[bin]]
name = "my-pg-tool"
required-features = ["postgres", "tools"]

The edition field
The edition field defines the Rust edition the target will use. If not

specified, it defaults to the edition field for the [package] .

Note: This field is deprecated and will be removed in a future
Edition

clbr://internal.invalid/book/OEBPS/reference/features.md
clbr://internal.invalid/book/edition-guide/index.html
clbr://internal.invalid/book/OEBPS/reference/manifest.md#the-edition-field

Target auto-discovery
By default, Cargo automatically determines the targets to build based on

the layout of the files on the filesystem. The target configuration tables,
such as [lib] , [[bin]] , [[test]] , [[bench]] , or [[example]] , can be
used to add additional targets that don't follow the standard directory layout.

The automatic target discovery can be disabled so that only manually
configured targets will be built. Setting the keys autolib , autobins ,
autoexamples , autotests , or autobenches to false in the [package]
section will disable auto-discovery of the corresponding target type.
[package]
...
autolib = false
autobins = false
autoexamples = false
autotests = false
autobenches = false

Disabling automatic discovery should only be needed for specialized
situations. For example, if you have a library where you want a module
named bin , this would present a problem because Cargo would usually
attempt to compile anything in the bin directory as an executable. Here is a
sample layout of this scenario:
├── Cargo.toml
└── src
 ├── lib.rs
 └── bin
 └── mod.rs

To prevent Cargo from inferring src/bin/mod.rs as an executable, set
autobins = false in Cargo.toml to disable auto-discovery:
[package]
…
autobins = false

clbr://internal.invalid/book/OEBPS/guide/project-layout.md

Note: For packages with the 2015 edition, the default for auto-
discovery is false if at least one target is manually defined in
Cargo.toml . Beginning with the 2018 edition, the default is always
true .

MSRV: Respected as of 1.27 for autobins , autoexamples ,
autotests , and autobenches

MSRV: Respected as of 1.83 for autolib

Rust Version
The rust-version field is an optional key that tells cargo what version

of the Rust toolchain you support for your package.
[package]
...
rust-version = "1.56"

The Rust version must be a bare version number with at least one
component; it cannot include semver operators or pre-release identifiers.
Compiler pre-release identifiers such as -nightly will be ignored while
checking the Rust version.

MSRV: Respected as of 1.56

Uses
Diagnostics:
When your package is compiled on an unsupported toolchain, Cargo will

report that as an error to the user. This makes the support expectations clear
and avoids reporting a less direct diagnostic like invalid syntax or missing
functionality in the standard library. This affects all Cargo targets in the
package, including binaries, examples, test suites, benchmarks, etc. A user
can opt-in to an unsupported build of a package with the --ignore-rust-
version flag.

Development aid:
cargo add will auto-select the dependency's version requirement to be

the latest version compatible with your rust-version . If that isn't the latest
version, cargo add will inform users so they can make the choice on
whether to keep it or update your rust-version .

The resolver may take Rust version into account when picking
dependencies.

Other tools may also take advantage of it, like cargo clippy 's
incompatible_msrv lint.

Note: The rust-version may be ignored using the --ignore-
rust-version option.

clbr://internal.invalid/book/OEBPS/reference/cargo-targets.md
clbr://internal.invalid/book/OEBPS/reference/resolver.md#rust-version
https://rust-lang.github.io/rust-clippy/stable/index.html#/incompatible_msrv

Support Expectations
These are general expectations; some packages may document when

they do not follow these.
Complete:
All functionality, including binaries and API, are available on the

supported Rust versions under every feature.
Verified:
A package's functionality is verified on its supported Rust versions,

including automated testing. See also our Rust version CI guide.
Patchable:
When licenses allow it, users can override their local dependency with a

fork of your package. In this situation, Cargo may load the entire workspace
for the patched dependency which should work on the supported Rust
versions, even if other packages in the workspace have different supported
Rust versions.

Dependency Support:
In support of the above, it is expected that each dependency's version-

requirement supports at least one version compatible with your rust-

version . However, it is not expected that the dependency specification
excludes versions incompatible with your rust-version . In fact,
supporting both allows you to balance the needs of users that support older
Rust versions with those that don't.

clbr://internal.invalid/book/OEBPS/reference/features.md
clbr://internal.invalid/book/OEBPS/guide/continuous-integration.md#verifying-rust-version
clbr://internal.invalid/book/OEBPS/reference/overriding-dependencies.md

Setting and Updating Rust Version
What Rust versions to support is a trade off between

Costs for the maintainer in not using newer features of the Rust
toolchain or their dependencies
Costs to users who would benefit from a package using newer features
of a toolchain, e.g. reducing build times by migrating to a feature in
the standard library from a polyfill
Availability of a package to users supporting older Rust versions

Note: Changing rust-version is assumed to be a minor
incompatibility

Recommendation: Choose a policy for what Rust versions to
support and when that is changed so users can compare it with their
own policy and, if it isn't compatible, decide whether the loss of
general improvements or the risk of a blocking bug that won't be fixed
is acceptable or not.

The simplest policy to support is to always use the latest Rust
version.

Depending on your risk profile, the next simplest approach is to
continue to support old major or minor versions of your package that
support older Rust versions.

Selecting supported Rust versions
Users of your package are most likely to track their supported Rust

versions to:

Their Rust toolchain vendor's support policy, e.g. The Rust Project or a
Linux distribution

Note: the Rust Project only offers bug fixes and security updates
for the latest version.

A fixed schedule for users to re-verify their packages with the new
toolchain, e.g. the first release of the year, every 5 releases.

clbr://internal.invalid/book/OEBPS/reference/semver.md#env-new-rust

In addition, users are unlikely to be using the new Rust version
immediately but need time to notice and re-verify or might not be aligned
on the exact same schedule..

Example version policies:

"N-2", meaning "latest version with a 2 release grace window for
updating"
Every even release with a 2 release grace window for updating
Every version from this calendar year with a one year grace window
for updating

Note: To find the minimum rust-version compatible with your
project as-is, you can use third-party tools like cargo-msrv .

Update timeline
When your policy specifies you no longer need to support a Rust

version, you can update rust-version immediately or when needed.
By allowing rust-version to drift from your policy, you offer users

more of a grace window for upgrading. However, this is too unpredictable
to be relied on for aligning with the Rust version users track.

The further rust-version drifts from your specified policy, the more
likely users are to infer a policy you did not intend, leading to frustration at
the unmet expectations.

When drift is allowed, there is the question of what is "justifiable
enough" to drop supported Versions. Each person can come to a reasonably
different justification; working through that discussion can be frustrating for
the involved parties. This will disempower those who would want to avoid
that type of conflict, which is particularly the case for new or casual
contributors who either feel that they are not in a position to raise the
question or that the conflict may hurt the chance of their change being
merged.

Multiple Policies in a Workspace
Cargo allows supporting multiple policies within one workspace.

https://crates.io/crates/cargo-msrv

Verifying specific packages under specific Rust versions can get
complicated. Tools like cargo-hack can help.

For any dependency shared across policies, the lowest common versions
must be used as Cargo unifies SemVer-compatible versions, potentially
limiting access to features of the shared dependency for the workspace
member with the higher rust-version .

To allow users to patch a dependency on one of your workspace
members, every package in the workspace would need to be loadable in the
oldest Rust version supported by the workspace.

When using incompatible-rust-versions = "fallback" , the Rust
version of one package can affect dependency versions selected for another
package with a different Rust version. See the resolver chapter for more
details.

One or More Policies
One way to mitigate the downsides of supporting older Rust versions is

to apply your policy to older major or minor versions of your package that
you continue to support. You likely still need a policy for what Rust
versions the development branch support compared to the release branches
for those major or minor versions.

Only updating the development branch when "needed"' can help reduce
the number of supported release branches.

There is the question of what can be backported into these release
branches. By backporting new functionality between minor versions, the
next available version would be missing it which could be considered a
breaking change, violating SemVer. Backporting changes also comes with
the risk of introducing bugs.

Supporting older versions comes at a cost. This cost is dependent on the
risk and impact of bugs within the package and what is acceptable for
backporting. Creating the release branches on-demand and putting the
backport burden on the community are ways to balance this cost.

There is not yet a way for dependency management tools to report that a
non-latest version is still supported, shifting the responsibility to users to
notice this in documentation.

https://crates.io/crates/cargo-hack
clbr://internal.invalid/book/OEBPS/reference/resolver.md#semver-compatibility
clbr://internal.invalid/book/OEBPS/reference/config.md#resolverincompatible-rust-versions
clbr://internal.invalid/book/OEBPS/reference/resolver.md#rust-version

For example, a Rust version support policy could look like:

The development branch tracks to the latest stable release from the
Rust Project, updated when needed

The minor version will be raised when changing rust-version
The project supports every version for this calendar year, with another
year grace window

The last minor version that supports a supported Rust version will
receive community provided bug fixes
Fixes must be backported to all supported minor releases between
the development branch and the needed supported Rust version

Workspaces
A workspace is a collection of one or more packages, called workspace

members, that are managed together.
The key points of workspaces are:

Common commands can run across all workspace members, like
cargo check --workspace .
All packages share a common Cargo.lock file which resides in the
workspace root.
All packages share a common output directory, which defaults to a
directory named target in the workspace root.
Sharing package metadata, like with workspace.package .
The [patch] , [replace] and [profile.*] sections in Cargo.toml
are only recognized in the root manifest, and ignored in member crates'
manifests.

The root Cargo.toml of a workspace supports the following sections:

[workspace] --- Defines a workspace.

resolver --- Sets the dependency resolver to use.
members --- Packages to include in the workspace.
exclude --- Packages to exclude from the workspace.
default-members --- Packages to operate on when a specific
package wasn't selected.
package --- Keys for inheriting in packages.
dependencies --- Keys for inheriting in package dependencies.
lints --- Keys for inheriting in package lints.
metadata --- Extra settings for external tools.

[patch] --- Override dependencies.
[replace] --- Override dependencies (deprecated).
[profile] --- Compiler settings and optimizations.

clbr://internal.invalid/book/OEBPS/guide/cargo-toml-vs-cargo-lock.md
clbr://internal.invalid/book/OEBPS/reference/build-cache.md
clbr://internal.invalid/book/OEBPS/reference/overriding-dependencies.md#the-patch-section
clbr://internal.invalid/book/OEBPS/reference/overriding-dependencies.md#the-replace-section
clbr://internal.invalid/book/OEBPS/reference/profiles.md
clbr://internal.invalid/book/OEBPS/reference/resolver.md#resolver-versions
clbr://internal.invalid/book/OEBPS/reference/overriding-dependencies.md#the-patch-section
clbr://internal.invalid/book/OEBPS/reference/overriding-dependencies.md#the-replace-section
clbr://internal.invalid/book/OEBPS/reference/profiles.md

The [workspace] section
To create a workspace, you add the [workspace] table to a

Cargo.toml :
[workspace]
...

At minimum, a workspace has to have a member, either with a root
package or as a virtual manifest.

Root package
If the [workspace] section is added to a Cargo.toml that already

defines a [package] , the package is the root package of the workspace.
The workspace root is the directory where the workspace's Cargo.toml is
located.
[workspace]

[package]
name = "hello_world" # the name of the package
version = "0.1.0" # the current version, obeying semver

Virtual workspace
Alternatively, a Cargo.toml file can be created with a [workspace]

section but without a [package] section. This is called a virtual manifest.
This is typically useful when there isn't a "primary" package, or you want to
keep all the packages organized in separate directories.
[PROJECT_DIR]/Cargo.toml
[workspace]
members = ["hello_world"]
resolver = "3"

[PROJECT_DIR]/hello_world/Cargo.toml
[package]
name = "hello_world" # the name of the package
version = "0.1.0" # the current version, obeying semver

clbr://internal.invalid/book/OEBPS/reference/manifest.md#the-package-section

edition = "2024" # the edition, will have no effect on a
resolver used in the workspace

By having a workspace without a root package,

resolver must be set explicitly in virtual workspaces as they have no
package.edition to infer it from resolver version.
Commands run in the workspace root will run against all workspace
members by default, see default-members .

clbr://internal.invalid/book/OEBPS/reference/resolver.md#resolver-versions
clbr://internal.invalid/book/OEBPS/reference/manifest.md#the-edition-field
clbr://internal.invalid/book/OEBPS/reference/resolver.md#resolver-versions

The members and exclude fields
The members and exclude fields define which packages are members

of the workspace:
[workspace]
members = ["member1", "path/to/member2", "crates/*"]
exclude = ["crates/foo", "path/to/other"]

All path dependencies residing in the workspace directory
automatically become members. Additional members can be listed with the
members key, which should be an array of strings containing directories
with Cargo.toml files.

The members list also supports globs to match multiple paths, using
typical filename glob patterns like * and ? .

The exclude key can be used to prevent paths from being included in a
workspace. This can be useful if some path dependencies aren't desired to
be in the workspace at all, or using a glob pattern and you want to remove a
directory.

When inside a subdirectory within the workspace, Cargo will
automatically search the parent directories for a Cargo.toml file with a
[workspace] definition to determine which workspace to use. The
package.workspace manifest key can be used in member crates to point at
a workspace's root to override this automatic search. The manual setting can
be useful if the member is not inside a subdirectory of the workspace root.

Package selection
In a workspace, package-related Cargo commands like cargo build

can use the -p / --package or --workspace command-line flags to
determine which packages to operate on. If neither of those flags are
specified, Cargo will use the package in the current working directory.
However, if the current directory is a workspace root, the default-

members will be used.

clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md#specifying-path-dependencies
https://docs.rs/glob/0.3.0/glob/struct.Pattern.html
clbr://internal.invalid/book/OEBPS/reference/manifest.md#the-workspace-field
clbr://internal.invalid/book/OEBPS/commands/cargo-build.md

The default-members field
The default-members field specifies paths of members to operate on

when in the workspace root and the package selection flags are not used:
[workspace]
members = ["path/to/member1", "path/to/member2",
"path/to/member3/*"]
default-members = ["path/to/member2", "path/to/member3/foo"]

Note: when a root package is present, you can only operate on it
using --package and --workspace flags.

When unspecified, the root package will be used. In the case of a virtual
workspace, all members will be used (as if --workspace were specified on
the command-line).

The package table
The workspace.package table is where you define keys that can be

inherited by members of a workspace. These keys can be inherited by
defining them in the member package with {key}.workspace = true .

Keys that are supported:

authors categories

description documentation

edition exclude

homepage include

keywords license

license-file publish

readme repository

rust-version version

license-file and readme are relative to the workspace root
include and exclude are relative to your package root

Example:
[PROJECT_DIR]/Cargo.toml
[workspace]
members = ["bar"]

[workspace.package]
version = "1.2.3"
authors = ["Nice Folks"]
description = "A short description of my package"
documentation = "https://example.com/bar"

[PROJECT_DIR]/bar/Cargo.toml
[package]

name = "bar"
version.workspace = true
authors.workspace = true
description.workspace = true
documentation.workspace = true

MSRV: Requires 1.64+

The dependencies table
The workspace.dependencies table is where you define dependencies

to be inherited by members of a workspace.
Specifying a workspace dependency is similar to package dependencies

except:

Dependencies from this table cannot be declared as optional
features declared in this table are additive with the features from
[dependencies]

You can then inherit the workspace dependency as a package
dependency

Example:
[PROJECT_DIR]/Cargo.toml
[workspace]
members = ["bar"]

[workspace.dependencies]
cc = "1.0.73"
rand = "0.8.5"
regex = { version = "1.6.0", default-features = false,
features = ["std"] }

[PROJECT_DIR]/bar/Cargo.toml
[package]
name = "bar"
version = "0.2.0"

[dependencies]
regex = { workspace = true, features = ["unicode"] }

[build-dependencies]
cc.workspace = true

clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md
clbr://internal.invalid/book/OEBPS/reference/features.md
clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md#inheriting-a-dependency-from-a-workspace

[dev-dependencies]
rand.workspace = true

MSRV: Requires 1.64+

The lints table
The workspace.lints table is where you define lint configuration to be

inherited by members of a workspace.
Specifying a workspace lint configuration is similar to package lints.
Example:

[PROJECT_DIR]/Cargo.toml
[workspace]
members = ["crates/*"]

[workspace.lints.rust]
unsafe_code = "forbid"

[PROJECT_DIR]/crates/bar/Cargo.toml
[package]
name = "bar"
version = "0.1.0"

[lints]
workspace = true

MSRV: Respected as of 1.74

clbr://internal.invalid/book/OEBPS/reference/manifest.md#the-lints-section

The metadata table
The workspace.metadata table is ignored by Cargo and will not be

warned about. This section can be used for tools that would like to store
workspace configuration in Cargo.toml . For example:
[workspace]
members = ["member1", "member2"]

[workspace.metadata.webcontents]
root = "path/to/webproject"
tool = ["npm", "run", "build"]
...

There is a similar set of tables at the package level at
package.metadata . While cargo does not specify a format for the content
of either of these tables, it is suggested that external tools may wish to use
them in a consistent fashion, such as referring to the data in
workspace.metadata if data is missing from package.metadata , if that
makes sense for the tool in question.

clbr://internal.invalid/book/OEBPS/reference/manifest.md#the-metadata-table

Specifying Dependencies
Your crates can depend on other libraries from crates.io or other

registries, git repositories, or subdirectories on your local file system. You
can also temporarily override the location of a dependency --- for example,
to be able to test out a bug fix in the dependency that you are working on
locally. You can have different dependencies for different platforms, and
dependencies that are only used during development. Let's take a look at
how to do each of these.

https://crates.io/

Specifying dependencies from crates.io
Cargo is configured to look for dependencies on crates.io by default.

Only the name and a version string are required in this case. In the cargo
guide, we specified a dependency on the time crate:
[dependencies]
time = "0.1.12"

The version string "0.1.12" is called a version requirement. It specifies
a range of versions that can be selected from when resolving dependencies.
In this case, "0.1.12" represents the version range >=0.1.12, <0.2.0 . An
update is allowed if it is within that range. In this case, if we ran cargo
update time , cargo should update us to version 0.1.13 if it is the latest
0.1.z release, but would not update us to 0.2.0 .

https://crates.io/
clbr://internal.invalid/book/OEBPS/guide/index.md
clbr://internal.invalid/book/OEBPS/reference/resolver.md

Version requirement syntax
Default requirements

Default requirements specify a minimum version with the ability to
update to SemVer compatible versions. Versions are considered compatible
if their left-most non-zero major/minor/patch component is the same. This
is different from SemVer which considers all pre-1.0.0 packages to be
incompatible.

1.2.3 is an example of a default requirement.
1.2.3 := >=1.2.3, <2.0.0
1.2 := >=1.2.0, <2.0.0
1 := >=1.0.0, <2.0.0
0.2.3 := >=0.2.3, <0.3.0
0.2 := >=0.2.0, <0.3.0
0.0.3 := >=0.0.3, <0.0.4
0.0 := >=0.0.0, <0.1.0
0 := >=0.0.0, <1.0.0

Caret requirements
Caret requirements are the default version requirement strategy. This

version strategy allows SemVer compatible updates. They are specified as
version requirements with a leading caret (^).

^1.2.3 is an example of a caret requirement.
Leaving off the caret is a simplified equivalent syntax to using caret

requirements. While caret requirements are the default, it is recommended
to use the simplified syntax when possible.

log = "^1.2.3" is exactly equivalent to log = "1.2.3" .

Tilde requirements
Tilde requirements specify a minimal version with some ability to

update. If you specify a major, minor, and patch version or only a major and
minor version, only patch-level changes are allowed. If you only specify a
major version, then minor- and patch-level changes are allowed.

https://semver.org/
https://semver.org/
https://semver.org/

~1.2.3 is an example of a tilde requirement.
~1.2.3 := >=1.2.3, <1.3.0
~1.2 := >=1.2.0, <1.3.0
~1 := >=1.0.0, <2.0.0

Wildcard requirements
Wildcard requirements allow for any version where the wildcard is

positioned.
* , 1.* and 1.2.* are examples of wildcard requirements.

* := >=0.0.0
1.* := >=1.0.0, <2.0.0
1.2.* := >=1.2.0, <1.3.0

Note: crates.io does not allow bare * versions.

Comparison requirements
Comparison requirements allow manually specifying a version range

or an exact version to depend on.
Here are some examples of comparison requirements:

>= 1.2.0
> 1
< 2
= 1.2.3

Multiple version requirements
As shown in the examples above, multiple version requirements can be

separated with a comma, e.g., >= 1.2, < 1.5 .

Pre-releases
Version requirements exclude pre-release versions, such as 1.0.0-

alpha , unless specifically asked for. For example, if 1.0.0-alpha of
package foo is published, then a requirement of foo = "1.0" will not
match, and will return an error. The pre-release must be specified, such as

https://crates.io/
clbr://internal.invalid/book/OEBPS/reference/manifest.md#the-version-field

foo = "1.0.0-alpha" . Similarly cargo install will avoid pre-releases
unless explicitly asked to install one.

Cargo allows "newer" pre-releases to be used automatically. For
example, if 1.0.0-beta is published, then a requirement foo = "1.0.0-
alpha" will allow updating to the beta version. Note that this only works
on the same release version, foo = "1.0.0-alpha" will not allow updating
to foo = "1.0.1-alpha" or foo = "1.0.1-beta" .

Cargo will also upgrade automatically to semver-compatible released
versions from prereleases. The requirement foo = "1.0.0-alpha" will
allow updating to foo = "1.0.0" as well as foo = "1.2.0" .

Beware that pre-release versions can be unstable, and as such care
should be taken when using them. Some projects may choose to publish
breaking changes between pre-release versions. It is recommended to not
use pre-release dependencies in a library if your library is not also a pre-
release. Care should also be taken when updating your Cargo.lock , and be
prepared if a pre-release update causes issues.

Version metadata
Version metadata, such as 1.0.0+21AF26D3 , is ignored and should not

be used in version requirements.

Recommendation: When in doubt, use the default version
requirement operator.

In rare circumstances, a package with a "public dependency" (re-
exports the dependency or interoperates with it in its public API) that
is compatible with multiple semver-incompatible versions (e.g. only
uses a simple type that hasn't changed between releases, like an Id)
may support users choosing which version of the "public dependency"
to use. In this case, a version requirement like ">=0.4, <2" may be of
interest. However users of the package will likely run into errors and
need to manually select a version of the "public dependency" via
cargo update if they also depend on it as Cargo might pick different
versions of the "public dependency" when resolving dependency
versions (see #10599).

clbr://internal.invalid/book/OEBPS/commands/cargo-install.md
clbr://internal.invalid/book/OEBPS/reference/manifest.md#the-version-field
clbr://internal.invalid/book/OEBPS/reference/resolver.md
https://github.com/rust-lang/cargo/issues/10599

Avoid constraining the upper bound of a version to be anything less
than the next semver incompatible version (e.g. avoid ">=2.0, <2.4" ,
"2.0.*" , or ~2.0), as other packages in the dependency tree may
require a newer version, leading to an unresolvable error (see #9029).
Consider whether controlling the version in your Cargo.lock would
be more appropriate.

In some instances this won't matter or the benefits might outweigh
the cost, including:

When no one else depends on your package; e.g. it only has a
[[bin]]

When depending on a pre-release package and wishing to avoid
breaking changes, then a fully specified "=1.2.3-alpha.3"
might be warranted (see #2222)
When a library re-exports a proc-macro but the proc-macro
generates code that calls into the re-exporting library, then a fully
specified =1.2.3 might be warranted to ensure the proc-macro
isn't newer than the re-exporting library and generating code that
uses parts of the API that don't exist within the current version

https://github.com/rust-lang/cargo/issues/9029
clbr://internal.invalid/book/OEBPS/guide/cargo-toml-vs-cargo-lock.md
https://github.com/rust-lang/cargo/issues/2222

Specifying dependencies from other registries
To specify a dependency from a registry other than crates.io set the

registry key to the name of the registry to use:
[dependencies]
some-crate = { version = "1.0", registry = "my-registry" }

where my-registry is the registry name configured in
.cargo/config.toml file. See the registries documentation for more
information.

Note: crates.io does not allow packages to be published with
dependencies on code published outside of crates.io.

https://crates.io/
clbr://internal.invalid/book/OEBPS/reference/registries.md
https://crates.io/
https://crates.io/

Specifying dependencies from git repositories
To depend on a library located in a git repository, the minimum

information you need to specify is the location of the repository with the
git key:
[dependencies]
regex = { git = "https://github.com/rust-lang/regex.git" }

Cargo fetches the git repository at that location and traverses the file
tree to find Cargo.toml file for the requested crate anywhere inside the
git repository. For example, regex-lite and regex-syntax are
members of rust-lang/regex repo and can be referred to by the repo's
root URL (https://github.com/rust-lang/regex.git) regardless of
where in the file tree they reside.
regex-lite = { git = "https://github.com/rust-
lang/regex.git" }
regex-syntax = { git = "https://github.com/rust-
lang/regex.git" }

The above rule does not apply to path dependencies.

Choice of commit
Cargo assumes that we intend to use the latest commit on the default

branch to build our package if we only specify the repo URL, as in the
examples above.

You can combine the git key with the rev , tag , or branch keys to be
more specific about which commit to use. Here's an example of using the
latest commit on a branch named next :
[dependencies]
regex = { git = "https://github.com/rust-lang/regex.git",
branch = "next" }

Anything that is not a branch or a tag falls under rev key. This can be a
commit hash like rev = "4c59b707" , or a named reference exposed by the
remote repository such as rev = "refs/pull/493/head" .

What references are available for the rev key varies by where the repo
is hosted.
GitHub exposes a reference to the most recent commit of every pull request
as in the example above. Other git hosts may provide something equivalent
under a different naming scheme.

More git dependency examples:
.git suffix can be omitted if the host accepts such URLs -
both examples work the same
regex = { git = "https://github.com/rust-lang/regex" }
regex = { git = "https://github.com/rust-lang/regex.git" }

a commit with a particular tag
regex = { git = "https://github.com/rust-lang/regex.git", tag
= "1.10.3" }

a commit by its SHA1 hash
regex = { git = "https://github.com/rust-lang/regex.git", rev
= "0c0990399270277832fbb5b91a1fa118e6f63dba" }

HEAD commit of PR 493
regex = { git = "https://github.com/rust-lang/regex.git", rev
= "refs/pull/493/head" }

INVALID EXAMPLES

specifying the commit after # ignores the commit ID and
generates a warning
regex = { git = "https://github.com/rust-
lang/regex.git#4c59b70" }

git and path cannot be used at the same time
regex = { git = "https://github.com/rust-
lang/regex.git#4c59b70", path = "../regex" }

Cargo locks the commits of git dependencies in Cargo.lock file at the
time of their addition and checks for updates only when you run cargo
update command.

The role of the version key
The version key always implies that the package is available in a

registry, regardless of the presence of git or path keys.
The version key does not affect which commit is used when Cargo

retrieves the git dependency, but Cargo checks the version information in
the dependency's Cargo.toml file against the version key and raises an
error if the check fails.

In this example, Cargo retrieves the HEAD commit of the branch called
next from Git and checks if the crate's version is compatible with version
= "1.10.3" :
[dependencies]
regex = { version = "1.10.3", git = "https://github.com/rust-
lang/regex.git", branch = "next" }

version , git , and path keys are considered separate locations for
resolving the dependency. See Multiple locations section below for detailed
explanations.

Note: crates.io does not allow packages to be published with
dependencies on code published outside of crates.io itself (dev-
dependencies are ignored). See the Multiple locations section for a
fallback alternative for git and path dependencies.

Accessing private Git repositories
See Git Authentication for help with Git authentication for private repos.

https://crates.io/
https://crates.io/
clbr://internal.invalid/book/OEBPS/appendix/git-authentication.md

Specifying path dependencies
Over time, our hello_world package from the guide has grown

significantly in size! It’s gotten to the point that we probably want to split
out a separate crate for others to use. To do this Cargo supports path
dependencies which are typically sub-crates that live within one repository.
Let’s start by making a new crate inside of our hello_world package:
inside of hello_world/
$ cargo new hello_utils

This will create a new folder hello_utils inside of which a
Cargo.toml and src folder are ready to be configured. To tell Cargo about
this, open up hello_world/Cargo.toml and add hello_utils to your
dependencies:
[dependencies]
hello_utils = { path = "hello_utils" }

This tells Cargo that we depend on a crate called hello_utils which is
found in the hello_utils folder, relative to the Cargo.toml file it’s
written in.

The next cargo build will automatically build hello_utils and all of
its dependencies.

No local path traversal
The local paths must point to the exact folder with the dependency's

Cargo.toml . Unlike with git dependencies, Cargo does not traverse local
paths. For example, if regex-lite and regex-syntax are members of a
locally cloned rust-lang/regex repo, they have to be referred to by the
full path:
git key accepts the repo root URL and Cargo traverses the
tree to find the crate
[dependencies]
regex-lite = { git = "https://github.com/rust-
lang/regex.git" }

clbr://internal.invalid/book/OEBPS/guide/index.md

regex-syntax = { git = "https://github.com/rust-
lang/regex.git" }

path key requires the member name to be included in the
local path
[dependencies]
regex-lite = { path = "../regex/regex-lite" }
regex-syntax = { path = "../regex/regex-syntax" }

Local paths in published crates
Crates that use dependencies specified with only a path are not permitted

on crates.io.
If we wanted to publish our hello_world crate, we would need to

publish a version of hello_utils to crates.io as a separate crate and
specify its version in the dependencies line of hello_world :
[dependencies]
hello_utils = { path = "hello_utils", version = "0.1.0" }

The use of path and version keys together is explained in the Multiple
locations section.

Note: crates.io does not allow packages to be published with
dependencies on code outside of crates.io, except for dev-
dependencies. See the Multiple locations section for a fallback
alternative for git and path dependencies.

https://crates.io/
https://crates.io/
https://crates.io/
https://crates.io/

Multiple locations
It is possible to specify both a registry version and a git or path

location. The git or path dependency will be used locally (in which case
the version is checked against the local copy), and when published to a
registry like crates.io, it will use the registry version. Other combinations
are not allowed. Examples:
[dependencies]
Uses `my-bitflags` when used locally, and uses
version 1.0 from crates.io when published.
bitflags = { path = "my-bitflags", version = "1.0" }

Uses the given git repo when used locally, and uses
version 1.0 from crates.io when published.
smallvec = { git = "https://github.com/servo/rust-
smallvec.git", version = "1.0" }

Note: if a version doesn't match, Cargo will fail to
compile!

One example where this can be useful is when you have split up a library
into multiple packages within the same workspace. You can then use path
dependencies to point to the local packages within the workspace to use the
local version during development, and then use the crates.io version once it
is published. This is similar to specifying an override, but only applies to
this one dependency declaration.

https://crates.io/
https://crates.io/
clbr://internal.invalid/book/OEBPS/reference/overriding-dependencies.md

Platform specific dependencies
Platform-specific dependencies take the same format, but are listed

under a target section. Normally Rust-like #[cfg] syntax will be used to
define these sections:
[target.'cfg(windows)'.dependencies]
winhttp = "0.4.0"

[target.'cfg(unix)'.dependencies]
openssl = "1.0.1"

[target.'cfg(target_arch = "x86")'.dependencies]
native-i686 = { path = "native/i686" }

[target.'cfg(target_arch = "x86_64")'.dependencies]
native-x86_64 = { path = "native/x86_64" }

Like with Rust, the syntax here supports the not , any , and all

operators to combine various cfg name/value pairs.
If you want to know which cfg targets are available on your platform,

run rustc --print=cfg from the command line. If you want to know
which cfg targets are available for another platform, such as 64-bit
Windows, run rustc --print=cfg --target=x86_64-pc-windows-msvc .

Unlike in your Rust source code, you cannot use
[target.'cfg(feature = "fancy-feature")'.dependencies] to add
dependencies based on optional features. Use the [features] section
instead:
[dependencies]
foo = { version = "1.0", optional = true }
bar = { version = "1.0", optional = true }

[features]
fancy-feature = ["foo", "bar"]

clbr://internal.invalid/book/reference/conditional-compilation.html
clbr://internal.invalid/book/OEBPS/reference/features.md

The same applies to cfg(debug_assertions) , cfg(test) and
cfg(proc_macro) . These values will not work as expected and will always
have the default value returned by rustc --print=cfg . There is currently
no way to add dependencies based on these configuration values.

In addition to #[cfg] syntax, Cargo also supports listing out the full
target the dependencies would apply to:
[target.x86_64-pc-windows-gnu.dependencies]
winhttp = "0.4.0"

[target.i686-unknown-linux-gnu.dependencies]
openssl = "1.0.1"

Custom target specifications
If you’re using a custom target specification (such as --target

foo/bar.json), use the base filename without the .json extension:
[target.bar.dependencies]
winhttp = "0.4.0"

[target.my-special-i686-platform.dependencies]
openssl = "1.0.1"
native = { path = "native/i686" }

Note: Custom target specifications are not usable on the stable
channel.

Development dependencies
You can add a [dev-dependencies] section to your Cargo.toml whose

format is equivalent to [dependencies] :
[dev-dependencies]
tempdir = "0.3"

Dev-dependencies are not used when compiling a package for building,
but are used for compiling tests, examples, and benchmarks.

These dependencies are not propagated to other packages which depend
on this package.

You can also have target-specific development dependencies by using
dev-dependencies in the target section header instead of dependencies .
For example:
[target.'cfg(unix)'.dev-dependencies]
mio = "0.0.1"

Note: When a package is published, only dev-dependencies that
specify a version will be included in the published crate. For most
use cases, dev-dependencies are not needed when published, though
some users (like OS packagers) may want to run tests within a crate, so
providing a version if possible can still be beneficial.

Build dependencies
You can depend on other Cargo-based crates for use in your build

scripts. Dependencies are declared through the build-dependencies

section of the manifest:
[build-dependencies]
cc = "1.0.3"

You can also have target-specific build dependencies by using build-
dependencies in the target section header instead of dependencies . For
example:
[target.'cfg(unix)'.build-dependencies]
cc = "1.0.3"

In this case, the dependency will only be built when the host platform
matches the specified target.

The build script does not have access to the dependencies listed in the
dependencies or dev-dependencies section. Build dependencies will
likewise not be available to the package itself unless listed under the
dependencies section as well. A package itself and its build script are built
separately, so their dependencies need not coincide. Cargo is kept simpler
and cleaner by using independent dependencies for independent purposes.

Choosing features
If a package you depend on offers conditional features, you can specify

which to use:
[dependencies.awesome]
version = "1.3.5"
default-features = false # do not include the default
features, and optionally
 # cherry-pick individual features
features = ["secure-password", "civet"]

More information about features can be found in the features chapter.

clbr://internal.invalid/book/OEBPS/reference/features.md#dependency-features

Renaming dependencies in Cargo.toml
When writing a [dependencies] section in Cargo.toml the key you

write for a dependency typically matches up to the name of the crate you
import from in the code. For some projects, though, you may wish to
reference the crate with a different name in the code regardless of how it's
published on crates.io. For example you may wish to:

Avoid the need to use foo as bar in Rust source.
Depend on multiple versions of a crate.
Depend on crates with the same name from different registries.

To support this Cargo supports a package key in the [dependencies]
section of which package should be depended on:
[package]
name = "mypackage"
version = "0.0.1"

[dependencies]
foo = "0.1"
bar = { git = "https://github.com/example/project.git",
package = "foo" }
baz = { version = "0.1", registry = "custom", package = "foo"
}

In this example, three crates are now available in your Rust code:
extern crate foo; // crates.io
extern crate bar; // git repository
extern crate baz; // registry `custom`

All three of these crates have the package name of foo in their own
Cargo.toml , so we're explicitly using the package key to inform Cargo
that we want the foo package even though we're calling it something else
locally. The package key, if not specified, defaults to the name of the
dependency being requested.

Note that if you have an optional dependency like:

[dependencies]
bar = { version = "0.1", package = 'foo', optional = true }

you're depending on the crate foo from crates.io, but your crate has a
bar feature instead of a foo feature. That is, names of features take after
the name of the dependency, not the package name, when renamed.

Enabling transitive dependencies works similarly, for example we could
add the following to the above manifest:
[features]
log-debug = ['bar/log-debug'] # using 'foo/log-debug' would be
an error!

Inheriting a dependency from a workspace
Dependencies can be inherited from a workspace by specifying the

dependency in the workspace's [workspace.dependencies] table. After
that, add it to the [dependencies] table with workspace = true .

Along with the workspace key, dependencies can also include these
keys:

optional : Note that the [workspace.dependencies] table is not
allowed to specify optional .
features : These are additive with the features declared in the
[workspace.dependencies]

Other than optional and features , inherited dependencies cannot use
any other dependency key (such as version or default-features).

Dependencies in the [dependencies] , [dev-dependencies] , [build-
dependencies] , and [target."...".dependencies] sections support the
ability to reference the [workspace.dependencies] definition of
dependencies.
[package]
name = "bar"
version = "0.2.0"

[dependencies]
regex = { workspace = true, features = ["unicode"] }

[build-dependencies]
cc.workspace = true

[dev-dependencies]
rand = { workspace = true, optional = true }

clbr://internal.invalid/book/OEBPS/reference/workspaces.md#the-dependencies-table
clbr://internal.invalid/book/OEBPS/reference/features.md#optional-dependencies
clbr://internal.invalid/book/OEBPS/reference/features.md

Overriding Dependencies
The desire to override a dependency can arise through a number of

scenarios. Most of them, however, boil down to the ability to work with a
crate before it's been published to crates.io. For example:

A crate you're working on is also used in a much larger application
you're working on, and you'd like to test a bug fix to the library inside
of the larger application.
An upstream crate you don't work on has a new feature or a bug fix on
the master branch of its git repository which you'd like to test out.
You're about to publish a new major version of your crate, but you'd
like to do integration testing across an entire package to ensure the
new major version works.
You've submitted a fix to an upstream crate for a bug you found, but
you'd like to immediately have your application start depending on the
fixed version of the crate to avoid blocking on the bug fix getting
merged.

These scenarios can be solved with the [patch] manifest section.
This chapter walks through a few different use cases, and includes

details on the different ways to override a dependency.

Example use cases

Testing a bugfix
Working with an unpublished minor version

Overriding repository URL
Prepublishing a breaking change
Using [patch] with multiple versions

Reference

The [patch] section
The [replace] section

https://crates.io/

paths overrides

Note: See also specifying a dependency with multiple locations,
which can be used to override the source for a single dependency
declaration in a local package.

clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md#multiple-locations

Testing a bugfix
Let's say you're working with the uuid crate but while you're working

on it you discover a bug. You are, however, quite enterprising so you decide
to also try to fix the bug! Originally your manifest will look like:
[package]
name = "my-library"
version = "0.1.0"

[dependencies]
uuid = "1.0"

First thing we'll do is to clone the uuid repository locally via:
$ git clone https://github.com/uuid-rs/uuid.git

Next we'll edit the manifest of my-library to contain:
[patch.crates-io]
uuid = { path = "../path/to/uuid" }

Here we declare that we're patching the source crates-io with a new
dependency. This will effectively add the local checked out version of uuid
to the crates.io registry for our local package.

Next up we need to ensure that our lock file is updated to use this new
version of uuid so our package uses the locally checked out copy instead
of one from crates.io. The way [patch] works is that it'll load the
dependency at ../path/to/uuid and then whenever crates.io is queried for
versions of uuid it'll also return the local version.

This means that the version number of the local checkout is significant
and will affect whether the patch is used. Our manifest declared uuid =
"1.0" which means we'll only resolve to >= 1.0.0, < 2.0.0 , and Cargo's
greedy resolution algorithm also means that we'll resolve to the maximum
version within that range. Typically this doesn't matter as the version of the
git repository will already be greater or match the maximum version
published on crates.io, but it's important to keep this in mind!

In any case, typically all you need to do now is:

https://crates.io/crates/uuid
https://github.com/uuid-rs/uuid

$ cargo build
 Compiling uuid v1.0.0 (.../uuid)
 Compiling my-library v0.1.0 (.../my-library)
 Finished dev [unoptimized + debuginfo] target(s) in 0.32
secs

And that's it! You're now building with the local version of uuid (note
the path in parentheses in the build output). If you don't see the local path
version getting built then you may need to run cargo update uuid --
precise $version where $version is the version of the locally checked
out copy of uuid .

Once you've fixed the bug you originally found the next thing you'll
want to do is to likely submit that as a pull request to the uuid crate itself.
Once you've done this then you can also update the [patch] section. The
listing inside of [patch] is just like the [dependencies] section, so once
your pull request is merged you could change your path dependency to:
[patch.crates-io]
uuid = { git = 'https://github.com/uuid-rs/uuid.git' }

Working with an unpublished minor version
Let's now shift gears a bit from bug fixes to adding features. While

working on my-library you discover that a whole new feature is needed in
the uuid crate. You've implemented this feature, tested it locally above
with [patch] , and submitted a pull request. Let's go over how you
continue to use and test it before it's actually published.

Let's also say that the current version of uuid on crates.io is 1.0.0 , but
since then the master branch of the git repository has updated to 1.0.1 .
This branch includes your new feature you submitted previously. To use this
repository we'll edit our Cargo.toml to look like
[package]
name = "my-library"
version = "0.1.0"

[dependencies]
uuid = "1.0.1"

[patch.crates-io]
uuid = { git = 'https://github.com/uuid-rs/uuid.git' }

Note that our local dependency on uuid has been updated to 1.0.1 as
it's what we'll actually require once the crate is published. This version
doesn't exist on crates.io, though, so we provide it with the [patch] section
of the manifest.

Now when our library is built it'll fetch uuid from the git repository and
resolve to 1.0.1 inside the repository instead of trying to download a version
from crates.io. Once 1.0.1 is published on crates.io the [patch] section can
be deleted.

It's also worth noting that [patch] applies transitively. Let's say you use
my-library in a larger package, such as:
[package]
name = "my-binary"

version = "0.1.0"

[dependencies]
my-library = { git = 'https://example.com/git/my-library' }
uuid = "1.0"

[patch.crates-io]
uuid = { git = 'https://github.com/uuid-rs/uuid.git' }

Remember that [patch] is applicable transitively but can only be
defined at the top level so we consumers of my-library have to repeat the
[patch] section if necessary. Here, though, the new uuid crate applies to
both our dependency on uuid and the my-library -> uuid dependency.
The uuid crate will be resolved to one version for this entire crate graph,
1.0.1, and it'll be pulled from the git repository.

Overriding repository URL
In case the dependency you want to override isn't loaded from

crates.io , you'll have to change a bit how you use [patch] . For
example, if the dependency is a git dependency, you can override it to a
local path with:
[patch."https://github.com/your/repository"]
my-library = { path = "../my-library/path" }

And that's it!

Prepublishing a breaking change
Let's take a look at working with a new major version of a crate,

typically accompanied with breaking changes. Sticking with our previous
crates, this means that we're going to be creating version 2.0.0 of the uuid
crate. After we've submitted all changes upstream we can update our
manifest for my-library to look like:
[dependencies]
uuid = "2.0"

[patch.crates-io]
uuid = { git = "https://github.com/uuid-rs/uuid.git", branch =
"2.0.0" }

And that's it! Like with the previous example the 2.0.0 version doesn't
actually exist on crates.io but we can still put it in through a git dependency
through the usage of the [patch] section. As a thought exercise let's take
another look at the my-binary manifest from above again as well:
[package]
name = "my-binary"
version = "0.1.0"

[dependencies]
my-library = { git = 'https://example.com/git/my-library' }
uuid = "1.0"

[patch.crates-io]
uuid = { git = 'https://github.com/uuid-rs/uuid.git', branch =
'2.0.0' }

Note that this will actually resolve to two versions of the uuid crate.
The my-binary crate will continue to use the 1.x.y series of the uuid crate
but the my-library crate will use the 2.0.0 version of uuid . This will
allow you to gradually roll out breaking changes to a crate through a
dependency graph without being forced to update everything all at once.

Using [patch] with multiple versions
You can patch in multiple versions of the same crate with the package

key used to rename dependencies. For example let's say that the serde
crate has a bugfix that we'd like to use to its 1.* series but we'd also like to
prototype using a 2.0.0 version of serde we have in our git repository. To
configure this we'd do:
[patch.crates-io]
serde = { git = 'https://github.com/serde-rs/serde.git' }
serde2 = { git = 'https://github.com/example/serde.git',
package = 'serde', branch = 'v2' }

The first serde = ... directive indicates that serde 1.* should be used
from the git repository (pulling in the bugfix we need) and the second
serde2 = ... directive indicates that the serde package should also be
pulled from the v2 branch of https://github.com/example/serde . We're
assuming here that Cargo.toml on that branch mentions version 2.0.0 .

Note that when using the package key the serde2 identifier here is
actually ignored. We simply need a unique name which doesn't conflict with
other patched crates.

The [patch] section
The [patch] section of Cargo.toml can be used to override

dependencies with other copies. The syntax is similar to the
[dependencies] section:
[patch.crates-io]
foo = { git = 'https://github.com/example/foo.git' }
bar = { path = 'my/local/bar' }

[dependencies.baz]
git = 'https://github.com/example/baz.git'

[patch.'https://github.com/example/baz']
baz = { git = 'https://github.com/example/patched-baz.git',
branch = 'my-branch' }

Note: The [patch] table can also be specified as a configuration
option, such as in a .cargo/config.toml file or a CLI option like --
config 'patch.crates-io.rand.path="rand"' . This can be useful
for local-only changes that you don't want to commit, or temporarily
testing a patch.

The [patch] table is made of dependency-like sub-tables. Each key
after [patch] is a URL of the source that is being patched, or the name of a
registry. The name crates-io may be used to override the default registry
crates.io. The first [patch] in the example above demonstrates overriding
crates.io, and the second [patch] demonstrates overriding a git source.

Each entry in these tables is a normal dependency specification, the
same as found in the [dependencies] section of the manifest. The
dependencies listed in the [patch] section are resolved and used to patch
the source at the URL specified. The above manifest snippet patches the
crates-io source (e.g. crates.io itself) with the foo crate and bar crate. It
also patches the https://github.com/example/baz source with a my-
branch that comes from elsewhere.

clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md
clbr://internal.invalid/book/OEBPS/reference/config.md
https://crates.io/
https://crates.io/

Sources can be patched with versions of crates that do not exist, and they
can also be patched with versions of crates that already exist. If a source is
patched with a crate version that already exists in the source, then the
source's original crate is replaced.

Cargo only looks at the patch settings in the Cargo.toml manifest at the
root of the workspace. Patch settings defined in dependencies will be
ignored.

The [replace] section
Note: [replace] is deprecated. You should use the [patch] table

instead.

This section of Cargo.toml can be used to override dependencies with
other copies. The syntax is similar to the [dependencies] section:
[replace]
"foo:0.1.0" = { git = 'https://github.com/example/foo.git' }
"bar:1.0.2" = { path = 'my/local/bar' }

Each key in the [replace] table is a package ID specification, which
allows arbitrarily choosing a node in the dependency graph to override (the
3-part version number is required). The value of each key is the same as the
[dependencies] syntax for specifying dependencies, except that you can't
specify features. Note that when a crate is overridden the copy it's
overridden with must have both the same name and version, but it can come
from a different source (e.g., git or a local path).

Cargo only looks at the replace settings in the Cargo.toml manifest at
the root of the workspace. Replace settings defined in dependencies will be
ignored.

clbr://internal.invalid/book/OEBPS/reference/pkgid-spec.md

paths overrides
Sometimes you're only temporarily working on a crate and you don't

want to have to modify Cargo.toml like with the [patch] section above.
For this use case Cargo offers a much more limited version of overrides
called path overrides.

Path overrides are specified through .cargo/config.toml instead of
Cargo.toml . Inside of .cargo/config.toml you'll specify a key called
paths :
paths = ["/path/to/uuid"]

This array should be filled with directories that contain a Cargo.toml .
In this instance, we’re just adding uuid , so it will be the only one that’s
overridden. This path can be either absolute or relative to the directory that
contains the .cargo folder.

Path overrides are more restricted than the [patch] section, however, in
that they cannot change the structure of the dependency graph. When a path
replacement is used then the previous set of dependencies must all match
exactly to the new Cargo.toml specification. For example this means that
path overrides cannot be used to test out adding a dependency to a crate.
Instead, [patch] must be used in that situation. As a result, usage of a path
override is typically isolated to quick bug fixes rather than larger changes.

Note: using a local configuration to override paths will only work
for crates that have been published to crates.io. You cannot use this
feature to tell Cargo how to find local unpublished crates.

clbr://internal.invalid/book/OEBPS/reference/config.md
https://crates.io/

Source Replacement
This document is about replacing the crate index. You can read about

overriding dependencies in the overriding dependencies section of this
documentation.

A source is a provider that contains crates that may be included as
dependencies for a package. Cargo supports the ability to replace one
source with another to express strategies such as:

Vendoring --- custom sources can be defined which represent crates
on the local filesystem. These sources are subsets of the source that
they're replacing and can be checked into packages if necessary.

Mirroring --- sources can be replaced with an equivalent version
which acts as a cache for crates.io itself.

Cargo has a core assumption about source replacement that the source
code is exactly the same from both sources. Note that this also means that a
replacement source is not allowed to have crates which are not present in
the original source.

As a consequence, source replacement is not appropriate for situations
such as patching a dependency or a private registry. Cargo supports
patching dependencies through the usage of the [patch] key, and private
registry support is described in the Registries chapter.

When using source replacement, running commands that need to contact
the registry directly1 requires passing the --registry option. This helps
avoid any ambiguity about which registry to contact, and will use the
authentication token for the specified registry.
1

Examples of such commands are in Publishing Commands.

clbr://internal.invalid/book/OEBPS/reference/overriding-dependencies.md
clbr://internal.invalid/book/OEBPS/reference/overriding-dependencies.md
clbr://internal.invalid/book/OEBPS/reference/registries.md
clbr://internal.invalid/book/OEBPS/commands/publishing-commands.md

Configuration
Configuration of replacement sources is done through

.cargo/config.toml and the full set of available keys are:
The `source` table is where all keys related to source-
replacement
are stored.
[source]

Under the `source` table are a number of other tables whose
keys are a
name for the relevant source. For example this section
defines a new
source, called `my-vendor-source`, which comes from a
directory
located at `vendor` relative to the directory containing
this `.cargo/config.toml`
file
[source.my-vendor-source]
directory = "vendor"

The crates.io default source for crates is available under
the name
"crates-io", and here we use the `replace-with` key to
indicate that it's
replaced with our source above.

The `replace-with` key can also reference an alternative
registry name
defined in the `[registries]` table.
[source.crates-io]
replace-with = "my-vendor-source"

Each source has its own table where the key is the name of
the source

clbr://internal.invalid/book/OEBPS/reference/config.md

[source.the-source-name]

Indicate that `the-source-name` will be replaced with
`another-source`,
defined elsewhere
replace-with = "another-source"

Several kinds of sources can be specified (described in more
detail below):
registry = "https://example.com/path/to/index"
local-registry = "path/to/registry"
directory = "path/to/vendor"

Git sources can optionally specify a branch/tag/rev as well
git = "https://example.com/path/to/repo"
branch = "master"
tag = "v1.0.1"
rev = "313f44e8"

Registry Sources
A "registry source" is one that is the same as crates.io itself. That is, it

has an index served in a git repository which matches the format of the
crates.io index. That repository then has configuration indicating where to
download crates from.

Currently there is not an already-available project for setting up a mirror
of crates.io. Stay tuned though!

https://github.com/rust-lang/crates.io-index

Local Registry Sources
A "local registry source" is intended to be a subset of another registry

source, but available on the local filesystem (aka vendoring). Local
registries are downloaded ahead of time, typically sync'd with a
Cargo.lock , and are made up of a set of *.crate files and an index like
the normal registry is.

The primary way to manage and create local registry sources is through
the cargo-local-registry subcommand, available on crates.io and can be
installed with cargo install cargo-local-registry .

Local registries are contained within one directory and contain a number
of *.crate files downloaded from crates.io as well as an index directory
with the same format as the crates.io-index project (populated with just
entries for the crates that are present).

https://crates.io/crates/cargo-local-registry
https://crates.io/crates/cargo-local-registry

Directory Sources
A "directory source" is similar to a local registry source where it

contains a number of crates available on the local filesystem, suitable for
vendoring dependencies. Directory sources are primarily managed by the
cargo vendor subcommand.

Directory sources are distinct from local registries though in that they
contain the unpacked version of *.crate files, making it more suitable in
some situations to check everything into source control. A directory source
is just a directory containing a number of other directories which contain
the source code for crates (the unpacked version of *.crate files).
Currently no restriction is placed on the name of each directory.

Each crate in a directory source also has an associated metadata file
indicating the checksum of each file in the crate to protect against
accidental modifications.

Dependency Resolution
One of Cargo's primary tasks is to determine the versions of

dependencies to use based on the version requirements specified in each
package. This process is called "dependency resolution" and is performed
by the "resolver". The result of the resolution is stored in the Cargo.lock
file which "locks" the dependencies to specific versions, and keeps them
fixed over time. The cargo tree command can be used to visualize the
result of the resolver.

clbr://internal.invalid/book/OEBPS/commands/cargo-tree.md

Constraints and Heuristics
In many cases there is no single "best" dependency resolution. The

resolver operates under various constraints and heuristics to find a generally
applicable resolution. To understand how these interact, it is helpful to have
a coarse understanding of how dependency resolution works.

This pseudo-code approximates what Cargo's resolver does:
pub fn resolve(workspace: &[Package], policy: Policy) ->
Option<ResolveGraph> {
 let dep_queue = Queue::new(workspace);
 let resolved = ResolveGraph::new();
 resolve_next(pkq_queue, resolved, policy)
}

fn resolve_next(dep_queue: Queue, resolved: ResolveGraph,
policy: Policy) -> Option<ResolveGraph> {
 let Some(dep_spec) = policy.pick_next_dep(dep_queue) else
{
 // Done
 return Some(resolved);
 };

 if let Some(resolved) = policy.try_unify_version(dep_spec,
resolved.clone()) {
 return Some(resolved);
 }

 let dep_versions = dep_spec.lookup_versions()?;
 let mut dep_versions = policy.filter_versions(dep_spec,
dep_versions);
 while let Some(dep_version) =
policy.pick_next_version(&mut dep_versions) {
 if policy.needs_version_unification(dep_version,
&resolved) {
 continue;

 }

 let mut dep_queue = dep_queue.clone();
 dep_queue.enqueue(dep_version.dependencies);
 let mut resolved = resolved.clone();
 resolved.register(dep_version);
 if let Some(resolved) = resolve_next(dep_queue,
resolved) {
 return Some(resolved);
 }
 }

 // No valid solution found, backtrack and
`pick_next_version`
 None
}

Key steps:

Walking dependencies (pick_next_dep): The order dependencies are
walked can affect how related version requirements for the same
dependency get resolved, see unifying versions, and how much the
resolver backtracks, affecting resolver performance,
Unifying versions (try_unify_version ,
needs_version_unification): Cargo reuses versions where possible
to reduce build times and allow types from common dependencies to
be passed between APIs. If multiple versions would have been unified
if it wasn't for conflicts in their dependency specifications, Cargo will
backtrack, erroring if no solution is found, rather than selecting
multiple versions. A dependency specification or Cargo may decide
that a version is undesirable, preferring to backtrack or error rather
than use it.
Preferring versions (pick_next_version): Cargo may decide that it
should prefer a specific version, falling back to the next version when
backtracking.

clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md
clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md

Version numbers
Generally, Cargo prefers the highest version currently available.
For example, if you had a package in the resolve graph with:

[dependencies]
bitflags = "*"

If at the time the Cargo.lock file is generated, the greatest version of
bitflags is 1.2.1 , then the package will use 1.2.1 .

For an example of a possible exception, see Rust version.

Version requirements
Package specify what versions they support, rejecting all others, through

version requirements.
For example, if you had a package in the resolve graph with:

[dependencies]
bitflags = "1.0" # meaning `>=1.0.0,<2.0.0`

If at the time the Cargo.lock file is generated, the greatest version of
bitflags is 1.2.1 , then the package will use 1.2.1 because it is the
greatest within the compatibility range. If 2.0.0 is published, it will still
use 1.2.1 because 2.0.0 is considered incompatible.

SemVer compatibility
Cargo assumes packages follow SemVer and will unify dependency

versions if they are SemVer compatible according to the Caret version
requirements. If two compatible versions cannot be unified because of
conflicting version requirements, Cargo will error.

See the SemVer Compatibility chapter for guidance on what is
considered a "compatible" change.

Examples:
The following two packages will have their dependencies on bitflags

unified because any version picked will be compatible with each other.

clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md#version-requirement-syntax
https://semver.org/
https://semver.org/
clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md#default-requirements
clbr://internal.invalid/book/OEBPS/reference/semver.md

Package A
[dependencies]
bitflags = "1.0" # meaning `>=1.0.0,<2.0.0`

Package B
[dependencies]
bitflags = "1.1" # meaning `>=1.1.0,<2.0.0`

The following packages will error because the version requirements
conflict, selecting two distinct compatible versions.
Package A
[dependencies]
log = "=0.4.11"

Package B
[dependencies]
log = "=0.4.8"

The following two packages will not have their dependencies on rand
unified because only incompatible versions are available for each. Instead,
two different versions (e.g. 0.6.5 and 0.7.3) will be resolved and built. This
can lead to potential problems, see the Version-incompatibility hazards
section for more details.
Package A
[dependencies]
rand = "0.7" # meaning `>=0.7.0,<0.8.0`

Package B
[dependencies]
rand = "0.6" # meaning `>=0.6.0,<0.7.0`

Generally, the following two packages will not have their dependencies
unified because incompatible versions are available that satisfy the version
requirements: Instead, two different versions (e.g. 0.6.5 and 0.7.3) will be
resolved and built. The application of other constraints or heuristics may
cause these to be unified, picking one version (e.g. 0.6.5).

Package A
[dependencies]
rand = ">=0.6,<0.8.0"

Package B
[dependencies]
rand = "0.6" # meaning `>=0.6.0,<0.7.0`

Version-incompatibility hazards
When multiple versions of a crate appear in the resolve graph, this can

cause problems when types from those crates are exposed by the crates
using them. This is because the types and items are considered different by
the Rust compiler, even if they have the same name. Libraries should take
care when publishing a SemVer-incompatible version (for example,
publishing 2.0.0 after 1.0.0 has been in use), particularly for libraries
that are widely used.

The "semver trick" is a workaround for this problem of publishing a
breaking change while retaining compatibility with older versions. The
linked page goes into detail about what the problem is and how to address
it. In short, when a library wants to publish a SemVer-breaking release,
publish the new release, and also publish a point release of the previous
version that reexports the types from the newer version.

These incompatibilities usually manifest as a compile-time error, but
sometimes they will only appear as a runtime misbehavior. For example,
let's say there is a common library named foo that ends up appearing with
both version 1.0.0 and 2.0.0 in the resolve graph. If downcast_ref is
used on an object created by a library using version 1.0.0 , and the code
calling downcast_ref is downcasting to a type from version 2.0.0 , the
downcast will fail at runtime.

It is important to make sure that if you have multiple versions of a
library that you are properly using them, especially if it is ever possible for
the types from different versions to be used together. The cargo tree -d
command can be used to identify duplicate versions and where they come

https://github.com/dtolnay/semver-trick
clbr://internal.invalid/book/std/any/trait.Any.html#method.downcast_ref
clbr://internal.invalid/book/OEBPS/commands/cargo-tree.md

from. Similarly, it is important to consider the impact on the ecosystem if
you publish a SemVer-incompatible version of a popular library.

Rust version
To support developing software with a minimum supported Rust version,

the resolver can take into account a dependency version's compatibility with
your Rust version. This is controlled by the config field
resolver.incompatible-rust-versions .

With the fallback setting, the resolver will prefer packages with a Rust
version that is less than or equal to your own Rust version. For example,
you are using Rust 1.85 to develop the following package:
[package]
name = "my-cli"
rust-version = "1.62"

[dependencies]
clap = "4.0" # resolves to 4.0.32

The resolver would pick version 4.0.32 because it has a Rust version of
1.60.0.

4.0.0 is not picked because it is a lower version number despite it also
having a Rust version of 1.60.0.
4.5.20 is not picked because it is incompatible with my-cli 's Rust
version of 1.62 despite having a much higher version and it has a Rust
version of 1.74.0 which is compatible with your 1.85 toolchain.

If a version requirement does not include a Rust version compatible
dependency version, the resolver won't error but will instead pick a version,
even if its potentially suboptimal. For example, you change the dependency
on clap :
[package]
name = "my-cli"
rust-version = "1.62"

clbr://internal.invalid/book/OEBPS/reference/rust-version.md
clbr://internal.invalid/book/OEBPS/reference/config.md#resolverincompatible-rust-versions

[dependencies]
clap = "4.2" # resolves to 4.5.20

No version of clap matches that version requirement that is compatible
with Rust version 1.62. The resolver will then pick an incompatible version,
like 4.5.20 despite it having a Rust version of 1.74.

When the resolver selects a dependency version of a package, it does not
know all the workspace members that will eventually have a transitive
dependency on that version and so it cannot take into account only the Rust
versions relevant for that dependency. The resolver has heuristics to find a
"good enough" solution when workspace members have different Rust
versions. This applies even for packages in a workspace without a Rust
version.

When a workspace has members with different Rust versions, the
resolver may pick a lower dependency version than necessary. For example,
you have the following workspace members:
[package]
name = "a"
rust-version = "1.62"

[package]
name = "b"

[dependencies]
clap = "4.2" # resolves to 4.5.20

Though package b does not have a Rust version and could use a higher
version like 4.5.20, 4.0.32 will be selected because of package a 's Rust
version of 1.62.

Or the resolver may pick too high of a version. For example, you have
the following workspace members:
[package]
name = "a"
rust-version = "1.62"

[dependencies]
clap = "4.2" # resolves to 4.5.20

[package]
name = "b"

[dependencies]
clap = "4.5" # resolves to 4.5.20

Though each package has a version requirement for clap that would
meet its own Rust version, because of version unification, the resolver will
need to pick one version that works in both cases and that would be a
version like 4.5.20.

Features
For the purpose of generating Cargo.lock , the resolver builds the

dependency graph as-if all features of all workspace members are enabled.
This ensures that any optional dependencies are available and properly
resolved with the rest of the graph when features are added or removed with
the --features command-line flag. The resolver runs a second time to
determine the actual features used when compiling a crate, based on the
features selected on the command-line.

Dependencies are resolved with the union of all features enabled on
them. For example, if one package depends on the im package with the
serde dependency enabled and another package depends on it with the
rayon dependency enabled, then im will be built with both features
enabled, and the serde and rayon crates will be included in the resolve
graph. If no packages depend on im with those features, then those optional
dependencies will be ignored, and they will not affect resolution.

When building multiple packages in a workspace (such as with --

workspace or multiple -p flags), the features of the dependencies of all of
those packages are unified. If you have a circumstance where you want to
avoid that unification for different workspace members, you will need to
build them via separate cargo invocations.

clbr://internal.invalid/book/OEBPS/reference/features.md
clbr://internal.invalid/book/OEBPS/reference/workspaces.md
clbr://internal.invalid/book/OEBPS/reference/features.md#command-line-feature-options
https://crates.io/crates/im
https://github.com/bodil/im-rs/blob/v15.0.0/Cargo.toml#L46
https://github.com/bodil/im-rs/blob/v15.0.0/Cargo.toml#L47

The resolver will skip over versions of packages that are missing
required features. For example, if a package depends on version ^1 of
regex with the perf feature, then the oldest version it can select is 1.3.0 ,
because versions prior to that did not contain the perf feature. Similarly, if
a feature is removed from a new release, then packages that require that
feature will be stuck on the older releases that contain that feature. It is
discouraged to remove features in a SemVer-compatible release. Beware
that optional dependencies also define an implicit feature, so removing an
optional dependency or making it non-optional can cause problems, see
removing an optional dependency.

Feature resolver version 2
When resolver = "2" is specified in Cargo.toml (see resolver

versions below), a different feature resolver is used which uses a different
algorithm for unifying features. The version "1" resolver will unify
features for a package no matter where it is specified. The version "2"
resolver will avoid unifying features in the following situations:

Features for target-specific dependencies are not enabled if the
target is not currently being built. For example:
[dependencies.common]
version = "1.0"
features = ["f1"]

[target.'cfg(windows)'.dependencies.common]
version = "1.0"
features = ["f2"]

When building this example for a non-Windows platform, the f2
feature will not be enabled.

Features enabled on build-dependencies or proc-macros will not be
unified when those same dependencies are used as a normal
dependency. For example:
[dependencies]
log = "0.4"

https://crates.io/crates/regex
https://github.com/rust-lang/regex/blob/1.3.0/Cargo.toml#L56
clbr://internal.invalid/book/OEBPS/reference/semver.md#cargo-remove-opt-dep
clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md#build-dependencies

[build-dependencies]
log = {version = "0.4", features=['std']}

When building the build script, the log crate will be built with the
std feature. When building the library of your package, it will not
enable the feature.

Features enabled on dev-dependencies will not be unified when
those same dependencies are used as a normal dependency, unless
those dev-dependencies are currently being built. For example:
[dependencies]
serde = {version = "1.0", default-features = false}

[dev-dependencies]
serde = {version = "1.0", features = ["std"]}

In this example, the library will normally link against serde
without the std feature. However, when built as a test or example, it
will include the std feature. For example, cargo test or cargo
build --all-targets will unify these features. Note that dev-
dependencies in dependencies are always ignored, this is only relevant
for the top-level package or workspace members.

links
The links field is used to ensure only one copy of a native library is

linked into a binary. The resolver will attempt to find a graph where there is
only one instance of each links name. If it is unable to find a graph that
satisfies that constraint, it will return an error.

For example, it is an error if one package depends on libgit2-sys
version 0.11 and another depends on 0.12 , because Cargo is unable to
unify those, but they both link to the git2 native library. Due to this
requirement, it is encouraged to be very careful when making SemVer-
incompatible releases with the links field if your library is in common
use.

clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md#development-dependencies
clbr://internal.invalid/book/OEBPS/reference/manifest.md#the-links-field
https://crates.io/crates/libgit2-sys

Yanked versions
Yanked releases are those that are marked that they should not be used.

When the resolver is building the graph, it will ignore all yanked releases
unless they already exist in the Cargo.lock file or are explicitly requested
by the --precise flag of cargo update (nightly only).

clbr://internal.invalid/book/OEBPS/reference/publishing.md#cargo-yank
clbr://internal.invalid/book/OEBPS/commands/cargo-update.md#option-cargo-update---precise

Dependency updates
Dependency resolution is automatically performed by all Cargo

commands that need to know about the dependency graph. For example,
cargo build will run the resolver to discover all the dependencies to
build. After the first time it runs, the result is stored in the Cargo.lock file.
Subsequent commands will run the resolver, keeping dependencies locked
to the versions in Cargo.lock if it can.

If the dependency list in Cargo.toml has been modified, for example
changing the version of a dependency from 1.0 to 2.0 , then the resolver
will select a new version for that dependency that matches the new
requirements. If that new dependency introduces new requirements, those
new requirements may also trigger additional updates. The Cargo.lock file
will be updated with the new result. The --locked or --frozen flags can
be used to change this behavior to prevent automatic updates when
requirements change, and return an error instead.

cargo update can be used to update the entries in Cargo.lock when
new versions are published. Without any options, it will attempt to update
all packages in the lock file. The -p flag can be used to target the update
for a specific package, and other flags such as --recursive or --precise
can be used to control how versions are selected.

clbr://internal.invalid/book/OEBPS/commands/cargo-build.md
clbr://internal.invalid/book/OEBPS/commands/cargo-update.md

Overrides
Cargo has several mechanisms to override dependencies within the

graph. The Overriding Dependencies chapter goes into detail on how to use
overrides. The overrides appear as an overlay to a registry, replacing the
patched version with the new entry. Otherwise, resolution is performed like
normal.

clbr://internal.invalid/book/OEBPS/reference/overriding-dependencies.md

Dependency kinds
There are three kinds of dependencies in a package: normal, build, and

dev. For the most part these are all treated the same from the perspective of
the resolver. One difference is that dev-dependencies for non-workspace
members are always ignored, and do not influence resolution.

Platform-specific dependencies with the [target] table are resolved as-
if all platforms are enabled. In other words, the resolver ignores the
platform or cfg expression.

dev-dependency cycles
Usually the resolver does not allow cycles in the graph, but it does allow

them for dev-dependencies. For example, project "foo" has a dev-
dependency on "bar", which has a normal dependency on "foo" (usually as
a "path" dependency). This is allowed because there isn't really a cycle from
the perspective of the build artifacts. In this example, the "foo" library is
built (which does not need "bar" because "bar" is only used for tests), and
then "bar" can be built depending on "foo", then the "foo" tests can be built
linking to "bar".

Beware that this can lead to confusing errors. In the case of building
library unit tests, there are actually two copies of the library linked into the
final test binary: the one that was linked with "bar", and the one built that
contains the unit tests. Similar to the issues highlighted in the Version-
incompatibility hazards section, the types between the two are not
compatible. Be careful when exposing types of "foo" from "bar" in this
situation, since the "foo" unit tests won't treat them the same as the local
types.

If possible, try to split your package into multiple packages and
restructure it so that it remains strictly acyclic.

clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md#build-dependencies
clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md#development-dependencies
clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md#platform-specific-dependencies
clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md#development-dependencies

Resolver versions
Different resolver behavior can be specified through the resolver version

in Cargo.toml like this:
[package]
name = "my-package"
version = "1.0.0"
resolver = "2"

"1" (default)
"2" (edition = "2021" default): Introduces changes in feature
unification. See the features chapter for more details.
"3" (edition = "2024" default, requires Rust 1.84+): Change the
default for resolver.incompatible-rust-versions from allow to
fallback

The resolver is a global option that affects the entire workspace. The
resolver version in dependencies is ignored, only the value in the top-
level package will be used. If using a virtual workspace, the version should
be specified in the [workspace] table, for example:
[workspace]
members = ["member1", "member2"]
resolver = "2"

MSRV: Requires 1.51+

clbr://internal.invalid/book/OEBPS/reference/manifest.md#the-edition-field
clbr://internal.invalid/book/OEBPS/reference/features.md#feature-resolver-version-2
clbr://internal.invalid/book/OEBPS/reference/manifest.md#the-edition-field
clbr://internal.invalid/book/OEBPS/reference/config.md#resolverincompatible-rust-versions
clbr://internal.invalid/book/OEBPS/reference/workspaces.md#virtual-workspace

Recommendations
The following are some recommendations for setting the version within

your package, and for specifying dependency requirements. These are
general guidelines that should apply to common situations, but of course
some situations may require specifying unusual requirements.

Follow the SemVer guidelines when deciding how to update your
version number, and whether or not you will need to make a SemVer-
incompatible version change.

Use caret requirements for dependencies, such as "1.2.3" , for
most situations. This ensures that the resolver can be maximally
flexible in choosing a version while maintaining build compatibility.

Specify all three components with the version you are currently
using. This helps set the minimum version that will be used, and
ensures that other users won't end up with an older version of the
dependency that might be missing something that your package
requires.
Avoid * requirements, as they are not allowed on crates.io, and
they can pull in SemVer-breaking changes during a normal cargo
update .
Avoid overly broad version requirements. For example, >=2.0.0
can pull in any SemVer-incompatible version, like version 5.0.0 ,
which can result in broken builds in the future.
Avoid overly narrow version requirements if possible. For
example, if you specify a tilde requirement like bar="~1.3" , and
another package specifies a requirement of bar="1.4" , this will
fail to resolve, even though minor releases should be compatible.

Try to keep the dependency versions up-to-date with the actual
minimum versions that your library requires. For example, if you have
a requirement of bar="1.0.12" , and then in a future release you start
using new features added in the 1.1.0 release of "bar", update your
dependency requirement to bar="1.1.0" .

clbr://internal.invalid/book/OEBPS/reference/semver.md
https://crates.io/

If you fail to do this, it may not be immediately obvious because
Cargo can opportunistically choose the newest version when you run a
blanket cargo update . However, if another user depends on your
library, and runs cargo update your-library , it will not
automatically update "bar" if it is locked in their Cargo.lock . It will
only update "bar" in that situation if the dependency declaration is also
updated. Failure to do so can cause confusing build errors for the user
using cargo update your-library .

If two packages are tightly coupled, then an = dependency
requirement may help ensure that they stay in sync. For example, a
library with a companion proc-macro library will sometimes make
assumptions between the two libraries that won't work well if the two
are out of sync (and it is never expected to use the two libraries
independently). The parent library can use an = requirement on the
proc-macro, and re-export the macros for easy access.

0.0.x versions can be used for packages that are permanently
unstable.

In general, the stricter you make the dependency requirements, the more
likely it will be for the resolver to fail. Conversely, if you use requirements
that are too loose, it may be possible for new versions to be published that
will break the build.

Troubleshooting
The following illustrates some problems you may experience, and some

possible solutions.

Why was a dependency included?
Say you see dependency rand in the cargo check output but don't

think it's needed and want to understand why it's being pulled in.
You can run

$ cargo tree --workspace --target all --all-features --invert
rand
rand v0.8.5
└── ...

rand v0.8.5
└── ...

Why was that feature on this dependency
enabled?

You might identify that it was an activated feature that caused rand to
show up. To figure out which package activated the feature, you can
add the --edges features
$ cargo tree --workspace --target all --all-features --edges
features --invert rand
rand v0.8.5
└── ...

rand v0.8.5
└── ...

Unexpected dependency duplication
You see multiple instances of rand when you run

$ cargo tree --workspace --target all --all-features --
duplicates
rand v0.7.3
└── ...

rand v0.8.5
└── ...

The resolver algorithm has converged on a solution that includes two
copies of a dependency when one would suffice. For example:
Package A
[dependencies]
rand = "0.7"

Package B
[dependencies]
rand = ">=0.6" # note: open requirements such as this are
discouraged

In this example, Cargo may build two copies of the rand crate, even
though a single copy at version 0.7.3 would meet all requirements. This is
because the resolver's algorithm favors building the latest available version
of rand for Package B, which is 0.8.5 at the time of this writing, and that
is incompatible with Package A's specification. The resolver's algorithm
does not currently attempt to "deduplicate" in this situation.

The use of open-ended version requirements like >=0.6 is discouraged
in Cargo. But, if you run into this situation, the cargo update command
with the --precise flag can be used to manually remove such
duplications.

Why wasn't a newer version selected?
Say you noticed that the latest version of a dependency wasn't selected

when you ran:
$ cargo update

You can enable some extra logging to see why this happened:

clbr://internal.invalid/book/OEBPS/commands/cargo-update.md

$ env CARGO_LOG=cargo::core::resolver=trace cargo update

Note: Cargo log targets and levels may change over time.

SemVer-breaking patch release breaks the build
Sometimes a project may inadvertently publish a point release with a

SemVer-breaking change. When users update with cargo update , they
will pick up this new release, and then their build may break. In this
situation, it is recommended that the project should yank the release, and
either remove the SemVer-breaking change, or publish it as a new SemVer-
major version increase.

If the change happened in a third-party project, if possible try to
(politely!) work with the project to resolve the issue.

While waiting for the release to be yanked, some workarounds depend
on the circumstances:

If your project is the end product (such as a binary executable), just
avoid updating the offending package in Cargo.lock . This can be
done with the --precise flag in cargo update .
If you publish a binary on crates.io, then you can temporarily add an =
requirement to force the dependency to a specific good version.

Binary projects can alternatively recommend users to use the --
locked flag with cargo install to use the original Cargo.lock
that contains the known good version.

Libraries may also consider publishing a temporary new release with
stricter requirements that avoid the troublesome dependency. You may
want to consider using range requirements (instead of =) to avoid
overly-strict requirements that may conflict with other packages using
the same dependency. Once the problem has been resolved, you can
publish another point release that relaxes the dependency back to a
caret requirement.
If it looks like the third-party project is unable or unwilling to yank the
release, then one option is to update your code to be compatible with
the changes, and update the dependency requirement to set the

clbr://internal.invalid/book/OEBPS/reference/publishing.md#cargo-yank
clbr://internal.invalid/book/OEBPS/commands/cargo-update.md
https://crates.io/
clbr://internal.invalid/book/OEBPS/commands/cargo-install.md

minimum version to the new release. You will also need to consider if
this is a SemVer-breaking change of your own library, for example if it
exposes types from the dependency.

Features
Cargo "features" provide a mechanism to express conditional

compilation and optional dependencies. A package defines a set of named
features in the [features] table of Cargo.toml , and each feature can
either be enabled or disabled. Features for the package being built can be
enabled on the command-line with flags such as --features . Features for
dependencies can be enabled in the dependency declaration in Cargo.toml .

Note: New crates or versions published on crates.io are now limited
to a maximum of 300 features. Exceptions are granted on a case-by-
case basis. See this blog post for details. Participation in solution
discussions is encouraged via the crates.io Zulip stream.

See also the Features Examples chapter for some examples of how
features can be used.

clbr://internal.invalid/book/reference/conditional-compilation.md
https://blog.rust-lang.org/2023/10/26/broken-badges-and-23k-keywords.html
clbr://internal.invalid/book/OEBPS/reference/features-examples.md

The [features] section
Features are defined in the [features] table in Cargo.toml . Each

feature specifies an array of other features or optional dependencies that it
enables. The following examples illustrate how features could be used for a
2D image processing library where support for different image formats can
be optionally included:
[features]
Defines a feature named `webp` that does not enable any
other features.
webp = []

With this feature defined, cfg expressions can be used to conditionally
include code to support the requested feature at compile time. For example,
inside lib.rs of the package could include this:
// This conditionally includes a module which implements WEBP
support.
#[cfg(feature = "webp")]
pub mod webp;

Cargo sets features in the package using the rustc --cfg flag, and
code can test for their presence with the cfg attribute or the cfg macro.

Features can list other features to enable. For example, the ICO image
format can contain BMP and PNG images, so when it is enabled, it should
make sure those other features are enabled, too:
[features]
bmp = []
png = []
ico = ["bmp", "png"]
webp = []

Feature names may include characters from the Unicode XID standard
(which includes most letters), and additionally allows starting with _ or
digits 0 through 9 , and after the first character may also contain - , + , or
. .

clbr://internal.invalid/book/reference/conditional-compilation.md
clbr://internal.invalid/book/rustc/command-line-arguments.md#option-cfg
clbr://internal.invalid/book/reference/conditional-compilation.md#the-cfg-attribute
clbr://internal.invalid/book/std/macro.cfg.html
https://unicode.org/reports/tr31/

Note: crates.io imposes additional constraints on feature name
syntax that they must only be ASCII alphanumeric characters or _ , - ,
or + .

https://crates.io/
clbr://internal.invalid/book/std/primitive.char.html#method.is_ascii_alphanumeric

The default feature
By default, all features are disabled unless explicitly enabled. This can

be changed by specifying the default feature:
[features]
default = ["ico", "webp"]
bmp = []
png = []
ico = ["bmp", "png"]
webp = []

When the package is built, the default feature is enabled which in turn
enables the listed features. This behavior can be changed by:

The --no-default-features command-line flag disables the default
features of the package.
The default-features = false option can be specified in a
dependency declaration.

Note: Be careful about choosing the default feature set. The default
features are a convenience that make it easier to use a package without
forcing the user to carefully select which features to enable for
common use, but there are some drawbacks. Dependencies
automatically enable default features unless default-features =

false is specified. This can make it difficult to ensure that the default
features are not enabled, especially for a dependency that appears
multiple times in the dependency graph. Every package must ensure
that default-features = false is specified to avoid enabling them.

Another issue is that it can be a SemVer incompatible change to
remove a feature from the default set, so you should be confident that
you will keep those features.

Optional dependencies
Dependencies can be marked "optional", which means they will not be

compiled by default. For example, let's say that our 2D image processing
library uses an external package to handle GIF images. This can be
expressed like this:
[dependencies]
gif = { version = "0.11.1", optional = true }

By default, this optional dependency implicitly defines a feature that
looks like this:
[features]
gif = ["dep:gif"]

This means that this dependency will only be included if the gif feature
is enabled. The same cfg(feature = "gif") syntax can be used in the
code, and the dependency can be enabled just like any feature such as --
features gif (see Command-line feature options below).

In some cases, you may not want to expose a feature that has the same
name as the optional dependency. For example, perhaps the optional
dependency is an internal detail, or you want to group multiple optional
dependencies together, or you just want to use a better name. If you specify
the optional dependency with the dep: prefix anywhere in the [features]
table, that disables the implicit feature.

Note: The dep: syntax is only available starting with Rust 1.60.
Previous versions can only use the implicit feature name.

For example, let's say in order to support the AVIF image format, our
library needs two other dependencies to be enabled:
[dependencies]
ravif = { version = "0.6.3", optional = true }
rgb = { version = "0.8.25", optional = true }

[features]
avif = ["dep:ravif", "dep:rgb"]

In this example, the avif feature will enable the two listed
dependencies. This also avoids creating the implicit ravif and rgb

features, since we don't want users to enable those individually as they are
internal details to our crate.

Note: Another way to optionally include a dependency is to use
platform-specific dependencies. Instead of using features, these are
conditional based on the target platform.

clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md#platform-specific-dependencies

Dependency features
Features of dependencies can be enabled within the dependency

declaration. The features key indicates which features to enable:
[dependencies]
Enables the `derive` feature of serde.
serde = { version = "1.0.118", features = ["derive"] }

The default features can be disabled using default-features =

false :
[dependencies]
flate2 = { version = "1.0.3", default-features = false,
features = ["zlib-rs"] }

Note: This may not ensure the default features are disabled. If
another dependency includes flate2 without specifying default-
features = false , then the default features will be enabled. See
feature unification below for more details.

Features of dependencies can also be enabled in the [features] table.
The syntax is "package-name/feature-name" . For example:
[dependencies]
jpeg-decoder = { version = "0.1.20", default-features = false
}

[features]
Enables parallel processing support by enabling the "rayon"
feature of jpeg-decoder.
parallel = ["jpeg-decoder/rayon"]

The "package-name/feature-name" syntax will also enable package-
name if it is an optional dependency. Often this is not what you want. You
can add a ? as in "package-name?/feature-name" which will only enable
the given feature if something else enables the optional dependency.

Note: The ? syntax is only available starting with Rust 1.60.

For example, let's say we have added some serialization support to our
library, and it requires enabling a corresponding feature in some optional
dependencies. That can be done like this:
[dependencies]
serde = { version = "1.0.133", optional = true }
rgb = { version = "0.8.25", optional = true }

[features]
serde = ["dep:serde", "rgb?/serde"]

In this example, enabling the serde feature will enable the serde
dependency. It will also enable the serde feature for the rgb dependency,
but only if something else has enabled the rgb dependency.

Command-line feature options
The following command-line flags can be used to control which features

are enabled:

--features FEATURES: Enables the listed features. Multiple features
may be separated with commas or spaces. If using spaces, be sure to
use quotes around all the features if running Cargo from a shell (such
as --features "foo bar"). If building multiple packages in a
workspace, the package-name/feature-name syntax can be used to
specify features for specific workspace members.
--all-features : Activates all features of all packages selected on the
command line.
--no-default-features : Does not activate the default feature of
the selected packages.

NOTE: check the individual subcommand documentation for details.
Not all flags are available for all subcommands.

clbr://internal.invalid/book/OEBPS/reference/workspaces.md

Feature unification
Features are unique to the package that defines them. Enabling a feature

on a package does not enable a feature of the same name on other packages.
When a dependency is used by multiple packages, Cargo will use the

union of all features enabled on that dependency when building it. This
helps ensure that only a single copy of the dependency is used. See the
features section of the resolver documentation for more details.

For example, let's look at the winapi package which uses a large
number of features. If your package depends on a package foo which
enables the "fileapi" and "handleapi" features of winapi , and another
dependency bar which enables the "std" and "winnt" features of winapi ,
then winapi will be built with all four of those features enabled.

foo

bar

winapi

features:
• fileapi
• handleapi
• std
• winnt

fileapi, handleapi

std, winnt

my-package

A consequence of this is that features should be additive. That is,
enabling a feature should not disable functionality, and it should usually be
safe to enable any combination of features. A feature should not introduce a
SemVer-incompatible change.

For example, if you want to optionally support no_std environments,
do not use a no_std feature. Instead, use a std feature that enables std .
For example:
#![no_std]

#[cfg(feature = "std")]
extern crate std;

#[cfg(feature = "std")]
pub fn function_that_requires_std() {

clbr://internal.invalid/book/OEBPS/reference/resolver.md#features
https://crates.io/crates/winapi
https://github.com/retep998/winapi-rs/blob/0.3.9/Cargo.toml#L25-L431
clbr://internal.invalid/book/reference/names/preludes.html#the-no_std-attribute

 // ...
}

Mutually exclusive features
There are rare cases where features may be mutually incompatible with

one another. This should be avoided if at all possible, because it requires
coordinating all uses of the package in the dependency graph to cooperate
to avoid enabling them together. If it is not possible, consider adding a
compile error to detect this scenario. For example:
#[cfg(all(feature = "foo", feature = "bar"))]
compile_error!("feature \"foo\" and feature \"bar\" cannot be
enabled at the same time");

Instead of using mutually exclusive features, consider some other
options:

Split the functionality into separate packages.
When there is a conflict, choose one feature over another. The cfg-if
package can help with writing more complex cfg expressions.
Architect the code to allow the features to be enabled concurrently, and
use runtime options to control which is used. For example, use a
config file, command-line argument, or environment variable to
choose which behavior to enable.

Inspecting resolved features
In complex dependency graphs, it can sometimes be difficult to

understand how different features get enabled on various packages. The
cargo tree command offers several options to help inspect and visualize
which features are enabled. Some options to try:

cargo tree -e features : This will show features in the dependency
graph. Each feature will appear showing which package enabled it.
cargo tree -f "{p} {f}" : This is a more compact view that shows
a comma-separated list of features enabled on each package.

clbr://internal.invalid/book/OEBPS/reference/features-examples.md#feature-precedence
https://crates.io/crates/cfg-if
clbr://internal.invalid/book/OEBPS/commands/cargo-tree.md

cargo tree -e features -i foo : This will invert the tree, showing
how features flow into the given package "foo". This can be useful
because viewing the entire graph can be quite large and overwhelming.
Use this when you are trying to figure out which features are enabled
on a specific package and why. See the example at the bottom of the
cargo tree page on how to read this.

clbr://internal.invalid/book/OEBPS/commands/cargo-tree.md

Feature resolver version 2
A different feature resolver can be specified with the resolver field in

Cargo.toml , like this:
[package]
name = "my-package"
version = "1.0.0"
resolver = "2"

See the resolver versions section for more detail on specifying resolver
versions.

The version "2" resolver avoids unifying features in a few situations
where that unification can be unwanted. The exact situations are described
in the resolver chapter, but in short, it avoids unifying in these situations:

Features enabled on platform-specific dependencies for target
architectures not currently being built are ignored.
Build-dependencies and proc-macros do not share features with
normal dependencies.
Dev-dependencies do not activate features unless building a Cargo
target that needs them (like tests or examples).

Avoiding the unification is necessary for some situations. For example,
if a build-dependency enables a std feature, and the same dependency is
used as a normal dependency for a no_std environment, enabling std
would break the build.

However, one drawback is that this can increase build times because the
dependency is built multiple times (each with different features). When
using the version "2" resolver, it is recommended to check for
dependencies that are built multiple times to reduce overall build time. If it
is not required to build those duplicated packages with separate features,
consider adding features to the features list in the dependency declaration
so that the duplicates end up with the same features (and thus Cargo will
build it only once). You can detect these duplicate dependencies with the
cargo tree --duplicates command. It will show which packages are

clbr://internal.invalid/book/OEBPS/reference/resolver.md#resolver-versions
clbr://internal.invalid/book/OEBPS/reference/resolver.md#feature-resolver-version-2
clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md#platform-specific-dependencies
clbr://internal.invalid/book/OEBPS/appendix/glossary.md#target
clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md#build-dependencies
clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md#development-dependencies
clbr://internal.invalid/book/OEBPS/appendix/glossary.md#target
clbr://internal.invalid/book/OEBPS/commands/cargo-tree.md

built multiple times; look for any entries listed with the same version. See
Inspecting resolved features for more on fetching information on the
resolved features. For build dependencies, this is not necessary if you are
cross-compiling with the --target flag because build dependencies are
always built separately from normal dependencies in that scenario.

Resolver version 2 command-line flags
The resolver = "2" setting also changes the behavior of the --

features and --no-default-features command-line options.
With version "1" , you can only enable features for the package in the

current working directory. For example, in a workspace with packages foo
and bar , and you are in the directory for package foo , and ran the
command cargo build -p bar --features bar-feat , this would fail
because the --features flag only allowed enabling features on foo .

With resolver = "2" , the features flags allow enabling features for any
of the packages selected on the command-line with -p and --workspace
flags. For example:
This command is allowed with resolver = "2", regardless of
which directory
you are in.
cargo build -p foo -p bar --features foo-feat,bar-feat

This explicit equivalent works with any resolver version:
cargo build -p foo -p bar --features foo/foo-feat,bar/bar-feat

Additionally, with resolver = "1" , the --no-default-features flag
only disables the default feature for the package in the current directory.
With version "2", it will disable the default features for all workspace
members.

Build scripts
Build scripts can detect which features are enabled on the package by

inspecting the CARGO_FEATURE_<name> environment variable, where
<name> is the feature name converted to uppercase and - converted to _ .

clbr://internal.invalid/book/OEBPS/reference/build-scripts.md

Required features
The required-features field can be used to disable specific Cargo

targets if a feature is not enabled. See the linked documentation for more
details.

clbr://internal.invalid/book/OEBPS/reference/cargo-targets.md#the-required-features-field
clbr://internal.invalid/book/OEBPS/reference/cargo-targets.md

SemVer compatibility
Enabling a feature should not introduce a SemVer-incompatible change.

For example, the feature shouldn't change an existing API in a way that
could break existing uses. More details about what changes are compatible
can be found in the SemVer Compatibility chapter.

Care should be taken when adding and removing feature definitions and
optional dependencies, as these can sometimes be backwards-incompatible
changes. More details can be found in the Cargo section of the SemVer
Compatibility chapter. In short, follow these rules:

The following is usually safe to do in a minor release:

Add a new feature or optional dependency.
Change the features used on a dependency.

The following should usually not be done in a minor release:

Remove a feature or optional dependency.
Moving existing public code behind a feature.
Remove a feature from a feature list.

See the links for caveats and examples.

clbr://internal.invalid/book/OEBPS/reference/semver.md
clbr://internal.invalid/book/OEBPS/reference/semver.md#cargo
clbr://internal.invalid/book/OEBPS/reference/semver.md#cargo-feature-add
clbr://internal.invalid/book/OEBPS/reference/semver.md#cargo-dep-add
clbr://internal.invalid/book/OEBPS/reference/semver.md#cargo-change-dep-feature
clbr://internal.invalid/book/OEBPS/reference/semver.md#cargo-feature-remove
clbr://internal.invalid/book/OEBPS/reference/semver.md#cargo-remove-opt-dep
clbr://internal.invalid/book/OEBPS/reference/semver.md#item-remove
clbr://internal.invalid/book/OEBPS/reference/semver.md#cargo-feature-remove-another

Feature documentation and discovery
You are encouraged to document which features are available in your

package. This can be done by adding doc comments at the top of lib.rs .
As an example, see the regex crate source, which when rendered can be
viewed on docs.rs. If you have other documentation, such as a user guide,
consider adding the documentation there (for example, see serde.rs). If you
have a binary project, consider documenting the features in the README
or other documentation for the project (for example, see sccache).

Clearly documenting the features can set expectations about features that
are considered "unstable" or otherwise shouldn't be used. For example, if
there is an optional dependency, but you don't want users to explicitly list
that optional dependency as a feature, exclude it from the documented list.

Documentation published on docs.rs can use metadata in Cargo.toml to
control which features are enabled when the documentation is built. See
docs.rs metadata documentation for more details.

Note: Rustdoc has experimental support for annotating the
documentation to indicate which features are required to use certain
APIs. See the doc_cfg documentation for more details. An example is
the syn documentation, where you can see colored boxes which note
which features are required to use it.

Discovering features
When features are documented in the library API, this can make it easier

for your users to discover which features are available and what they do. If
the feature documentation for a package isn't readily available, you can look
at the Cargo.toml file, but sometimes it can be hard to track it down. The
crate page on crates.io has a link to the source repository if available. Tools
like cargo vendor or cargo-clone-crate can be used to download the
source and inspect it.

clbr://internal.invalid/book/rustdoc/how-to-write-documentation.html
https://github.com/rust-lang/regex/blob/1.4.2/src/lib.rs#L488-L583
https://docs.rs/regex/1.4.2/regex/#crate-features
https://serde.rs/feature-flags.html
https://github.com/mozilla/sccache/blob/0.2.13/README.md#build-requirements
https://docs.rs/
https://docs.rs/about/metadata
clbr://internal.invalid/book/unstable-book/language-features/doc-cfg.html
https://docs.rs/syn/1.0.54/syn/#modules
https://crates.io/
clbr://internal.invalid/book/OEBPS/commands/cargo-vendor.md
https://crates.io/crates/cargo-clone-crate

Feature combinations
Because features are a form of conditional compilation, they require an

exponential number of configurations and test cases to be 100% covered.
By default, tests, docs, and other tooling such as Clippy will only run with
the default set of features.

We encourage you to consider your strategy and tooling in regards to
different feature combinations --- Every project will have different
requirements in conjunction with time, resources, and the cost-benefit of
covering specific scenarios. Common configurations may be with / without
default features, specific combinations of features, or all combinations of
features.

https://github.com/rust-lang/rust-clippy

Features Examples
The following illustrates some real-world examples of features in action.

Minimizing build times and file sizes
Some packages use features so that if the features are not enabled, it

reduces the size of the crate and reduces compile time. Some examples are:

syn is a popular crate for parsing Rust code. Since it is so popular, it is
helpful to reduce compile times since it affects so many projects. It has
a clearly documented list of features which can be used to minimize
the amount of code it contains.
regex has a several features that are well documented. Cutting out
Unicode support can reduce the resulting file size as it can remove
some large tables.
winapi has a large number of features that limit which Windows API
bindings it supports.
web-sys is another example similar to winapi that provides a huge
surface area of API bindings that are limited by using features.

https://crates.io/crates/syn
https://docs.rs/syn/1.0.54/syn/#optional-features
https://crates.io/crates/regex
https://github.com/rust-lang/regex/blob/1.4.2/Cargo.toml#L33-L101
https://docs.rs/regex/1.4.2/regex/#crate-features
https://crates.io/crates/winapi
https://github.com/retep998/winapi-rs/blob/0.3.9/Cargo.toml#L25-L431
https://crates.io/crates/web-sys
https://github.com/rustwasm/wasm-bindgen/blob/0.2.69/crates/web-sys/Cargo.toml#L32-L1395

Extending behavior
The serde_json package has a preserve_order feature which changes

the behavior of JSON maps to preserve the order that keys are inserted.
Notice that it enables an optional dependency indexmap to implement the
new behavior.

When changing behavior like this, be careful to make sure the changes
are SemVer compatible. That is, enabling the feature should not break code
that usually builds with the feature off.

https://crates.io/crates/serde_json
https://github.com/serde-rs/json/blob/v1.0.60/Cargo.toml#L53-L56
https://github.com/serde-rs/json/blob/v1.0.60/src/map.rs#L23-L26
https://crates.io/crates/indexmap
clbr://internal.invalid/book/OEBPS/reference/features.md#semver-compatibility

no_std support
Some packages want to support both no_std and std environments.

This is useful for supporting embedded and resource-constrained platforms,
but still allowing extended capabilities for platforms that support the full
standard library.

The wasm-bindgen package defines a std feature that is enabled by
default. At the top of the library, it unconditionally enables the no_std
attribute. This ensures that std and the std prelude are not automatically
in scope. Then, in various places in the code (example1, example2), it uses
#[cfg(feature = "std")] attributes to conditionally enable extra
functionality that requires std .

clbr://internal.invalid/book/reference/names/preludes.html#the-no_std-attribute
https://crates.io/crates/wasm-bindgen
https://github.com/rustwasm/wasm-bindgen/blob/0.2.69/Cargo.toml#L25
https://github.com/rustwasm/wasm-bindgen/blob/0.2.69/Cargo.toml#L23
https://github.com/rustwasm/wasm-bindgen/blob/0.2.69/src/lib.rs#L8
clbr://internal.invalid/book/std/prelude/index.html
https://github.com/rustwasm/wasm-bindgen/blob/0.2.69/src/lib.rs#L270-L273
https://github.com/rustwasm/wasm-bindgen/blob/0.2.69/src/lib.rs#L67-L75

Re-exporting dependency features
It can be convenient to re-export the features from a dependency. This

allows the user depending on the crate to control those features without
needing to specify those dependencies directly. For example, regex re-
exports the features from the regex_syntax package. Users of regex don't
need to know about the regex_syntax package, but they can still access
the features it contains.

https://crates.io/crates/regex
https://github.com/rust-lang/regex/blob/1.4.2/Cargo.toml#L65-L89
https://github.com/rust-lang/regex/blob/1.4.2/regex-syntax/Cargo.toml#L17-L32

Vendoring of C libraries
Some packages provide bindings to common C libraries (sometimes

referred to as "sys" crates). Sometimes these packages give you the choice
to use the C library installed on the system, or to build it from source. For
example, the openssl package has a vendored feature which enables the
corresponding vendored feature of openssl-sys . The openssl-sys build
script has some conditional logic which causes it to build from a local copy
of the OpenSSL source code instead of using the version from the system.

The curl-sys package is another example where the static-curl
feature causes it to build libcurl from source. Notice that it also has a
force-system-lib-on-osx feature which forces it to use the system
libcurl, overriding the static-curl setting.

clbr://internal.invalid/book/OEBPS/reference/build-scripts.md#-sys-packages
https://crates.io/crates/openssl
https://github.com/sfackler/rust-openssl/blob/openssl-v0.10.31/openssl/Cargo.toml#L19
https://crates.io/crates/openssl-sys
https://github.com/sfackler/rust-openssl/blob/openssl-v0.10.31/openssl-sys/build/main.rs#L47-L54
https://crates.io/crates/curl-sys
https://github.com/alexcrichton/curl-rust/blob/0.4.34/curl-sys/Cargo.toml#L49
https://github.com/alexcrichton/curl-rust/blob/0.4.34/curl-sys/Cargo.toml#L52
https://github.com/alexcrichton/curl-rust/blob/0.4.34/curl-sys/build.rs#L15-L20

Feature precedence
Some packages may have mutually-exclusive features. One option to

handle this is to prefer one feature over another. The log package is an
example. It has several features for choosing the maximum logging level at
compile-time described here. It uses cfg-if to choose a precedence. If
multiple features are enabled, the higher "max" levels will be preferred over
the lower levels.

https://crates.io/crates/log
https://github.com/rust-lang/log/blob/0.4.11/Cargo.toml#L29-L42
https://docs.rs/log/0.4.11/log/#compile-time-filters
https://crates.io/crates/cfg-if
https://github.com/rust-lang/log/blob/0.4.11/src/lib.rs#L1422-L1448

Proc-macro companion package
Some packages have a proc-macro that is intimately tied with it.

However, not all users will need to use the proc-macro. By making the
proc-macro an optional-dependency, this allows you to conveniently choose
whether or not it is included. This is helpful, because sometimes the proc-
macro version must stay in sync with the parent package, and you don't
want to force the users to have to specify both dependencies and keep them
in sync.

An example is serde which has a derive feature which enables the
serde_derive proc-macro. The serde_derive crate is very tightly tied to
serde , so it uses an equals version requirement to ensure they stay in sync.

https://crates.io/crates/serde
https://github.com/serde-rs/serde/blob/v1.0.118/serde/Cargo.toml#L34-L35
https://crates.io/crates/serde_derive
https://github.com/serde-rs/serde/blob/v1.0.118/serde/Cargo.toml#L17

Nightly-only features
Some packages want to experiment with APIs or language features that

are only available on the Rust nightly channel. However, they may not want
to require their users to also use the nightly channel. An example is wasm-
bindgen which has a nightly feature which enables an extended API that
uses the Unsize marker trait that is only available on the nightly channel at
the time of this writing.

Note that at the root of the crate it uses cfg_attr to enable the nightly
feature. Keep in mind that the feature attribute is unrelated to Cargo
features, and is used to opt-in to experimental language features.

The simd_support feature of the rand package is another example,
which relies on a dependency that only builds on the nightly channel.

clbr://internal.invalid/book/book/appendix-07-nightly-rust.html
https://crates.io/crates/wasm-bindgen
https://github.com/rustwasm/wasm-bindgen/blob/0.2.69/Cargo.toml#L27
https://github.com/rustwasm/wasm-bindgen/blob/0.2.69/src/closure.rs#L257-L269
clbr://internal.invalid/book/std/marker/trait.Unsize.html
https://github.com/rustwasm/wasm-bindgen/blob/0.2.69/src/lib.rs#L11
clbr://internal.invalid/book/unstable-book/index.html
https://github.com/rust-random/rand/blob/0.7.3/Cargo.toml#L40
https://crates.io/crates/rand

Experimental features
Some packages have new functionality that they may want to experiment

with, without having to commit to the stability of those APIs. The features
are usually documented that they are experimental, and thus may change or
break in the future, even during a minor release. An example is the async-
std package, which has an unstable feature, which gates new APIs that
people can opt-in to using, but may not be completely ready to be relied
upon.

https://crates.io/crates/async-std
https://github.com/async-rs/async-std/blob/v1.8.0/Cargo.toml#L38-L42
https://github.com/async-rs/async-std/blob/v1.8.0/src/macros.rs#L46

Profiles
Profiles provide a way to alter the compiler settings, influencing things

like optimizations and debugging symbols.
Cargo has 4 built-in profiles: dev , release , test , and bench . The

profile is automatically chosen based on which command is being run if a
profile is not specified on the command-line. In addition to the built-in
profiles, custom user-defined profiles can also be specified.

Profile settings can be changed in Cargo.toml with the [profile]
table. Within each named profile, individual settings can be changed with
key/value pairs like this:
[profile.dev]
opt-level = 1 # Use slightly better
optimizations.
overflow-checks = false # Disable integer overflow checks.

Cargo only looks at the profile settings in the Cargo.toml manifest at
the root of the workspace. Profile settings defined in dependencies will be
ignored.

Additionally, profiles can be overridden from a config definition.
Specifying a profile in a config file or environment variable will override
the settings from Cargo.toml .

clbr://internal.invalid/book/OEBPS/reference/manifest.md
clbr://internal.invalid/book/OEBPS/reference/config.md

Profile settings
The following is a list of settings that can be controlled in a profile.

opt-level
The opt-level setting controls the -C opt-level flag which controls

the level of optimization. Higher optimization levels may produce faster
runtime code at the expense of longer compiler times. Higher levels may
also change and rearrange the compiled code which may make it harder to
use with a debugger.

The valid options are:

0 : no optimizations
1 : basic optimizations
2 : some optimizations
3 : all optimizations
"s" : optimize for binary size
"z" : optimize for binary size, but also turn off loop vectorization.

It is recommended to experiment with different levels to find the right
balance for your project. There may be surprising results, such as level 3
being slower than 2 , or the "s" and "z" levels not being necessarily
smaller. You may also want to reevaluate your settings over time as newer
versions of rustc change optimization behavior.

See also Profile Guided Optimization for more advanced optimization
techniques.

debug
The debug setting controls the -C debuginfo flag which controls the

amount of debug information included in the compiled binary.
The valid options are:

0 , false , or "none" : no debug info at all, default for release

clbr://internal.invalid/book/rustc/codegen-options/index.html#opt-level
clbr://internal.invalid/book/rustc/profile-guided-optimization.html
clbr://internal.invalid/book/rustc/codegen-options/index.html#debuginfo

"line-directives-only" : line info directives only. For the nvptx*
targets this enables profiling. For other use cases, line-tables-only
is the better, more compatible choice.
"line-tables-only" : line tables only. Generates the minimal amount
of debug info for backtraces with filename/line number info, but not
anything else, i.e. no variable or function parameter info.
1 or "limited" : debug info without type or variable-level
information. Generates more detailed module-level info than line-
tables-only .
2 , true , or "full" : full debug info, default for dev

For more information on what each option does see rustc 's docs on
debuginfo.

You may wish to also configure the split-debuginfo option depending
on your needs as well.

MSRV: 1.71 is required for none , limited , full , line-

directives-only , and line-tables-only

split-debuginfo
The split-debuginfo setting controls the -C split-debuginfo flag

which controls whether debug information, if generated, is either placed in
the executable itself or adjacent to it.

This option is a string and acceptable values are the same as those the
compiler accepts. The default value for this option is unpacked on macOS
for profiles that have debug information otherwise enabled. Otherwise the
default for this option is documented with rustc and is platform-specific.
Some options are only available on the nightly channel. The Cargo default
may change in the future once more testing has been performed, and
support for DWARF is stabilized.

Be aware that Cargo and rustc have different defaults for this option.
This option exists to allow Cargo to experiment on different combinations
of flags thus providing better debugging and developer experience.

strip

https://reviews.llvm.org/D46061
clbr://internal.invalid/book/rustc/codegen-options/index.html#debuginfo
clbr://internal.invalid/book/rustc/codegen-options/index.html#split-debuginfo
clbr://internal.invalid/book/rustc/codegen-options/index.html#split-debuginfo
clbr://internal.invalid/book/rustc/codegen-options/index.html#split-debuginfo
clbr://internal.invalid/book/book/appendix-07-nightly-rust.html

The strip option controls the -C strip flag, which directs rustc to
strip either symbols or debuginfo from a binary. This can be enabled like
so:
[package]
...

[profile.release]
strip = "debuginfo"

Possible string values of strip are "none" , "debuginfo" , and
"symbols" . The default is "none" .

You can also configure this option with the boolean values true or
false . strip = true is equivalent to strip = "symbols" . strip =
false is equivalent to strip = "none" and disables strip completely.

debug-assertions
The debug-assertions setting controls the -C debug-assertions flag

which turns cfg(debug_assertions) conditional compilation on or off.
Debug assertions are intended to include runtime validation which is only
available in debug/development builds. These may be things that are too
expensive or otherwise undesirable in a release build. Debug assertions
enables the debug_assert! macro in the standard library.

The valid options are:

true : enabled
false : disabled

overflow-checks
The overflow-checks setting controls the -C overflow-checks flag

which controls the behavior of runtime integer overflow. When overflow-
checks are enabled, a panic will occur on overflow.

The valid options are:

true : enabled

clbr://internal.invalid/book/rustc/codegen-options/index.html#strip
clbr://internal.invalid/book/rustc/codegen-options/index.html#debug-assertions
clbr://internal.invalid/book/reference/conditional-compilation.md#debug_assertions
clbr://internal.invalid/book/std/macro.debug_assert.html
clbr://internal.invalid/book/rustc/codegen-options/index.html#overflow-checks
clbr://internal.invalid/book/reference/expressions/operator-expr.md#overflow

false : disabled

lto
The lto setting controls rustc 's -C lto , -C linker-plugin-lto ,

and -C embed-bitcode options, which control LLVM's link time
optimizations. LTO can produce better optimized code, using whole-
program analysis, at the cost of longer linking time.

The valid options are:

false : Performs "thin local LTO" which performs "thin" LTO on the
local crate only across its codegen units. No LTO is performed if
codegen units is 1 or opt-level is 0.
true or "fat" : Performs "fat" LTO which attempts to perform
optimizations across all crates within the dependency graph.
"thin" : Performs "thin" LTO. This is similar to "fat", but takes
substantially less time to run while still achieving performance gains
similar to "fat".
"off" : Disables LTO.

See the linker-plugin-lto chapter if you are interested in cross-language
LTO. This is not yet supported natively in Cargo, but can be performed via
RUSTFLAGS .

panic
The panic setting controls the -C panic flag which controls which

panic strategy to use.
The valid options are:

"unwind" : Unwind the stack upon panic.
"abort" : Terminate the process upon panic.

When set to "unwind" , the actual value depends on the default of the
target platform. For example, the NVPTX platform does not support
unwinding, so it always uses "abort" .

clbr://internal.invalid/book/rustc/codegen-options/index.html#lto
clbr://internal.invalid/book/rustc/codegen-options/index.html#linker-plugin-lto
clbr://internal.invalid/book/rustc/codegen-options/index.html#embed-bitcode
https://llvm.org/docs/LinkTimeOptimization.html
http://blog.llvm.org/2016/06/thinlto-scalable-and-incremental-lto.html
clbr://internal.invalid/book/rustc/linker-plugin-lto.html
clbr://internal.invalid/book/rustc/codegen-options/index.html#panic

Tests, benchmarks, build scripts, and proc macros ignore the panic
setting. The rustc test harness currently requires unwind behavior. See the
panic-abort-tests unstable flag which enables abort behavior.

Additionally, when using the abort strategy and building a test, all of
the dependencies will also be forced to build with the unwind strategy.

incremental
The incremental setting controls the -C incremental flag which

controls whether or not incremental compilation is enabled. Incremental
compilation causes rustc to save additional information to disk which will
be reused when recompiling the crate, improving re-compile times. The
additional information is stored in the target directory.

The valid options are:

true : enabled
false : disabled

Incremental compilation is only used for workspace members and "path"
dependencies.

The incremental value can be overridden globally with the
CARGO_INCREMENTAL environment variable or the build.incremental

config variable.

codegen-units
The codegen-units setting controls the -C codegen-units flag which

controls how many "code generation units" a crate will be split into. More
code generation units allows more of a crate to be processed in parallel
possibly reducing compile time, but may produce slower code.

This option takes an integer greater than 0.
The default is 256 for incremental builds, and 16 for non-incremental

builds.

rpath

clbr://internal.invalid/book/OEBPS/reference/unstable.md#panic-abort-tests
clbr://internal.invalid/book/rustc/codegen-options/index.html#incremental
clbr://internal.invalid/book/OEBPS/reference/environment-variables.md
clbr://internal.invalid/book/OEBPS/reference/config.md#buildincremental
clbr://internal.invalid/book/rustc/codegen-options/index.html#codegen-units

The rpath setting controls the -C rpath flag which controls whether
or not rpath is enabled.

clbr://internal.invalid/book/rustc/codegen-options/index.html#rpath
https://en.wikipedia.org/wiki/Rpath

Default profiles
dev

The dev profile is used for normal development and debugging. It is the
default for build commands like cargo build , and is used for cargo
install --debug .

The default settings for the dev profile are:
[profile.dev]
opt-level = 0
debug = true
split-debuginfo = '...' # Platform-specific.
strip = "none"
debug-assertions = true
overflow-checks = true
lto = false
panic = 'unwind'
incremental = true
codegen-units = 256
rpath = false

release
The release profile is intended for optimized artifacts used for releases

and in production. This profile is used when the --release flag is used,
and is the default for cargo install .

The default settings for the release profile are:
[profile.release]
opt-level = 3
debug = false
split-debuginfo = '...' # Platform-specific.
strip = "none"
debug-assertions = false
overflow-checks = false

clbr://internal.invalid/book/OEBPS/commands/cargo-build.md
clbr://internal.invalid/book/OEBPS/commands/cargo-install.md

lto = false
panic = 'unwind'
incremental = false
codegen-units = 16
rpath = false

test
The test profile is the default profile used by cargo test . The test

profile inherits the settings from the dev profile.

bench
The bench profile is the default profile used by cargo bench . The

bench profile inherits the settings from the release profile.

Build Dependencies
To compile quickly, all profiles, by default, do not optimize build

dependencies (build scripts, proc macros, and their dependencies), and
avoid computing debug info when a build dependency is not used as a
runtime dependency. The default settings for build overrides are:
[profile.dev.build-override]
opt-level = 0
codegen-units = 256
debug = false # when possible

[profile.release.build-override]
opt-level = 0
codegen-units = 256

However, if errors occur while running build dependencies, turning full
debug info on will improve backtraces and debuggability when needed:
debug = true

Build dependencies otherwise inherit settings from the active profile in
use, as described in Profile selection.

clbr://internal.invalid/book/OEBPS/commands/cargo-test.md
clbr://internal.invalid/book/OEBPS/commands/cargo-bench.md

Custom profiles
In addition to the built-in profiles, additional custom profiles can be

defined. These may be useful for setting up multiple workflows and build
modes. When defining a custom profile, you must specify the inherits
key to specify which profile the custom profile inherits settings from when
the setting is not specified.

For example, let's say you want to compare a normal release build with a
release build with LTO optimizations, you can specify something like the
following in Cargo.toml :
[profile.release-lto]
inherits = "release"
lto = true

The --profile flag can then be used to choose this custom profile:
cargo build --profile release-lto

The output for each profile will be placed in a directory of the same
name as the profile in the target directory. As in the example above, the
output would go into the target/release-lto directory.

clbr://internal.invalid/book/OEBPS/reference/build-cache.md

Profile selection
The profile used depends on the command, the command-line flags like

--release or --profile , and the package (in the case of overrides). The
default profile if none is specified is:

Command Default Profile
cargo run , cargo build ,
cargo check , cargo rustc

dev profile

cargo test test profile

cargo bench bench profile

cargo install release profile

You can switch to a different profile using the --profile=NAME option
which will used the given profile. The --release flag is equivalent to --
profile=release .

The selected profile applies to all Cargo targets, including library,
binary, example, test, and benchmark.

The profile for specific packages can be specified with overrides,
described below.

clbr://internal.invalid/book/OEBPS/commands/cargo-run.md
clbr://internal.invalid/book/OEBPS/commands/cargo-build.md
clbr://internal.invalid/book/OEBPS/commands/cargo-check.md
clbr://internal.invalid/book/OEBPS/commands/cargo-rustc.md
clbr://internal.invalid/book/OEBPS/commands/cargo-test.md
clbr://internal.invalid/book/OEBPS/commands/cargo-bench.md
clbr://internal.invalid/book/OEBPS/commands/cargo-install.md
clbr://internal.invalid/book/OEBPS/reference/cargo-targets.md#library
clbr://internal.invalid/book/OEBPS/reference/cargo-targets.md#binaries
clbr://internal.invalid/book/OEBPS/reference/cargo-targets.md#examples
clbr://internal.invalid/book/OEBPS/reference/cargo-targets.md#tests
clbr://internal.invalid/book/OEBPS/reference/cargo-targets.md#benchmarks

Overrides
Profile settings can be overridden for specific packages and build-time

crates. To override the settings for a specific package, use the package
table to change the settings for the named package:
The `foo` package will use the -Copt-level=3 flag.
[profile.dev.package.foo]
opt-level = 3

The package name is actually a Package ID Spec, so you can target
individual versions of a package with syntax such as
[profile.dev.package."foo:2.1.0"] .

To override the settings for all dependencies (but not any workspace
member), use the "*" package name:
Set the default for dependencies.
[profile.dev.package."*"]
opt-level = 2

To override the settings for build scripts, proc macros, and their
dependencies, use the build-override table:
Set the settings for build scripts and proc-macros.
[profile.dev.build-override]
opt-level = 3

Note: When a dependency is both a normal dependency and a build
dependency, Cargo will try to only build it once when --target is not
specified. When using build-override , the dependency may need to
be built twice, once as a normal dependency and once with the
overridden build settings. This may increase initial build times.

The precedence for which value is used is done in the following order
(first match wins):

1. [profile.dev.package.name] --- A named package.
2. [profile.dev.package."*"] --- For any non-workspace member.

clbr://internal.invalid/book/OEBPS/reference/pkgid-spec.md

3. [profile.dev.build-override] --- Only for build scripts, proc
macros, and their dependencies.

4. [profile.dev] --- Settings in Cargo.toml.
5. Default values built-in to Cargo.
Overrides cannot specify the panic , lto , or rpath settings.

Overrides and generics
The location where generic code is instantiated will influence the

optimization settings used for that generic code. This can cause subtle
interactions when using profile overrides to change the optimization level
of a specific crate. If you attempt to raise the optimization level of a
dependency which defines generic functions, those generic functions may
not be optimized when used in your local crate. This is because the code
may be generated in the crate where it is instantiated, and thus may use the
optimization settings of that crate.

For example, nalgebra is a library which defines vectors and matrices
making heavy use of generic parameters. If your local code defines concrete
nalgebra types like Vector4<f64> and uses their methods, the
corresponding nalgebra code will be instantiated and built within your crate.
Thus, if you attempt to increase the optimization level of nalgebra using a
profile override, it may not result in faster performance.

Further complicating the issue, rustc has some optimizations where it
will attempt to share monomorphized generics between crates. If the opt-
level is 2 or 3, then a crate will not use monomorphized generics from other
crates, nor will it export locally defined monomorphized items to be shared
with other crates. When experimenting with optimizing dependencies for
development, consider trying opt-level 1, which will apply some
optimizations while still allowing monomorphized items to be shared.

https://crates.io/crates/nalgebra

Configuration
This document explains how Cargo’s configuration system works, as

well as available keys or configuration. For configuration of a package
through its manifest, see the manifest format.

clbr://internal.invalid/book/OEBPS/reference/manifest.md

Hierarchical structure
Cargo allows local configuration for a particular package as well as

global configuration. It looks for configuration files in the current directory
and all parent directories. If, for example, Cargo were invoked in
/projects/foo/bar/baz , then the following configuration files would be
probed for and unified in this order:

/projects/foo/bar/baz/.cargo/config.toml

/projects/foo/bar/.cargo/config.toml

/projects/foo/.cargo/config.toml

/projects/.cargo/config.toml

/.cargo/config.toml

$CARGO_HOME/config.toml which defaults to:

Windows: %USERPROFILE%\.cargo\config.toml
Unix: $HOME/.cargo/config.toml

With this structure, you can specify configuration per-package, and even
possibly check it into version control. You can also specify personal
defaults with a configuration file in your home directory.

If a key is specified in multiple config files, the values will get merged
together. Numbers, strings, and booleans will use the value in the deeper
config directory taking precedence over ancestor directories, where the
home directory is the lowest priority. Arrays will be joined together with
higher precedence items being placed later in the merged array.

At present, when being invoked from a workspace, Cargo does not read
config files from crates within the workspace. i.e. if a workspace has two
crates in it, named /projects/foo/bar/baz/mylib and
/projects/foo/bar/baz/mybin , and there are Cargo configs at
/projects/foo/bar/baz/mylib/.cargo/config.toml and
/projects/foo/bar/baz/mybin/.cargo/config.toml , Cargo does not
read those configuration files if it is invoked from the workspace root
(/projects/foo/bar/baz/).

Note: Cargo also reads config files without the .toml extension,
such as .cargo/config . Support for the .toml extension was added
in version 1.39 and is the preferred form. If both files exist, Cargo will
use the file without the extension.

Configuration format
Configuration files are written in the TOML format (like the manifest),

with simple key-value pairs inside of sections (tables). The following is a
quick overview of all settings, with detailed descriptions found below.
paths = ["/path/to/override"] # path dependency overrides

[alias] # command aliases
b = "build"
c = "check"
t = "test"
r = "run"
rr = "run --release"
recursive_example = "rr --example recursions"
space_example = ["run", "--release", "--", "\"command list\""]

[build]
jobs = 1 # number of parallel jobs,
defaults to # of CPUs
rustc = "rustc" # the rust compiler tool
rustc-wrapper = "…" # run this wrapper instead of
`rustc`
rustc-workspace-wrapper = "…" # run this wrapper instead of
`rustc` for workspace members
rustdoc = "rustdoc" # the doc generator tool
target = "triple" # build for the target triple
(ignored by `cargo install`)
target-dir = "target" # path of where to place all
generated artifacts
rustflags = ["…", "…"] # custom flags to pass to all
compiler invocations
rustdocflags = ["…", "…"] # custom flags to pass to
rustdoc
incremental = true # whether or not to enable
incremental compilation

https://toml.io/

dep-info-basedir = "…" # path for the base directory
for targets in depfiles

[credential-alias]
Provides a way to define aliases for credential providers.
my-alias = ["/usr/bin/cargo-credential-example", "--argument",
"value", "--flag"]

[doc]
browser = "chromium" # browser to use with `cargo doc
--open`,
 # overrides the `BROWSER`
environment variable

[env]
Set ENV_VAR_NAME=value for any process run by Cargo
ENV_VAR_NAME = "value"
Set even if already present in environment
ENV_VAR_NAME_2 = { value = "value", force = true }
`value` is relative to the parent of `.cargo/config.toml`,
env var will be the full absolute path
ENV_VAR_NAME_3 = { value = "relative/path", relative = true }

[future-incompat-report]
frequency = 'always' # when to display a notification about a
future incompat report

[cache]
auto-clean-frequency = "1 day" # How often to perform
automatic cache cleaning

[cargo-new]
vcs = "none" # VCS to use ('git', 'hg', 'pijul',
'fossil', 'none')

[http]

debug = false # HTTP debugging
proxy = "host:port" # HTTP proxy in libcurl format
ssl-version = "tlsv1.3" # TLS version to use
ssl-version.max = "tlsv1.3" # maximum TLS version
ssl-version.min = "tlsv1.1" # minimum TLS version
timeout = 30 # timeout for each HTTP request,
in seconds
low-speed-limit = 10 # network timeout threshold
(bytes/sec)
cainfo = "cert.pem" # path to Certificate Authority
(CA) bundle
proxy-cainfo = "cert.pem" # path to proxy Certificate
Authority (CA) bundle
check-revoke = true # check for SSL certificate
revocation
multiplexing = true # HTTP/2 multiplexing
user-agent = "…" # the user-agent header

[install]
root = "/some/path" # `cargo install` destination
directory

[net]
retry = 3 # network retries
git-fetch-with-cli = true # use the `git` executable for git
operations
offline = true # do not access the network

[net.ssh]
known-hosts = ["..."] # known SSH host keys

[patch.<registry>]
Same keys as for [patch] in Cargo.toml

[profile.<name>] # Modify profile settings via config.
inherits = "dev" # Inherits settings from

[profile.dev].
opt-level = 0 # Optimization level.
debug = true # Include debug info.
split-debuginfo = '...' # Debug info splitting behavior.
strip = "none" # Removes symbols or debuginfo.
debug-assertions = true # Enables debug assertions.
overflow-checks = true # Enables runtime integer overflow
checks.
lto = false # Sets link-time optimization.
panic = 'unwind' # The panic strategy.
incremental = true # Incremental compilation.
codegen-units = 16 # Number of code generation units.
rpath = false # Sets the rpath linking option.
[profile.<name>.build-override] # Overrides build-script
settings.
Same keys for a normal profile.
[profile.<name>.package.<name>] # Override profile for a
package.
Same keys for a normal profile (minus `panic`, `lto`, and
`rpath`).

[resolver]
incompatible-rust-versions = "allow" # Specifies how resolver
reacts to these

[registries.<name>] # registries other than crates.io
index = "…" # URL of the registry index
token = "…" # authentication token for the registry
credential-provider = "cargo:token" # The credential provider
for this registry.

[registries.crates-io]
protocol = "sparse" # The protocol to use to access
crates.io.

[registry]

default = "…" # name of the default registry
token = "…" # authentication token for crates.io
credential-provider = "cargo:token" # The credential
provider for crates.io.
global-credential-providers = ["cargo:token"] # The credential
providers to use by default.

[source.<name>] # source definition and replacement
replace-with = "…" # replace this source with the given
named source
directory = "…" # path to a directory source
registry = "…" # URL to a registry source
local-registry = "…" # path to a local registry source
git = "…" # URL of a git repository source
branch = "…" # branch name for the git repository
tag = "…" # tag name for the git repository
rev = "…" # revision for the git repository

[target.<triple>]
linker = "…" # linker to use
runner = "…" # wrapper to run executables
rustflags = ["…", "…"] # custom flags for `rustc`
rustdocflags = ["…", "…"] # custom flags for `rustdoc`

[target.<cfg>]
runner = "…" # wrapper to run executables
rustflags = ["…", "…"] # custom flags for `rustc`

[target.<triple>.<links>] # `links` build script override
rustc-link-lib = ["foo"]
rustc-link-search = ["/path/to/foo"]
rustc-flags = "-L /some/path"
rustc-cfg = ['key="value"']
rustc-env = {key = "value"}
rustc-cdylib-link-arg = ["…"]
metadata_key1 = "value"

metadata_key2 = "value"

[term]
quiet = false # whether cargo output is
quiet
verbose = false # whether cargo provides
verbose output
color = 'auto' # whether cargo colorizes
output
hyperlinks = true # whether cargo inserts links
into output
unicode = true # whether cargo can render
output using non-ASCII unicode characters
progress.when = 'auto' # whether cargo shows
progress bar
progress.width = 80 # width of progress bar
progress.term-integration = true # whether cargo reports
progress to terminal emulator

Environment variables
Cargo can also be configured through environment variables in addition

to the TOML configuration files. For each configuration key of the form
foo.bar the environment variable CARGO_FOO_BAR can also be used to
define the value. Keys are converted to uppercase, dots and dashes are
converted to underscores. For example the target.x86_64-unknown-

linux-gnu.runner key can also be defined by the
CARGO_TARGET_X86_64_UNKNOWN_LINUX_GNU_RUNNER environment variable.

Environment variables will take precedence over TOML configuration
files. Currently only integer, boolean, string and some array values are
supported to be defined by environment variables. Descriptions below
indicate which keys support environment variables and otherwise they are
not supported due to technical issues.

In addition to the system above, Cargo recognizes a few other specific
environment variables.

https://github.com/rust-lang/cargo/issues/5416
clbr://internal.invalid/book/OEBPS/reference/environment-variables.md

Command-line overrides
Cargo also accepts arbitrary configuration overrides through the --

config command-line option. The argument should be in TOML syntax of
KEY=VALUE or provided as a path to an extra configuration file:
With `KEY=VALUE` in TOML syntax
cargo --config net.git-fetch-with-cli=true fetch

With a path to a configuration file
cargo --config ./path/to/my/extra-config.toml fetch

The --config option may be specified multiple times, in which case the
values are merged in left-to-right order, using the same merging logic that is
used when multiple configuration files apply. Configuration values
specified this way take precedence over environment variables, which take
precedence over configuration files.

When the --config option is provided as an extra configuration file,
The configuration file loaded this way follow the same precedence rules as
other options specified directly with --config .

Some examples of what it looks like using Bourne shell syntax:
Most shells will require escaping.
cargo --config http.proxy=\"http://example.com\" …

Spaces may be used.
cargo --config "net.git-fetch-with-cli = true" …

TOML array example. Single quotes make it easier to read and
write.
cargo --config 'build.rustdocflags = ["--html-in-header",
"header.html"]' …

Example of a complex TOML key.
cargo --config "target.'cfg(all(target_arch = \"arm\",
target_os = \"none\"))'.runner = 'my-runner'" …

Example of overriding a profile setting.
cargo --config profile.dev.package.image.opt-level=3 …

Config-relative paths
Paths in config files may be absolute, relative, or a bare name without

any path separators. Paths for executables without a path separator will use
the PATH environment variable to search for the executable. Paths for non-
executables will be relative to where the config value is defined.

In particular, rules are:

For environment variables, paths are relative to the current working
directory.
For config values loaded directly from the --config KEY=VALUE
option, paths are relative to the current working directory.
For config files, paths are relative to the parent directory of the
directory where the config files were defined, no matter those files are
from either the hierarchical probing or the --config <path> option.

Note: To maintain consistency with existing .cargo/config.toml
probing behavior, it is by design that a path in a config file passed via
--config <path> is also relative to two levels up from the config file
itself.

To avoid unexpected results, the rule of thumb is putting your extra
config files at the same level of discovered .cargo/config.toml in
your project. For instance, given a project /my/project , it is
recommended to put config files under /my/project/.cargo or a new
directory at the same level, such as /my/project/.config .

Relative path examples.

[target.x86_64-unknown-linux-gnu]
runner = "foo" # Searches `PATH` for `foo`.

[source.vendored-sources]
Directory is relative to the parent where
`.cargo/config.toml` is located.
For example, `/my/project/.cargo/config.toml` would result

in `/my/project/vendor`.
directory = "vendor"

Executable paths with arguments
Some Cargo commands invoke external programs, which can be

configured as a path and some number of arguments.
The value may be an array of strings like ['/path/to/program',

'somearg'] or a space-separated string like '/path/to/program

somearg' . If the path to the executable contains a space, the list form must
be used.

If Cargo is passing other arguments to the program such as a path to
open or run, they will be passed after the last specified argument in the
value of an option of this format. If the specified program does not have
path separators, Cargo will search PATH for its executable.

Credentials
Configuration values with sensitive information are stored in the

$CARGO_HOME/credentials.toml file. This file is automatically created
and updated by cargo login and cargo logout when using the
cargo:token credential provider.

Tokens are used by some Cargo commands such as cargo publish for
authenticating with remote registries. Care should be taken to protect the
tokens and to keep them secret.

It follows the same format as Cargo config files.
[registry]
token = "…" # Access token for crates.io

[registries.<name>]
token = "…" # Access token for the named registry

As with most other config values, tokens may be specified with
environment variables. The token for crates.io may be specified with the
CARGO_REGISTRY_TOKEN environment variable. Tokens for other registries
may be specified with environment variables of the form
CARGO_REGISTRIES_<name>_TOKEN where <name> is the name of the
registry in all capital letters.

Note: Cargo also reads and writes credential files without the
.toml extension, such as .cargo/credentials . Support for the
.toml extension was added in version 1.39. In version 1.68, Cargo
writes to the file with the extension by default. However, for backward
compatibility reason, when both files exist, Cargo will read and write
the file without the extension.

clbr://internal.invalid/book/OEBPS/commands/cargo-login.md
clbr://internal.invalid/book/OEBPS/commands/cargo-logout.md
clbr://internal.invalid/book/OEBPS/reference/registry-authentication.md#cargotoken
clbr://internal.invalid/book/OEBPS/commands/cargo-publish.md
https://crates.io/

Configuration keys
This section documents all configuration keys. The description for keys

with variable parts are annotated with angled brackets like target.

<triple> where the <triple> part can be any target triple like
target.x86_64-pc-windows-msvc .

paths

Type: array of strings (paths)
Default: none
Environment: not supported

An array of paths to local packages which are to be used as overrides for
dependencies. For more information see the Overriding Dependencies
guide.

[alias]

Type: string or array of strings
Default: see below
Environment: CARGO_ALIAS_<name>

The [alias] table defines CLI command aliases. For example, running
cargo b is an alias for running cargo build . Each key in the table is the
subcommand, and the value is the actual command to run. The value may
be an array of strings, where the first element is the command and the
following are arguments. It may also be a string, which will be split on
spaces into subcommand and arguments. The following aliases are built-in
to Cargo:
[alias]
b = "build"
c = "check"
d = "doc"
t = "test"
r = "run"
rm = "remove"

clbr://internal.invalid/book/OEBPS/appendix/glossary.md#target
clbr://internal.invalid/book/OEBPS/reference/overriding-dependencies.md#paths-overrides

Aliases are not allowed to redefine existing built-in commands.
Aliases are recursive:

[alias]
rr = "run --release"
recursive_example = "rr --example recursions"

[build]
The [build] table controls build-time operations and compiler settings.

build.jobs

Type: integer or string
Default: number of logical CPUs
Environment: CARGO_BUILD_JOBS

Sets the maximum number of compiler processes to run in parallel. If
negative, it sets the maximum number of compiler processes to the number
of logical CPUs plus provided value. Should not be 0. If a string default
is provided, it sets the value back to defaults.

Can be overridden with the --jobs CLI option.

build.rustc

Type: string (program path)
Default: "rustc"
Environment: CARGO_BUILD_RUSTC or RUSTC

Sets the executable to use for rustc .

build.rustc-wrapper

Type: string (program path)
Default: none
Environment: CARGO_BUILD_RUSTC_WRAPPER or RUSTC_WRAPPER

Sets a wrapper to execute instead of rustc . The first argument passed to
the wrapper is the path to the actual executable to use (i.e., build.rustc , if
that is set, or "rustc" otherwise).

build.rustc-workspace-wrapper

Type: string (program path)
Default: none
Environment: CARGO_BUILD_RUSTC_WORKSPACE_WRAPPER or
RUSTC_WORKSPACE_WRAPPER

Sets a wrapper to execute instead of rustc , for workspace members
only. When building a single-package project without workspaces, that
package is considered to be the workspace. The first argument passed to the
wrapper is the path to the actual executable to use (i.e., build.rustc , if
that is set, or "rustc" otherwise). It affects the filename hash so that
artifacts produced by the wrapper are cached separately.

If both rustc-wrapper and rustc-workspace-wrapper are set, then
they will be nested: the final invocation is $RUSTC_WRAPPER

$RUSTC_WORKSPACE_WRAPPER $RUSTC .

build.rustdoc

Type: string (program path)
Default: "rustdoc"
Environment: CARGO_BUILD_RUSTDOC or RUSTDOC

Sets the executable to use for rustdoc .

build.target

Type: string or array of strings
Default: host platform
Environment: CARGO_BUILD_TARGET

The default target platform triples to compile to.
This allows passing either a string or an array of strings. Each string

value is a target platform triple. The selected build targets will be built for
each of the selected architectures.

The string value may also be a relative path to a .json target spec file.
Can be overridden with the --target CLI option.

clbr://internal.invalid/book/OEBPS/appendix/glossary.md#target

[build]
target = ["x86_64-unknown-linux-gnu", "i686-unknown-linux-
gnu"]

build.target-dir

Type: string (path)
Default: "target"
Environment: CARGO_BUILD_TARGET_DIR or CARGO_TARGET_DIR

The path to where all compiler output is placed. The default if not
specified is a directory named target located at the root of the workspace.

Can be overridden with the --target-dir CLI option.

build.rustflags

Type: string or array of strings
Default: none
Environment: CARGO_BUILD_RUSTFLAGS or
CARGO_ENCODED_RUSTFLAGS or RUSTFLAGS

Extra command-line flags to pass to rustc . The value may be an array
of strings or a space-separated string.

There are four mutually exclusive sources of extra flags. They are
checked in order, with the first one being used:

1. CARGO_ENCODED_RUSTFLAGS environment variable.
2. RUSTFLAGS environment variable.
3. All matching target.<triple>.rustflags and target.

<cfg>.rustflags config entries joined together.
4. build.rustflags config value.
Additional flags may also be passed with the cargo rustc command.
If the --target flag (or build.target) is used, then the flags will only

be passed to the compiler for the target. Things being built for the host, such
as build scripts or proc macros, will not receive the args. Without --
target , the flags will be passed to all compiler invocations (including build

clbr://internal.invalid/book/OEBPS/commands/cargo-rustc.md

scripts and proc macros) because dependencies are shared. If you have args
that you do not want to pass to build scripts or proc macros and are building
for the host, pass --target with the host triple.

It is not recommended to pass in flags that Cargo itself usually manages.
For example, the flags driven by profiles are best handled by setting the
appropriate profile setting.

Caution: Due to the low-level nature of passing flags directly to the
compiler, this may cause a conflict with future versions of Cargo
which may issue the same or similar flags on its own which may
interfere with the flags you specify. This is an area where Cargo may
not always be backwards compatible.

build.rustdocflags

Type: string or array of strings
Default: none
Environment: CARGO_BUILD_RUSTDOCFLAGS or
CARGO_ENCODED_RUSTDOCFLAGS or RUSTDOCFLAGS

Extra command-line flags to pass to rustdoc . The value may be an
array of strings or a space-separated string.

There are four mutually exclusive sources of extra flags. They are
checked in order, with the first one being used:

1. CARGO_ENCODED_RUSTDOCFLAGS environment variable.
2. RUSTDOCFLAGS environment variable.
3. All matching target.<triple>.rustdocflags config entries joined

together.
4. build.rustdocflags config value.
Additional flags may also be passed with the cargo rustdoc command.

Caution: Due to the low-level nature of passing flags directly to the
compiler, this may cause a conflict with future versions of Cargo
which may issue the same or similar flags on its own which may
interfere with the flags you specify. This is an area where Cargo may
not always be backwards compatible.

clbr://internal.invalid/book/OEBPS/appendix/glossary.md#target
clbr://internal.invalid/book/OEBPS/reference/profiles.md
clbr://internal.invalid/book/OEBPS/commands/cargo-rustdoc.md

build.incremental

Type: bool
Default: from profile
Environment: CARGO_BUILD_INCREMENTAL or CARGO_INCREMENTAL

Whether or not to perform incremental compilation. The default if not
set is to use the value from the profile. Otherwise this overrides the setting
of all profiles.

The CARGO_INCREMENTAL environment variable can be set to 1 to force
enable incremental compilation for all profiles, or 0 to disable it. This env
var overrides the config setting.

build.dep-info-basedir

Type: string (path)
Default: none
Environment: CARGO_BUILD_DEP_INFO_BASEDIR

Strips the given path prefix from dep info file paths. This config setting
is intended to convert absolute paths to relative paths for tools that require
relative paths.

The setting itself is a config-relative path. So, for example, a value of
"." would strip all paths starting with the parent directory of the .cargo
directory.

build.pipelining

This option is deprecated and unused. Cargo always has pipelining
enabled.

[credential-alias]

Type: string or array of strings
Default: empty
Environment: CARGO_CREDENTIAL_ALIAS_<name>

The [credential-alias] table defines credential provider aliases.
These aliases can be referenced as an element of the registry.global-

clbr://internal.invalid/book/OEBPS/reference/profiles.md#incremental
clbr://internal.invalid/book/OEBPS/reference/profiles.md#incremental
clbr://internal.invalid/book/OEBPS/reference/build-cache.md#dep-info-files

credential-providers array, or as a credential provider for a specific
registry under registries.<NAME>.credential-provider .

If specified as a string, the value will be split on spaces into path and
arguments.

For example, to define an alias called my-alias :
[credential-alias]
my-alias = ["/usr/bin/cargo-credential-example", "--argument",
"value", "--flag"]

See Registry Authentication for more information.

[doc]
The [doc] table defines options for the cargo doc command.

doc.browser

Type: string or array of strings (program path with args)
Default: BROWSER environment variable, or, if that is missing, opening
the link in a system specific way

This option sets the browser to be used by cargo doc , overriding the
BROWSER environment variable when opening documentation with the --
open option.

[cargo-new]
The [cargo-new] table defines defaults for the cargo new command.

cargo-new.name

This option is deprecated and unused.

cargo-new.email

This option is deprecated and unused.

cargo-new.vcs

Type: string
Default: "git" or "none"

clbr://internal.invalid/book/OEBPS/reference/registry-authentication.md
clbr://internal.invalid/book/OEBPS/commands/cargo-doc.md
clbr://internal.invalid/book/OEBPS/commands/cargo-doc.md
clbr://internal.invalid/book/OEBPS/commands/cargo-new.md

Environment: CARGO_CARGO_NEW_VCS
Specifies the source control system to use for initializing a new

repository. Valid values are git , hg (for Mercurial), pijul , fossil or
none to disable this behavior. Defaults to git , or none if already inside a
VCS repository. Can be overridden with the --vcs CLI option.

[env]
The [env] section allows you to set additional environment variables

for build scripts, rustc invocations, cargo run and cargo build .
[env]
OPENSSL_DIR = "/opt/openssl"

By default, the variables specified will not override values that already
exist in the environment. This behavior can be changed by setting the
force flag.

Setting the relative flag evaluates the value as a config-relative path
that is relative to the parent directory of the .cargo directory that contains
the config.toml file. The value of the environment variable will be the
full absolute path.
[env]
TMPDIR = { value = "/home/tmp", force = true }
OPENSSL_DIR = { value = "vendor/openssl", relative = true }

[future-incompat-report]
The [future-incompat-report] table controls setting for future

incompat reporting

future-incompat-report.frequency

Type: string
Default: "always"
Environment: CARGO_FUTURE_INCOMPAT_REPORT_FREQUENCY

Controls how often we display a notification to the terminal when a
future incompat report is available. Possible values:

clbr://internal.invalid/book/OEBPS/reference/future-incompat-report.md

always (default): Always display a notification when a command (e.g.
cargo build) produces a future incompat report
never : Never display a notification

[cache]
The [cache] table defines settings for cargo's caches.

Global caches
When running cargo commands, Cargo will automatically track which

files you are using within the global cache. Periodically, Cargo will delete
files that have not been used for some period of time. It will delete files that
have to be downloaded from the network if they have not been used in 3
months. Files that can be generated without network access will be deleted
if they have not been used in 1 month.

The automatic deletion of files only occurs when running commands that
are already doing a significant amount of work, such as all of the build
commands (cargo build , cargo test , cargo check , etc.), and cargo
fetch .

Automatic deletion is disabled if cargo is offline such as with --

offline or --frozen to avoid deleting artifacts that may need to be used if
you are offline for a long period of time.

Note: This tracking is currently only implemented for the global
cache in Cargo's home directory. This includes registry indexes and
source files downloaded from registries and git dependencies. Support
for tracking build artifacts is not yet implemented, and tracked in
cargo#13136.

Additionally, there is an unstable feature to support manually
triggering cache cleaning, and to further customize the configuration
options. See the Unstable chapter for more information.

cache.auto-clean-frequency

Type: string
Default: "1 day"

https://github.com/rust-lang/cargo/issues/13136
clbr://internal.invalid/book/OEBPS/reference/unstable.md#gc

Environment: CARGO_CACHE_AUTO_CLEAN_FREQUENCY
This option defines how often Cargo will automatically delete unused

files in the global cache. This does not define how old the files must be,
those thresholds are described above.

It supports the following settings:

"never" --- Never deletes old files.
"always" --- Checks to delete old files every time Cargo runs.
An integer followed by "seconds", "minutes", "hours", "days",
"weeks", or "months" --- Checks to delete old files at most the given
time frame.

[http]
The [http] table defines settings for HTTP behavior. This includes

fetching crate dependencies and accessing remote git repositories.

http.debug

Type: boolean
Default: false
Environment: CARGO_HTTP_DEBUG

If true , enables debugging of HTTP requests. The debug information
can be seen by setting the CARGO_LOG=network=debug environment
variable (or use network=trace for even more information).

Be wary when posting logs from this output in a public location. The
output may include headers with authentication tokens which you don't
want to leak! Be sure to review logs before posting them.

http.proxy

Type: string
Default: none
Environment: CARGO_HTTP_PROXY or HTTPS_PROXY or https_proxy
or http_proxy

Sets an HTTP and HTTPS proxy to use. The format is in libcurl format
as in [protocol://]host[:port] . If not set, Cargo will also check the
http.proxy setting in your global git configuration. If none of those are
set, the HTTPS_PROXY or https_proxy environment variables set the proxy
for HTTPS requests, and http_proxy sets it for HTTP requests.

http.timeout

Type: integer
Default: 30
Environment: CARGO_HTTP_TIMEOUT or HTTP_TIMEOUT

Sets the timeout for each HTTP request, in seconds.

http.cainfo

Type: string (path)
Default: none
Environment: CARGO_HTTP_CAINFO

Path to a Certificate Authority (CA) bundle file, used to verify TLS
certificates. If not specified, Cargo attempts to use the system certificates.

http.proxy-cainfo

Type: string (path)
Default: falls back to http.cainfo if not set
Environment: CARGO_HTTP_PROXY_CAINFO

Path to a Certificate Authority (CA) bundle file, used to verify proxy
TLS certificates.

http.check-revoke

Type: boolean
Default: true (Windows) false (all others)
Environment: CARGO_HTTP_CHECK_REVOKE

This determines whether or not TLS certificate revocation checks should
be performed. This only works on Windows.

https://everything.curl.dev/transfers/conn/proxies#proxy-types

http.ssl-version

Type: string or min/max table
Default: none
Environment: CARGO_HTTP_SSL_VERSION

This sets the minimum TLS version to use. It takes a string, with one of
the possible values of "default" , "tlsv1" , "tlsv1.0" , "tlsv1.1" ,
"tlsv1.2" , or "tlsv1.3" .

This may alternatively take a table with two keys, min and max , which
each take a string value of the same kind that specifies the minimum and
maximum range of TLS versions to use.

The default is a minimum version of "tlsv1.0" and a max of the
newest version supported on your platform, typically "tlsv1.3" .

http.low-speed-limit

Type: integer
Default: 10
Environment: CARGO_HTTP_LOW_SPEED_LIMIT

This setting controls timeout behavior for slow connections. If the
average transfer speed in bytes per second is below the given value for
http.timeout seconds (default 30 seconds), then the connection is
considered too slow and Cargo will abort and retry.

http.multiplexing

Type: boolean
Default: true
Environment: CARGO_HTTP_MULTIPLEXING

When true , Cargo will attempt to use the HTTP2 protocol with
multiplexing. This allows multiple requests to use the same connection,
usually improving performance when fetching multiple files. If false ,
Cargo will use HTTP 1.1 without pipelining.

http.user-agent

Type: string
Default: Cargo's version
Environment: CARGO_HTTP_USER_AGENT

Specifies a custom user-agent header to use. The default if not specified
is a string that includes Cargo's version.

[install]
The [install] table defines defaults for the cargo install

command.

install.root

Type: string (path)
Default: Cargo's home directory
Environment: CARGO_INSTALL_ROOT

Sets the path to the root directory for installing executables for cargo
install . Executables go into a bin directory underneath the root.

To track information of installed executables, some extra files, such as
.crates.toml and .crates2.json , are also created under this root.

The default if not specified is Cargo's home directory (default .cargo in
your home directory).

Can be overridden with the --root command-line option.

[net]
The [net] table controls networking configuration.

net.retry

Type: integer
Default: 3
Environment: CARGO_NET_RETRY

Number of times to retry possibly spurious network errors.

net.git-fetch-with-cli

clbr://internal.invalid/book/OEBPS/commands/cargo-install.md
clbr://internal.invalid/book/OEBPS/commands/cargo-install.md

Type: boolean
Default: false
Environment: CARGO_NET_GIT_FETCH_WITH_CLI

If this is true , then Cargo will use the git executable to fetch registry
indexes and git dependencies. If false , then it uses a built-in git library.

Setting this to true can be helpful if you have special authentication
requirements that Cargo does not support. See Git Authentication for more
information about setting up git authentication.

net.offline

Type: boolean
Default: false
Environment: CARGO_NET_OFFLINE

If this is true , then Cargo will avoid accessing the network, and attempt
to proceed with locally cached data. If false , Cargo will access the
network as needed, and generate an error if it encounters a network error.

Can be overridden with the --offline command-line option.

net.ssh

The [net.ssh] table contains settings for SSH connections.

net.ssh.known-hosts

Type: array of strings
Default: see description
Environment: not supported

The known-hosts array contains a list of SSH host keys that should be
accepted as valid when connecting to an SSH server (such as for SSH git
dependencies). Each entry should be a string in a format similar to
OpenSSH known_hosts files. Each string should start with one or more
hostnames separated by commas, a space, the key type name, a space, and
the base64-encoded key. For example:
[net.ssh]
known-hosts = [

clbr://internal.invalid/book/OEBPS/appendix/git-authentication.md

 "example.com ssh-ed25519
AAAAC3NzaC1lZDI1NTE5AAAAIFO4Q5T0UV0SQevair9PFwoxY9dl4pQl3u5pho
qJH3cF"
]

Cargo will attempt to load known hosts keys from common locations
supported in OpenSSH, and will join those with any listed in a Cargo
configuration file. If any matching entry has the correct key, the connection
will be allowed.

Cargo comes with the host keys for github.com built-in. If those ever
change, you can add the new keys to the config or known_hosts file.

See Git Authentication for more details.

[patch]
Just as you can override dependencies using [patch] in Cargo.toml ,

you can override them in the cargo configuration file to apply those patches
to any affected build. The format is identical to the one used in
Cargo.toml .

Since .cargo/config.toml files are not usually checked into source
control, you should prefer patching using Cargo.toml where possible to
ensure that other developers can compile your crate in their own
environments. Patching through cargo configuration files is generally only
appropriate when the patch section is automatically generated by an
external build tool.

If a given dependency is patched both in a cargo configuration file and a
Cargo.toml file, the patch in the configuration file is used. If multiple
configuration files patch the same dependency, standard cargo configuration
merging is used, which prefers the value defined closest to the current
directory, with $HOME/.cargo/config.toml taking the lowest precedence.

Relative path dependencies in such a [patch] section are resolved
relative to the configuration file they appear in.

[profile]

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/githubs-ssh-key-fingerprints
clbr://internal.invalid/book/OEBPS/appendix/git-authentication.md#ssh-known-hosts
clbr://internal.invalid/book/OEBPS/reference/overriding-dependencies.md#the-patch-section

The [profile] table can be used to globally change profile settings,
and override settings specified in Cargo.toml . It has the same syntax and
options as profiles specified in Cargo.toml . See the Profiles chapter for
details about the options.

[profile.<name>.build-override]

Environment: CARGO_PROFILE_<name>_BUILD_OVERRIDE_<key>
The build-override table overrides settings for build scripts, proc macros,

and their dependencies. It has the same keys as a normal profile. See the
overrides section for more details.

[profile.<name>.package.<name>]

Environment: not supported
The package table overrides settings for specific packages. It has the

same keys as a normal profile, minus the panic , lto , and rpath settings.
See the overrides section for more details.

profile.<name>.codegen-units

Type: integer
Default: See profile docs.
Environment: CARGO_PROFILE_<name>_CODEGEN_UNITS

See codegen-units.

profile.<name>.debug

Type: integer or boolean
Default: See profile docs.
Environment: CARGO_PROFILE_<name>_DEBUG

See debug.

profile.<name>.split-debuginfo

Type: string
Default: See profile docs.

clbr://internal.invalid/book/OEBPS/reference/profiles.md
clbr://internal.invalid/book/OEBPS/reference/profiles.md#overrides
clbr://internal.invalid/book/OEBPS/reference/profiles.md#overrides
clbr://internal.invalid/book/OEBPS/reference/profiles.md#codegen-units
clbr://internal.invalid/book/OEBPS/reference/profiles.md#debug

Environment: CARGO_PROFILE_<name>_SPLIT_DEBUGINFO
See split-debuginfo.

profile.<name>.debug-assertions

Type: boolean
Default: See profile docs.
Environment: CARGO_PROFILE_<name>_DEBUG_ASSERTIONS

See debug-assertions.

profile.<name>.incremental

Type: boolean
Default: See profile docs.
Environment: CARGO_PROFILE_<name>_INCREMENTAL

See incremental.

profile.<name>.lto

Type: string or boolean
Default: See profile docs.
Environment: CARGO_PROFILE_<name>_LTO

See lto.

profile.<name>.overflow-checks

Type: boolean
Default: See profile docs.
Environment: CARGO_PROFILE_<name>_OVERFLOW_CHECKS

See overflow-checks.

profile.<name>.opt-level

Type: integer or string
Default: See profile docs.
Environment: CARGO_PROFILE_<name>_OPT_LEVEL

See opt-level.

clbr://internal.invalid/book/OEBPS/reference/profiles.md#split-debuginfo
clbr://internal.invalid/book/OEBPS/reference/profiles.md#debug-assertions
clbr://internal.invalid/book/OEBPS/reference/profiles.md#incremental
clbr://internal.invalid/book/OEBPS/reference/profiles.md#lto
clbr://internal.invalid/book/OEBPS/reference/profiles.md#overflow-checks
clbr://internal.invalid/book/OEBPS/reference/profiles.md#opt-level

profile.<name>.panic

Type: string
Default: See profile docs.
Environment: CARGO_PROFILE_<name>_PANIC

See panic.

profile.<name>.rpath

Type: boolean
Default: See profile docs.
Environment: CARGO_PROFILE_<name>_RPATH

See rpath.

profile.<name>.strip

Type: string or boolean
Default: See profile docs.
Environment: CARGO_PROFILE_<name>_STRIP

See strip.

[resolver]
The [resolver] table overrides dependency resolution behavior for

local development (e.g. excludes cargo install).

resolver.incompatible-rust-versions

Type: string
Default: See resolver docs
Environment: CARGO_RESOLVER_INCOMPATIBLE_RUST_VERSIONS

When resolving which version of a dependency to use, select how
versions with incompatible package.rust-version s are treated. Values
include:

allow : treat rust-version -incompatible versions like any other
version

clbr://internal.invalid/book/OEBPS/reference/profiles.md#panic
clbr://internal.invalid/book/OEBPS/reference/profiles.md#rpath
clbr://internal.invalid/book/OEBPS/reference/profiles.md#strip
clbr://internal.invalid/book/OEBPS/reference/resolver.md
clbr://internal.invalid/book/OEBPS/reference/resolver.md#resolver-versions

fallback : only consider rust-version -incompatible versions if no
other version matched

Can be overridden with

--ignore-rust-version CLI option
Setting the dependency's version requirement higher than any version
with a compatible rust-version
Specifying the version to cargo update with --precise

See the resolver chapter for more details.

MSRV:

allow is supported on any version
fallback is respected as of 1.84

[registries]
The [registries] table is used for specifying additional registries. It

consists of a sub-table for each named registry.

registries.<name>.index

Type: string (url)
Default: none
Environment: CARGO_REGISTRIES_<name>_INDEX

Specifies the URL of the index for the registry.

registries.<name>.token

Type: string
Default: none
Environment: CARGO_REGISTRIES_<name>_TOKEN

Specifies the authentication token for the given registry. This value
should only appear in the credentials file. This is used for registry
commands like cargo publish that require authentication.

Can be overridden with the --token command-line option.

clbr://internal.invalid/book/OEBPS/reference/resolver.md#rust-version
clbr://internal.invalid/book/OEBPS/reference/registries.md
clbr://internal.invalid/book/OEBPS/commands/cargo-publish.md

registries.<name>.credential-provider

Type: string or array of path and arguments
Default: none
Environment: CARGO_REGISTRIES_<name>_CREDENTIAL_PROVIDER

Specifies the credential provider for the given registry. If not set, the
providers in registry.global-credential-providers will be used.

If specified as a string, path and arguments will be split on spaces. For
paths or arguments that contain spaces, use an array.

If the value exists in the [credential-alias] table, the alias will be
used.

See Registry Authentication for more information.

registries.crates-io.protocol

Type: string
Default: "sparse"
Environment: CARGO_REGISTRIES_CRATES_IO_PROTOCOL

Specifies the protocol used to access crates.io. Allowed values are git
or sparse .

git causes Cargo to clone the entire index of all packages ever
published to crates.io from https://github.com/rust-lang/crates.io-index/.
This can have performance implications due to the size of the index.
sparse is a newer protocol which uses HTTPS to download only what is
necessary from https://index.crates.io/. This can result in a significant
performance improvement for resolving new dependencies in most
situations.

More information about registry protocols may be found in the
Registries chapter.

[registry]
The [registry] table controls the default registry used when one is not

specified.

clbr://internal.invalid/book/OEBPS/reference/registry-authentication.md
https://crates.io/
https://github.com/rust-lang/crates.io-index/
https://index.crates.io/
clbr://internal.invalid/book/OEBPS/reference/registries.md

registry.index

This value is no longer accepted and should not be used.

registry.default

Type: string
Default: "crates-io"
Environment: CARGO_REGISTRY_DEFAULT

The name of the registry (from the registries table) to use by default
for registry commands like cargo publish .

Can be overridden with the --registry command-line option.

registry.credential-provider

Type: string or array of path and arguments
Default: none
Environment: CARGO_REGISTRY_CREDENTIAL_PROVIDER

Specifies the credential provider for crates.io. If not set, the providers in
registry.global-credential-providers will be used.

If specified as a string, path and arguments will be split on spaces. For
paths or arguments that contain spaces, use an array.

If the value exists in the [credential-alias] table, the alias will be
used.

See Registry Authentication for more information.

registry.token

Type: string
Default: none
Environment: CARGO_REGISTRY_TOKEN

Specifies the authentication token for crates.io. This value should only
appear in the credentials file. This is used for registry commands like cargo
publish that require authentication.

Can be overridden with the --token command-line option.

clbr://internal.invalid/book/OEBPS/commands/cargo-publish.md
https://crates.io/
clbr://internal.invalid/book/OEBPS/reference/registry-authentication.md
https://crates.io/
clbr://internal.invalid/book/OEBPS/commands/cargo-publish.md

registry.global-credential-providers

Type: array
Default: ["cargo:token"]
Environment: CARGO_REGISTRY_GLOBAL_CREDENTIAL_PROVIDERS

Specifies the list of global credential providers. If credential provider is
not set for a specific registry using registries.<name>.credential-

provider , Cargo will use the credential providers in this list. Providers
toward the end of the list have precedence.

Path and arguments are split on spaces. If the path or arguments contains
spaces, the credential provider should be defined in the [credential-
alias] table and referenced here by its alias.

See Registry Authentication for more information.

[source]
The [source] table defines the registry sources available. See Source

Replacement for more information. It consists of a sub-table for each
named source. A source should only define one kind (directory, registry,
local-registry, or git).

source.<name>.replace-with

Type: string
Default: none
Environment: not supported

If set, replace this source with the given named source or named registry.

source.<name>.directory

Type: string (path)
Default: none
Environment: not supported

Sets the path to a directory to use as a directory source.

source.<name>.registry

clbr://internal.invalid/book/OEBPS/reference/registry-authentication.md
clbr://internal.invalid/book/OEBPS/reference/source-replacement.md

Type: string (url)
Default: none
Environment: not supported

Sets the URL to use for a registry source.

source.<name>.local-registry

Type: string (path)
Default: none
Environment: not supported

Sets the path to a directory to use as a local registry source.

source.<name>.git

Type: string (url)
Default: none
Environment: not supported

Sets the URL to use for a git repository source.

source.<name>.branch

Type: string
Default: none
Environment: not supported

Sets the branch name to use for a git repository.
If none of branch , tag , or rev is set, defaults to the master branch.

source.<name>.tag

Type: string
Default: none
Environment: not supported

Sets the tag name to use for a git repository.
If none of branch , tag , or rev is set, defaults to the master branch.

source.<name>.rev

Type: string

Default: none
Environment: not supported

Sets the revision to use for a git repository.
If none of branch , tag , or rev is set, defaults to the master branch.

[target]
The [target] table is used for specifying settings for specific platform

targets. It consists of a sub-table which is either a platform triple or a cfg()
expression. The given values will be used if the target platform matches
either the <triple> value or the <cfg> expression.
[target.thumbv7m-none-eabi]
linker = "arm-none-eabi-gcc"
runner = "my-emulator"
rustflags = ["…", "…"]

[target.'cfg(all(target_arch = "arm", target_os = "none"))']
runner = "my-arm-wrapper"
rustflags = ["…", "…"]

cfg values come from those built-in to the compiler (run rustc --
print=cfg to view) and extra --cfg flags passed to rustc (such as those
defined in RUSTFLAGS). Do not try to match on debug_assertions , test ,
Cargo features like feature="foo" , or values set by build scripts.

If using a target spec JSON file, the <triple> value is the filename
stem. For example --target foo/bar.json would match [target.bar] .

target.<triple>.ar

This option is deprecated and unused.

target.<triple>.linker

Type: string (program path)
Default: none
Environment: CARGO_TARGET_<triple>_LINKER

https://git-scm.com/docs/gitrevisions
clbr://internal.invalid/book/OEBPS/appendix/glossary.md#target
clbr://internal.invalid/book/reference/conditional-compilation.html
clbr://internal.invalid/book/OEBPS/reference/build-scripts.md
clbr://internal.invalid/book/OEBPS/appendix/glossary.md#target

Specifies the linker which is passed to rustc (via -C linker) when the
<triple> is being compiled for. By default, the linker is not overridden.

target.<cfg>.linker

This is similar to the target linker, but using a cfg() expression. If both
a <triple> and <cfg> runner match, the <triple> will take precedence.
It is an error if more than one <cfg> runner matches the current target.

target.<triple>.runner

Type: string or array of strings (program path with args)
Default: none
Environment: CARGO_TARGET_<triple>_RUNNER

If a runner is provided, executables for the target <triple> will be
executed by invoking the specified runner with the actual executable passed
as an argument. This applies to cargo run , cargo test and cargo bench
commands. By default, compiled executables are executed directly.

target.<cfg>.runner

This is similar to the target runner, but using a cfg() expression. If both
a <triple> and <cfg> runner match, the <triple> will take precedence.
It is an error if more than one <cfg> runner matches the current target.

target.<triple>.rustflags

Type: string or array of strings
Default: none
Environment: CARGO_TARGET_<triple>_RUSTFLAGS

Passes a set of custom flags to the compiler for this <triple> . The
value may be an array of strings or a space-separated string.

See build.rustflags for more details on the different ways to specific
extra flags.

target.<cfg>.rustflags

clbr://internal.invalid/book/rustc/codegen-options/index.md#linker
clbr://internal.invalid/book/OEBPS/appendix/glossary.md#target
clbr://internal.invalid/book/reference/conditional-compilation.html
clbr://internal.invalid/book/OEBPS/appendix/glossary.md#target
clbr://internal.invalid/book/OEBPS/appendix/glossary.md#target
clbr://internal.invalid/book/OEBPS/commands/cargo-run.md
clbr://internal.invalid/book/OEBPS/commands/cargo-test.md
clbr://internal.invalid/book/OEBPS/commands/cargo-bench.md
clbr://internal.invalid/book/reference/conditional-compilation.html
clbr://internal.invalid/book/OEBPS/appendix/glossary.md#target
clbr://internal.invalid/book/OEBPS/appendix/glossary.md#target

This is similar to the target rustflags, but using a cfg() expression. If
several <cfg> and <triple> entries match the current target, the flags are
joined together.

target.<triple>.rustdocflags

Type: string or array of strings
Default: none
Environment: CARGO_TARGET_<triple>_RUSTDOCFLAGS

Passes a set of custom flags to the compiler for this <triple> . The
value may be an array of strings or a space-separated string.

See build.rustdocflags for more details on the different ways to
specific extra flags.

target.<triple>.<links>

The links sub-table provides a way to override a build script. When
specified, the build script for the given links library will not be run, and
the given values will be used instead.
[target.x86_64-unknown-linux-gnu.foo]
rustc-link-lib = ["foo"]
rustc-link-search = ["/path/to/foo"]
rustc-flags = "-L /some/path"
rustc-cfg = ['key="value"']
rustc-env = {key = "value"}
rustc-cdylib-link-arg = ["…"]
metadata_key1 = "value"
metadata_key2 = "value"

[term]
The [term] table controls terminal output and interaction.

term.quiet

Type: boolean
Default: false

clbr://internal.invalid/book/reference/conditional-compilation.html
clbr://internal.invalid/book/OEBPS/appendix/glossary.md#target
clbr://internal.invalid/book/OEBPS/appendix/glossary.md#target
clbr://internal.invalid/book/OEBPS/reference/build-scripts.md#overriding-build-scripts

Environment: CARGO_TERM_QUIET
Controls whether or not log messages are displayed by Cargo.
Specifying the --quiet flag will override and force quiet output.

Specifying the --verbose flag will override and disable quiet output.

term.verbose

Type: boolean
Default: false
Environment: CARGO_TERM_VERBOSE

Controls whether or not extra detailed messages are displayed by Cargo.
Specifying the --quiet flag will override and disable verbose output.

Specifying the --verbose flag will override and force verbose output.

term.color

Type: string
Default: "auto"
Environment: CARGO_TERM_COLOR

Controls whether or not colored output is used in the terminal. Possible
values:

auto (default): Automatically detect if color support is available on
the terminal.
always : Always display colors.
never : Never display colors.

Can be overridden with the --color command-line option.

term.hyperlinks

Type: bool
Default: auto-detect
Environment: CARGO_TERM_HYPERLINKS

Controls whether or not hyperlinks are used in the terminal.

term.unicode

Type: bool
Default: auto-detect
Environment: CARGO_TERM_UNICODE

Control whether output can be rendered using non-ASCII unicode
characters.

term.progress.when

Type: string
Default: "auto"
Environment: CARGO_TERM_PROGRESS_WHEN

Controls whether or not progress bar is shown in the terminal. Possible
values:

auto (default): Intelligently guess whether to show progress bar.
always : Always show progress bar.
never : Never show progress bar.

term.progress.width

Type: integer
Default: none
Environment: CARGO_TERM_PROGRESS_WIDTH

Sets the width for progress bar.

term.progress.term-integration

Type: bool
Default: auto-detect
Environment: CARGO_TERM_PROGRESS_TERM_INTEGRATION

Report progress to the terminal emulator for display in places like the
task bar.

Environment Variables
Cargo sets and reads a number of environment variables which your

code can detect or override. Here is a list of the variables Cargo sets,
organized by when it interacts with them:

Environment variables Cargo reads
You can override these environment variables to change Cargo's

behavior on your system:

CARGO_LOG --- Cargo uses the tracing crate to display debug log
messages. The CARGO_LOG environment variable can be set to enable
debug logging, with a value such as trace , debug , or warn . Usually
it is only used during debugging. For more details refer to the Debug
logging.
CARGO_HOME --- Cargo maintains a local cache of the registry index
and of git checkouts of crates. By default these are stored under
$HOME/.cargo (%USERPROFILE%\.cargo on Windows), but this
variable overrides the location of this directory. Once a crate is cached
it is not removed by the clean command. For more details refer to the
guide.
CARGO_TARGET_DIR --- Location of where to place all generated
artifacts, relative to the current working directory. See build.target-
dir to set via config.
CARGO --- If set, Cargo will forward this value instead of setting it to
its own auto-detected path when it builds crates and when it executes
build scripts and external subcommands. This value is not directly
executed by Cargo, and should always point at a command that
behaves exactly like cargo , as that's what users of the variable will be
expecting.
RUSTC --- Instead of running rustc , Cargo will execute this specified
compiler instead. See build.rustc to set via config.
RUSTC_WRAPPER --- Instead of simply running rustc , Cargo will
execute this specified wrapper, passing as its command-line arguments
the rustc invocation, with the first argument being the path to the
actual rustc. Useful to set up a build cache tool such as sccache . See
build.rustc-wrapper to set via config. Setting this to the empty
string overwrites the config and resets cargo to not use a wrapper.

https://docs.rs/tracing
https://doc.crates.io/contrib/implementation/debugging.html#logging
clbr://internal.invalid/book/OEBPS/guide/cargo-home.md
clbr://internal.invalid/book/OEBPS/reference/config.md#buildtarget-dir
clbr://internal.invalid/book/OEBPS/reference/config.md#buildrustc
clbr://internal.invalid/book/OEBPS/reference/config.md#buildrustc-wrapper

RUSTC_WORKSPACE_WRAPPER --- Instead of simply running rustc , for
workspace members Cargo will execute this specified wrapper, passing
as its command-line arguments the rustc invocation, with the first
argument being the path to the actual rustc. When building a single-
package project without workspaces, that package is considered to be
the workspace. It affects the filename hash so that artifacts produced
by the wrapper are cached separately. See build.rustc-workspace-
wrapper to set via config. Setting this to the empty string overwrites
the config and resets cargo to not use a wrapper for workspace
members. If both RUSTC_WRAPPER and RUSTC_WORKSPACE_WRAPPER are
set, then they will be nested: the final invocation is $RUSTC_WRAPPER
$RUSTC_WORKSPACE_WRAPPER $RUSTC .
RUSTDOC --- Instead of running rustdoc , Cargo will execute this
specified rustdoc instance instead. See build.rustdoc to set via
config.
RUSTDOCFLAGS --- A space-separated list of custom flags to pass to all
rustdoc invocations that Cargo performs. In contrast with cargo
rustdoc , this is useful for passing a flag to all rustdoc instances. See
build.rustdocflags for some more ways to set flags. This string is
split by whitespace; for a more robust encoding of multiple arguments,
see CARGO_ENCODED_RUSTDOCFLAGS .
CARGO_ENCODED_RUSTDOCFLAGS --- A list of custom flags separated by
0x1f (ASCII Unit Separator) to pass to all rustdoc invocations that
Cargo performs.
RUSTFLAGS --- A space-separated list of custom flags to pass to all
compiler invocations that Cargo performs. In contrast with cargo
rustc , this is useful for passing a flag to all compiler instances. See
build.rustflags for some more ways to set flags. This string is split
by whitespace; for a more robust encoding of multiple arguments, see
CARGO_ENCODED_RUSTFLAGS .
CARGO_ENCODED_RUSTFLAGS --- A list of custom flags separated by
0x1f (ASCII Unit Separator) to pass to all compiler invocations that
Cargo performs.

clbr://internal.invalid/book/OEBPS/reference/config.md#buildrustc-workspace-wrapper
clbr://internal.invalid/book/OEBPS/reference/config.md#buildrustdoc
clbr://internal.invalid/book/OEBPS/commands/cargo-rustdoc.md
clbr://internal.invalid/book/OEBPS/reference/config.md#buildrustdocflags
clbr://internal.invalid/book/OEBPS/commands/cargo-rustc.md
clbr://internal.invalid/book/OEBPS/reference/config.md#buildrustflags

CARGO_INCREMENTAL --- If this is set to 1 then Cargo will force
incremental compilation to be enabled for the current compilation, and
when set to 0 it will force disabling it. If this env var isn't present then
cargo's defaults will otherwise be used. See also build.incremental
config value.
CARGO_CACHE_RUSTC_INFO --- If this is set to 0 then Cargo will not try
to cache compiler version information.
HTTPS_PROXY or https_proxy or http_proxy --- The HTTP proxy to
use, see http.proxy for more detail.
HTTP_TIMEOUT --- The HTTP timeout in seconds, see http.timeout
for more detail.
TERM --- If this is set to dumb , it disables the progress bar.
BROWSER --- The web browser to execute to open documentation with
cargo doc 's' --open flag, see doc.browser for more details.
RUSTFMT --- Instead of running rustfmt , cargo fmt will execute this
specified rustfmt instance instead.

Configuration environment variables
Cargo reads environment variables for some configuration values. See

the configuration chapter for more details. In summary, the supported
environment variables are:

CARGO_ALIAS_<name> --- Command aliases, see alias .
CARGO_BUILD_JOBS --- Number of parallel jobs, see build.jobs .
CARGO_BUILD_RUSTC --- The rustc executable, see build.rustc .
CARGO_BUILD_RUSTC_WRAPPER --- The rustc wrapper, see
build.rustc-wrapper .
CARGO_BUILD_RUSTC_WORKSPACE_WRAPPER --- The rustc wrapper for
workspace members only, see build.rustc-workspace-wrapper .
CARGO_BUILD_RUSTDOC --- The rustdoc executable, see
build.rustdoc .
CARGO_BUILD_TARGET --- The default target platform, see
build.target .

clbr://internal.invalid/book/OEBPS/reference/profiles.md#incremental
clbr://internal.invalid/book/OEBPS/reference/config.md#buildincremental
clbr://internal.invalid/book/OEBPS/reference/config.md#httpproxy
clbr://internal.invalid/book/OEBPS/reference/config.md#httptimeout
clbr://internal.invalid/book/OEBPS/commands/cargo-doc.md
clbr://internal.invalid/book/OEBPS/reference/config.md#docbrowser
https://github.com/rust-lang/rustfmt
clbr://internal.invalid/book/OEBPS/reference/config.md#environment-variables
clbr://internal.invalid/book/OEBPS/reference/config.md#alias
clbr://internal.invalid/book/OEBPS/reference/config.md#buildjobs
clbr://internal.invalid/book/OEBPS/reference/config.md#buildrustc
clbr://internal.invalid/book/OEBPS/reference/config.md#buildrustc-wrapper
clbr://internal.invalid/book/OEBPS/reference/config.md#buildrustc-workspace-wrapper
clbr://internal.invalid/book/OEBPS/reference/config.md#buildrustdoc
clbr://internal.invalid/book/OEBPS/reference/config.md#buildtarget

CARGO_BUILD_TARGET_DIR --- The default output directory, see
build.target-dir .
CARGO_BUILD_RUSTFLAGS --- Extra rustc flags, see
build.rustflags .
CARGO_BUILD_RUSTDOCFLAGS --- Extra rustdoc flags, see
build.rustdocflags .
CARGO_BUILD_INCREMENTAL --- Incremental compilation, see
build.incremental .
CARGO_BUILD_DEP_INFO_BASEDIR --- Dep-info relative directory, see
build.dep-info-basedir .
CARGO_CACHE_AUTO_CLEAN_FREQUENCY --- Configures how often
automatic cache cleaning runs, see cache.auto-clean-frequency .
CARGO_CARGO_NEW_VCS --- The default source control system with
cargo new , see cargo-new.vcs .
CARGO_FUTURE_INCOMPAT_REPORT_FREQUENCY --- How often we
should generate a future incompat report notification, see future-
incompat-report.frequency .
CARGO_HTTP_DEBUG --- Enables HTTP debugging, see http.debug .
CARGO_HTTP_PROXY --- Enables HTTP proxy, see http.proxy .
CARGO_HTTP_TIMEOUT --- The HTTP timeout, see http.timeout .
CARGO_HTTP_CAINFO --- The TLS certificate Certificate Authority file,
see http.cainfo .
CARGO_HTTP_PROXY_CAINFO --- The proxy TLS certificate Certificate
Authority file, see http.proxy-cainfo .
CARGO_HTTP_CHECK_REVOKE --- Disables TLS certificate revocation
checks, see http.check-revoke .
CARGO_HTTP_SSL_VERSION --- The TLS version to use, see http.ssl-
version .
CARGO_HTTP_LOW_SPEED_LIMIT --- The HTTP low-speed limit, see
http.low-speed-limit .
CARGO_HTTP_MULTIPLEXING --- Whether HTTP/2 multiplexing is used,
see http.multiplexing .

clbr://internal.invalid/book/OEBPS/reference/config.md#buildtarget-dir
clbr://internal.invalid/book/OEBPS/reference/config.md#buildrustflags
clbr://internal.invalid/book/OEBPS/reference/config.md#buildrustdocflags
clbr://internal.invalid/book/OEBPS/reference/config.md#buildincremental
clbr://internal.invalid/book/OEBPS/reference/config.md#builddep-info-basedir
clbr://internal.invalid/book/OEBPS/reference/config.md#cacheauto-clean-frequency
clbr://internal.invalid/book/OEBPS/commands/cargo-new.md
clbr://internal.invalid/book/OEBPS/reference/config.md#cargo-newvcs
clbr://internal.invalid/book/OEBPS/reference/config.md#future-incompat-reportfrequency
clbr://internal.invalid/book/OEBPS/reference/config.md#httpdebug
clbr://internal.invalid/book/OEBPS/reference/config.md#httpproxy
clbr://internal.invalid/book/OEBPS/reference/config.md#httptimeout
clbr://internal.invalid/book/OEBPS/reference/config.md#httpcainfo
clbr://internal.invalid/book/OEBPS/reference/config.md#httpproxy-cainfo
clbr://internal.invalid/book/OEBPS/reference/config.md#httpcheck-revoke
clbr://internal.invalid/book/OEBPS/reference/config.md#httpssl-version
clbr://internal.invalid/book/OEBPS/reference/config.md#httplow-speed-limit
clbr://internal.invalid/book/OEBPS/reference/config.md#httpmultiplexing

CARGO_HTTP_USER_AGENT --- The HTTP user-agent header, see
http.user-agent .
CARGO_INSTALL_ROOT --- The default directory for cargo install ,
see install.root .
CARGO_NET_RETRY --- Number of times to retry network errors, see
net.retry .
CARGO_NET_GIT_FETCH_WITH_CLI --- Enables the use of the git
executable to fetch, see net.git-fetch-with-cli .
CARGO_NET_OFFLINE --- Offline mode, see net.offline .
CARGO_PROFILE_<name>_BUILD_OVERRIDE_<key> --- Override build
script profile, see profile.<name>.build-override .
CARGO_PROFILE_<name>_CODEGEN_UNITS --- Set code generation units,
see profile.<name>.codegen-units .
CARGO_PROFILE_<name>_DEBUG --- What kind of debug info to
include, see profile.<name>.debug .
CARGO_PROFILE_<name>_DEBUG_ASSERTIONS --- Enable/disable debug
assertions, see profile.<name>.debug-assertions .
CARGO_PROFILE_<name>_INCREMENTAL --- Enable/disable incremental
compilation, see profile.<name>.incremental .
CARGO_PROFILE_<name>_LTO --- Link-time optimization, see
profile.<name>.lto .
CARGO_PROFILE_<name>_OVERFLOW_CHECKS --- Enable/disable
overflow checks, see profile.<name>.overflow-checks .
CARGO_PROFILE_<name>_OPT_LEVEL --- Set the optimization level, see
profile.<name>.opt-level .
CARGO_PROFILE_<name>_PANIC --- The panic strategy to use, see
profile.<name>.panic .
CARGO_PROFILE_<name>_RPATH --- The rpath linking option, see
profile.<name>.rpath .
CARGO_PROFILE_<name>_SPLIT_DEBUGINFO --- Controls debug file
output behavior, see profile.<name>.split-debuginfo .

clbr://internal.invalid/book/OEBPS/reference/config.md#httpuser-agent
clbr://internal.invalid/book/OEBPS/commands/cargo-install.md
clbr://internal.invalid/book/OEBPS/reference/config.md#installroot
clbr://internal.invalid/book/OEBPS/reference/config.md#netretry
clbr://internal.invalid/book/OEBPS/reference/config.md#netgit-fetch-with-cli
clbr://internal.invalid/book/OEBPS/reference/config.md#netoffline
clbr://internal.invalid/book/OEBPS/reference/config.md#profilenamebuild-override
clbr://internal.invalid/book/OEBPS/reference/config.md#profilenamecodegen-units
clbr://internal.invalid/book/OEBPS/reference/config.md#profilenamedebug
clbr://internal.invalid/book/OEBPS/reference/config.md#profilenamedebug-assertions
clbr://internal.invalid/book/OEBPS/reference/config.md#profilenameincremental
clbr://internal.invalid/book/OEBPS/reference/config.md#profilenamelto
clbr://internal.invalid/book/OEBPS/reference/config.md#profilenameoverflow-checks
clbr://internal.invalid/book/OEBPS/reference/config.md#profilenameopt-level
clbr://internal.invalid/book/OEBPS/reference/config.md#profilenamepanic
clbr://internal.invalid/book/OEBPS/reference/config.md#profilenamerpath
clbr://internal.invalid/book/OEBPS/reference/config.md#profilenamesplit-debuginfo

CARGO_PROFILE_<name>_STRIP --- Controls stripping of symbols
and/or debuginfos, see profile.<name>.strip .
CARGO_REGISTRIES_<name>_CREDENTIAL_PROVIDER --- Credential
provider for a registry, see registries.<name>.credential-
provider .
CARGO_REGISTRIES_<name>_INDEX --- URL of a registry index, see
registries.<name>.index .
CARGO_REGISTRIES_<name>_TOKEN --- Authentication token of a
registry, see registries.<name>.token .
CARGO_REGISTRY_CREDENTIAL_PROVIDER --- Credential provider for
crates.io, see registry.credential-provider .
CARGO_REGISTRY_DEFAULT --- Default registry for the --registry
flag, see registry.default .
CARGO_REGISTRY_GLOBAL_CREDENTIAL_PROVIDERS --- Credential
providers for registries that do not have a specific provider defined.
See registry.global-credential-providers .
CARGO_REGISTRY_TOKEN --- Authentication token for crates.io, see
registry.token .
CARGO_TARGET_<triple>_LINKER --- The linker to use, see target.
<triple>.linker . The triple must be converted to uppercase and
underscores.
CARGO_TARGET_<triple>_RUNNER --- The executable runner, see
target.<triple>.runner .
CARGO_TARGET_<triple>_RUSTFLAGS --- Extra rustc flags for a
target, see target.<triple>.rustflags .
CARGO_TERM_QUIET --- Quiet mode, see term.quiet .
CARGO_TERM_VERBOSE --- The default terminal verbosity, see
term.verbose .
CARGO_TERM_COLOR --- The default color mode, see term.color .
CARGO_TERM_PROGRESS_WHEN --- The default progress bar showing
mode, see term.progress.when .

clbr://internal.invalid/book/OEBPS/reference/config.md#profilenamestrip
clbr://internal.invalid/book/OEBPS/reference/config.md#registriesnamecredential-provider
clbr://internal.invalid/book/OEBPS/reference/config.md#registriesnameindex
clbr://internal.invalid/book/OEBPS/reference/config.md#registriesnametoken
https://crates.io/
clbr://internal.invalid/book/OEBPS/reference/config.md#registrycredential-provider
clbr://internal.invalid/book/OEBPS/reference/config.md#registrydefault
clbr://internal.invalid/book/OEBPS/reference/config.md#registryglobal-credential-providers
https://crates.io/
clbr://internal.invalid/book/OEBPS/reference/config.md#registrytoken
clbr://internal.invalid/book/OEBPS/reference/config.md#targettriplelinker
clbr://internal.invalid/book/OEBPS/reference/config.md#environment-variables
clbr://internal.invalid/book/OEBPS/reference/config.md#targettriplerunner
clbr://internal.invalid/book/OEBPS/reference/config.md#targettriplerustflags
clbr://internal.invalid/book/OEBPS/reference/config.md#termquiet
clbr://internal.invalid/book/OEBPS/reference/config.md#termverbose
clbr://internal.invalid/book/OEBPS/reference/config.md#termcolor
clbr://internal.invalid/book/OEBPS/reference/config.md#termprogresswhen

CARGO_TERM_PROGRESS_WIDTH --- The default progress bar width, see
term.progress.width .

clbr://internal.invalid/book/OEBPS/reference/config.md#termprogresswidth

Environment variables Cargo sets for crates
Cargo exposes these environment variables to your crate when it is

compiled. Note that this applies for running binaries with cargo run and
cargo test as well. To get the value of any of these variables in a Rust
program, do this:
let version = env!("CARGO_PKG_VERSION");

version will now contain the value of CARGO_PKG_VERSION .
Note that if one of these values is not provided in the manifest, the

corresponding environment variable is set to the empty string, "" .

CARGO --- Path to the cargo binary performing the build.
CARGO_MANIFEST_DIR --- The directory containing the manifest of
your package.
CARGO_MANIFEST_PATH --- The path to the manifest of your package.
CARGO_PKG_VERSION --- The full version of your package.
CARGO_PKG_VERSION_MAJOR --- The major version of your package.
CARGO_PKG_VERSION_MINOR --- The minor version of your package.
CARGO_PKG_VERSION_PATCH --- The patch version of your package.
CARGO_PKG_VERSION_PRE --- The pre-release version of your package.
CARGO_PKG_AUTHORS --- Colon separated list of authors from the
manifest of your package.
CARGO_PKG_NAME --- The name of your package.
CARGO_PKG_DESCRIPTION --- The description from the manifest of
your package.
CARGO_PKG_HOMEPAGE --- The home page from the manifest of your
package.
CARGO_PKG_REPOSITORY --- The repository from the manifest of your
package.
CARGO_PKG_LICENSE --- The license from the manifest of your
package.

CARGO_PKG_LICENSE_FILE --- The license file from the manifest of
your package.
CARGO_PKG_RUST_VERSION --- The Rust version from the manifest of
your package. Note that this is the minimum Rust version supported by
the package, not the current Rust version.
CARGO_PKG_README --- Path to the README file of your package.
CARGO_CRATE_NAME --- The name of the crate that is currently being
compiled. It is the name of the Cargo target with - converted to _ ,
such as the name of the library, binary, example, integration test, or
benchmark.
CARGO_BIN_NAME --- The name of the binary that is currently being
compiled. Only set for binaries or binary examples. This name does
not include any file extension, such as .exe .
OUT_DIR --- If the package has a build script, this is set to the folder
where the build script should place its output. See below for more
information. (Only set during compilation.)
CARGO_BIN_EXE_<name> --- The absolute path to a binary target's
executable. This is only set when building an integration test or
benchmark. This may be used with the env macro to find the
executable to run for testing purposes. The <name> is the name of the
binary target, exactly as-is. For example, CARGO_BIN_EXE_my-program
for a binary named my-program . Binaries are automatically built when
the test is built, unless the binary has required features that are not
enabled.
CARGO_PRIMARY_PACKAGE --- This environment variable will be set if
the package being built is primary. Primary packages are the ones the
user selected on the command-line, either with -p flags or the defaults
based on the current directory and the default workspace members.
This variable will not be set when building dependencies, unless a
dependency is also a workspace member that was also selected on the
command-line. This is only set when compiling the package (not when
running binaries or tests).
CARGO_TARGET_TMPDIR --- Only set when building integration test or
benchmark code. This is a path to a directory inside the target directory

clbr://internal.invalid/book/OEBPS/reference/cargo-targets.md
clbr://internal.invalid/book/OEBPS/reference/cargo-targets.md#binaries
clbr://internal.invalid/book/OEBPS/reference/cargo-targets.md#examples
clbr://internal.invalid/book/OEBPS/reference/cargo-targets.md#integration-tests
clbr://internal.invalid/book/std/macro.env.html
clbr://internal.invalid/book/OEBPS/reference/cargo-targets.md#integration-tests

where integration tests or benchmarks are free to put any data needed
by the tests/benches. Cargo initially creates this directory but doesn't
manage its content in any way, this is the responsibility of the test
code.

Dynamic library paths
Cargo also sets the dynamic library path when compiling and running

binaries with commands like cargo run and cargo test . This helps with
locating shared libraries that are part of the build process. The variable
name depends on the platform:

Windows: PATH
macOS: DYLD_FALLBACK_LIBRARY_PATH
Unix: LD_LIBRARY_PATH
AIX: LIBPATH

The value is extended from the existing value when Cargo starts. macOS
has special consideration where if DYLD_FALLBACK_LIBRARY_PATH is not
already set, it will add the default $HOME/lib:/usr/local/lib:/usr/lib .

Cargo includes the following paths:

Search paths included from any build script with the rustc-link-
search instruction. Paths outside of the target directory are
removed. It is the responsibility of the user running Cargo to properly
set the environment if additional libraries on the system are needed in
the search path.
The base output directory, such as target/debug , and the "deps"
directory. This is mostly for support of proc-macros.
The rustc sysroot library path. This generally is not important to most
users.

clbr://internal.invalid/book/OEBPS/reference/build-scripts.md#rustc-link-search

Environment variables Cargo sets for build
scripts

Cargo sets several environment variables when build scripts are run.
Because these variables are not yet set when the build script is compiled,
the above example using env! won't work and instead you'll need to
retrieve the values when the build script is run:
use std::env;
let out_dir = env::var("OUT_DIR").unwrap();

out_dir will now contain the value of OUT_DIR .

CARGO --- Path to the cargo binary performing the build.
CARGO_MANIFEST_DIR --- The directory containing the manifest for the
package being built (the package containing the build script). Also
note that this is the value of the current working directory of the build
script when it starts.
CARGO_MANIFEST_PATH --- The path to the manifest of your package.
CARGO_MANIFEST_LINKS --- the manifest links value.
CARGO_MAKEFLAGS --- Contains parameters needed for Cargo's
jobserver implementation to parallelize subprocesses. Rustc or cargo
invocations from build.rs can already read CARGO_MAKEFLAGS , but
GNU Make requires the flags to be specified either directly as
arguments, or through the MAKEFLAGS environment variable. Currently
Cargo doesn't set the MAKEFLAGS variable, but it's free for build scripts
invoking GNU Make to set it to the contents of CARGO_MAKEFLAGS .
CARGO_FEATURE_<name> --- For each activated feature of the package
being built, this environment variable will be present where <name> is
the name of the feature uppercased and having - translated to _ .
CARGO_CFG_<cfg> --- For each configuration option of the package
being built, this environment variable will contain the value of the
configuration, where <cfg> is the name of the configuration
uppercased and having - translated to _ . Boolean configurations are

https://www.gnu.org/software/make/manual/html_node/Job-Slots.html
clbr://internal.invalid/book/reference/conditional-compilation.html

present if they are set, and not present otherwise. Configurations with
multiple values are joined to a single variable with the values delimited
by , . This includes values built-in to the compiler (which can be seen
with rustc --print=cfg) and values set by build scripts and extra
flags passed to rustc (such as those defined in RUSTFLAGS). Some
examples of what these variables are:

CARGO_CFG_FEATURE --- Each activated feature of the package
being built.
CARGO_CFG_UNIX --- Set on unix-like platforms.
CARGO_CFG_WINDOWS --- Set on windows-like platforms.
CARGO_CFG_TARGET_FAMILY=unix,wasm --- The target family.
CARGO_CFG_TARGET_OS=macos --- The target operating system.
CARGO_CFG_TARGET_ARCH=x86_64 --- The CPU target
architecture.
CARGO_CFG_TARGET_VENDOR=apple --- The target vendor.
CARGO_CFG_TARGET_ENV=gnu --- The target environment ABI.
CARGO_CFG_TARGET_ABI=eabihf --- The target ABI.
CARGO_CFG_TARGET_POINTER_WIDTH=64 --- The CPU pointer
width.
CARGO_CFG_TARGET_ENDIAN=little --- The CPU target
endianness.
CARGO_CFG_TARGET_FEATURE=mmx,sse --- List of CPU target
features enabled.

Note that different target triples have different sets of cfg
values, hence variables present in one target triple might not be
available in the other.

Some cfg values like debug_assertions and test are not
available.

OUT_DIR --- the folder in which all output and intermediate artifacts
should be placed. This folder is inside the build directory for the
package being built, and it is unique for the package in question.

clbr://internal.invalid/book/reference/conditional-compilation.html#unix-and-windows
clbr://internal.invalid/book/reference/conditional-compilation.html#unix-and-windows
clbr://internal.invalid/book/reference/conditional-compilation.html#target_family
clbr://internal.invalid/book/reference/conditional-compilation.html#target_os
clbr://internal.invalid/book/reference/conditional-compilation.html#target_arch
clbr://internal.invalid/book/reference/conditional-compilation.html#target_vendor
clbr://internal.invalid/book/reference/conditional-compilation.html#target_env
clbr://internal.invalid/book/reference/conditional-compilation.html#target_abi
clbr://internal.invalid/book/reference/conditional-compilation.html#target_pointer_width
clbr://internal.invalid/book/reference/conditional-compilation.html#target_endian
clbr://internal.invalid/book/reference/conditional-compilation.html#target_feature
clbr://internal.invalid/book/OEBPS/appendix/glossary.md#target

TARGET --- the target triple that is being compiled for. Native code
should be compiled for this triple. See the Target Triple description for
more information.
HOST --- the host triple of the Rust compiler.
NUM_JOBS --- the parallelism specified as the top-level parallelism.
This can be useful to pass a -j parameter to a system like make . Note
that care should be taken when interpreting this environment variable.
For historical purposes this is still provided but recent versions of
Cargo, for example, do not need to run make -j , and instead can set
the MAKEFLAGS env var to the content of CARGO_MAKEFLAGS to activate
the use of Cargo's GNU Make compatible jobserver for sub-make
invocations.
OPT_LEVEL , DEBUG --- values of the corresponding variables for the
profile currently being built.
PROFILE --- release for release builds, debug for other builds. This
is determined based on if the profile inherits from the dev or release
profile. Using this environment variable is not recommended. Using
other environment variables like OPT_LEVEL provide a more correct
view of the actual settings being used.
DEP_<name>_<key> --- For more information about this set of
environment variables, see build script documentation about links .
RUSTC , RUSTDOC --- the compiler and documentation generator that
Cargo has resolved to use, passed to the build script so it might use it
as well.
RUSTC_WRAPPER --- the rustc wrapper, if any, that Cargo is using. See
build.rustc-wrapper .
RUSTC_WORKSPACE_WRAPPER --- the rustc wrapper, if any, that Cargo
is using for workspace members. See build.rustc-workspace-
wrapper .
RUSTC_LINKER --- The path to the linker binary that Cargo has
resolved to use for the current target, if specified. The linker can be
changed by editing .cargo/config.toml ; see the documentation
about cargo configuration for more information.

clbr://internal.invalid/book/OEBPS/appendix/glossary.md#target
https://www.gnu.org/software/make/manual/html_node/Job-Slots.html
clbr://internal.invalid/book/OEBPS/reference/profiles.md
clbr://internal.invalid/book/OEBPS/reference/profiles.md#dev
clbr://internal.invalid/book/OEBPS/reference/profiles.md#release
clbr://internal.invalid/book/OEBPS/reference/build-scripts.md#the-links-manifest-key
clbr://internal.invalid/book/OEBPS/reference/config.md#buildrustc-wrapper
clbr://internal.invalid/book/OEBPS/reference/config.md#buildrustc-workspace-wrapper
clbr://internal.invalid/book/OEBPS/reference/config.md

CARGO_ENCODED_RUSTFLAGS --- extra flags that Cargo invokes rustc
with, separated by a 0x1f character (ASCII Unit Separator). See
build.rustflags . Note that since Rust 1.55, RUSTFLAGS is removed
from the environment; scripts should use CARGO_ENCODED_RUSTFLAGS
instead.
CARGO_PKG_<var> --- The package information variables, with the
same names and values as are provided during crate building.

clbr://internal.invalid/book/OEBPS/reference/config.md#buildrustflags

Environment variables Cargo sets for 3rd party
subcommands

Cargo exposes this environment variable to 3rd party subcommands (ie.
programs named cargo-foobar placed in $PATH):

CARGO --- Path to the cargo binary performing the build.
CARGO_MAKEFLAGS --- Contains parameters needed for Cargo's
jobserver implementation to parallelize subprocesses. This is set only
when Cargo detects the existence of a jobserver.

For extended information about your environment you may run cargo
metadata .

https://www.gnu.org/software/make/manual/html_node/Job-Slots.html

Build Scripts
Some packages need to compile third-party non-Rust code, for example

C libraries. Other packages need to link to C libraries which can either be
located on the system or possibly need to be built from source. Others still
need facilities for functionality such as code generation before building
(think parser generators).

Cargo does not aim to replace other tools that are well-optimized for
these tasks, but it does integrate with them with custom build scripts.
Placing a file named build.rs in the root of a package will cause Cargo to
compile that script and execute it just before building the package.
// Example custom build script.
fn main() {
 // Tell Cargo that if the given file changes, to rerun
this build script.
 println!("cargo::rerun-if-changed=src/hello.c");
 // Use the `cc` crate to build a C file and statically
link it.
 cc::Build::new()
 .file("src/hello.c")
 .compile("hello");
}

Some example use cases of build scripts are:

Building a bundled C library.
Finding a C library on the host system.
Generating a Rust module from a specification.
Performing any platform-specific configuration needed for the crate.

The sections below describe how build scripts work, and the examples
chapter shows a variety of examples on how to write scripts.

Note: The package.build manifest key can be used to change the
name of the build script, or disable it entirely.

clbr://internal.invalid/book/OEBPS/reference/build-script-examples.md
clbr://internal.invalid/book/OEBPS/reference/manifest.md#the-build-field

Life Cycle of a Build Script
Just before a package is built, Cargo will compile a build script into an

executable (if it has not already been built). It will then run the script, which
may perform any number of tasks. The script may communicate with Cargo
by printing specially formatted commands prefixed with cargo:: to stdout.

The build script will be rebuilt if any of its source files or dependencies
change.

By default, Cargo will re-run the build script if any of the files in the
package changes. Typically it is best to use the rerun-if commands,
described in the change detection section below, to narrow the focus of
what triggers a build script to run again.

Once the build script successfully finishes executing, the rest of the
package will be compiled. Scripts should exit with a non-zero exit code to
halt the build if there is an error, in which case the build script's output will
be displayed on the terminal.

Inputs to the Build Script
When the build script is run, there are a number of inputs to the build

script, all passed in the form of environment variables.
In addition to environment variables, the build script’s current directory

is the source directory of the build script’s package.

clbr://internal.invalid/book/OEBPS/reference/environment-variables.md#environment-variables-cargo-sets-for-build-scripts

Outputs of the Build Script
Build scripts may save any output files or intermediate artifacts in the

directory specified in the OUT_DIR environment variable. Scripts should not
modify any files outside of that directory.

Build scripts communicate with Cargo by printing to stdout. Cargo will
interpret each line that starts with cargo:: as an instruction that will
influence compilation of the package. All other lines are ignored.

The order of cargo:: instructions printed by the build script may
affect the order of arguments that cargo passes to rustc . In turn, the
order of arguments passed to rustc may affect the order of arguments
passed to the linker. Therefore, you will want to pay attention to the
order of the build script's instructions. For example, if object foo
needs to link against library bar , you may want to make sure that
library bar 's cargo::rustc-link-lib instruction appears after
instructions to link object foo .

The output of the script is hidden from the terminal during normal
compilation. If you would like to see the output directly in your terminal,
invoke Cargo as "very verbose" with the -vv flag. This only happens when
the build script is run. If Cargo determines nothing has changed, it will not
re-run the script, see change detection below for more.

All the lines printed to stdout by a build script are written to a file like
target/debug/build/<pkg>/output (the precise location may depend on
your configuration). The stderr output is also saved in that same directory.

The following is a summary of the instructions that Cargo recognizes,
with each one detailed below.

cargo::rerun-if-changed=PATH --- Tells Cargo when to re-run the
script.
cargo::rerun-if-env-changed=VAR --- Tells Cargo when to re-run
the script.

clbr://internal.invalid/book/OEBPS/reference/environment-variables.md#environment-variables-cargo-sets-for-build-scripts

cargo::rustc-link-arg=FLAG --- Passes custom flags to a linker for
benchmarks, binaries, cdylib crates, examples, and tests.
cargo::rustc-link-arg-cdylib=FLAG --- Passes custom flags to a
linker for cdylib crates.
cargo::rustc-link-arg-bin=BIN=FLAG --- Passes custom flags to a
linker for the binary BIN .
cargo::rustc-link-arg-bins=FLAG --- Passes custom flags to a
linker for binaries.
cargo::rustc-link-arg-tests=FLAG --- Passes custom flags to a
linker for tests.
cargo::rustc-link-arg-examples=FLAG --- Passes custom flags to a
linker for examples.
cargo::rustc-link-arg-benches=FLAG --- Passes custom flags to a
linker for benchmarks.
cargo::rustc-link-lib=LIB --- Adds a library to link.
cargo::rustc-link-search=[KIND=]PATH --- Adds to the library
search path.
cargo::rustc-flags=FLAGS --- Passes certain flags to the compiler.
cargo::rustc-cfg=KEY[="VALUE"] --- Enables compile-time cfg
settings.
cargo::rustc-check-cfg=CHECK_CFG -- Register custom cfg s as
expected for compile-time checking of configs.
cargo::rustc-env=VAR=VALUE --- Sets an environment variable.

cargo::error=MESSAGE --- Displays an error on the terminal.

cargo::warning=MESSAGE --- Displays a warning on the terminal.
cargo::metadata=KEY=VALUE --- Metadata, used by links scripts.

MSRV: 1.77 is required for cargo::KEY=VALUE syntax. To support
older versions, use the cargo:KEY=VALUE syntax.

cargo::rustc-link-arg=FLAG {#rustc-link-arg}

The rustc-link-arg instruction tells Cargo to pass the -C link-

arg=FLAG option to the compiler, but only when building supported targets
(benchmarks, binaries, cdylib crates, examples, and tests). Its usage is
highly platform specific. It is useful to set the shared library version or
linker script.

cargo::rustc-link-arg-cdylib=FLAG {#rustc-
cdylib-link-arg}

The rustc-link-arg-cdylib instruction tells Cargo to pass the -C

link-arg=FLAG option to the compiler, but only when building a cdylib
library target. Its usage is highly platform specific. It is useful to set the
shared library version or the runtime-path.

For historical reasons, the cargo::rustc-cdylib-link-arg form is an
alias for cargo::rustc-link-arg-cdylib , and has the same meaning.

cargo::rustc-link-arg-bin=BIN=FLAG {#rustc-
link-arg-bin}

The rustc-link-arg-bin instruction tells Cargo to pass the -C link-
arg=FLAG option to the compiler, but only when building the binary target
with name BIN . Its usage is highly platform specific. It is useful to set a
linker script or other linker options.

cargo::rustc-link-arg-bins=FLAG {#rustc-link-
arg-bins}

The rustc-link-arg-bins instruction tells Cargo to pass the -C link-
arg=FLAG option to the compiler, but only when building a binary target. Its
usage is highly platform specific. It is useful to set a linker script or other
linker options.

cargo::rustc-link-arg-tests=FLAG {#rustc-link-
arg-tests}

clbr://internal.invalid/book/rustc/codegen-options/index.md#link-arg
clbr://internal.invalid/book/rustc/codegen-options/index.md#link-arg
clbr://internal.invalid/book/rustc/codegen-options/index.md#link-arg
clbr://internal.invalid/book/rustc/codegen-options/index.md#link-arg

The rustc-link-arg-tests instruction tells Cargo to pass the -C

link-arg=FLAG option to the compiler, but only when building a tests
target.

cargo::rustc-link-arg-examples=FLAG {#rustc-
link-arg-examples}

The rustc-link-arg-examples instruction tells Cargo to pass the -C
link-arg=FLAG option to the compiler, but only when building an examples
target.

cargo::rustc-link-arg-benches=FLAG {#rustc-
link-arg-benches}

The rustc-link-arg-benches instruction tells Cargo to pass the -C
link-arg=FLAG option to the compiler, but only when building a
benchmark target.

cargo::rustc-link-lib=LIB {#rustc-link-lib}
The rustc-link-lib instruction tells Cargo to link the given library

using the compiler's -l flag. This is typically used to link a native library
using FFI.

The LIB string is passed directly to rustc, so it supports any syntax that
-l does.
Currently the fully supported syntax for LIB is
[KIND[:MODIFIERS]=]NAME[:RENAME] .

The -l flag is only passed to the library target of the package, unless
there is no library target, in which case it is passed to all targets. This is
done because all other targets have an implicit dependency on the library
target, and the given library to link should only be included once. This
means that if a package has both a library and a binary target, the library
has access to the symbols from the given lib, and the binary should access
them through the library target's public API.

clbr://internal.invalid/book/rustc/codegen-options/index.md#link-arg
clbr://internal.invalid/book/rustc/codegen-options/index.md#link-arg
clbr://internal.invalid/book/rustc/codegen-options/index.md#link-arg
clbr://internal.invalid/book/rustc/command-line-arguments.md#option-l-link-lib
clbr://internal.invalid/book/nomicon/ffi.md

The optional KIND may be one of dylib , static , or framework . See
the rustc book for more detail.

cargo::rustc-link-search=[KIND=]PATH {#rustc-
link-search}

The rustc-link-search instruction tells Cargo to pass the -L flag to
the compiler to add a directory to the library search path.

The optional KIND may be one of dependency , crate , native ,
framework , or all . See the rustc book for more detail.

These paths are also added to the dynamic library search path
environment variable if they are within the OUT_DIR . Depending on this
behavior is discouraged since this makes it difficult to use the resulting
binary. In general, it is best to avoid creating dynamic libraries in a build
script (using existing system libraries is fine).

cargo::rustc-flags=FLAGS {#rustc-flags}
The rustc-flags instruction tells Cargo to pass the given space-

separated flags to the compiler. This only allows the -l and -L flags, and
is equivalent to using rustc-link-lib and rustc-link-search .

cargo::rustc-cfg=KEY[="VALUE"] {#rustc-cfg}
The rustc-cfg instruction tells Cargo to pass the given value to the --

cfg flag to the compiler. This may be used for compile-time detection of
features to enable conditional compilation. Custom cfgs must either be
expected using the cargo::rustc-check-cfg instruction or usage will
need to allow the unexpected_cfgs lint to avoid unexpected cfgs
warnings.

Note that this does not affect Cargo's dependency resolution. This cannot
be used to enable an optional dependency, or enable other Cargo features.

Be aware that Cargo features use the form feature="foo" . cfg values
passed with this flag are not restricted to that form, and may provide just a
single identifier, or any arbitrary key/value pair. For example, emitting
cargo::rustc-cfg=abc will then allow code to use #[cfg(abc)] (note

clbr://internal.invalid/book/rustc/command-line-arguments.md#option-l-link-lib
clbr://internal.invalid/book/rustc/command-line-arguments.md#option-l-search-path
clbr://internal.invalid/book/rustc/command-line-arguments.md#option-l-search-path
clbr://internal.invalid/book/OEBPS/reference/environment-variables.md#dynamic-library-paths
clbr://internal.invalid/book/rustc/command-line-arguments.md#option-cfg
clbr://internal.invalid/book/reference/conditional-compilation.md
clbr://internal.invalid/book/rustc/lints/listing/warn-by-default.md#unexpected-cfgs
clbr://internal.invalid/book/OEBPS/reference/features.md

the lack of feature=). Or an arbitrary key/value pair may be used with an
= symbol like cargo::rustc-cfg=my_component="foo" . The key should
be a Rust identifier, the value should be a string.

cargo::rustc-check-cfg=CHECK_CFG {#rustc-
check-cfg}

Add to the list of expected config names and values that is used when
checking the reachable cfg expressions with the unexpected_cfgs lint.

The syntax of CHECK_CFG mirrors the rustc --check-cfg flag, see
Checking conditional configurations for more details.

The instruction can be used like this:
// build.rs
println!("cargo::rustc-check-cfg=cfg(foo, values(\"bar\"))");
if foo_bar_condition {
 println!("cargo::rustc-cfg=foo=\"bar\"");
}

Note that all possible cfgs should be defined, regardless of which cfgs
are currently enabled. This includes all possible values of a given cfg name.

It is recommended to group the cargo::rustc-check-cfg and
cargo::rustc-cfg instructions as closely as possible in order to avoid
typos, missing check-cfg, stale cfgs...

See also the conditional compilation example.

MSRV: Respected as of 1.80

cargo::rustc-env=VAR=VALUE {#rustc-env}
The rustc-env instruction tells Cargo to set the given environment

variable when compiling the package. The value can be then retrieved by
the env! macro in the compiled crate. This is useful for embedding
additional metadata in crate's code, such as the hash of git HEAD or the
unique identifier of a continuous integration server.

See also the environment variables automatically included by Cargo.

clbr://internal.invalid/book/rustc/lints/listing/warn-by-default.md#unexpected-cfgs
clbr://internal.invalid/book/rustc/command-line-arguments.md#option-check-cfg
clbr://internal.invalid/book/rustc/check-cfg.html
clbr://internal.invalid/book/rustc/command-line-arguments.md#option-cfg
clbr://internal.invalid/book/OEBPS/reference/build-script-examples.md#conditional-compilation
clbr://internal.invalid/book/std/macro.env.html
clbr://internal.invalid/book/OEBPS/reference/environment-variables.md#environment-variables-cargo-sets-for-crates

Note: These environment variables are also set when running an
executable with cargo run or cargo test . However, this usage is
discouraged since it ties the executable to Cargo's execution
environment. Normally, these environment variables should only be
checked at compile-time with the env! macro.

cargo::error=MESSAGE {#cargo-error}
The error instruction tells Cargo to display an error after the build

script has finished running, and then fail the build.

Note: Build script libraries should carefully consider if they want to
use cargo::error versus returning a Result . It may be better to
return a Result , and allow the caller to decide if the error is fatal or
not. The caller can then decide whether or not to display the Err
variant using cargo::error .

MSRV: Respected as of 1.84

cargo::warning=MESSAGE {#cargo-warning}
The warning instruction tells Cargo to display a warning after the build

script has finished running. Warnings are only shown for path

dependencies (that is, those you're working on locally), so for example
warnings printed out in crates.io crates are not emitted by default, unless the
build fails. The -vv "very verbose" flag may be used to have Cargo display
warnings for all crates.

https://crates.io/

Build Dependencies
Build scripts are also allowed to have dependencies on other Cargo-

based crates. Dependencies are declared through the build-dependencies
section of the manifest.
[build-dependencies]
cc = "1.0.46"

The build script does not have access to the dependencies listed in the
dependencies or dev-dependencies section (they’re not built yet!). Also,
build dependencies are not available to the package itself unless also
explicitly added in the [dependencies] table.

It is recommended to carefully consider each dependency you add,
weighing against the impact on compile time, licensing, maintenance, etc.
Cargo will attempt to reuse a dependency if it is shared between build
dependencies and normal dependencies. However, this is not always
possible, for example when cross-compiling, so keep that in consideration
of the impact on compile time.

Change Detection
When rebuilding a package, Cargo does not necessarily know if the

build script needs to be run again. By default, it takes a conservative
approach of always re-running the build script if any file within the package
is changed (or the list of files controlled by the exclude and include
fields). For most cases, this is not a good choice, so it is recommended that
every build script emit at least one of the rerun-if instructions (described
below). If these are emitted, then Cargo will only re-run the script if the
given value has changed. If Cargo is re-running the build scripts of your
own crate or a dependency and you don't know why, see "Why is Cargo
rebuilding my code?" in the FAQ.

cargo::rerun-if-changed=PATH {#rerun-if-
changed}

The rerun-if-changed instruction tells Cargo to re-run the build script
if the file at the given path has changed. Currently, Cargo only uses the
filesystem last-modified "mtime" timestamp to determine if the file has
changed. It compares against an internal cached timestamp of when the
build script last ran.

If the path points to a directory, it will scan the entire directory for any
modifications.

If the build script inherently does not need to re-run under any
circumstance, then emitting cargo::rerun-if-changed=build.rs is a
simple way to prevent it from being re-run (otherwise, the default if no
rerun-if instructions are emitted is to scan the entire package directory
for changes). Cargo automatically handles whether or not the script itself
needs to be recompiled, and of course the script will be re-run after it has
been recompiled. Otherwise, specifying build.rs is redundant and
unnecessary.

cargo::rerun-if-env-changed=NAME {#rerun-if-
env-changed}

clbr://internal.invalid/book/OEBPS/reference/manifest.md#the-exclude-and-include-fields
clbr://internal.invalid/book/OEBPS/faq.md#why-is-cargo-rebuilding-my-code

The rerun-if-env-changed instruction tells Cargo to re-run the build
script if the value of an environment variable of the given name has
changed.

Note that the environment variables here are intended for global
environment variables like CC and such, it is not possible to use this for
environment variables like TARGET that Cargo sets for build scripts. The
environment variables in use are those received by cargo invocations, not
those received by the executable of the build script.

As of 1.46, using env! and option_env! in source code will
automatically detect changes and trigger rebuilds. rerun-if-env-changed
is no longer needed for variables already referenced by these macros.

clbr://internal.invalid/book/OEBPS/reference/environment-variables.md#environment-variables-cargo-sets-for-build-scripts
clbr://internal.invalid/book/std/macro.env.html
clbr://internal.invalid/book/std/macro.option_env.html

The links Manifest Key
The package.links key may be set in the Cargo.toml manifest to

declare that the package links with the given native library. The purpose of
this manifest key is to give Cargo an understanding about the set of native
dependencies that a package has, as well as providing a principled system
of passing metadata between package build scripts.
[package]
...
links = "foo"

This manifest states that the package links to the libfoo native library.
When using the links key, the package must have a build script, and the
build script should use the rustc-link-lib instruction to link the library.

Primarily, Cargo requires that there is at most one package per links
value. In other words, it is forbidden to have two packages link to the same
native library. This helps prevent duplicate symbols between crates. Note,
however, that there are conventions in place to alleviate this.

Build scripts can generate an arbitrary set of metadata in the form of
key-value pairs. This metadata is set with the
cargo::metadata=KEY=VALUE instruction.

The metadata is passed to the build scripts of dependent packages. For
example, if the package foo depends on bar , which links baz , then if bar
generates key=value as part of its build script metadata, then the build
script of foo will have the environment variables DEP_BAZ_KEY=value
(note that the value of the links key is used). See the "Using another sys
crate" for an example of how this can be used.

Note that metadata is only passed to immediate dependents, not
transitive dependents.

MSRV: 1.77 is required for cargo::metadata=KEY=VALUE . To
support older versions, use cargo:KEY=VALUE (unsupported directives
are assumed to be metadata keys).

clbr://internal.invalid/book/OEBPS/reference/build-script-examples.md#using-another-sys-crate

*-sys Packages
Some Cargo packages that link to system libraries have a naming

convention of having a -sys suffix. Any package named foo-sys should
provide two major pieces of functionality:

The library crate should link to the native library libfoo . This will
often probe the current system for libfoo before resorting to building
from source.
The library crate should provide declarations for types and functions
in libfoo , but not higher-level abstractions.

The set of *-sys packages provides a common set of dependencies for
linking to native libraries. There are a number of benefits earned from
having this convention of native-library-related packages:

Common dependencies on foo-sys alleviates the rule about one
package per value of links .
Other -sys packages can take advantage of the DEP_NAME_KEY=value
environment variables to better integrate with other packages. See the
"Using another sys crate" example.
A common dependency allows centralizing logic on discovering
libfoo itself (or building it from source).
These dependencies are easily overridable.

It is common to have a companion package without the -sys suffix that
provides a safe, high-level abstractions on top of the sys package. For
example, the git2 crate provides a high-level interface to the libgit2-
sys crate.

clbr://internal.invalid/book/OEBPS/reference/build-script-examples.md#using-another-sys-crate
https://crates.io/crates/git2
https://crates.io/crates/libgit2-sys

Overriding Build Scripts
If a manifest contains a links key, then Cargo supports overriding the

build script specified with a custom library. The purpose of this
functionality is to prevent running the build script in question altogether and
instead supply the metadata ahead of time.

To override a build script, place the following configuration in any
acceptable config.toml file.
[target.x86_64-unknown-linux-gnu.foo]
rustc-link-lib = ["foo"]
rustc-link-search = ["/path/to/foo"]
rustc-flags = "-L /some/path"
rustc-cfg = ['key="value"']
rustc-env = {key = "value"}
rustc-cdylib-link-arg = ["…"]
metadata_key1 = "value"
metadata_key2 = "value"

With this configuration, if a package declares that it links to foo then
the build script will not be compiled or run, and the metadata specified will
be used instead.

The warning , rerun-if-changed , and rerun-if-env-changed keys
should not be used and will be ignored.

clbr://internal.invalid/book/OEBPS/reference/config.md

Jobserver
Cargo and rustc use the jobserver protocol, developed for GNU make,

to coordinate concurrency across processes. It is essentially a semaphore
that controls the number of jobs running concurrently. The concurrency
may be set with the --jobs flag, which defaults to the number of logical
CPUs.

Each build script inherits one job slot from Cargo, and should endeavor
to only use one CPU while it runs. If the script wants to use more CPUs in
parallel, it should use the jobserver crate to coordinate with Cargo.

As an example, the cc crate may enable the optional parallel feature
which will use the jobserver protocol to attempt to build multiple C files at
the same time.

http://make.mad-scientist.net/papers/jobserver-implementation/
https://crates.io/crates/jobserver
https://crates.io/crates/cc

Build Script Examples
The following sections illustrate some examples of writing build scripts.
Some common build script functionality can be found via crates on

crates.io. Check out the build-dependencies keyword to see what is
available. The following is a sample of some popular crates1:

bindgen --- Automatically generate Rust FFI bindings to C libraries.
cc --- Compiles C/C++/assembly.
pkg-config --- Detect system libraries using the pkg-config utility.
cmake --- Runs the cmake build tool to build a native library.
autocfg , rustc_version , version_check --- These crates provide
ways to implement conditional compilation based on the current
rustc such as the version of the compiler.

1

This list is not an endorsement. Evaluate your dependencies to see which
is right for your project.

https://crates.io/
https://crates.io/keywords/build-dependencies
https://crates.io/crates/bindgen
https://crates.io/crates/cc
https://crates.io/crates/pkg-config
https://crates.io/crates/cmake
https://crates.io/crates/autocfg
https://crates.io/crates/rustc_version
https://crates.io/crates/version_check

Code generation
Some Cargo packages need to have code generated just before they are

compiled for various reasons. Here we’ll walk through a simple example
which generates a library call as part of the build script.

First, let’s take a look at the directory structure of this package:
.
├── Cargo.toml
├── build.rs
└── src
 └── main.rs

1 directory, 3 files

Here we can see that we have a build.rs build script and our binary in
main.rs . This package has a basic manifest:
Cargo.toml

[package]
name = "hello-from-generated-code"
version = "0.1.0"
edition = "2024"

Let’s see what’s inside the build script:
// build.rs

use std::env;
use std::fs;
use std::path::Path;

fn main() {
 let out_dir = env::var_os("OUT_DIR").unwrap();
 let dest_path = Path::new(&out_dir).join("hello.rs");
 fs::write(
 &dest_path,

 "pub fn message() -> &'static str {
 \"Hello, World!\"
 }
 "
).unwrap();
 println!("cargo::rerun-if-changed=build.rs");
}

There’s a couple of points of note here:

The script uses the OUT_DIR environment variable to discover where
the output files should be located. It can use the process’ current
working directory to find where the input files should be located, but
in this case we don’t have any input files.
In general, build scripts should not modify any files outside of
OUT_DIR . It may seem fine on the first blush, but it does cause
problems when you use such crate as a dependency, because there's an
implicit invariant that sources in .cargo/registry should be
immutable. cargo won't allow such scripts when packaging.
This script is relatively simple as it just writes out a small generated
file. One could imagine that other more complex operations could take
place such as generating a Rust module from a C header file or another
language definition, for example.
The rerun-if-changed instruction tells Cargo that the build script
only needs to re-run if the build script itself changes. Without this line,
Cargo will automatically run the build script if any file in the package
changes. If your code generation uses some input files, this is where
you would print a list of each of those files.

Next, let’s peek at the library itself:
// src/main.rs

include!(concat!(env!("OUT_DIR"), "/hello.rs"));

fn main() {

clbr://internal.invalid/book/OEBPS/reference/build-scripts.md#rerun-if-changed

 println!("{}", message());
}

This is where the real magic happens. The library is using the rustc-
defined include! macro in combination with the concat! and env!

macros to include the generated file (hello.rs) into the crate’s
compilation.

Using the structure shown here, crates can include any number of
generated files from the build script itself.

clbr://internal.invalid/book/std/macro.include.html
clbr://internal.invalid/book/std/macro.concat.html
clbr://internal.invalid/book/std/macro.env.html

Building a native library
Sometimes it’s necessary to build some native C or C++ code as part of

a package. This is another excellent use case of leveraging the build script
to build a native library before the Rust crate itself. As an example, we’ll
create a Rust library which calls into C to print “Hello, World!”.

Like above, let’s first take a look at the package layout:
.
├── Cargo.toml
├── build.rs
└── src
 ├── hello.c
 └── main.rs

1 directory, 4 files

Pretty similar to before! Next, the manifest:
Cargo.toml

[package]
name = "hello-world-from-c"
version = "0.1.0"
edition = "2024"

For now we’re not going to use any build dependencies, so let’s take a
look at the build script now:
// build.rs

use std::process::Command;
use std::env;
use std::path::Path;

fn main() {
 let out_dir = env::var("OUT_DIR").unwrap();

 // Note that there are a number of downsides to this

approach, the comments
 // below detail how to improve the portability of these
commands.
 Command::new("gcc").args(&["src/hello.c", "-c", "-fPIC",
"-o"])
 .arg(&format!("{}/hello.o", out_dir))
 .status().unwrap();
 Command::new("ar").args(&["crus", "libhello.a",
"hello.o"])
 .current_dir(&Path::new(&out_dir))
 .status().unwrap();

 println!("cargo::rustc-link-search=native={}", out_dir);
 println!("cargo::rustc-link-lib=static=hello");
 println!("cargo::rerun-if-changed=src/hello.c");
}

This build script starts out by compiling our C file into an object file (by
invoking gcc) and then converting this object file into a static library (by
invoking ar). The final step is feedback to Cargo itself to say that our
output was in out_dir and the compiler should link the crate to
libhello.a statically via the -l static=hello flag.

Note that there are a number of drawbacks to this hard-coded approach:

The gcc command itself is not portable across platforms. For example
it’s unlikely that Windows platforms have gcc , and not even all Unix
platforms may have gcc . The ar command is also in a similar
situation.
These commands do not take cross-compilation into account. If we’re
cross compiling for a platform such as Android it’s unlikely that gcc
will produce an ARM executable.

Not to fear, though, this is where a build-dependencies entry would
help! The Cargo ecosystem has a number of packages to make this sort of
task much easier, portable, and standardized. Let's try the cc crate from
crates.io. First, add it to the build-dependencies in Cargo.toml :

https://crates.io/crates/cc
https://crates.io/

[build-dependencies]
cc = "1.0"

And rewrite the build script to use this crate:
// build.rs

fn main() {
 cc::Build::new()
 .file("src/hello.c")
 .compile("hello");
 println!("cargo::rerun-if-changed=src/hello.c");
}

The cc crate abstracts a range of build script requirements for C code:

It invokes the appropriate compiler (MSVC for windows, gcc for
MinGW, cc for Unix platforms, etc.).
It takes the TARGET variable into account by passing appropriate flags
to the compiler being used.
Other environment variables, such as OPT_LEVEL , DEBUG , etc., are all
handled automatically.
The stdout output and OUT_DIR locations are also handled by the cc
library.

Here we can start to see some of the major benefits of farming as much
functionality as possible out to common build dependencies rather than
duplicating logic across all build scripts!

Back to the case study though, let’s take a quick look at the contents of
the src directory:
// src/hello.c

#include <stdio.h>

void hello() {
 printf("Hello, World!\n");
}

https://crates.io/crates/cc

// src/main.rs

// Note the lack of the `#[link]` attribute. We’re delegating
the responsibility
// of selecting what to link over to the build script rather
than hard-coding
// it in the source file.
unsafe extern { fn hello(); }

fn main() {
 unsafe { hello(); }
}

And there we go! This should complete our example of building some C
code from a Cargo package using the build script itself. This also shows
why using a build dependency can be crucial in many situations and even
much more concise!

We’ve also seen a brief example of how a build script can use a crate as
a dependency purely for the build process and not for the crate itself at
runtime.

Linking to system libraries
This example demonstrates how to link a system library and how the

build script is used to support this use case.
Quite frequently a Rust crate wants to link to a native library provided

on the system to bind its functionality or just use it as part of an
implementation detail. This is quite a nuanced problem when it comes to
performing this in a platform-agnostic fashion. It is best, if possible, to farm
out as much of this as possible to make this as easy as possible for
consumers.

For this example, we will be creating a binding to the system's zlib
library. This is a library that is commonly found on most Unix-like systems
that provides data compression. This is already wrapped up in the libz-
sys crate, but for this example, we'll do an extremely simplified version.
Check out the source code for the full example.

To make it easy to find the location of the library, we will use the pkg-
config crate. This crate uses the system's pkg-config utility to discover
information about a library. It will automatically tell Cargo what is needed
to link the library. This will likely only work on Unix-like systems with
pkg-config installed. Let's start by setting up the manifest:
Cargo.toml

[package]
name = "libz-sys"
version = "0.1.0"
edition = "2024"
links = "z"

[build-dependencies]
pkg-config = "0.3.16"

Take note that we included the links key in the package table. This
tells Cargo that we are linking to the libz library. See "Using another sys
crate" for an example that will leverage this.

https://crates.io/crates/libz-sys
https://github.com/rust-lang/libz-sys
https://crates.io/crates/pkg-config

The build script is fairly simple:
// build.rs

fn main() {
 pkg_config::Config::new().probe("zlib").unwrap();
 println!("cargo::rerun-if-changed=build.rs");
}

Let's round out the example with a basic FFI binding:
// src/lib.rs

use std::os::raw::{c_uint, c_ulong};

unsafe extern "C" {
 pub fn crc32(crc: c_ulong, buf: *const u8, len: c_uint) ->
c_ulong;
}

#[test]
fn test_crc32() {
 let s = "hello";
 unsafe {
 assert_eq!(crc32(0, s.as_ptr(), s.len() as c_uint),
0x3610a686);
 }
}

Run cargo build -vv to see the output from the build script. On a
system with libz already installed, it may look something like this:
[libz-sys 0.1.0] cargo::rustc-link-search=native=/usr/lib
[libz-sys 0.1.0] cargo::rustc-link-lib=z
[libz-sys 0.1.0] cargo::rerun-if-changed=build.rs

Nice! pkg-config did all the work of finding the library and telling
Cargo where it is.

It is not unusual for packages to include the source for the library, and
build it statically if it is not found on the system, or if a feature or
environment variable is set. For example, the real libz-sys crate checks
the environment variable LIBZ_SYS_STATIC or the static feature to build
it from source instead of using the system library. Check out the source for
a more complete example.

https://crates.io/crates/libz-sys
https://github.com/rust-lang/libz-sys

Using another sys crate
When using the links key, crates may set metadata that can be read by

other crates that depend on it. This provides a mechanism to communicate
information between crates. In this example, we'll be creating a C library
that makes use of zlib from the real libz-sys crate.

If you have a C library that depends on zlib, you can leverage the libz-
sys crate to automatically find it or build it. This is great for cross-platform
support, such as Windows where zlib is not usually installed. libz-sys sets
the include metadata to tell other packages where to find the header files
for zlib. Our build script can read that metadata with the DEP_Z_INCLUDE
environment variable. Here's an example:
Cargo.toml

[package]
name = "zuser"
version = "0.1.0"
edition = "2024"

[dependencies]
libz-sys = "1.0.25"

[build-dependencies]
cc = "1.0.46"

Here we have included libz-sys which will ensure that there is only
one libz used in the final library, and give us access to it from our build
script:
// build.rs

fn main() {
 let mut cfg = cc::Build::new();
 cfg.file("src/zuser.c");
 if let Some(include) = std::env::var_os("DEP_Z_INCLUDE") {

https://crates.io/crates/libz-sys
https://crates.io/crates/libz-sys
https://github.com/rust-lang/libz-sys/blob/3c594e677c79584500da673f918c4d2101ac97a1/build.rs#L156

 cfg.include(include);
 }
 cfg.compile("zuser");
 println!("cargo::rerun-if-changed=src/zuser.c");
}

With libz-sys doing all the heavy lifting, the C source code may now
include the zlib header, and it should find the header, even on systems
where it isn't already installed.
// src/zuser.c

#include "zlib.h"

// … rest of code that makes use of zlib.

Conditional compilation
A build script may emit rustc-cfg instructions which can enable

conditions that can be checked at compile time. In this example, we'll take a
look at how the openssl crate uses this to support multiple versions of the
OpenSSL library.

The openssl-sys crate implements building and linking the OpenSSL
library. It supports multiple different implementations (like LibreSSL) and
multiple versions. It makes use of the links key so that it may pass
information to other build scripts. One of the things it passes is the
version_number key, which is the version of OpenSSL that was detected.
The code in the build script looks something like this:
println!("cargo::metadata=version_number=
{openssl_version:x}");

This instruction causes the DEP_OPENSSL_VERSION_NUMBER environment
variable to be set in any crates that directly depend on openssl-sys .

The openssl crate, which provides the higher-level interface, specifies
openssl-sys as a dependency. The openssl build script can read the
version information generated by the openssl-sys build script with the
DEP_OPENSSL_VERSION_NUMBER environment variable. It uses this to
generate some cfg values:
// (portion of build.rs)

println!("cargo::rustc-check-cfg=cfg(ossl101,ossl102)");
println!("cargo::rustc-check-
cfg=cfg(ossl110,ossl110g,ossl111)");

if let Ok(version) = env::var("DEP_OPENSSL_VERSION_NUMBER") {
 let version = u64::from_str_radix(&version, 16).unwrap();

 if version >= 0x1_00_01_00_0 {
 println!("cargo::rustc-cfg=ossl101");
 }

clbr://internal.invalid/book/OEBPS/reference/build-scripts.md#rustc-cfg
https://crates.io/crates/openssl
https://crates.io/crates/openssl-sys
https://github.com/sfackler/rust-openssl/blob/dc72a8e2c429e46c275e528b61a733a66e7877fc/openssl-sys/build/main.rs#L216
https://github.com/sfackler/rust-openssl/blob/dc72a8e2c429e46c275e528b61a733a66e7877fc/openssl/build.rs#L18-L36

 if version >= 0x1_00_02_00_0 {
 println!("cargo::rustc-cfg=ossl102");
 }
 if version >= 0x1_01_00_00_0 {
 println!("cargo::rustc-cfg=ossl110");
 }
 if version >= 0x1_01_00_07_0 {
 println!("cargo::rustc-cfg=ossl110g");
 }
 if version >= 0x1_01_01_00_0 {
 println!("cargo::rustc-cfg=ossl111");
 }
}

These cfg values can then be used with the cfg attribute or the cfg
macro to conditionally include code. For example, SHA3 support was
added in OpenSSL 1.1.1, so it is conditionally excluded for older versions:
// (portion of openssl crate)

#[cfg(ossl111)]
pub fn sha3_224() -> MessageDigest {
 unsafe { MessageDigest(ffi::EVP_sha3_224()) }
}

Of course, one should be careful when using this, since it makes the
resulting binary even more dependent on the build environment. In this
example, if the binary is distributed to another system, it may not have the
exact same shared libraries, which could cause problems.

clbr://internal.invalid/book/reference/conditional-compilation.md#the-cfg-attribute
clbr://internal.invalid/book/std/macro.cfg.html
https://github.com/sfackler/rust-openssl/blob/dc72a8e2c429e46c275e528b61a733a66e7877fc/openssl/src/hash.rs#L67-L85

Build cache
Cargo stores the output of a build into the "target" directory. By default,

this is the directory named target in the root of your workspace. To
change the location, you can set the CARGO_TARGET_DIR environment
variable, the build.target-dir config value, or the --target-dir

command-line flag.
The directory layout depends on whether or not you are using the --

target flag to build for a specific platform. If --target is not specified,
Cargo runs in a mode where it builds for the host architecture. The output
goes into the root of the target directory, with each profile stored in a
separate subdirectory:

Directory Description
target/de

bug/

Contains output for the dev profile.

target/re

lease/

Contains output for the release profile (with the -
-release option).

target/fo

o/

Contains build output for the foo profile (with the -
-profile=foo option).

For historical reasons, the dev and test profiles are stored in the
debug directory, and the release and bench profiles are stored in the
release directory. User-defined profiles are stored in a directory with the
same name as the profile.

When building for another target with --target , the output is placed in
a directory with the name of the target:

Directory Example
target/<triple>/debu

g/

target/thumbv7em-none-

eabihf/debug/

clbr://internal.invalid/book/OEBPS/appendix/glossary.md#workspace
clbr://internal.invalid/book/OEBPS/reference/environment-variables.md
clbr://internal.invalid/book/OEBPS/reference/config.md#buildtarget-dir
clbr://internal.invalid/book/OEBPS/reference/profiles.md
clbr://internal.invalid/book/OEBPS/appendix/glossary.md#target

Directory Example
target/<triple>/rele

ase/

target/thumbv7em-none-

eabihf/release/

Note: When not using --target , this has a consequence that Cargo
will share your dependencies with build scripts and proc macros.
RUSTFLAGS will be shared with every rustc invocation. With the --
target flag, build scripts and proc macros are built separately (for the
host architecture), and do not share RUSTFLAGS .

Within the profile directory (such as debug or release), artifacts are
placed into the following directories:

Directory Description
target/deb

ug/

Contains the output of the package being built (the
binary executables and library targets).

target/debu

g/examples/

Contains example targets.

Some commands place their output in dedicated directories in the top
level of the target directory:

Directory Description
target/do

c/

Contains rustdoc documentation (cargo doc).

target/pa

ckage/

Contains the output of the cargo package and
cargo publish commands.

Cargo also creates several other directories and files needed for the build
process. Their layout is considered internal to Cargo, and is subject to
change. Some of these directories are:

clbr://internal.invalid/book/OEBPS/reference/config.md#buildrustflags
clbr://internal.invalid/book/OEBPS/reference/cargo-targets.md#binaries
clbr://internal.invalid/book/OEBPS/reference/cargo-targets.md#library
clbr://internal.invalid/book/OEBPS/reference/cargo-targets.md#examples
clbr://internal.invalid/book/OEBPS/commands/cargo-doc.md
clbr://internal.invalid/book/OEBPS/commands/cargo-package.md
clbr://internal.invalid/book/OEBPS/commands/cargo-publish.md

Directory DescriptionDirectory Description
target/debug/de

ps/

Dependencies and other artifacts.

target/debug/in

cremental/

rustc incremental output, a cache used to
speed up subsequent builds.

target/debug/bu

ild/

Output from build scripts.

clbr://internal.invalid/book/OEBPS/reference/profiles.md#incremental
clbr://internal.invalid/book/OEBPS/reference/build-scripts.md

Dep-info files
Next to each compiled artifact is a file called a "dep info" file with a .d

suffix. This file is a Makefile-like syntax that indicates all of the file
dependencies required to rebuild the artifact. These are intended to be used
with external build systems so that they can detect if Cargo needs to be re-
executed. The paths in the file are absolute by default. See the build.dep-
info-basedir config option to use relative paths.
Example dep-info file found in target/debug/foo.d
/path/to/myproj/target/debug/foo: /path/to/myproj/src/lib.rs
/path/to/myproj/src/main.rs

clbr://internal.invalid/book/OEBPS/reference/config.md#builddep-info-basedir

Shared cache
A third party tool, sccache, can be used to share built dependencies

across different workspaces.
To setup sccache , install it with cargo install sccache and set

RUSTC_WRAPPER environment variable to sccache before invoking Cargo.
If you use bash, it makes sense to add export RUSTC_WRAPPER=sccache to
.bashrc . Alternatively, you can set build.rustc-wrapper in the Cargo
configuration. Refer to sccache documentation for more details.

https://github.com/mozilla/sccache
clbr://internal.invalid/book/OEBPS/reference/config.md#buildrustc-wrapper
clbr://internal.invalid/book/OEBPS/reference/config.md

Package ID Specifications

Package ID specifications
Subcommands of Cargo frequently need to refer to a particular package

within a dependency graph for various operations like updating, cleaning,
building, etc. To solve this problem, Cargo supports Package ID
Specifications. A specification is a string which is used to uniquely refer to
one package within a graph of packages.

The specification may be fully qualified, such as
https://github.com/rust-lang/crates.io-index#regex@1.4.3 or it
may be abbreviated, such as regex . The abbreviated form may be used as
long as it uniquely identifies a single package in the dependency graph. If
there is ambiguity, additional qualifiers can be added to make it unique. For
example, if there are two versions of the regex package in the graph, then
it can be qualified with a version to make it unique, such as regex@1.4.3 .

Specification grammar
The formal grammar for a Package Id Specification is:

spec := pkgname |
 [kind "+"] proto "://" hostname-and-path ["?"
query] ["#" (pkgname | semver)]
query = ("branch" | "tag" | "rev") "=" ref
pkgname := name [("@" | ":") semver]
semver := digits ["." digits ["." digits ["-" prerelease]
["+" build]]]

kind = "registry" | "git" | "path"
proto := "http" | "git" | "file" | ...

Here, brackets indicate that the contents are optional.
The URL form can be used for git dependencies, or to differentiate

packages that come from different sources such as different registries.

Example specifications
The following are references to the regex package on crates.io :

Spec Name VersionSpec Name Version
regex rege

x

*

regex@1.4 rege

x

1.4.*

regex@1.4.3 rege

x

1.4.3

https://github.com/rust-

lang/crates.io-index#regex

rege

x

*

https://github.com/rust-

lang/crates.io-index#regex@1.4.3

rege

x

1.4.3

registry+https://github.com/rust-

lang/crates.io-index#regex@1.4.3

rege

x

1.4.3

The following are some examples of specs for several different git
dependencies:

Spec Name Version
https://github.com/rust-

lang/cargo#0.52.0

cargo 0.52.

0

https://github.com/rust-

lang/cargo#cargo-platform@0.1.2

cargo-

platfo

rm

0.1.2

ssh://git@github.com/rust-

lang/regex.git#regex@1.4.3

regex 1.4.3

git+ssh://git@github.com/rust-

lang/regex.git#regex@1.4.3

regex 1.4.3

Spec Name Version
git+ssh://git@github.com/rust-

lang/regex.git?

branch=dev#regex@1.4.3

regex 1.4.3

Local packages on the filesystem can use file:// URLs to reference
them:

Spec Name Version
file:///path/to/my/project/foo foo *

file:///path/to/my/project/foo#1.1.8 foo 1.1.8

path+file:///path/to/my/project/foo#1

.1.8

foo 1.1.8

Brevity of specifications
The goal of this is to enable both succinct and exhaustive syntaxes for

referring to packages in a dependency graph. Ambiguous references may
refer to one or more packages. Most commands generate an error if more
than one package could be referred to with the same specification.

External tools
One of the goals of Cargo is simple integration with third-party tools,

like IDEs and other build systems. To make integration easier, Cargo has
several facilities:

a cargo metadata command, which outputs package structure and
dependencies information in JSON,

a --message-format flag, which outputs information about a
particular build, and

support for custom subcommands.

clbr://internal.invalid/book/OEBPS/commands/cargo-metadata.md

Information about package structure
You can use cargo metadata command to get information about

package structure and dependencies. See the cargo metadata

documentation for details on the format of the output.
The format is stable and versioned. When calling cargo metadata , you

should pass --format-version flag explicitly to avoid forward
incompatibility hazard.

If you are using Rust, the cargo_metadata crate can be used to parse the
output.

clbr://internal.invalid/book/OEBPS/commands/cargo-metadata.md
clbr://internal.invalid/book/OEBPS/commands/cargo-metadata.md
https://crates.io/crates/cargo_metadata

JSON messages
When passing --message-format=json , Cargo will output the

following information during the build:

compiler errors and warnings,
produced artifacts,
results of the build scripts (for example, native dependencies).

The output goes to stdout in the JSON object per line format. The
reason field distinguishes different kinds of messages. The package_id
field is a unique identifier for referring to the package, and as the --
package argument to many commands. The syntax grammar can be found
in chapter Package ID Specifications.

Note: --message-format=json only controls Cargo and Rustc's
output. This cannot control the output of other tools, e.g. cargo run -
-message-format=json , or arbitrary output from procedural macros.
A possible workaround in these situations is to only interpret a line as
JSON if it starts with { .

The --message-format option can also take additional formatting
values which alter the way the JSON messages are computed and rendered.
See the description of the --message-format option in the build command
documentation for more details.

If you are using Rust, the cargo_metadata crate can be used to parse
these messages.

MSRV: 1.77 is required for package_id to be a Package ID
Specification. Before that, it was opaque.

Compiler messages
The "compiler-message" message includes output from the compiler,

such as warnings and errors. See the rustc JSON chapter for details on
rustc 's message format, which is embedded in the following structure:

clbr://internal.invalid/book/OEBPS/reference/pkgid-spec.md
clbr://internal.invalid/book/OEBPS/commands/cargo-build.md
https://crates.io/crates/cargo_metadata
clbr://internal.invalid/book/rustc/json.md

{
 /* The "reason" indicates the kind of message. */
 "reason": "compiler-message",
 /* The Package ID, a unique identifier for referring to
the package. */
 "package_id": "file:///path/to/my-package#0.1.0",
 /* Absolute path to the package manifest. */
 "manifest_path": "/path/to/my-package/Cargo.toml",
 /* The Cargo target (lib, bin, example, etc.) that
generated the message. */
 "target": {
 /* Array of target kinds.
 - lib targets list the `crate-type` values from the
 manifest such as "lib", "rlib", "dylib",
 "proc-macro", etc. (default ["lib"])
 - binary is ["bin"]
 - example is ["example"]
 - integration test is ["test"]
 - benchmark is ["bench"]
 - build script is ["custom-build"]
 */
 "kind": [
 "lib"
],
 /* Array of crate types.
 - lib and example libraries list the `crate-type`
values
 from the manifest such as "lib", "rlib", "dylib",
 "proc-macro", etc. (default ["lib"])
 - all other target kinds are ["bin"]
 */
 "crate_types": [
 "lib"
],
 /* The name of the target.

 For lib targets, dashes will be replaced with
underscores.
 */
 "name": "my_package",
 /* Absolute path to the root source file of the
target. */
 "src_path": "/path/to/my-package/src/lib.rs",
 /* The Rust edition of the target.
 Defaults to the package edition.
 */
 "edition": "2018",
 /* Array of required features.
 This property is not included if no required
features are set.
 */
 "required-features": ["feat1"],
 /* Whether the target should be documented by `cargo
doc`. */
 "doc": true,
 /* Whether or not this target has doc tests enabled,
and
 the target is compatible with doc testing.
 */
 "doctest": true
 /* Whether or not this target should be built and run
with `--test`
 */
 "test": true
 },
 /* The message emitted by the compiler.

 See https://doc.rust-lang.org/rustc/json.html for details.
 */
 "message": {
 /* ... */

 }
}

Artifact messages
For every compilation step, a "compiler-artifact" message is emitted

with the following structure:
{
 /* The "reason" indicates the kind of message. */
 "reason": "compiler-artifact",
 /* The Package ID, a unique identifier for referring to
the package. */
 "package_id": "file:///path/to/my-package#0.1.0",
 /* Absolute path to the package manifest. */
 "manifest_path": "/path/to/my-package/Cargo.toml",
 /* The Cargo target (lib, bin, example, etc.) that
generated the artifacts.
 See the definition above for `compiler-message` for
details.
 */
 "target": {
 "kind": [
 "lib"
],
 "crate_types": [
 "lib"
],
 "name": "my_package",
 "src_path": "/path/to/my-package/src/lib.rs",
 "edition": "2018",
 "doc": true,
 "doctest": true,
 "test": true
 },
 /* The profile indicates which compiler settings were
used. */

 "profile": {
 /* The optimization level. */
 "opt_level": "0",
 /* The debug level, an integer of 0, 1, or 2, or a
string
 "line-directives-only" or "line-tables-only". If
`null`, it implies
 rustc's default of 0.
 */
 "debuginfo": 2,
 /* Whether or not debug assertions are enabled. */
 "debug_assertions": true,
 /* Whether or not overflow checks are enabled. */
 "overflow_checks": true,
 /* Whether or not the `--test` flag is used. */
 "test": false
 },
 /* Array of features enabled. */
 "features": ["feat1", "feat2"],
 /* Array of files generated by this step. */
 "filenames": [
 "/path/to/my-package/target/debug/libmy_package.rlib",
 "/path/to/my-package/target/debug/deps/libmy_package-
be9f3faac0a26ef0.rmeta"
],
 /* A string of the path to the executable that was
created, or null if
 this step did not generate an executable.
 */
 "executable": null,
 /* Whether or not this step was actually executed.
 When `true`, this means that the pre-existing artifacts
were
 up-to-date, and `rustc` was not executed. When `false`,
this means that
 `rustc` was run to generate the artifacts.

 */
 "fresh": true
}

Build script output
The "build-script-executed" message includes the parsed output of a

build script. Note that this is emitted even if the build script is not run; it
will display the previously cached value. More details about build script
output may be found in the chapter on build scripts.
{
 /* The "reason" indicates the kind of message. */
 "reason": "build-script-executed",
 /* The Package ID, a unique identifier for referring to
the package. */
 "package_id": "file:///path/to/my-package#0.1.0",
 /* Array of libraries to link, as indicated by the
`cargo::rustc-link-lib`
 instruction. Note that this may include a "KIND="
prefix in the string
 where KIND is the library kind.
 */
 "linked_libs": ["foo", "static=bar"],
 /* Array of paths to include in the library search path,
as indicated by
 the `cargo::rustc-link-search` instruction. Note that
this may include a
 "KIND=" prefix in the string where KIND is the library
kind.
 */
 "linked_paths": ["/some/path", "native=/another/path"],
 /* Array of cfg values to enable, as indicated by the
`cargo::rustc-cfg`
 instruction.
 */

clbr://internal.invalid/book/OEBPS/reference/build-scripts.md

 "cfgs": ["cfg1", "cfg2=\"string\""],
 /* Array of [KEY, VALUE] arrays of environment variables
to set, as
 indicated by the `cargo::rustc-env` instruction.
 */
 "env": [
 ["SOME_KEY", "some value"],
 ["ANOTHER_KEY", "another value"]
],
 /* An absolute path which is used as a value of `OUT_DIR`
environmental
 variable when compiling current package.
 */
 "out_dir": "/some/path/in/target/dir"
}

Build finished
The "build-finished" message is emitted at the end of the build.

{
 /* The "reason" indicates the kind of message. */
 "reason": "build-finished",
 /* Whether or not the build finished successfully. */
 "success": true,
}

This message can be helpful for tools to know when to stop reading
JSON messages. Commands such as cargo test or cargo run can
produce additional output after the build has finished. This message lets a
tool know that Cargo will not produce additional JSON messages, but there
may be additional output that may be generated afterwards (such as the
output generated by the program executed by cargo run).

Note: There is experimental nightly-only support for JSON output
for tests, so additional test-specific JSON messages may begin arriving
after the "build-finished" message if that is enabled.

Custom subcommands
Cargo is designed to be extensible with new subcommands without

having to modify Cargo itself. This is achieved by translating a cargo
invocation of the form cargo (?<command>[^]+) into an invocation of an
external tool cargo-${command} . The external tool must be present in one
of the user's $PATH directories.

Note: Cargo defaults to prioritizing external tools in
$CARGO_HOME/bin over $PATH . Users can override this precedence by
adding $CARGO_HOME/bin to $PATH .

When Cargo invokes a custom subcommand, the first argument to the
subcommand will be the filename of the custom subcommand, as usual.
The second argument will be the subcommand name itself. For example,
the second argument would be ${command} when invoking
cargo-${command} . Any additional arguments on the command line will be
forwarded unchanged.

Cargo can also display the help output of a custom subcommand with
cargo help ${command} . Cargo assumes that the subcommand will print a
help message if its third argument is --help . So, cargo help ${command}
would invoke cargo-${command} ${command} --help .

Custom subcommands may use the CARGO environment variable to call
back to Cargo. Alternatively, it can link to cargo crate as a library, but this
approach has drawbacks:

Cargo as a library is unstable: the API may change without deprecation
versions of the linked Cargo library may be different from the Cargo
binary

Instead, it is encouraged to use the CLI interface to drive Cargo. The
cargo metadata command can be used to obtain information about the
current project (the cargo_metadata crate provides a Rust interface to this
command).

clbr://internal.invalid/book/OEBPS/commands/cargo-metadata.md
https://crates.io/crates/cargo_metadata

Registries
Cargo installs crates and fetches dependencies from a "registry". The

default registry is crates.io. A registry contains an "index" which contains a
searchable list of available crates. A registry may also provide a web API to
support publishing new crates directly from Cargo.

Note: If you are interested in mirroring or vendoring an existing
registry, take a look at Source Replacement.

If you are implementing a registry server, see Running a Registry for
more details about the protocol between Cargo and a registry.

If you're using a registry that requires authentication, see Registry
Authentication. If you are implementing a credential provider, see
Credential Provider Protocol for details.

https://crates.io/
clbr://internal.invalid/book/OEBPS/reference/source-replacement.md
clbr://internal.invalid/book/OEBPS/reference/running-a-registry.md
clbr://internal.invalid/book/OEBPS/reference/registry-authentication.md
clbr://internal.invalid/book/OEBPS/reference/credential-provider-protocol.md

Using an Alternate Registry
To use a registry other than crates.io, the name and index URL of the

registry must be added to a .cargo/config.toml file. The registries
table has a key for each registry, for example:
[registries]
my-registry = { index = "https://my-intranet:8080/git/index" }

The index key should be a URL to a git repository with the registry's
index or a Cargo sparse registry URL with the sparse+ prefix.

A crate can then depend on a crate from another registry by specifying
the registry key and a value of the registry's name in that dependency's
entry in Cargo.toml :
Sample Cargo.toml
[package]
name = "my-project"
version = "0.1.0"
edition = "2024"

[dependencies]
other-crate = { version = "1.0", registry = "my-registry" }

As with most config values, the index may be specified with an
environment variable instead of a config file. For example, setting the
following environment variable will accomplish the same thing as defining
a config file:
CARGO_REGISTRIES_MY_REGISTRY_INDEX=https://my-
intranet:8080/git/index

Note: crates.io does not accept packages that depend on crates from
other registries.

https://crates.io/
clbr://internal.invalid/book/OEBPS/reference/config.md
https://crates.io/

Publishing to an Alternate Registry
If the registry supports web API access, then packages can be published

directly to the registry from Cargo. Several of Cargo's commands such as
cargo publish take a --registry command-line flag to indicate which
registry to use. For example, to publish the package in the current directory:

1. cargo login --registry=my-registry

This only needs to be done once. You must enter the secret API
token retrieved from the registry's website. Alternatively the token
may be passed directly to the publish command with the --token
command-line flag or an environment variable with the name of the
registry such as CARGO_REGISTRIES_MY_REGISTRY_TOKEN .

2. cargo publish --registry=my-registry

Instead of always passing the --registry command-line option, the
default registry may be set in .cargo/config.toml with the
registry.default key. For example:
[registry]
default = "my-registry"

Setting the package.publish key in the Cargo.toml manifest restricts
which registries the package is allowed to be published to. This is useful to
prevent accidentally publishing a closed-source package to crates.io. The
value may be a list of registry names, for example:
[package]
...
publish = ["my-registry"]

The publish value may also be false to restrict all publishing, which
is the same as an empty list.

The authentication information saved by cargo login is stored in the
credentials.toml file in the Cargo home directory (default
$HOME/.cargo). It has a separate table for each registry, for example:

clbr://internal.invalid/book/OEBPS/commands/cargo-publish.md
clbr://internal.invalid/book/OEBPS/reference/config.md
https://crates.io/
clbr://internal.invalid/book/OEBPS/commands/cargo-login.md

[registries.my-registry]
token = "854DvwSlUwEHtIo3kWy6x7UCPKHfzCmy"

Registry Protocols
Cargo supports two remote registry protocols: git and sparse . If the

registry index URL starts with sparse+ , Cargo uses the sparse protocol.
Otherwise Cargo uses the git protocol.

The git protocol stores index metadata in a git repository and requires
Cargo to clone the entire repo.

The sparse protocol fetches individual metadata files using plain HTTP
requests. Since Cargo only downloads the metadata for relevant crates, the
sparse protocol can save significant time and bandwidth.

The crates.io registry supports both protocols. The protocol for crates.io
is controlled via the registries.crates-io.protocol config key.

https://crates.io/
clbr://internal.invalid/book/OEBPS/reference/config.md#registriescrates-ioprotocol

Registry Authentication
Cargo authenticates to registries with credential providers. These

credential providers are external executables or built-in providers that
Cargo uses to store and retrieve credentials.

Using alternative registries with authentication requires a credential
provider to be configured to avoid unknowingly storing unencrypted
credentials on disk. For historical reasons, public (non-authenticated)
registries do not require credential provider configuration, and the
cargo:token provider is used if no providers are configured.

Cargo also includes platform-specific providers that use the operating
system to securely store tokens. The cargo:token provider is also included
which stores credentials in unencrypted plain text in the credentials file.

clbr://internal.invalid/book/OEBPS/reference/config.md#credentials

Recommended configuration
It's recommended to configure a global credential provider list in

$CARGO_HOME/config.toml which defaults to:

Windows: %USERPROFILE%\.cargo\config.toml
Unix: ~/.cargo/config.toml

This recommended configuration uses the operating system provider,
with a fallback to cargo:token to look in Cargo's credentials file or
environment variables:
~/.cargo/config.toml
[registry]
global-credential-providers = ["cargo:token",
"cargo:libsecret", "cargo:macos-keychain", "cargo:wincred"]

Note that later entries have higher precedence. See registry.global-
credential-providers for more details.

Some private registries may also recommend a registry-specific
credential-provider. Check your registry's documentation to see if this is the
case.

clbr://internal.invalid/book/OEBPS/reference/config.md#credentials
clbr://internal.invalid/book/OEBPS/reference/config.md#registryglobal-credential-providers

Built-in providers
Cargo includes several built-in credential providers. The available built-

in providers may change in future Cargo releases (though there are
currently no plans to do so).

cargo:token
Uses Cargo's credentials file to store tokens unencrypted in plain text.

When retrieving tokens, checks the CARGO_REGISTRIES_<NAME>_TOKEN

environment variable. If this credential provider is not listed, then the
*_TOKEN environment variables will not work.

cargo:wincred
Uses the Windows Credential Manager to store tokens.
The credentials are stored as cargo-registry:<index-url> in the

Credential Manager under "Windows Credentials".

cargo:macos-keychain
Uses the macOS Keychain to store tokens.
The Keychain Access app can be used to view stored tokens.

cargo:libsecret
Uses libsecret to store tokens.
Any password manager with libsecret support can be used to view stored

tokens. The following are a few examples (non-exhaustive):

GNOME Keyring
KDE Wallet Manager (since KDE Frameworks 5.97.0)
KeePassXC (since 2.5.0)

cargo:token-from-stdout <command> <args>
Launch a subprocess that returns a token on stdout. Newlines will be

trimmed.

The process inherits the user's stdin and stderr.

clbr://internal.invalid/book/OEBPS/reference/config.md#credentials
https://wiki.gnome.org/Projects/Libsecret
https://wiki.gnome.org/Projects/GnomeKeyring
https://apps.kde.org/kwalletmanager5/
https://keepassxc.org/

It should exit 0 on success, and nonzero on error.
cargo login and cargo logout are not supported and return an error
if used.

The following environment variables will be provided to the executed
command:

CARGO --- Path to the cargo binary executing the command.
CARGO_REGISTRY_INDEX_URL --- The URL of the registry index.
CARGO_REGISTRY_NAME_OPT --- Optional name of the registry. Should
not be used as a lookup key.

Arguments will be passed on to the subcommand.

clbr://internal.invalid/book/OEBPS/commands/cargo-login.md
clbr://internal.invalid/book/OEBPS/commands/cargo-logout.md

Credential plugins
For credential provider plugins that follow Cargo's credential provider

protocol, the configuration value should be a string with the path to the
executable (or the executable name if on the PATH).

For example, to install cargo-credential-1password from crates.io do the
following:

Install the provider with cargo install cargo-credential-1password
In the config, add to (or create) registry.global-credential-

providers :
[registry]
global-credential-providers = ["cargo:token", "cargo-
credential-1password --account my.1password.com"]

The values in global-credential-providers are split on spaces into
path and command-line arguments. To define a global credential provider
where the path or arguments contain spaces, use the [credential-alias]
table.

clbr://internal.invalid/book/OEBPS/reference/credential-provider-protocol.md
https://crates.io/crates/cargo-credential-1password
clbr://internal.invalid/book/OEBPS/reference/config.md#credential-alias

Credential Provider Protocol
This document describes information for building a Cargo credential

provider. For information on setting up or using a credential provider, see
Registry Authentication.

When using an external credential provider, Cargo communicates with
the credential provider using stdin/stdout messages passed as single lines of
JSON.

Cargo will always execute the credential provider with the --cargo-
plugin argument. This enables a credential provider executable to have
additional functionality beyond what Cargo needs. Additional arguments
are included in the JSON via the args field.

clbr://internal.invalid/book/OEBPS/reference/registry-authentication.md

JSON messages
The JSON messages in this document have newlines added for

readability. Actual messages must not contain newlines.

Credential hello

Sent by: credential provider
Purpose: used to identify the supported protocols on process startup

{
 "v":[1]
}

Requests sent by Cargo will include a v field set to one of the versions
listed here. If Cargo does not support any of the versions offered by the
credential provider, it will issue an error and shut down the credential
process.

Registry information

Sent by: Cargo Not a message by itself. Included in all messages sent
by Cargo as the registry field.

{
 // Index URL of the registry
 "index-url":"https://github.com/rust-lang/crates.io-
index",
 // Name of the registry in configuration (optional)
 "name": "crates-io",
 // HTTP headers received from attempting to access an
authenticated registry (optional)
 "headers": ["WWW-Authenticate: cargo"]
}

Login request

Sent by: Cargo
Purpose: collect and store credentials

{
 // Protocol version
 "v":1,
 // Action to perform: login
 "kind":"login",
 // Registry information (see Registry information)
 "registry":{"index-url":"sparse+https://registry-
url/index/", "name": "my-registry"},
 // User-specified token from stdin or command line
(optional)
 "token": "<the token value>",
 // URL that the user could visit to get a token (optional)
 "login-url": "http://registry-url/login",
 // Additional command-line args (optional)
 "args":[]
}

If the token field is set, then the credential provider should use the
token provided. If the token is not set, then the credential provider should
prompt the user for a token.

In addition to the arguments that may be passed to the credential
provider in configuration, cargo login also supports passing additional
command line args via cargo login -- <additional args> . These
additional arguments will be included in the args field after any args from
Cargo configuration.

Read request

Sent by: Cargo
Purpose: Get the credential for reading crate information

{
 // Protocol version
 "v":1,
 // Request kind: get credentials
 "kind":"get",
 // Action to perform: read crate information

 "operation":"read",
 // Registry information (see Registry information)
 "registry":{"index-url":"sparse+https://registry-
url/index/", "name": "my-registry"},
 // Additional command-line args (optional)
 "args":[]
}

Publish request

Sent by: Cargo
Purpose: Get the credential for publishing a crate

{
 // Protocol version
 "v":1,
 // Request kind: get credentials
 "kind":"get",
 // Action to perform: publish crate
 "operation":"publish",
 // Crate name
 "name":"sample",
 // Crate version
 "vers":"0.1.0",
 // Crate checksum
 "cksum":"...",
 // Registry information (see Registry information)
 "registry":{"index-url":"sparse+https://registry-
url/index/", "name": "my-registry"},
 // Additional command-line args (optional)
 "args":[]
}

Get success response

Sent by: credential provider
Purpose: Gives the credential to Cargo

{"Ok":{
 // Response kind: this was a get request
 "kind":"get",
 // Token to send to the registry
 "token":"...",
 // Cache control. Can be one of the following:
 // * "never": do not cache
 // * "session": cache for the current cargo session
 // * "expires": cache for the current cargo session until
expiration
 "cache":"expires",
 // Unix timestamp (only for "cache": "expires")
 "expiration":1693942857,
 // Is the token operation independent?
 "operation_independent":true
}}

The token will be sent to the registry as the value of the
Authorization HTTP header.

operation_independent indicates whether the token can be cached
across different operations (such as publishing or fetching). In general, this
should be true unless the provider wants to generate tokens that are
scoped to specific operations.

Login success response

Sent by: credential provider
Purpose: Indicates the login was successful

{"Ok":{
 // Response kind: this was a login request
 "kind":"login"
}}

Logout success response

Sent by: credential provider

Purpose: Indicates the logout was successful
{"Ok":{
 // Response kind: this was a logout request
 "kind":"logout"
}}

Failure response (URL not supported)

Sent by: credential provider
Purpose: Gives error information to Cargo

{"Err":{
 "kind":"url-not-supported"
}}

Sent if the credential provider is designed to only handle specific
registry URLs and the given URL is not supported. Cargo will attempt
another provider if available.

Failure response (not found)

Sent by: credential provider
Purpose: Gives error information to Cargo

{"Err":{
 // Error: The credential could not be found in the
provider.
 "kind":"not-found"
}}

Sent if the credential could not be found. This is expected for get
requests where the credential is not available, or logout requests where
there is nothing found to erase.

Failure response (operation not supported)

Sent by: credential provider
Purpose: Gives error information to Cargo

{"Err":{
 // Error: The credential could not be found in the
provider.
 "kind":"operation-not-supported"
}}

Sent if the credential provider does not support the requested operation.
If a provider only supports get and a login is requested, the provider
should respond with this error.

Failure response (other)

Sent by: credential provider
Purpose: Gives error information to Cargo

{"Err":{
 // Error: something else has failed
 "kind":"other",
 // Error message string to be displayed
 "message": "free form string error message",
 // Detailed cause chain for the error (optional)
 "caused-by": ["cause 1", "cause 2"]
}}

Example communication to request a token for
reading:

1. Cargo spawns the credential process, capturing stdin and stdout.
2. Credential process sends the Hello message to Cargo

{ "v": [1] }

3. Cargo sends the CredentialRequest message to the credential process
(newlines added for readability).
{
 "v": 1,
 "kind": "get",
 "operation": "read",
 "registry":{"index-url":"sparse+https://registry-
url/index/"}
}

4. Credential process sends the CredentialResponse to Cargo (newlines
added for readability).
{
 "token": "...",
 "cache": "session",
 "operation_independent": true
}

5. Cargo closes the stdin pipe to the credential provider and it exits.
6. Cargo uses the token for the remainder of the session (until Cargo

exits) when interacting with this registry.

Running a Registry
A minimal registry can be implemented by having a git repository that

contains an index, and a server that contains the compressed .crate files
created by cargo package . Users won't be able to use Cargo to publish to
it, but this may be sufficient for closed environments. The index format is
described in Registry Index.

A full-featured registry that supports publishing will additionally need to
have a web API service that conforms to the API used by Cargo. The web
API is described in Registry Web API.

Commercial and community projects are available for building and
running a registry. See https://github.com/rust-lang/cargo/wiki/Third-party-
registries for a list of what is available.

clbr://internal.invalid/book/OEBPS/commands/cargo-package.md
clbr://internal.invalid/book/OEBPS/reference/registry-index.md
clbr://internal.invalid/book/OEBPS/reference/registry-web-api.md
https://github.com/rust-lang/cargo/wiki/Third-party-registries

Index Format
The following defines the format of the index. New features are

occasionally added, which are only understood starting with the version of
Cargo that introduced them. Older versions of Cargo may not be able to use
packages that make use of new features. However, the format for older
packages should not change, so older versions of Cargo should be able to
use them.

Index Configuration
The root of the index contains a file named config.json which

contains JSON information used by Cargo for accessing the registry. This is
an example of what the crates.io config file looks like:
{
 "dl": "https://crates.io/api/v1/crates",
 "api": "https://crates.io"
}

The keys are:

dl : This is the URL for downloading crates listed in the index. The
value may have the following markers which will be replaced with
their corresponding value:

{crate} : The name of crate.
{version} : The crate version.
{prefix} : A directory prefix computed from the crate name. For
example, a crate named cargo has a prefix of ca/rg . See below
for details.
{lowerprefix} : Lowercase variant of {prefix} .
{sha256-checksum} : The crate's sha256 checksum.

If none of the markers are present, then the value
/{crate}/{version}/download is appended to the end.

api : This is the base URL for the web API. This key is optional,
but if it is not specified, commands such as cargo publish will not
work. The web API is described below.

auth-required : indicates whether this is a private registry that
requires all operations to be authenticated including API requests,
crate downloads and sparse index updates.

https://crates.io/
clbr://internal.invalid/book/OEBPS/commands/cargo-publish.md

Download Endpoint
The download endpoint should send the .crate file for the requested

package. Cargo supports https, http, and file URLs, HTTP redirects, HTTP1
and HTTP2. The exact specifics of TLS support depend on the platform that
Cargo is running on, the version of Cargo, and how it was compiled.

If auth-required: true is set in config.json , the Authorization
header will be included with http(s) download requests.

Index files
The rest of the index repository contains one file for each package,

where the filename is the name of the package in lowercase. Each version
of the package has a separate line in the file. The files are organized in a tier
of directories:

Packages with 1 character names are placed in a directory named 1 .
Packages with 2 character names are placed in a directory named 2 .
Packages with 3 character names are placed in the directory
3/{first-character} where {first-character} is the first
character of the package name.
All other packages are stored in directories named {first-
two}/{second-two} where the top directory is the first two characters
of the package name, and the next subdirectory is the third and fourth
characters of the package name. For example, cargo would be stored
in a file named ca/rg/cargo .

Note: Although the index filenames are in lowercase, the fields that
contain package names in Cargo.toml and the index JSON data are
case-sensitive and may contain upper and lower case characters.

The directory name above is calculated based on the package name
converted to lowercase; it is represented by the marker {lowerprefix} .
When the original package name is used without case conversion, the
resulting directory name is represented by the marker {prefix} . For
example, the package MyCrate would have a {prefix} of My/Cr and a
{lowerprefix} of my/cr . In general, using {prefix} is recommended
over {lowerprefix} , but there are pros and cons to each choice. Using
{prefix} on case-insensitive filesystems results in (harmless-but-
inelegant) directory aliasing. For example, crate and CrateTwo have
{prefix} values of cr/at and Cr/at ; these are distinct on Unix machines
but alias to the same directory on Windows. Using directories with
normalized case avoids aliasing, but on case-sensitive filesystems it's harder
to support older versions of Cargo that lack {prefix} / {lowerprefix} . For

example, nginx rewrite rules can easily construct {prefix} but can't
perform case-conversion to construct {lowerprefix} .

Name restrictions
Registries should consider enforcing limitations on package names

added to their index. Cargo itself allows names with any alphanumeric, - ,
or _ characters. crates.io imposes its own limitations, including the
following:

Only allows ASCII characters.
Only alphanumeric, - , and _ characters.
First character must be alphabetic.
Case-insensitive collision detection.
Prevent differences of - vs _ .
Under a specific length (max 64).
Rejects reserved names, such as Windows special filenames like "nul".

Registries should consider incorporating similar restrictions, and
consider the security implications, such as IDN homograph attacks and
other concerns in UTR36 and UTS39.

clbr://internal.invalid/book/std/primitive.char.html#method.is_alphanumeric
https://crates.io/
https://en.wikipedia.org/wiki/IDN_homograph_attack
https://www.unicode.org/reports/tr36/
https://www.unicode.org/reports/tr39/

Version uniqueness
Indexes must ensure that each version only appears once for each

package. This includes ignoring SemVer build metadata. For example, the
index must not contain two entries with a version 1.0.7 and 1.0.7+extra .

JSON schema
Each line in a package file contains a JSON object that describes a

published version of the package. The following is a pretty-printed example
with comments explaining the format of the entry.
{
 // The name of the package.
 // This must only contain alphanumeric, `-`, or `_`
characters.
 "name": "foo",
 // The version of the package this row is describing.
 // This must be a valid version number according to the
Semantic
 // Versioning 2.0.0 spec at https://semver.org/.
 "vers": "0.1.0",
 // Array of direct dependencies of the package.
 "deps": [
 {
 // Name of the dependency.
 // If the dependency is renamed from the original
package name,
 // this is the new name. The original package name
is stored in
 // the `package` field.
 "name": "rand",
 // The SemVer requirement for this dependency.
 // This must be a valid version requirement
defined at
 // https://doc.rust-
lang.org/cargo/reference/specifying-dependencies.html.
 "req": "^0.6",
 // Array of features (as strings) enabled for this
dependency.
 // May be omitted since Cargo 1.84.
 "features": ["i128_support"],

 // Boolean of whether or not this is an optional
dependency.
 // Since Cargo 1.84, defaults to `false` if not
specified.
 "optional": false,
 // Boolean of whether or not default features are
enabled.
 // Since Cargo 1.84, defaults to `true` if not
specified.
 "default_features": true,
 // The target platform for the dependency.
 // If not specified or `null`, it is not a target
dependency.
 // Otherwise, a string such as "cfg(windows)".
 "target": null,
 // The dependency kind.
 // "dev", "build", or "normal".
 // If not specified or `null`, it defaults to
"normal".
 "kind": "normal",
 // The URL of the index of the registry where this
dependency is
 // from as a string. If not specified or `null`,
it is assumed the
 // dependency is in the current registry.
 "registry": null,
 // If the dependency is renamed, this is a string
of the actual
 // package name. If not specified or `null`, this
dependency is not
 // renamed.
 "package": null,
 }
],
 // A SHA256 checksum of the `.crate` file.
 "cksum":

"d867001db0e2b6e0496f9fac96930e2d42233ecd3ca0413e0753d4c7695d2
89c",
 // Set of features defined for the package.
 // Each feature maps to an array of features or
dependencies it enables.
 // May be omitted since Cargo 1.84.
 "features": {
 "extras": ["rand/simd_support"]
 },
 // Boolean of whether or not this version has been yanked.
 "yanked": false,
 // The `links` string value from the package's manifest,
or null if not
 // specified. This field is optional and defaults to null.
 "links": null,
 // An unsigned 32-bit integer value indicating the schema
version of this
 // entry.
 //
 // If this is not specified, it should be interpreted as
the default of 1.
 //
 // Cargo (starting with version 1.51) will ignore versions
it does not
 // recognize. This provides a method to safely introduce
changes to index
 // entries and allow older versions of cargo to ignore
newer entries it
 // doesn't understand. Versions older than 1.51 ignore
this field, and
 // thus may misinterpret the meaning of the index entry.
 //
 // The current values are:
 //
 // * 1: The schema as documented here, not including newer
additions.

 // This is honored in Rust version 1.51 and newer.
 // * 2: The addition of the `features2` field.
 // This is honored in Rust version 1.60 and newer.
 "v": 2,
 // This optional field contains features with new,
extended syntax.
 // Specifically, namespaced features (`dep:`) and weak
dependencies
 // (`pkg?/feat`).
 //
 // This is separated from `features` because versions
older than 1.19
 // will fail to load due to not being able to parse the
new syntax, even
 // with a `Cargo.lock` file.
 //
 // Cargo will merge any values listed here with the
"features" field.
 //
 // If this field is included, the "v" field should be set
to at least 2.
 //
 // Registries are not required to use this field for
extended feature
 // syntax, they are allowed to include those in the
"features" field.
 // Using this is only necessary if the registry wants to
support cargo
 // versions older than 1.19, which in practice is only
crates.io since
 // those older versions do not support other registries.
 "features2": {
 "serde": ["dep:serde", "chrono?/serde"]
 }
 // The minimal supported Rust version (optional)
 // This must be a valid version requirement without an

operator (e.g. no `=`)
 "rust_version": "1.60"
}

The JSON objects should not be modified after they are added except for
the yanked field whose value may change at any time.

Note: The index JSON format has subtle differences from the
JSON format of the Publish API and cargo metadata . If you are
using one of those as a source to generate index entries, you are
encouraged to carefully inspect the documentation differences between
them.

For the Publish API, the differences are:

deps

name --- When the dependency is renamed in Cargo.toml ,
the publish API puts the original package name in the name
field and the aliased name in the explicit_name_in_toml
field. The index places the aliased name in the name field,
and the original package name in the package field.
req --- The Publish API field is called version_req .

cksum --- The publish API does not specify the checksum, it
must be computed by the registry before adding to the index.
features --- Some features may be placed in the features2
field. Note: This is only a legacy requirement for crates.io; other
registries should not need to bother with modifying the features
map. The v field indicates the presence of the features2 field.
The publish API includes several other fields, such as
description and readme , which don't appear in the index.
These are intended to make it easier for a registry to obtain the
metadata about the crate to display on a website without needing
to extract and parse the .crate file. This additional information
is typically added to a database on the registry server.

clbr://internal.invalid/book/OEBPS/reference/registry-web-api.md#publish
clbr://internal.invalid/book/OEBPS/commands/cargo-metadata.md
clbr://internal.invalid/book/OEBPS/reference/registry-web-api.md#publish
clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md#renaming-dependencies-in-cargotoml
https://crates.io/

Although rust_version is included here, crates.io will ignore
this field and instead read it from the Cargo.toml contained in
the .crate file.

For cargo metadata , the differences are:

vers --- The cargo metadata field is called version .
deps

name --- When the dependency is renamed in Cargo.toml ,
cargo metadata puts the original package name in the
name field and the aliased name in the rename field. The
index places the aliased name in the name field, and the
original package name in the package field.
default_features --- The cargo metadata field is called
uses_default_features .
registry --- cargo metadata uses a value of null to
indicate that the dependency comes from crates.io. The index
uses a value of null to indicate that the dependency comes
from the same registry as the index. When creating an index
entry, a registry other than crates.io should translate a value
of null to be https://github.com/rust-
lang/crates.io-index and translate a URL that matches
the current index to be null .
cargo metadata includes some extra fields, such as
source and path .

The index includes additional fields such as yanked , cksum , and
v .

https://crates.io/
clbr://internal.invalid/book/OEBPS/commands/cargo-metadata.md
clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md#renaming-dependencies-in-cargotoml
https://crates.io/
https://crates.io/

Index Protocols
Cargo supports two remote registry protocols: git and sparse . The

git protocol stores index files in a git repository and the sparse protocol
fetches individual files over HTTP.

Git Protocol
The git protocol has no protocol prefix in the index url. For example the

git index URL for crates.io is https://github.com/rust-

lang/crates.io-index .
Cargo caches the git repository on disk so that it can efficiently

incrementally fetch updates.

Sparse Protocol
The sparse protocol uses the sparse+ protocol prefix in the registry

URL. For example, the sparse index URL for crates.io is
sparse+https://index.crates.io/ .

The sparse protocol downloads each index file using an individual HTTP
request. Since this results in a large number of small HTTP requests,
performance is significantly improved with a server that supports pipelining
and HTTP/2.

Sparse authentication
Cargo will attempt to fetch the config.json file before fetching any

other files. If the server responds with an HTTP 401, then Cargo will
assume that the registry requires authentication and re-attempt the request
for config.json with the authentication token included.

On authentication failure (or a missing authentication token) the server
may include a www-authenticate header with a Cargo login_url="

<URL>" challenge to indicate where the user can go to get a token.
Registries that require authentication must set auth-required: true in

config.json .

Caching

https://crates.io/
https://crates.io/

Cargo caches the crate metadata files, and captures the ETag or Last-
Modified HTTP header from the server for each entry. When refreshing
crate metadata, Cargo sends the If-None-Match or If-Modified-Since
header to allow the server to respond with HTTP 304 "Not Modified" if the
local cache is valid, saving time and bandwidth. If both ETag and Last-
Modified headers are present, Cargo uses the ETag only.

Cache Invalidation
If a registry is using some kind of CDN or proxy which caches access to

the index files, then it is recommended that registries implement some form
of cache invalidation when the files are updated. If these caches are not
updated, then users may not be able to access new crates until the cache is
cleared.

Nonexistent Crates
For crates that do not exist, the registry should respond with a 404 "Not

Found", 410 "Gone" or 451 "Unavailable For Legal Reasons" code.

Sparse Limitations
Since the URL of the registry is stored in the lockfile, it's not

recommended to offer a registry with both protocols. Discussion about a
transition plan is ongoing in issue #10964. The crates.io registry is an
exception, since Cargo internally substitutes the equivalent git URL when
the sparse protocol is used.

If a registry does offer both protocols, it's currently recommended to
choose one protocol as the canonical protocol and use source replacement
for the other protocol.

https://github.com/rust-lang/cargo/issues/10964
https://crates.io/
clbr://internal.invalid/book/OEBPS/reference/source-replacement.md

Web API
A registry may host a web API at the location defined in config.json

to support any of the actions listed below.
Cargo includes the Authorization header for requests that require

authentication. The header value is the API token. The server should
respond with a 403 response code if the token is not valid. Users are
expected to visit the registry's website to obtain a token, and Cargo can
store the token using the cargo login command, or by passing the token
on the command-line.

Responses use a 2xx response code for success. Errors should use an
appropriate response code, such as 404. Failure responses should have a
JSON object with the following structure:
{
 // Array of errors to display to the user.
 "errors": [
 {
 // The error message as a string.
 "detail": "error message text"
 }
]
}

If the response has this structure Cargo will display the detailed message
to the user, even if the response code is 200. If the response code indicates
an error and the content does not have this structure, Cargo will display to
the user a message intended to help debugging the server error. A server
returning an errors object allows a registry to provide a more detailed or
user-centric error message.

For backwards compatibility, servers should ignore any unexpected
query parameters or JSON fields. If a JSON field is missing, it should be
assumed to be null. The endpoints are versioned with the v1 component of
the path, and Cargo is responsible for handling backwards compatibility
fallbacks should any be required in the future.

clbr://internal.invalid/book/OEBPS/commands/cargo-login.md

Cargo sets the following headers for all requests:

Content-Type : application/json (for requests with a body
payload)
Accept : application/json
User-Agent : The Cargo version such as cargo/1.32.0 (8610973aa
2019-01-02) . This may be modified by the user in a configuration
value. Added in 1.29.

Publish

Endpoint: /api/v1/crates/new
Method: PUT
Authorization: Included

The publish endpoint is used to publish a new version of a crate. The
server should validate the crate, make it available for download, and add it
to the index.

It is not required for the index to be updated before the successful
response is sent. After a successful response, Cargo will poll the index for a
short period of time to identify that the new crate has been added. If the
crate does not appear in the index after a short period of time, then Cargo
will display a warning letting the user know that the new crate is not yet
available.

The body of the data sent by Cargo is:

32-bit unsigned little-endian integer of the length of JSON data.
Metadata of the package as a JSON object.
32-bit unsigned little-endian integer of the length of the .crate file.
The .crate file.

The following is a commented example of the JSON object. Some notes
of some restrictions imposed by crates.io are included only to illustrate
some suggestions on types of validation that may be done, and should not
be considered as an exhaustive list of restrictions crates.io imposes.
{
 // The name of the package.
 "name": "foo",
 // The version of the package being published.
 "vers": "0.1.0",
 // Array of direct dependencies of the package.
 "deps": [
 {
 // Name of the dependency.

https://crates.io/
https://crates.io/

 // If the dependency is renamed from the original
package name,
 // this is the original name. The new package name
is stored in
 // the `explicit_name_in_toml` field.
 "name": "rand",
 // The semver requirement for this dependency.
 "version_req": "^0.6",
 // Array of features (as strings) enabled for this
dependency.
 "features": ["i128_support"],
 // Boolean of whether or not this is an optional
dependency.
 "optional": false,
 // Boolean of whether or not default features are
enabled.
 "default_features": true,
 // The target platform for the dependency.
 // null if not a target dependency.
 // Otherwise, a string such as "cfg(windows)".
 "target": null,
 // The dependency kind.
 // "dev", "build", or "normal".
 "kind": "normal",
 // The URL of the index of the registry where this
dependency is
 // from as a string. If not specified or null, it
is assumed the
 // dependency is in the current registry.
 "registry": null,
 // If the dependency is renamed, this is a string
of the new
 // package name. If not specified or null, this
dependency is not
 // renamed.
 "explicit_name_in_toml": null,

 }
],
 // Set of features defined for the package.
 // Each feature maps to an array of features or
dependencies it enables.
 // Cargo does not impose limitations on feature names, but
crates.io
 // requires alphanumeric ASCII, `_` or `-` characters.
 "features": {
 "extras": ["rand/simd_support"]
 },
 // List of strings of the authors.
 // May be empty.
 "authors": ["Alice <a@example.com>"],
 // Description field from the manifest.
 // May be null. crates.io requires at least some content.
 "description": null,
 // String of the URL to the website for this package's
documentation.
 // May be null.
 "documentation": null,
 // String of the URL to the website for this package's
home page.
 // May be null.
 "homepage": null,
 // String of the content of the README file.
 // May be null.
 "readme": null,
 // String of a relative path to a README file in the
crate.
 // May be null.
 "readme_file": null,
 // Array of strings of keywords for the package.
 "keywords": [],
 // Array of strings of categories for the package.
 "categories": [],

 // String of the license for the package.
 // May be null. crates.io requires either `license` or
`license_file` to be set.
 "license": null,
 // String of a relative path to a license file in the
crate.
 // May be null.
 "license_file": null,
 // String of the URL to the website for the source
repository of this package.
 // May be null.
 "repository": null,
 // Optional object of "status" badges. Each value is an
object of
 // arbitrary string to string mappings.
 // crates.io has special interpretation of the format of
the badges.
 "badges": {
 "travis-ci": {
 "branch": "master",
 "repository": "rust-lang/cargo"
 }
 },
 // The `links` string value from the package's manifest,
or null if not
 // specified. This field is optional and defaults to null.
 "links": null,
 // The minimal supported Rust version (optional)
 // This must be a valid version requirement without an
operator (e.g. no `=`)
 "rust_version": null
}

A successful response includes the JSON object:
{
 // Optional object of warnings to display to the user.

 "warnings": {
 // Array of strings of categories that are invalid and
ignored.
 "invalid_categories": [],
 // Array of strings of badge names that are invalid
and ignored.
 "invalid_badges": [],
 // Array of strings of arbitrary warnings to display
to the user.
 "other": []
 }
}

Yank

Endpoint: /api/v1/crates/{crate_name}/{version}/yank
Method: DELETE
Authorization: Included

The yank endpoint will set the yank field of the given version of a crate
to true in the index.

A successful response includes the JSON object:
{
 // Indicates the yank succeeded, always true.
 "ok": true,
}

Unyank

Endpoint: /api/v1/crates/{crate_name}/{version}/unyank
Method: PUT
Authorization: Included

The unyank endpoint will set the yank field of the given version of a
crate to false in the index.

A successful response includes the JSON object:
{
 // Indicates the unyank succeeded, always true.
 "ok": true,
}

Owners
Cargo does not have an inherent notion of users and owners, but it does

provide the owner command to assist managing who has authorization to
control a crate. It is up to the registry to decide exactly how users and
owners are handled. See the publishing documentation for a description of
how crates.io handles owners via GitHub users and teams.

Owners: List

Endpoint: /api/v1/crates/{crate_name}/owners
Method: GET
Authorization: Included

The owners endpoint returns a list of owners of the crate.
A successful response includes the JSON object:

{
 // Array of owners of the crate.
 "users": [
 {
 // Unique unsigned 32-bit integer of the owner.
 "id": 70,
 // The unique username of the owner.
 "login": "github:rust-lang:core",
 // Name of the owner.
 // This is optional and may be null.
 "name": "Core",
 }
]
}

Owners: Add

Endpoint: /api/v1/crates/{crate_name}/owners
Method: PUT
Authorization: Included

clbr://internal.invalid/book/OEBPS/reference/publishing.md#cargo-owner
https://crates.io/

A PUT request will send a request to the registry to add a new owner to
a crate. It is up to the registry how to handle the request. For example,
crates.io sends an invite to the user that they must accept before being
added.

The request should include the following JSON object:
{
 // Array of `login` strings of owners to add.
 "users": ["login_name"]
}

A successful response includes the JSON object:
{
 // Indicates the add succeeded, always true.
 "ok": true,
 // A string to be displayed to the user.
 "msg": "user ehuss has been invited to be an owner of
crate cargo"
}

Owners: Remove

Endpoint: /api/v1/crates/{crate_name}/owners
Method: DELETE
Authorization: Included

A DELETE request will remove an owner from a crate. The request
should include the following JSON object:
{
 // Array of `login` strings of owners to remove.
 "users": ["login_name"]
}

A successful response includes the JSON object:
{
 // Indicates the remove succeeded, always true.
 "ok": true
 // A string to be displayed to the user. Currently ignored

https://crates.io/

by cargo.
 "msg": "owners successfully removed",
}

Search

Endpoint: /api/v1/crates
Method: GET
Query Parameters:

q : The search query string.
per_page : Number of results, default 10, max 100.

The search request will perform a search for crates, using criteria defined
on the server.

A successful response includes the JSON object:
{
 // Array of results.
 "crates": [
 {
 // Name of the crate.
 "name": "rand",
 // The highest version available.
 "max_version": "0.6.1",
 // Textual description of the crate.
 "description": "Random number generators and other
randomness functionality.\n",
 }
],
 "meta": {
 // Total number of results available on the server.
 "total": 119
 }
}

Login

Endpoint: /me
The "login" endpoint is not an actual API request. It exists solely for the

cargo login command to display a URL to instruct a user to visit in a web
browser to log in and retrieve an API token.

clbr://internal.invalid/book/OEBPS/commands/cargo-login.md

SemVer Compatibility
This chapter provides details on what is conventionally considered a

compatible or breaking SemVer change for new releases of a package. See
the SemVer compatibility section for details on what SemVer is, and how
Cargo uses it to ensure compatibility of libraries.

These are only guidelines, and not necessarily hard-and-fast rules that all
projects will obey. The Change categories section details how this guide
classifies the level and severity of a change. Most of this guide focuses on
changes that will cause cargo and rustc to fail to build something that
previously worked. Almost every change carries some risk that it will
negatively affect the runtime behavior, and for those cases it is usually a
judgment call by the project maintainers whether or not it is a SemVer-
incompatible change.

clbr://internal.invalid/book/OEBPS/reference/resolver.md#semver-compatibility

Change categories
All of the policies listed below are categorized by the level of change:

Major change: a change that requires a major SemVer bump.
Minor change: a change that requires only a minor SemVer bump.
Possibly-breaking change: a change that some projects may consider
major and others consider minor.

The "Possibly-breaking" category covers changes that have the potential
to break during an update, but may not necessarily cause a breakage. The
impact of these changes should be considered carefully. The exact nature
will depend on the change and the principles of the project maintainers.

Some projects may choose to only bump the patch number on a minor
change. It is encouraged to follow the SemVer spec, and only apply bug
fixes in patch releases. However, a bug fix may require an API change that
is marked as a "minor change", and shouldn't affect compatibility. This
guide does not take a stance on how each individual "minor change" should
be treated, as the difference between minor and patch changes are
conventions that depend on the nature of the change.

Some changes are marked as "minor", even though they carry the
potential risk of breaking a build. This is for situations where the potential
is extremely low, and the potentially breaking code is unlikely to be written
in idiomatic Rust, or is specifically discouraged from use.

This guide uses the terms "major" and "minor" assuming this relates to a
"1.0.0" release or later. Initial development releases starting with "0.y.z" can
treat changes in "y" as a major release, and "z" as a minor release. "0.0.z"
releases are always major changes. This is because Cargo uses the
convention that only changes in the left-most non-zero component are
considered incompatible.

API compatibility

Items

Major: renaming/moving/removing any public items

Minor: adding new public items
Types

Major: Changing the alignment, layout, or size of a well-
defined type

Structs

Major: adding a private struct field when all current fields
are public
Major: adding a public field when no private field exists
Minor: adding or removing private fields when at least one
already exists
Minor: going from a tuple struct with all private fields (with
at least one field) to a normal struct, or vice versa

Enums

Major: adding new enum variants (without
non_exhaustive)
Major: adding new fields to an enum variant

Traits

Major: adding a non-defaulted trait item
Major: any change to trait item signatures
Possibly-breaking: adding a defaulted trait item
Major: adding a trait item that makes the trait non-object
safe
Major: adding a type parameter without a default
Minor: adding a defaulted trait type parameter

Implementations

Possibly-breaking change: adding any inherent items
Generics

Major: tightening generic bounds
Minor: loosening generic bounds
Minor: adding defaulted type parameters

Minor: generalizing a type to use generics (with identical
types)
Major: generalizing a type to use generics (with possibly
different types)
Minor: changing a generic type to a more generic type
Major: capturing more generic parameters in RPIT

Functions

Major: adding/removing function parameters
Possibly-breaking: introducing a new function type
parameter
Minor: generalizing a function to use generics (supporting
original type)
Major: generalizing a function to use generics with type
mismatch
Minor: making an unsafe function safe

Attributes

Major: switching from no_std support to requiring std
Major: adding non_exhaustive to an existing enum,
variant, or struct with no private fields

Tooling and environment compatibility

Possibly-breaking: changing the minimum version of Rust
required
Possibly-breaking: changing the platform and environment
requirements
Minor: introducing new lints
Cargo

Minor: adding a new Cargo feature
Major: removing a Cargo feature
Major: removing a feature from a feature list if that changes
functionality or public items
Possibly-breaking: removing an optional dependency
Minor: changing dependency features

Minor: adding dependencies
Application compatibility

API compatibility
All of the examples below contain three parts: the original code, the

code after it has been modified, and an example usage of the code that
could appear in another project. In a minor change, the example usage
should successfully build with both the before and after versions.

Major: renaming/moving/removing any public
items {#item-remove}

The absence of a publicly exposed item will cause any uses of that item
to fail to compile.
// MAJOR CHANGE

///
// Before
pub fn foo() {}

///
// After
// ... item has been removed

///
// Example usage that will break.
fn main() {
 updated_crate::foo(); // Error: cannot find function `foo`
}

This includes adding any sort of cfg attribute which can change which
items or behavior is available based on conditional compilation.

Mitigating strategies:

Mark items to be removed as deprecated, and then remove them at a
later date in a SemVer-breaking release.
Mark renamed items as deprecated, and use a pub use item to re-
export to the old name.

clbr://internal.invalid/book/reference/items.html
clbr://internal.invalid/book/reference/conditional-compilation.md#the-cfg-attribute
clbr://internal.invalid/book/reference/conditional-compilation.md
clbr://internal.invalid/book/reference/attributes/diagnostics.html#the-deprecated-attribute
clbr://internal.invalid/book/reference/attributes/diagnostics.html#the-deprecated-attribute
clbr://internal.invalid/book/reference/items/use-declarations.html

Minor: adding new public items {#item-new}
Adding new, public items is a minor change.

// MINOR CHANGE

///
// Before
// ... absence of item

///
// After
pub fn foo() {}

///
// Example use of the library that will safely work.
// `foo` is not used since it didn't previously exist.

Note that in some rare cases this can be a breaking change due to glob
imports. For example, if you add a new trait, and a project has used a glob
import that brings that trait into scope, and the new trait introduces an
associated item that conflicts with any types it is implemented on, this can
cause a compile-time error due to the ambiguity. Example:
// Breaking change example

///
// Before
// ... absence of trait

///
// After
pub trait NewTrait {
 fn foo(&self) {}
}

impl NewTrait for i32 {}

clbr://internal.invalid/book/reference/items.html

///
// Example usage that will break.
use updated_crate::*;

pub trait LocalTrait {
 fn foo(&self) {}
}

impl LocalTrait for i32 {}

fn main() {
 123i32.foo(); // Error: multiple applicable items in
scope
}

This is not considered a major change because conventionally glob
imports are a known forwards-compatibility hazard. Glob imports of items
from external crates should be avoided.

Major: Changing the alignment, layout, or size of
a well-defined type {#type-layout}

It is a breaking change to change the alignment, layout, or size of a type
that was previously well-defined.

In general, types that use the the default representation do not have a
well-defined alignment, layout, or size. The compiler is free to alter the
alignment, layout, or size, so code should not make any assumptions about
it.

Note: It may be possible for external crates to break if they make
assumptions about the alignment, layout, or size of a type even if it is
not well-defined. This is not considered a SemVer breaking change
since those assumptions should not be made.

Some examples of changes that are not a breaking change are (assuming
no other rules in this guide are violated):

clbr://internal.invalid/book/reference/type-layout.html#the-default-representation

Adding, removing, reordering, or changing fields of a default
representation struct, union, or enum in such a way that the change
follows the other rules in this guide (for example, using
non_exhaustive to allow those changes, or changes to private fields
that are already private). See struct-add-private-field-when-public,
struct-add-public-field-when-no-private, struct-private-fields-with-
private, enum-fields-new.
Adding variants to a default representation enum, if the enum uses
non_exhaustive . This may change the alignment or size of the
enumeration, but those are not well-defined. See enum-variant-new.
Adding, removing, reordering, or changing private fields of a repr(C)
struct, union, or enum, following the other rules in this guide (for
example, using non_exhaustive , or adding private fields when other
private fields already exist). See repr-c-private-change.
Adding variants to a repr(C) enum, if the enum uses
non_exhaustive . See repr-c-enum-variant-new.
Adding repr(C) to a default representation struct, union, or enum.
See repr-c-add.
Adding repr(<int>) primitive representation to an enum. See repr-
int-enum-add.
Adding repr(transparent) to a default representation struct or
enum. See repr-transparent-add.

Types that use the repr attribute can be said to have an alignment and
layout that is defined in some way that code may make some assumptions
about that may break as a result of changing that type.

In some cases, types with a repr attribute may not have an alignment,
layout, or size that is well-defined. In these cases, it may be safe to make
changes to the types, though care should be exercised. For example, types
with private fields that do not otherwise document their alignment, layout,
or size guarantees cannot be relied upon by external crates since the public
API does not fully define the alignment, layout, or size of the type.

A common example where a type with private fields is well-defined is a
type with a single private field with a generic type, using

clbr://internal.invalid/book/reference/type-layout.html#primitive-representations
clbr://internal.invalid/book/reference/type-layout.html#representations

repr(transparent) , and the prose of the documentation discusses that it is
transparent to the generic type. For example, see UnsafeCell .

Some examples of breaking changes are:

Adding repr(packed) to a struct or union. See repr-packed-add.
Adding repr(align) to a struct, union, or enum. See repr-align-add.
Removing repr(packed) from a struct or union. See repr-packed-
remove.
Changing the value N of repr(packed(N)) if that changes the
alignment or layout. See repr-packed-n-change.
Changing the value N of repr(align(N)) if that changes the
alignment. See repr-align-n-change.
Removing repr(align) from a struct, union, or enum. See repr-align-
remove.
Changing the order of public fields of a repr(C) type. See repr-c-
shuffle.
Removing repr(C) from a struct, union, or enum. See repr-c-remove.
Removing repr(<int>) from an enum. See repr-int-enum-remove.
Changing the primitive representation of a repr(<int>) enum. See
repr-int-enum-change.
Removing repr(transparent) from a struct or enum. See repr-
transparent-remove.

Minor: repr(C) add, remove, or change a private field {#repr-
c-private-change}

It is usually safe to add, remove, or change a private field of a repr(C)
struct, union, or enum, assuming it follows the other guidelines in this guide
(see struct-add-private-field-when-public, struct-add-public-field-when-no-
private, struct-private-fields-with-private, enum-fields-new).

For example, adding private fields can only be done if there are already
other private fields, or it is non_exhaustive . Public fields may be added if
there are private fields, or it is non_exhaustive , and the addition does not
alter the layout of the other fields.

clbr://internal.invalid/book/std/cell/struct.UnsafeCell.html#memory-layout

However, this may change the size and alignment of the type. Care
should be taken if the size or alignment changes. Code should not make
assumptions about the size or alignment of types with private fields or
non_exhaustive unless it has a documented size or alignment.
// MINOR CHANGE

///
// Before
#[derive(Default)]
#[repr(C)]
pub struct Example {
 pub f1: i32,
 f2: i32, // a private field
}

///
// After
#[derive(Default)]
#[repr(C)]
pub struct Example {
 pub f1: i32,
 f2: i32,
 f3: i32, // a new field
}

///
// Example use of the library that will safely work.
fn main() {
 // NOTE: Users should not make assumptions about the size
or alignment
 // since they are not documented.
 let f = updated_crate::Example::default();
}

Minor: repr(C) add enum variant {#repr-c-enum-variant-new}

It is usually safe to add variants to a repr(C) enum, if the enum uses
non_exhaustive . See enum-variant-new for more discussion.

Note that this may be a breaking change since it changes the size and
alignment of the type. See repr-c-private-change for similar concerns.
// MINOR CHANGE

///
// Before
#[repr(C)]
#[non_exhaustive]
pub enum Example {
 Variant1 { f1: i16 },
 Variant2 { f1: i32 },
}

///
// After
#[repr(C)]
#[non_exhaustive]
pub enum Example {
 Variant1 { f1: i16 },
 Variant2 { f1: i32 },
 Variant3 { f1: i64 }, // added
}

///
// Example use of the library that will safely work.
fn main() {
 // NOTE: Users should not make assumptions about the size
or alignment
 // since they are not specified. For example, this raised
the size from 8
 // to 16 bytes.
 let f = updated_crate::Example::Variant2 { f1: 123 };
}

Minor: Adding repr(C) to a default representation {#repr-c-
add}

It is safe to add repr(C) to a struct, union, or enum with the default
representation. This is safe because users should not make assumptions
about the alignment, layout, or size of types with the default representation.
// MINOR CHANGE

///
// Before
pub struct Example {
 pub f1: i32,
 pub f2: i16,
}

///
// After
#[repr(C)] // added
pub struct Example {
 pub f1: i32,
 pub f2: i16,
}

///
// Example use of the library that will safely work.
fn main() {
 let f = updated_crate::Example { f1: 123, f2: 456 };
}

Minor: Adding repr(<int>) to an enum {#repr-int-enum-add}
It is safe to add repr(<int>) primitive representation to an enum with

the default representation. This is safe because users should not make
assumptions about the alignment, layout, or size of an enum with the
default representation.

clbr://internal.invalid/book/reference/type-layout.html#the-default-representation
clbr://internal.invalid/book/reference/type-layout.html#primitive-representations
clbr://internal.invalid/book/reference/type-layout.html#the-default-representation

// MINOR CHANGE

///
// Before
pub enum E {
 Variant1,
 Variant2(i32),
 Variant3 { f1: f64 },
}

///
// After
#[repr(i32)] // added
pub enum E {
 Variant1,
 Variant2(i32),
 Variant3 { f1: f64 },
}

///
// Example use of the library that will safely work.
fn main() {
 let x = updated_crate::E::Variant3 { f1: 1.23 };
}

Minor: Adding repr(transparent) to a default representation
struct or enum {#repr-transparent-add}

It is safe to add repr(transparent) to a struct or enum with the default
representation. This is safe because users should not make assumptions
about the alignment, layout, or size of a struct or enum with the default
representation.
// MINOR CHANGE

///
// Before

clbr://internal.invalid/book/reference/type-layout.html#the-default-representation

#[derive(Default)]
pub struct Example<T>(T);

///
// After
#[derive(Default)]
#[repr(transparent)] // added
pub struct Example<T>(T);

///
// Example use of the library that will safely work.
fn main() {
 let x = updated_crate::Example::<i32>::default();
}

Major: Adding repr(packed) to a struct or union {#repr-
packed-add}

It is a breaking change to add repr(packed) to a struct or union.
Making a type repr(packed) makes changes that can break code, such as
being invalid to take a reference to a field, or causing truncation of disjoint
closure captures.
// MAJOR CHANGE

///
// Before
pub struct Example {
 pub f1: u8,
 pub f2: u16,
}

///
// After
#[repr(packed)] // added
pub struct Example {
 pub f1: u8,

 pub f2: u16,
}

///
// Example usage that will break.
fn main() {
 let f = updated_crate::Example { f1: 1, f2: 2 };
 let x = &f.f2; // Error: reference to packed field is
unaligned
}

// MAJOR CHANGE

///
// Before
pub struct Example(pub i32, pub i32);

///
// After
#[repr(packed)]
pub struct Example(pub i32, pub i32);

///
// Example usage that will break.
fn main() {
 let mut f = updated_crate::Example(123, 456);
 let c = || {
 // Without repr(packed), the closure precisely
captures `&f.0`.
 // With repr(packed), the closure captures `&f` to
avoid undefined behavior.
 let a = f.0;
 };
 f.1 = 789; // Error: cannot assign to `f.1` because it is
borrowed

 c();
}

Major: Adding repr(align) to a struct, union, or enum {#repr-
align-add}

It is a breaking change to add repr(align) to a struct, union, or enum.
Making a type repr(align) would break any use of that type in a
repr(packed) type because that combination is not allowed.
// MAJOR CHANGE

///
// Before
pub struct Aligned {
 pub a: i32,
}

///
// After
#[repr(align(8))] // added
pub struct Aligned {
 pub a: i32,
}

///
// Example usage that will break.
use updated_crate::Aligned;

#[repr(packed)]
pub struct Packed { // Error: packed type cannot transitively
contain a `#[repr(align)]` type
 f1: Aligned,
}

fn main() {
 let p = Packed {

 f1: Aligned { a: 123 },
 };
}

Major: Removing repr(packed) from a struct or union {#repr-
packed-remove}

It is a breaking change to remove repr(packed) from a struct or union.
This may change the alignment or layout that extern crates are relying on.

If any fields are public, then removing repr(packed) may change the
way disjoint closure captures work. In some cases, this can cause code to
break, similar to those outlined in the edition guide.
// MAJOR CHANGE

///
// Before
#[repr(C, packed)]
pub struct Packed {
 pub a: u8,
 pub b: u16,
}

///
// After
#[repr(C)] // removed packed
pub struct Packed {
 pub a: u8,
 pub b: u16,
}

///
// Example usage that will break.
use updated_crate::Packed;

fn main() {
 let p = Packed { a: 1, b: 2 };

clbr://internal.invalid/book/edition-guide/rust-2021/disjoint-capture-in-closures.html

 // Some assumption about the size of the type.
 // Without `packed`, this fails since the size is 4.
 const _: () = assert!(std::mem::size_of::<Packed>() == 3);
// Error: evaluation of constant value failed
}

// MAJOR CHANGE

///
// Before
#[repr(C, packed)]
pub struct Packed {
 pub a: *mut i32,
 pub b: i32,
}
unsafe impl Send for Packed {}

///
// After
#[repr(C)] // removed packed
pub struct Packed {
 pub a: *mut i32,
 pub b: i32,
}
unsafe impl Send for Packed {}

///
// Example usage that will break.
use updated_crate::Packed;

fn main() {
 let mut x = 123;

 let p = Packed {
 a: &mut x as *mut i32,
 b: 456,

 };

 // When the structure was packed, the closure captures `p`
which is Send.
 // When `packed` is removed, this ends up capturing `p.a`
which is not Send.
 std::thread::spawn(move || unsafe {
 *(p.a) += 1; // Error: cannot be sent between threads
safely
 });
}

Major: Changing the value N of repr(packed(N)) if that
changes the alignment or layout {#repr-packed-n-change}

It is a breaking change to change the value of N of repr(packed(N)) if
that changes the alignment or layout. This may change the alignment or
layout that external crates are relying on.

If the value N is lowered below the alignment of a public field, then that
would break any code that attempts to take a reference of that field.

Note that some changes to N may not change the alignment or layout,
for example increasing it when the current value is already equal to the
natural alignment of the type.
// MAJOR CHANGE

///
// Before
#[repr(packed(4))]
pub struct Packed {
 pub a: u8,
 pub b: u32,
}

///
// After
#[repr(packed(2))] // changed to 2

pub struct Packed {
 pub a: u8,
 pub b: u32,
}

///
// Example usage that will break.
use updated_crate::Packed;

fn main() {
 let p = Packed { a: 1, b: 2 };
 let x = &p.b; // Error: reference to packed field is
unaligned
}

Major: Changing the value N of repr(align(N)) if that changes
the alignment {#repr-align-n-change}

It is a breaking change to change the value N of repr(align(N)) if that
changes the alignment. This may change the alignment that external crates
are relying on.

This change should be safe to make if the type is not well-defined as
discussed in type layout (such as having any private fields and having an
undocumented alignment or layout).

Note that some changes to N may not change the alignment or layout,
for example decreasing it when the current value is already equal to or less
than the natural alignment of the type.
// MAJOR CHANGE

///
// Before
#[repr(align(8))]
pub struct Packed {
 pub a: u8,
 pub b: u32,
}

///
// After
#[repr(align(4))] // changed to 4
pub struct Packed {
 pub a: u8,
 pub b: u32,
}

///
// Example usage that will break.
use updated_crate::Packed;

fn main() {
 let p = Packed { a: 1, b: 2 };
 // Some assumption about the size of the type.
 // The alignment has changed from 8 to 4.
 const _: () = assert!(std::mem::align_of::<Packed>() ==
8); // Error: evaluation of constant value failed
}

Major: Removing repr(align) from a struct, union, or enum
{#repr-align-remove}

It is a breaking change to remove repr(align) from a struct, union, or
enum, if their layout was well-defined. This may change the alignment or
layout that external crates are relying on.

This change should be safe to make if the type is not well-defined as
discussed in type layout (such as having any private fields and having an
undocumented alignment).
// MAJOR CHANGE

///
// Before
#[repr(C, align(8))]
pub struct Packed {

 pub a: u8,
 pub b: u32,
}

///
// After
#[repr(C)] // removed align
pub struct Packed {
 pub a: u8,
 pub b: u32,
}

///
// Example usage that will break.
use updated_crate::Packed;

fn main() {
 let p = Packed { a: 1, b: 2 };
 // Some assumption about the size of the type.
 // The alignment has changed from 8 to 4.
 const _: () = assert!(std::mem::align_of::<Packed>() ==
8); // Error: evaluation of constant value failed
}

Major: Changing the order of public fields of a repr(C) type
{#repr-c-shuffle}

It is a breaking change to change the order of public fields of a repr(C)
type. External crates may be relying on the specific ordering of the fields.
// MAJOR CHANGE

///
// Before
#[repr(C)]
pub struct SpecificLayout {
 pub a: u8,

 pub b: u32,
}

///
// After
#[repr(C)]
pub struct SpecificLayout {
 pub b: u32, // changed order
 pub a: u8,
}

///
// Example usage that will break.
use updated_crate::SpecificLayout;

unsafe extern "C" {
 // This C function is assuming a specific layout defined
in a C header.
 fn c_fn_get_b(x: &SpecificLayout) -> u32;
}

fn main() {
 let p = SpecificLayout { a: 1, b: 2 };
 unsafe { assert_eq!(c_fn_get_b(&p), 2) } // Error: value
not equal to 2
}

mod cdep {
// This simulates what would normally be something
included from a build script.
// This definition would be in a C header.
#[repr(C)]
pub struct SpecificLayout {
pub a: u8,
pub b: u32,
}

#[no_mangle]
pub fn c_fn_get_b(x: &SpecificLayout) -> u32 {
x.b
}
}

Major: Removing repr(C) from a struct, union, or enum
{#repr-c-remove}

It is a breaking change to remove repr(C) from a struct, union, or
enum. External crates may be relying on the specific layout of the type.
// MAJOR CHANGE

///
// Before
#[repr(C)]
pub struct SpecificLayout {
 pub a: u8,
 pub b: u32,
}

///
// After
// removed repr(C)
pub struct SpecificLayout {
 pub a: u8,
 pub b: u32,
}

///
// Example usage that will break.
use updated_crate::SpecificLayout;

unsafe extern "C" {
 // This C function is assuming a specific layout defined

in a C header.
 fn c_fn_get_b(x: &SpecificLayout) -> u32; // Error: is not
FFI-safe
}

fn main() {
 let p = SpecificLayout { a: 1, b: 2 };
 unsafe { assert_eq!(c_fn_get_b(&p), 2) }
}

mod cdep {
// This simulates what would normally be something
included from a build script.
// This definition would be in a C header.
#[repr(C)]
pub struct SpecificLayout {
pub a: u8,
pub b: u32,
}

#[no_mangle]
pub fn c_fn_get_b(x: &SpecificLayout) -> u32 {
x.b
}
}

Major: Removing repr(<int>) from an enum {#repr-int-enum-
remove}

It is a breaking change to remove repr(<int>) from an enum. External
crates may be assuming that the discriminant is a specific size. For
example, std::mem::transmute of an enum may fail.
// MAJOR CHANGE

///
// Before

clbr://internal.invalid/book/std/mem/fn.transmute.html

#[repr(u16)]
pub enum Example {
 Variant1,
 Variant2,
 Variant3,
}

///
// After
// removed repr(u16)
pub enum Example {
 Variant1,
 Variant2,
 Variant3,
}

///
// Example usage that will break.

fn main() {
 let e = updated_crate::Example::Variant2;
 let i: u16 = unsafe { std::mem::transmute(e) }; // Error:
cannot transmute between types of different sizes
}

Major: Changing the primitive representation of a repr(<int>)
enum {#repr-int-enum-change}

It is a breaking change to change the primitive representation of a
repr(<int>) enum. External crates may be assuming that the discriminant
is a specific size. For example, std::mem::transmute of an enum may
fail.
// MAJOR CHANGE

///
// Before

clbr://internal.invalid/book/std/mem/fn.transmute.html

#[repr(u16)]
pub enum Example {
 Variant1,
 Variant2,
 Variant3,
}

///
// After
#[repr(u8)] // changed repr size
pub enum Example {
 Variant1,
 Variant2,
 Variant3,
}

///
// Example usage that will break.

fn main() {
 let e = updated_crate::Example::Variant2;
 let i: u16 = unsafe { std::mem::transmute(e) }; // Error:
cannot transmute between types of different sizes
}

Major: Removing repr(transparent) from a struct or enum
{#repr-transparent-remove}

It is a breaking change to remove repr(transparent) from a struct or
enum. External crates may be relying on the type having the alignment,
layout, or size of the transparent field.
// MAJOR CHANGE

///
// Before
#[repr(transparent)]

pub struct Transparent<T>(T);

///
// After
// removed repr
pub struct Transparent<T>(T);

///
// Example usage that will break.
#![deny(improper_ctypes)]
use updated_crate::Transparent;

unsafe extern "C" {
 fn c_fn() -> Transparent<f64>; // Error: is not FFI-safe
}

fn main() {}

Major: adding a private struct field when all
current fields are public {#struct-add-private-
field-when-public}

When a private field is added to a struct that previously had all public
fields, this will break any code that attempts to construct it with a struct
literal.
// MAJOR CHANGE

///
// Before
pub struct Foo {
 pub f1: i32,
}

///
// After

clbr://internal.invalid/book/reference/expressions/struct-expr.html

pub struct Foo {
 pub f1: i32,
 f2: i32,
}

///
// Example usage that will break.
fn main() {
 let x = updated_crate::Foo { f1: 123 }; // Error: cannot
construct `Foo`
}

Mitigation strategies:

Do not add new fields to all-public field structs.
Mark structs as #[non_exhaustive] when first introducing a struct to
prevent users from using struct literal syntax, and instead provide a
constructor method and/or Default implementation.

Major: adding a public field when no private field
exists {#struct-add-public-field-when-no-private}

When a public field is added to a struct that has all public fields, this will
break any code that attempts to construct it with a struct literal.
// MAJOR CHANGE

///
// Before
pub struct Foo {
 pub f1: i32,
}

///
// After
pub struct Foo {
 pub f1: i32,
 pub f2: i32,

clbr://internal.invalid/book/reference/attributes/type_system.html#the-non_exhaustive-attribute
clbr://internal.invalid/book/std/default/trait.Default.html
clbr://internal.invalid/book/reference/expressions/struct-expr.html

}

///
// Example usage that will break.
fn main() {
 let x = updated_crate::Foo { f1: 123 }; // Error: missing
field `f2`
}

Mitigation strategies:

Do not add new fields to all-public field structs.
Mark structs as #[non_exhaustive] when first introducing a struct to
prevent users from using struct literal syntax, and instead provide a
constructor method and/or Default implementation.

Minor: adding or removing private fields when at
least one already exists {#struct-private-fields-
with-private}

It is safe to add or remove private fields from a struct when the struct
already has at least one private field.
// MINOR CHANGE

///
// Before
#[derive(Default)]
pub struct Foo {
 f1: i32,
}

///
// After
#[derive(Default)]
pub struct Foo {
 f2: f64,

clbr://internal.invalid/book/reference/attributes/type_system.html#the-non_exhaustive-attribute
clbr://internal.invalid/book/std/default/trait.Default.html

}

///
// Example use of the library that will safely work.
fn main() {
 // Cannot access private fields.
 let x = updated_crate::Foo::default();
}

This is safe because existing code cannot use a struct literal to construct
it, nor exhaustively match its contents.

Note that for tuple structs, this is a major change if the tuple contains
public fields, and the addition or removal of a private field changes the
index of any public field.
// MAJOR CHANGE

///
// Before
#[derive(Default)]
pub struct Foo(pub i32, i32);

///
// After
#[derive(Default)]
pub struct Foo(f64, pub i32, i32);

///
// Example usage that will break.
fn main() {
 let x = updated_crate::Foo::default();
 let y = x.0; // Error: is private
}

clbr://internal.invalid/book/reference/expressions/struct-expr.html

Minor: going from a tuple struct with all private
fields (with at least one field) to a normal struct,
or vice versa {#struct-tuple-normal-with-private}

Changing a tuple struct to a normal struct (or vice-versa) is safe if all
fields are private.
// MINOR CHANGE

///
// Before
#[derive(Default)]
pub struct Foo(i32);

///
// After
#[derive(Default)]
pub struct Foo {
 f1: i32,
}

///
// Example use of the library that will safely work.
fn main() {
 // Cannot access private fields.
 let x = updated_crate::Foo::default();
}

This is safe because existing code cannot use a struct literal to construct
it, nor match its contents.

Major: adding new enum variants (without
non_exhaustive) {#enum-variant-new}

It is a breaking change to add a new enum variant if the enum does not
use the #[non_exhaustive] attribute.

clbr://internal.invalid/book/reference/expressions/struct-expr.html
clbr://internal.invalid/book/reference/attributes/type_system.html#the-non_exhaustive-attribute

// MAJOR CHANGE

///
// Before
pub enum E {
 Variant1,
}

///
// After
pub enum E {
 Variant1,
 Variant2,
}

///
// Example usage that will break.
fn main() {
 use updated_crate::E;
 let x = E::Variant1;
 match x { // Error: `E::Variant2` not covered
 E::Variant1 => {}
 }
}

Mitigation strategies:

When introducing the enum, mark it as #[non_exhaustive] to force
users to use wildcard patterns to catch new variants.

Major: adding new fields to an enum variant
{#enum-fields-new}

It is a breaking change to add new fields to an enum variant because all
fields are public, and constructors and matching will fail to compile.

clbr://internal.invalid/book/reference/attributes/type_system.html#the-non_exhaustive-attribute
clbr://internal.invalid/book/reference/patterns.html#wildcard-pattern

// MAJOR CHANGE

///
// Before
pub enum E {
 Variant1 { f1: i32 },
}

///
// After
pub enum E {
 Variant1 { f1: i32, f2: i32 },
}

///
// Example usage that will break.
fn main() {
 use updated_crate::E;
 let x = E::Variant1 { f1: 1 }; // Error: missing f2
 match x {
 E::Variant1 { f1 } => {} // Error: missing f2
 }
}

Mitigation strategies:

When introducing the enum, mark the variant as non_exhaustive so
that it cannot be constructed or matched without wildcards.
pub enum E {
 #[non_exhaustive]
 Variant1{f1: i32}
}

When introducing the enum, use an explicit struct as a value, where
you can have control over the field visibility.
pub struct Foo {
 f1: i32,

clbr://internal.invalid/book/reference/attributes/type_system.html#the-non_exhaustive-attribute

 f2: i32,
}
pub enum E {
 Variant1(Foo)
}

Major: adding a non-defaulted trait item {#trait-
new-item-no-default}

It is a breaking change to add a non-defaulted item to a trait. This will
break any implementors of the trait.
// MAJOR CHANGE

///
// Before
pub trait Trait {}

///
// After
pub trait Trait {
 fn foo(&self);
}

///
// Example usage that will break.
use updated_crate::Trait;
struct Foo;

impl Trait for Foo {} // Error: not all trait items
implemented

Mitigation strategies:

Always provide a default implementation or value for new associated
trait items.
When introducing the trait, use the sealed trait technique to prevent
users outside of the crate from implementing the trait.

https://rust-lang.github.io/api-guidelines/future-proofing.html#sealed-traits-protect-against-downstream-implementations-c-sealed

Major: any change to trait item signatures {#trait-
item-signature}

It is a breaking change to make any change to a trait item signature. This
can break external implementors of the trait.
// MAJOR CHANGE

///
// Before
pub trait Trait {
 fn f(&self, x: i32) {}
}

///
// After
pub trait Trait {
 // For sealed traits or normal functions, this would be a
minor change
 // because generalizing with generics strictly expands the
possible uses.
 // But in this case, trait implementations must use the
same signature.
 fn f<V>(&self, x: V) {}
}

///
// Example usage that will break.
use updated_crate::Trait;
struct Foo;

impl Trait for Foo {
 fn f(&self, x: i32) {} // Error: trait declaration has 1
type parameter
}

Mitigation strategies:

Introduce new items with default implementations to cover the new
functionality instead of modifying existing items.
When introducing the trait, use the sealed trait technique to prevent
users outside of the crate from implementing the trait.

Possibly-breaking: adding a defaulted trait item
{#trait-new-default-item}

It is usually safe to add a defaulted trait item. However, this can
sometimes cause a compile error. For example, this can introduce an
ambiguity if a method of the same name exists in another trait.
// Breaking change example

///
// Before
pub trait Trait {}

///
// After
pub trait Trait {
 fn foo(&self) {}
}

///
// Example usage that will break.
use updated_crate::Trait;
struct Foo;

trait LocalTrait {
 fn foo(&self) {}
}

impl Trait for Foo {}
impl LocalTrait for Foo {}

fn main() {

https://rust-lang.github.io/api-guidelines/future-proofing.html#sealed-traits-protect-against-downstream-implementations-c-sealed

 let x = Foo;
 x.foo(); // Error: multiple applicable items in scope
}

Note that this ambiguity does not exist for name collisions on inherent
implementations, as they take priority over trait items.

See trait-object-safety for a special case to consider when adding trait
items.

Mitigation strategies:

Some projects may deem this acceptable breakage, particularly if the
new item name is unlikely to collide with any existing code. Choose
names carefully to help avoid these collisions. Additionally, it may be
acceptable to require downstream users to add disambiguation syntax
to select the correct function when updating the dependency.

Major: adding a trait item that makes the trait
non-object safe {#trait-object-safety}

It is a breaking change to add a trait item that changes the trait to not be
object safe.
// MAJOR CHANGE

///
// Before
pub trait Trait {}

///
// After
pub trait Trait {
 // An associated const makes the trait not object-safe.
 const CONST: i32 = 123;
}

///
// Example usage that will break.

clbr://internal.invalid/book/reference/items/implementations.html#inherent-implementations
clbr://internal.invalid/book/reference/expressions/call-expr.html#disambiguating-function-calls
clbr://internal.invalid/book/reference/items/traits.html#object-safety

use updated_crate::Trait;
struct Foo;

impl Trait for Foo {}

fn main() {
 let obj: Box<dyn Trait> = Box::new(Foo); // Error: the
trait `Trait` is not dyn compatible
}

It is safe to do the converse (making a non-object safe trait into a safe
one).

Major: adding a type parameter without a default
{#trait-new-parameter-no-default}

It is a breaking change to add a type parameter without a default to a
trait.
// MAJOR CHANGE

///
// Before
pub trait Trait {}

///
// After
pub trait Trait<T> {}

///
// Example usage that will break.
use updated_crate::Trait;
struct Foo;

impl Trait for Foo {} // Error: missing generics

Mitigating strategies:

See adding a defaulted trait type parameter.

Minor: adding a defaulted trait type parameter
{#trait-new-parameter-default}

It is safe to add a type parameter to a trait as long as it has a default.
External implementors will use the default without needing to specify the
parameter.
// MINOR CHANGE

///
// Before
pub trait Trait {}

///
// After
pub trait Trait<T = i32> {}

///
// Example use of the library that will safely work.
use updated_crate::Trait;
struct Foo;

impl Trait for Foo {}

Possibly-breaking change: adding any inherent
items {#impl-item-new}

Usually adding inherent items to an implementation should be safe
because inherent items take priority over trait items. However, in some
cases the collision can cause problems if the name is the same as an
implemented trait item with a different signature.
// Breaking change example

///
// Before

pub struct Foo;

///
// After
pub struct Foo;

impl Foo {
 pub fn foo(&self) {}
}

///
// Example usage that will break.
use updated_crate::Foo;

trait Trait {
 fn foo(&self, x: i32) {}
}

impl Trait for Foo {}

fn main() {
 let x = Foo;
 x.foo(1); // Error: this method takes 0 arguments but 1
argument was supplied
}

Note that if the signatures match, there would not be a compile-time
error, but possibly a silent change in runtime behavior (because it is now
executing a different function).

Mitigation strategies:

Some projects may deem this acceptable breakage, particularly if the
new item name is unlikely to collide with any existing code. Choose
names carefully to help avoid these collisions. Additionally, it may be
acceptable to require downstream users to add disambiguation syntax
to select the correct function when updating the dependency.

clbr://internal.invalid/book/reference/expressions/call-expr.html#disambiguating-function-calls

Major: tightening generic bounds {#generic-
bounds-tighten}

It is a breaking change to tighten generic bounds on a type since this can
break users expecting the looser bounds.
// MAJOR CHANGE

///
// Before
pub struct Foo<A> {
 pub f1: A,
}

///
// After
pub struct Foo<A: Eq> {
 pub f1: A,
}

///
// Example usage that will break.
use updated_crate::Foo;

fn main() {
 let s = Foo { f1: 1.23 }; // Error: the trait bound
`{float}: Eq` is not satisfied
}

Minor: loosening generic bounds {#generic-
bounds-loosen}

It is safe to loosen the generic bounds on a type, as it only expands what
is allowed.
// MINOR CHANGE

///
// Before
pub struct Foo<A: Clone> {
 pub f1: A,
}

///
// After
pub struct Foo<A> {
 pub f1: A,
}

///
// Example use of the library that will safely work.
use updated_crate::Foo;

fn main() {
 let s = Foo { f1: 123 };
}

Minor: adding defaulted type parameters
{#generic-new-default}

It is safe to add a type parameter to a type as long as it has a default. All
existing references will use the default without needing to specify the
parameter.
// MINOR CHANGE

///
// Before
#[derive(Default)]
pub struct Foo {}

///
// After
#[derive(Default)]

pub struct Foo<A = i32> {
 f1: A,
}

///
// Example use of the library that will safely work.
use updated_crate::Foo;

fn main() {
 let s: Foo = Default::default();
}

Minor: generalizing a type to use generics (with
identical types) {#generic-generalize-identical}

A struct or enum field can change from a concrete type to a generic type
parameter, provided that the change results in an identical type for all
existing use cases. For example, the following change is permitted:
// MINOR CHANGE

///
// Before
pub struct Foo(pub u8);

///
// After
pub struct Foo<T = u8>(pub T);

///
// Example use of the library that will safely work.
use updated_crate::Foo;

fn main() {
 let s: Foo = Foo(123);
}

because existing uses of Foo are shorthand for Foo<u8> which yields
the identical field type.

Major: generalizing a type to use generics (with
possibly different types) {#generic-generalize-
different}

Changing a struct or enum field from a concrete type to a generic type
parameter can break if the type can change.
// MAJOR CHANGE

///
// Before
pub struct Foo<T = u8>(pub T, pub u8);

///
// After
pub struct Foo<T = u8>(pub T, pub T);

///
// Example usage that will break.
use updated_crate::Foo;

fn main() {
 let s: Foo<f32> = Foo(3.14, 123); // Error: mismatched
types
}

Minor: changing a generic type to a more generic
type {#generic-more-generic}

It is safe to change a generic type to a more generic one. For example,
the following adds a generic parameter that defaults to the original type,
which is safe because all existing users will be using the same type for both
fields, the defaulted parameter does not need to be specified.

// MINOR CHANGE

///
// Before
pub struct Foo<T>(pub T, pub T);

///
// After
pub struct Foo<T, U = T>(pub T, pub U);

///
// Example use of the library that will safely work.
use updated_crate::Foo;

fn main() {
 let s: Foo<f32> = Foo(1.0, 2.0);
}

Major: capturing more generic parameters in
RPIT {#generic-rpit-capture}

It is a breaking change to capture additional generic parameters in an
RPIT (return-position impl trait).
// MAJOR CHANGE

///
// Before
pub fn f<'a, 'b>(x: &'a str, y: &'b str) -> impl Iterator<Item
= char> + use<'a> {
 x.chars()
}

///
// After
pub fn f<'a, 'b>(x: &'a str, y: &'b str) -> impl Iterator<Item
= char> + use<'a, 'b> {

clbr://internal.invalid/book/reference/types/impl-trait.md#abstract-return-types

 x.chars().chain(y.chars())
}

///
// Example usage that will break.
fn main() {
 let a = String::new();
 let b = String::new();
 let iter = updated_crate::f(&a, &b);
 drop(b); // Error: cannot move out of `b` because it is
borrowed
}

Adding generic parameters to an RPIT places additional constraints on
how the resulting type may be used.

Note that there are implicit captures when the use<> syntax is not
specified. In Rust 2021 and earlier editions, the lifetime parameters are only
captured if they appear syntactically within a bound in the RPIT type
signature. Starting in Rust 2024, all lifetime parameters are unconditionally
captured. This means that starting in Rust 2024, the default is maximally
compatible, requiring you to be explicit when you want to capture less,
which is a SemVer commitment.

See the edition guide and the reference for more information on RPIT
capturing.

It is a minor change to capture fewer generic parameters in an RPIT.

Note: All in-scope type and const generic parameters must be either
implicitly captured (no + use<…> specified) or explicitly captured
(must be listed in + use<…>), and thus currently it is not allowed to
change what is captured of those kinds of generics.

Major: adding/removing function parameters
{#fn-change-arity}

Changing the arity of a function is a breaking change.

clbr://internal.invalid/book/edition-guide/rust-2024/rpit-lifetime-capture.html
clbr://internal.invalid/book/reference/types/impl-trait.md#capturing

// MAJOR CHANGE

///
// Before
pub fn foo() {}

///
// After
pub fn foo(x: i32) {}

///
// Example usage that will break.
fn main() {
 updated_crate::foo(); // Error: this function takes 1
argument
}

Mitigating strategies:

Introduce a new function with the new signature and possibly
deprecate the old one.
Introduce functions that take a struct argument, where the struct is built
with the builder pattern. This allows new fields to be added to the
struct in the future.

Possibly-breaking: introducing a new function
type parameter {#fn-generic-new}

Usually, adding a non-defaulted type parameter is safe, but in some
cases it can be a breaking change:
// Breaking change example

///
// Before
pub fn foo<T>() {}

///

clbr://internal.invalid/book/reference/attributes/diagnostics.html#the-deprecated-attribute

// After
pub fn foo<T, U>() {}

///
// Example usage that will break.
use updated_crate::foo;

fn main() {
 foo::<u8>(); // Error: function takes 2 generic arguments
but 1 generic argument was supplied
}

However, such explicit calls are rare enough (and can usually be written
in other ways) that this breakage is usually acceptable. One should take into
account how likely it is that the function in question is being called with
explicit type arguments.

Minor: generalizing a function to use generics
(supporting original type) {#fn-generalize-
compatible}

The type of a parameter to a function, or its return value, can be
generalized to use generics, including by introducing a new type parameter,
as long as it can be instantiated to the original type. For example, the
following changes are allowed:
// MINOR CHANGE

///
// Before
pub fn foo(x: u8) -> u8 {
 x
}
pub fn bar<T: Iterator<Item = u8>>(t: T) {}

///
// After

use std::ops::Add;
pub fn foo<T: Add>(x: T) -> T {
 x
}
pub fn bar<T: IntoIterator<Item = u8>>(t: T) {}

///
// Example use of the library that will safely work.
use updated_crate::{bar, foo};

fn main() {
 foo(1);
 bar(vec![1, 2, 3].into_iter());
}

because all existing uses are instantiations of the new signature.
Perhaps somewhat surprisingly, generalization applies to trait objects as

well, given that every trait implements itself:
// MINOR CHANGE

///
// Before
pub trait Trait {}
pub fn foo(t: &dyn Trait) {}

///
// After
pub trait Trait {}
pub fn foo<T: Trait + ?Sized>(t: &T) {}

///
// Example use of the library that will safely work.
use updated_crate::{foo, Trait};

struct Foo;
impl Trait for Foo {}

fn main() {
 let obj = Foo;
 foo(&obj);
}

(The use of ?Sized is essential; otherwise you couldn't recover the
original signature.)

Introducing generics in this way can potentially create type inference
failures. These are usually rare, and may be acceptable breakage for some
projects, as this can be fixed with additional type annotations.
// Breaking change example

///
// Before
pub fn foo() -> i32 {
 0
}

///
// After
pub fn foo<T: Default>() -> T {
 Default::default()
}

///
// Example usage that will break.
use updated_crate::foo;

fn main() {
 let x = foo(); // Error: type annotations needed
}

Major: generalizing a function to use generics
with type mismatch {#fn-generalize-mismatch}

It is a breaking change to change a function parameter or return type if
the generic type constrains or changes the types previously allowed. For
example, the following adds a generic constraint that may not be satisfied
by existing code:
// MAJOR CHANGE

///
// Before
pub fn foo(x: Vec<u8>) {}

///
// After
pub fn foo<T: Copy + IntoIterator<Item = u8>>(x: T) {}

///
// Example usage that will break.
use updated_crate::foo;

fn main() {
 foo(vec![1, 2, 3]); // Error: `Copy` is not implemented
for `Vec<u8>`
}

Minor: making an unsafe function safe {#fn-
unsafe-safe}

A previously unsafe function can be made safe without breaking code.
Note however that it may cause the unused_unsafe lint to trigger as in

the example below, which will cause local crates that have specified #!
[deny(warnings)] to stop compiling. Per introducing new lints, it is
allowed for updates to introduce new warnings.

Going the other way (making a safe function unsafe) is a breaking
change.

clbr://internal.invalid/book/rustc/lints/listing/warn-by-default.html#unused-unsafe

// MINOR CHANGE

///
// Before
pub unsafe fn foo() {}

///
// After
pub fn foo() {}

///
// Example use of the library that will trigger a lint.
use updated_crate::foo;

unsafe fn bar(f: unsafe fn()) {
 f()
}

fn main() {
 unsafe { foo() }; // The `unused_unsafe` lint will trigger
here
 unsafe { bar(foo) };
}

Making a previously unsafe associated function or method on structs /
enums safe is also a minor change, while the same is not true for associated
function on traits (see any change to trait item signatures).

Major: switching from no_std support to
requiring std {#attr-no-std-to-std}

If your library specifically supports a no_std environment, it is a
breaking change to make a new release that requires std .
// MAJOR CHANGE

///

clbr://internal.invalid/book/reference/names/preludes.html#the-no_std-attribute

// Before
#![no_std]
pub fn foo() {}

///
// After
pub fn foo() {
 std::time::SystemTime::now();
}

///
// Example usage that will break.
// This will fail to link for no_std targets because they
don't have a `std` crate.
#![no_std]
use updated_crate::foo;

fn example() {
 foo();
}

Mitigation strategies:

A common idiom to avoid this is to include a std Cargo feature that
optionally enables std support, and when the feature is off, the library
can be used in a no_std environment.

Major: adding non_exhaustive to an existing
enum, variant, or struct with no private fields
{#attr-adding-non-exhaustive}

Making items #[non_exhaustive] changes how they may be used
outside the crate where they are defined:

Non-exhaustive structs and enum variants cannot be constructed using
struct literal syntax, including functional update syntax.

clbr://internal.invalid/book/OEBPS/reference/features.md
clbr://internal.invalid/book/reference/attributes/type_system.html#the-non_exhaustive-attribute
clbr://internal.invalid/book/reference/expressions/struct-expr.html
clbr://internal.invalid/book/reference/expressions/struct-expr.html#functional-update-syntax

Pattern matching on non-exhaustive structs requires .. and matching
on enums does not count towards exhaustiveness.
Casting enum variants to their discriminant with as is not allowed.

Structs with private fields cannot be constructed using struct literal
syntax regardless of whether #[non_exhaustive] is used. Adding #

[non_exhaustive] to such a struct is not a breaking change.
// MAJOR CHANGE

///
// Before
pub struct Foo {
 pub bar: usize,
}

pub enum Bar {
 X,
 Y(usize),
 Z { a: usize },
}

pub enum Quux {
 Var,
}

///
// After
#[non_exhaustive]
pub struct Foo {
 pub bar: usize,
}

pub enum Bar {
 #[non_exhaustive]
 X,

clbr://internal.invalid/book/reference/expressions/struct-expr.html
clbr://internal.invalid/book/reference/attributes/type_system.html#the-non_exhaustive-attribute
clbr://internal.invalid/book/reference/attributes/type_system.html#the-non_exhaustive-attribute

 #[non_exhaustive]
 Y(usize),

 #[non_exhaustive]
 Z { a: usize },
}

#[non_exhaustive]
pub enum Quux {
 Var,
}

///
// Example usage that will break.
use updated_crate::{Bar, Foo, Quux};

fn main() {
 let foo = Foo { bar: 0 }; // Error: cannot create non-
exhaustive struct using struct expression

 let bar_x = Bar::X; // Error: unit variant `X` is private
 let bar_y = Bar::Y(0); // Error: tuple variant `Y` is
private
 let bar_z = Bar::Z { a: 0 }; // Error: cannot create non-
exhaustive variant using struct expression

 let q = Quux::Var;
 match q {
 Quux::Var => 0,
 // Error: non-exhaustive patterns: `_` not covered
 };
}

Mitigation strategies:

Mark structs, enums, and enum variants as #[non_exhaustive] when
first introducing them, rather than adding #[non_exhaustive] later
on.

clbr://internal.invalid/book/reference/attributes/type_system.html#the-non_exhaustive-attribute
clbr://internal.invalid/book/reference/attributes/type_system.html#the-non_exhaustive-attribute

Tooling and environment compatibility
Possibly-breaking: changing the minimum version
of Rust required {#env-new-rust}

Introducing the use of new features in a new release of Rust can break
projects that are using older versions of Rust. This also includes using new
features in a new release of Cargo, and requiring the use of a nightly-only
feature in a crate that previously worked on stable.

It is generally recommended to treat this as a minor change, rather than
as a major change, for various reasons. It is usually relatively easy to update
to a newer version of Rust. Rust also has a rapid 6-week release cycle, and
some projects will provide compatibility within a window of releases (such
as the current stable release plus N previous releases). Just keep in mind
that some large projects may not be able to update their Rust toolchain
rapidly.

Mitigation strategies:

Use Cargo features to make the new features opt-in.
Provide a large window of support for older releases.
Copy the source of new standard library items if possible so that you
can continue to use an older version but take advantage of the new
feature.
Provide a separate branch of older minor releases that can receive
backports of important bugfixes.
Keep an eye out for the [cfg(version(..))] and #
[cfg(accessible(..))] features which provide an opt-in mechanism
for new features. These are currently unstable and only available in the
nightly channel.

Possibly-breaking: changing the platform and
environment requirements {#env-change-
requirements}

https://github.com/rust-lang/api-guidelines/discussions/231
clbr://internal.invalid/book/OEBPS/reference/features.md
https://github.com/rust-lang/rust/issues/64796
https://github.com/rust-lang/rust/issues/64797

There is a very wide range of assumptions a library makes about the
environment that it runs in, such as the host platform, operating system
version, available services, filesystem support, etc. It can be a breaking
change if you make a new release that restricts what was previously
supported, for example requiring a newer version of an operating system.
These changes can be difficult to track, since you may not always know if a
change breaks in an environment that is not automatically tested.

Some projects may deem this acceptable breakage, particularly if the
breakage is unlikely for most users, or the project doesn't have the resources
to support all environments. Another notable situation is when a vendor
discontinues support for some hardware or OS, the project may deem it
reasonable to also discontinue support.

Mitigation strategies:

Document the platforms and environments you specifically support.
Test your code on a wide range of environments in CI.

Minor: introducing new lints {#new-lints}
Some changes to a library may cause new lints to be triggered in users of

that library. This should generally be considered a compatible change.
// MINOR CHANGE

///
// Before
pub fn foo() {}

///
// After
#[deprecated]
pub fn foo() {}

///
// Example use of the library that will safely work.

fn main() {

 updated_crate::foo(); // Warning: use of deprecated
function
}

Beware that it may be possible for this to technically cause a project to
fail if they have explicitly denied the warning, and the updated crate is a
direct dependency. Denying warnings should be done with care and the
understanding that new lints may be introduced over time. However, library
authors should be cautious about introducing new warnings and may want
to consider the potential impact on their users.

The following lints are examples of those that may be introduced when
updating a dependency:

deprecated --- Introduced when a dependency adds the #
[deprecated] attribute to an item you are using.
unused_must_use --- Introduced when a dependency adds the #
[must_use] attribute to an item where you are not consuming the
result.
unused_unsafe --- Introduced when a dependency removes the
unsafe qualifier from a function, and that is the only unsafe function
called in an unsafe block.

Additionally, updating rustc to a new version may introduce new lints.
Transitive dependencies which introduce new lints should not usually

cause a failure because Cargo uses --cap-lints to suppress all lints in
dependencies.

Mitigating strategies:

If you build with warnings denied, understand you may need to deal
with resolving new warnings whenever you update your dependencies.
If using RUSTFLAGS to pass -Dwarnings , also add the -A flag to
allow lints that are likely to cause issues, such as -Adeprecated .
Introduce deprecations behind a feature. For example #
[cfg_attr(feature = "deprecated", deprecated="use bar

instead")] . Then, when you plan to remove an item in a future

clbr://internal.invalid/book/rustc/lints/listing/warn-by-default.html#deprecated
clbr://internal.invalid/book/reference/attributes/diagnostics.html#the-deprecated-attribute
clbr://internal.invalid/book/rustc/lints/listing/warn-by-default.html#unused-must-use
clbr://internal.invalid/book/reference/attributes/diagnostics.html#the-must_use-attribute
clbr://internal.invalid/book/rustc/lints/listing/warn-by-default.html#unused-unsafe
clbr://internal.invalid/book/rustc/lints/levels.html#capping-lints
clbr://internal.invalid/book/OEBPS/reference/features.md

SemVer breaking change, you can communicate with your users that
they should enable the deprecated feature before updating to remove
the use of the deprecated items. This allows users to choose when to
respond to deprecations without needing to immediately respond to
them. A downside is that it can be difficult to communicate to users
that they need to take these manual steps to prepare for a major update.

Cargo
Minor: adding a new Cargo feature {#cargo-feature-add}

It is usually safe to add new Cargo features. If the feature introduces new
changes that cause a breaking change, this can cause difficulties for projects
that have stricter backwards-compatibility needs. In that scenario, avoid
adding the feature to the "default" list, and possibly document the
consequences of enabling the feature.
MINOR CHANGE

Before
[features]
..empty

After
[features]
std = []

Major: removing a Cargo feature {#cargo-feature-remove}
It is usually a breaking change to remove Cargo features. This will cause

an error for any project that enabled the feature.
MAJOR CHANGE

Before
[features]

clbr://internal.invalid/book/OEBPS/reference/features.md
clbr://internal.invalid/book/OEBPS/reference/features.md

logging = []

After
[dependencies]
..logging removed

Mitigation strategies:

Clearly document your features. If there is an internal or experimental
feature, mark it as such, so that users know the status of the feature.
Leave the old feature in Cargo.toml , but otherwise remove its
functionality. Document that the feature is deprecated, and remove it in
a future major SemVer release.

Major: removing a feature from a feature list if that changes
functionality or public items {#cargo-feature-remove-another}

If removing a feature from another feature, this can break existing users
if they are expecting that functionality to be available through that feature.
Breaking change example

Before
[features]
default = ["std"]
std = []

After
[features]
default = [] # This may cause packages to fail if they are
expecting std to be enabled.
std = []

Possibly-breaking: removing an optional dependency {#cargo-
remove-opt-dep}

Removing an optional dependency can break a project using your library
because another project may be enabling that dependency via Cargo
features.

When there is an optional dependency, cargo implicitly defines a feature
of the same name to provide a mechanism to enable the dependency and to
check when it is enabled. This problem can be avoided by using the dep:
syntax in the [features] table, which disables this implicit feature. Using
dep: makes it possible to hide the existence of optional dependencies
under more semantically-relevant names which can be more safely
modified.
Breaking change example

Before
[dependencies]
curl = { version = "0.4.31", optional = true }

After
[dependencies]
..curl removed

MINOR CHANGE

This example shows how to avoid breaking changes with
optional dependencies.

Before
[dependencies]
curl = { version = "0.4.31", optional = true }

[features]
networking = ["dep:curl"]

clbr://internal.invalid/book/OEBPS/reference/features.md#optional-dependencies
clbr://internal.invalid/book/OEBPS/reference/features.md

After
[dependencies]
Here, one optional dependency was replaced with another.
hyper = { version = "0.14.27", optional = true }

[features]
networking = ["dep:hyper"]

Mitigation strategies:

Use the dep: syntax in the [features] table to avoid exposing
optional dependencies in the first place. See optional dependencies for
more information.
Clearly document your features. If the optional dependency is not
included in the documented list of features, then you may decide to
consider it safe to change undocumented entries.
Leave the optional dependency, and just don't use it within your
library.
Replace the optional dependency with a Cargo feature that does
nothing, and document that it is deprecated.
Use high-level features which enable optional dependencies, and
document those as the preferred way to enable the extended
functionality. For example, if your library has optional support for
something like "networking", create a generic feature name
"networking" that enables the optional dependencies necessary to
implement "networking". Then document the "networking" feature.

Minor: changing dependency features {#cargo-change-dep-
feature}

It is usually safe to change the features on a dependency, as long as the
feature does not introduce a breaking change.
MINOR CHANGE

Before

clbr://internal.invalid/book/OEBPS/reference/features.md#optional-dependencies
clbr://internal.invalid/book/OEBPS/reference/features.md

[dependencies]
rand = { version = "0.7.3", features = ["small_rng"] }

After
[dependencies]
rand = "0.7.3"

Minor: adding dependencies {#cargo-dep-add}
It is usually safe to add new dependencies, as long as the new

dependency does not introduce new requirements that result in a breaking
change. For example, adding a new dependency that requires nightly in a
project that previously worked on stable is a major change.
MINOR CHANGE

Before
[dependencies]
..empty

After
[dependencies]
log = "0.4.11"

Application compatibility
Cargo projects may also include executable binaries which have their

own interfaces (such as a CLI interface, OS-level interaction, etc.). Since
these are part of the Cargo package, they often use and share the same
version as the package. You will need to decide if and how you want to
employ a SemVer contract with your users in the changes you make to your
application. The potential breaking and compatible changes to an
application are too numerous to list, so you are encouraged to use the spirit
of the SemVer spec to guide your decisions on how to apply versioning to
your application, or at least document what your commitments are.

https://semver.org/

Future incompat report
Cargo checks for future-incompatible warnings in all dependencies.

These are warnings for changes that may become hard errors in the future,
causing the dependency to stop building in a future version of rustc. If any
warnings are found, a small notice is displayed indicating that the warnings
were found, and provides instructions on how to display a full report.

For example, you may see something like this at the end of a build:
warning: the following packages contain code that will be
rejected by a future
 version of Rust: rental v0.5.5
note: to see what the problems were, use the option `--future-
incompat-report`,
 or run `cargo report future-incompatibilities --id 1`

A full report can be displayed with the cargo report future-

incompatibilities --id ID command, or by running the build again with
the --future-incompat-report flag. The developer should then update
their dependencies to a version where the issue is fixed, or work with the
developers of the dependencies to help resolve the issue.

Configuration
This feature can be configured through a [future-incompat-report]

section in .cargo/config.toml . Currently, the supported options are:
[future-incompat-report]
frequency = "always"

The supported values for the frequency are "always" and "never" ,
which control whether or not a message is printed out at the end of cargo
build / cargo check .

clbr://internal.invalid/book/OEBPS/reference/config.md#future-incompat-report

Reporting build timings
The --timings option gives some information about how long each

compilation takes, and tracks concurrency information over time.
cargo build --timings

This writes an HTML report in target/cargo-timings/cargo-

timing.html . This also writes a copy of the report to the same directory with
a timestamp in the filename, if you want to look at older runs.

Reading the graphs
There are two tables and two graphs in the output.
The first table displays the build information of the project, including the

number of units built, the maximum number of concurrency, build time, and
the version information of the currently used compiler.

The "unit" graph shows the duration of each unit over time. A "unit" is a
single compiler invocation. There are lines that show which additional units
are "unlocked" when a unit finishes. That is, it shows the new units that are
now allowed to run because their dependencies are all finished. Hover the
mouse over a unit to highlight the lines. This can help visualize the critical
path of dependencies. This may change between runs because the units may
finish in different orders.

The "codegen" times are highlighted in a lavender color. In some cases,
build pipelining allows units to start when their dependencies are performing
code generation. This information is not always displayed (for example,
binary units do not show when code generation starts).

The "custom build" units are build.rs scripts, which when run are
highlighted in orange.

The second graph shows Cargo's concurrency over time. The background
indicates CPU usage. The three lines are:

"Waiting" (red) --- This is the number of units waiting for a CPU slot to
open.
"Inactive" (blue) --- This is the number of units that are waiting for their
dependencies to finish.
"Active" (green) --- This is the number of units currently running.

Note: This does not show the concurrency in the compiler itself. rustc
coordinates with Cargo via the "job server" to stay within the concurrency
limit. This currently mostly applies to the code generation phase.

Tips for addressing compile times:

Look for slow dependencies.

Check if they have features that you may wish to consider disabling.
Consider trying to remove the dependency completely.

Look for a crate being built multiple times with different versions. Try to
remove the older versions from the dependency graph.
Split large crates into smaller pieces.
If there are a large number of crates bottlenecked on a single crate, focus
your attention on improving that one crate to improve parallelism.

The last table lists the total time and "codegen" time spent on each unit, as
well as the features that were enabled during each unit's compilation.

Lints
Note: Cargo's linting system is unstable and can only be used on nightly

toolchains

clbr://internal.invalid/book/OEBPS/reference/unstable.md#lintscargo

Warn-by-default
These lints are all set to the 'warn' level by default.

unknown_lints

unknown_lints
Set to warn by default

What it does
Checks for unknown lints in the [lints.cargo] table

Why it is bad

The lint name could be misspelled, leading to confusion as to why it is
not working as expected
The unknown lint could end up causing an error if cargo decides to
make a lint with the same name in the future

Example
[lints.cargo]
this-lint-does-not-exist = "warn"

Unstable Features
Experimental Cargo features are only available on the nightly channel.

You are encouraged to experiment with these features to see if they meet
your needs, and if there are any issues or problems. Check the linked
tracking issues listed below for more information on the feature, and click
the GitHub subscribe button if you want future updates.

After some period of time, if the feature does not have any major
concerns, it can be stabilized, which will make it available on stable once
the current nightly release reaches the stable channel (anywhere from 6 to
12 weeks).

There are three different ways that unstable features can be enabled
based on how the feature works:

New syntax in Cargo.toml requires a cargo-features key at the
top of Cargo.toml , before any tables. For example:
This specifies which new Cargo.toml features are
enabled.
cargo-features = ["test-dummy-unstable"]

[package]
name = "my-package"
version = "0.1.0"
im-a-teapot = true # This is a new option enabled by
test-dummy-unstable.

New command-line flags, options, and subcommands require the -
Z unstable-options CLI option to also be included. For example, the
new --artifact-dir option is only available on nightly:

cargo +nightly build --artifact-dir=out -Z unstable-

options

-Z command-line flags are used to enable new functionality that
may not have an interface, or the interface has not yet been designed,

clbr://internal.invalid/book/book/appendix-07-nightly-rust.html
https://doc.crates.io/contrib/process/unstable.html#stabilization

or for more complex features that affect multiple parts of Cargo. For
example, the mtime-on-use feature can be enabled with:

cargo +nightly build -Z mtime-on-use

Run cargo -Z help to see a list of flags available.
Anything which can be configured with a -Z flag can also be set in

the cargo config file (.cargo/config.toml) in the unstable table.
For example:
[unstable]
mtime-on-use = true
build-std = ["core", "alloc"]

Each new feature described below should explain how to use it.
For the latest nightly, see the nightly version of this page.

clbr://internal.invalid/book/OEBPS/reference/config.md
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html

List of unstable features

Unstable-specific features

-Z allow-features --- Provides a way to restrict which unstable
features are used.

Build scripts and linking

Metabuild --- Provides declarative build scripts.
Multiple Build Scripts --- Allows use of multiple build scripts.

Resolver and features

no-index-update --- Prevents cargo from updating the index
cache.
avoid-dev-deps --- Prevents the resolver from including dev-
dependencies during resolution.
minimal-versions --- Forces the resolver to use the lowest
compatible version instead of the highest.
direct-minimal-versions — Forces the resolver to use the lowest
compatible version instead of the highest.
public-dependency --- Allows dependencies to be classified as
either public or private.
msrv-policy --- MSRV-aware resolver and version selection
precise-pre-release --- Allows pre-release versions to be selected
with update --precise
sbom --- Generates SBOM pre-cursor files for compiled artifacts
update-breaking --- Allows upgrading to breaking versions with
update --breaking

feature-unification --- Enable new feature unification modes in
workspaces

Output behavior

artifact-dir --- Adds a directory where artifacts are copied to.
build-dir --- Adds a directory where intermediate build artifacts
are stored.

Different binary name --- Assign a name to the built binary that is
separate from the crate name.
root-dir --- Controls the root directory relative to which paths are
printed

Compile behavior

mtime-on-use --- Updates the last-modified timestamp on every
dependency every time it is used, to provide a mechanism to
delete unused artifacts.
build-std --- Builds the standard library instead of using pre-built
binaries.
build-std-features --- Sets features to use with the standard library.
binary-dep-depinfo --- Causes the dep-info file to track binary
dependencies.
checksum-freshness --- When passed, the decision as to whether a
crate needs to be rebuilt is made using file checksums instead of
the file mtime.
panic-abort-tests --- Allows running tests with the "abort" panic
strategy.
host-config --- Allows setting [target] -like configuration
settings for host build targets.
no-embed-metadata --- Passes -Zembed-metadata=no to the
compiler, which avoid embedding metadata into rlib and dylib
artifacts, to save disk space.
target-applies-to-host --- Alters whether certain flags will be
passed to host build targets.
gc --- Global cache garbage collection.
open-namespaces --- Allow multiple packages to participate in
the same API namespace

rustdoc

rustdoc-map --- Provides mappings for documentation to link to
external sites like docs.rs.
scrape-examples --- Shows examples within documentation.
output-format --- Allows documentation to also be emitted in the
experimental JSON format.

https://docs.rs/
https://doc.rust-lang.org/nightly/nightly-rustc/rustdoc_json_types/

rustdoc-depinfo --- Use dep-info files in rustdoc rebuild detection.
Cargo.toml extensions

Profile rustflags option --- Passed directly to rustc.
Profile hint-mostly-unused option --- Hint that a dependency is
mostly unused, to optimize compilation time.
codegen-backend --- Select the codegen backend used by rustc.
per-package-target --- Sets the --target to use for each
individual package.
artifact dependencies --- Allow build artifacts to be included into
other build artifacts and build them for different targets.
Profile trim-paths option --- Control the sanitization of file
paths in build outputs.
[lints.cargo] --- Allows configuring lints for Cargo.
path bases --- Named base directories for path dependencies.
unstable-editions --- Allows use of editions that are not yet
stable.

Information and metadata

Build-plan --- Emits JSON information on which commands will
be run.
unit-graph --- Emits JSON for Cargo's internal graph structure.
cargo rustc --print --- Calls rustc with --print to display
information from rustc.

Configuration

config-include --- Adds the ability for config files to include other
files.
cargo config --- Adds a new subcommand for viewing config
files.

Registries

publish-timeout --- Controls the timeout between uploading the
crate and being available in the index

asymmetric-token --- Adds support for authentication tokens
using asymmetric cryptography (cargo:paseto provider).

Other

gitoxide --- Use gitoxide instead of git2 for a set of
operations.
script --- Enable support for single-file .rs packages.
lockfile-path --- Allows to specify a path to lockfile other than the
default path <workspace_root>/Cargo.lock .
package-workspace --- Allows for packaging and publishing
multiple crates in a workspace.
native-completions --- Move cargo shell completions to native
completions.
warnings --- controls warning behavior; options for allowing or
denying warnings.
Package message format --- Message format for cargo package .
fix-edition --- A permanently unstable edition migration
helper.

allow-features
This permanently-unstable flag makes it so that only a listed set of

unstable features can be used. Specifically, if you pass -Zallow-

features=foo,bar , you'll continue to be able to pass -Zfoo and -Zbar to
cargo , but you will be unable to pass -Zbaz . You can pass an empty string
(-Zallow-features=) to disallow all unstable features.

-Zallow-features also restricts which unstable features can be passed
to the cargo-features entry in Cargo.toml . If, for example, you want to
allow
cargo-features = ["test-dummy-unstable"]

where test-dummy-unstable is unstable, that features would also be
disallowed by -Zallow-features= , and allowed with -Zallow-

features=test-dummy-unstable .
The list of features passed to cargo's -Zallow-features is also passed

to any Rust tools that cargo ends up calling (like rustc or rustdoc). Thus,
if you run cargo -Zallow-features= , no unstable Cargo or Rust features
can be used.

no-index-update

Original Issue: #3479
Tracking Issue: #7404

The -Z no-index-update flag ensures that Cargo does not attempt to
update the registry index. This is intended for tools such as Crater that issue
many Cargo commands, and you want to avoid the network latency for
updating the index each time.

https://github.com/rust-lang/cargo/issues/3479
https://github.com/rust-lang/cargo/issues/7404

mtime-on-use

Original Issue: #6477
Cache usage meta tracking issue: #7150

The -Z mtime-on-use flag is an experiment to have Cargo update the
mtime of used files to make it easier for tools like cargo-sweep to detect
which files are stale. For many workflows this needs to be set on all
invocations of cargo. To make this more practical setting the
unstable.mtime_on_use flag in .cargo/config.toml or the
corresponding ENV variable will apply the -Z mtime-on-use to all
invocations of nightly cargo. (the config flag is ignored by stable)

https://github.com/rust-lang/cargo/pull/6477
https://github.com/rust-lang/cargo/issues/7150

avoid-dev-deps

Original Issue: #4988
Tracking Issue: #5133

When running commands such as cargo install or cargo build ,
Cargo currently requires dev-dependencies to be downloaded, even if they
are not used. The -Z avoid-dev-deps flag allows Cargo to avoid
downloading dev-dependencies if they are not needed. The Cargo.lock
file will not be generated if dev-dependencies are skipped.

https://github.com/rust-lang/cargo/issues/4988
https://github.com/rust-lang/cargo/issues/5133

minimal-versions

Original Issue: #4100
Tracking Issue: #5657

Note: It is not recommended to use this feature. Because it enforces
minimal versions for all transitive dependencies, its usefulness is
limited since not all external dependencies declare proper lower
version bounds. It is intended that it will be changed in the future to
only enforce minimal versions for direct dependencies.

When a Cargo.lock file is generated, the -Z minimal-versions flag
will resolve the dependencies to the minimum SemVer version that will
satisfy the requirements (instead of the greatest version).

The intended use-case of this flag is to check, during continuous
integration, that the versions specified in Cargo.toml are a correct reflection
of the minimum versions that you are actually using. That is, if Cargo.toml
says foo = "1.0.0" that you don't accidentally depend on features added
only in foo 1.5.0 .

https://github.com/rust-lang/cargo/issues/4100
https://github.com/rust-lang/cargo/issues/5657

direct-minimal-versions

Original Issue: #4100
Tracking Issue: #5657

When a Cargo.lock file is generated, the -Z direct-minimal-

versions flag will resolve the dependencies to the minimum SemVer
version that will satisfy the requirements (instead of the greatest version)
for direct dependencies only.

The intended use-case of this flag is to check, during continuous
integration, that the versions specified in Cargo.toml are a correct reflection
of the minimum versions that you are actually using. That is, if Cargo.toml
says foo = "1.0.0" that you don't accidentally depend on features added
only in foo 1.5.0 .

Indirect dependencies are resolved as normal so as not to be blocked on
their minimal version validation.

https://github.com/rust-lang/cargo/issues/4100
https://github.com/rust-lang/cargo/issues/5657

artifact-dir

Original Issue: #4875
Tracking Issue: #6790

This feature allows you to specify the directory where artifacts will be
copied to after they are built. Typically artifacts are only written to the
target/release or target/debug directories. However, determining the
exact filename can be tricky since you need to parse JSON output. The --
artifact-dir flag makes it easier to predictably access the artifacts. Note
that the artifacts are copied, so the originals are still in the target

directory. Example:
cargo +nightly build --artifact-dir=out -Z unstable-options

This can also be specified in .cargo/config.toml files.
[build]
artifact-dir = "out"

https://github.com/rust-lang/cargo/issues/4875
https://github.com/rust-lang/cargo/issues/6790

build-dir

Original Issue: #14125
Tracking Issue: #14125

The directory where intermediate build artifacts will be stored.
Intermediate artifacts are produced by Rustc/Cargo during the build
process.
[build]
build-dir = "out"

build.build-dir

Type: string (path)
Default: Defaults to the value of build.target-dir
Environment: CARGO_BUILD_BUILD_DIR

The path to where internal files used as part of the build are placed.
This option supports path templating.
Available template variables:

{workspace-root} resolves to root of the current workspace.
{cargo-cache-home} resolves to CARGO_HOME
{workspace-path-hash} resolves to a hash of the manifest path

https://github.com/rust-lang/cargo/issues/14125
https://github.com/rust-lang/cargo/issues/14125

root-dir

Original Issue: #9887
Tracking Issue: None (not currently slated for stabilization)

The -Zroot-dir flag sets the root directory relative to which paths are
printed. This affects both diagnostics and paths emitted by the file!()
macro.

https://github.com/rust-lang/cargo/issues/9887

Build-plan

Tracking Issue: #5579

The build-plan feature is deprecated and may be removed in a
future version. See https://github.com/rust-lang/cargo/issues/7614.

The --build-plan argument for the build command will output JSON
with information about which commands would be run without actually
executing anything. This can be useful when integrating with another build
tool. Example:
cargo +nightly build --build-plan -Z unstable-options

https://github.com/rust-lang/cargo/issues/5579
https://github.com/rust-lang/cargo/issues/7614

Metabuild

Tracking Issue: rust-lang/rust#49803
RFC: #2196

Metabuild is a feature to have declarative build scripts. Instead of
writing a build.rs script, you specify a list of build dependencies in the
metabuild key in Cargo.toml . A build script is automatically generated
that runs each build dependency in order. Metabuild packages can then read
metadata from Cargo.toml to specify their behavior.

Include cargo-features at the top of Cargo.toml , a metabuild key in
the package , list the dependencies in build-dependencies , and add any
metadata that the metabuild packages require under package.metadata .
Example:
cargo-features = ["metabuild"]

[package]
name = "mypackage"
version = "0.0.1"
metabuild = ["foo", "bar"]

[build-dependencies]
foo = "1.0"
bar = "1.0"

[package.metadata.foo]
extra-info = "qwerty"

Metabuild packages should have a public function called metabuild
that performs the same actions as a regular build.rs script would perform.

https://github.com/rust-lang/rust/issues/49803
https://github.com/rust-lang/rfcs/blob/master/text/2196-metabuild.md

Multiple Build Scripts

Tracking Issue: #14903
Original Pull Request: #15630

Multiple Build Scripts feature allows you to have multiple build scripts
in your package.

Include cargo-features at the top of Cargo.toml and add multiple-
build-scripts to enable feature. Add the paths of the build scripts as an
array in package.build . For example:
cargo-features = ["multiple-build-scripts"]

[package]
name = "mypackage"
version = "0.0.1"
build = ["foo.rs", "bar.rs"]

https://github.com/rust-lang/cargo/issues/14903
https://github.com/rust-lang/cargo/pull/15630

public-dependency

Tracking Issue: #44663
The 'public-dependency' feature allows marking dependencies as 'public'

or 'private'. When this feature is enabled, additional information is passed to
rustc to allow the exported_private_dependencies lint to function properly.

To enable this feature, you can either use -Zpublic-dependency
cargo +nightly run -Zpublic-dependency

or [unstable] table, for example,
.cargo/config.toml
[unstable]
public-dependency = true

public-dependency could also be enabled in cargo-features , though
this is deprecated and will be removed soon.
cargo-features = ["public-dependency"]

[dependencies]
my_dep = { version = "1.2.3", public = true }
private_dep = "2.0.0" # Will be 'private' by default

Documentation updates:

For workspace's "The dependencies table" section, include public
as an unsupported field for workspace.dependencies

https://github.com/rust-lang/rust/issues/44663
clbr://internal.invalid/book/rustc/lints/listing/warn-by-default.html#exported-private-dependencies

msrv-policy

RFC: MSRV-aware Resolver
#9930 (MSRV-aware resolver)

Catch-all unstable feature for MSRV-aware cargo features under RFC
2495.

MSRV-aware cargo add
This was stabilized in 1.79 in #13608.

MSRV-aware resolver
This was stabilized in 1.84 in #14639.

Convert incompatible_toolchain error into a lint
Unimplemented

--update-rust-version flag for cargo add, cargo
update

Unimplemented

package.rust-version = "toolchain"
Unimplemented

Update cargo new template to set package.rust-
version = "toolchain"

Unimplemented

https://rust-lang.github.io/rfcs/3537-msrv-resolver.html
https://github.com/rust-lang/cargo/issues/9930
https://github.com/rust-lang/rfcs/pull/2495
https://github.com/rust-lang/cargo/pull/13608
https://github.com/rust-lang/cargo/pull/14639

precise-pre-release

Tracking Issue: #13290
RFC: #3493

The precise-pre-release feature allows pre-release versions to be
selected with update --precise even when a pre-release is not specified
by a projects Cargo.toml .

Take for example this Cargo.toml .
[dependencies]
my-dependency = "0.1.1"

It's possible to update my-dependency to a pre-release with update -
Zunstable-options my-dependency --precise 0.1.2-pre.0 . This is
because 0.1.2-pre.0 is considered compatible with 0.1.1 . It would not
be possible to upgrade to 0.2.0-pre.0 from 0.1.1 in the same way.

https://github.com/rust-lang/cargo/issues/13290
https://github.com/rust-lang/rfcs/pull/3493

sbom

Tracking Issue: #13709
RFC: #3553

The sbom build config allows to generate so-called SBOM pre-cursor
files alongside each compiled artifact. A Software Bill Of Material (SBOM)
tool can incorporate these generated files to collect important information
from the cargo build process that are difficult or impossible to obtain in
another way.

To enable this feature either set the sbom field in the
.cargo/config.toml

[unstable]
sbom = true

[build]
sbom = true

or set the CARGO_BUILD_SBOM environment variable to true . The
functionality is available behind the flag -Z sbom .

The generated output files are in JSON format and follow the naming
scheme <artifact>.cargo-sbom.json . The JSON file contains
information about dependencies, target, features and the used rustc

compiler.
SBOM pre-cursor files are generated for all executable and linkable

outputs that are uplifted into the target or artifact directories.

Environment variables Cargo sets for crates

CARGO_SBOM_PATH -- a list of generated SBOM precursor files,
separated by the platform PATH separator. The list can be split with
std::env::split_paths .

SBOM pre-cursor schema

https://github.com/rust-lang/cargo/pull/13709
https://github.com/rust-lang/rfcs/pull/3553

{
 // Schema version.
 "version": 1,
 // Index into the crates array for the root crate.
 "root": 0,
 // Array of all crates. There may be duplicates of the same
crate if that
 // crate is compiled differently (different opt-level,
features, etc).
 "crates": [
 {
 // Package ID specification
 "id": "path+file:///sample-package#0.1.0",
 // List of target kinds: bin, lib, rlib, dylib, cdylib,
staticlib, proc-macro, example, test, bench, custom-build
 "kind": ["bin"],
 // Enabled feature flags.
 "features": [],
 // Dependencies for this crate.
 "dependencies": [
 {
 // Index in to the crates array.
 "index": 1,
 // Dependency kind:
 // Normal: A dependency linked to the artifact
produced by this crate.
 // Build: A compile-time dependency used to build
this crate (build-script or proc-macro).
 "kind": "normal"
 },
 {
 // A crate can depend on another crate with both
normal and build edges.
 "index": 1,
 "kind": "build"

 }
]
 },
 {
 "id": "registry+https://github.com/rust-lang/crates.io-
index#zerocopy@0.8.16",
 "kind": ["bin"],
 "features": [],
 "dependencies": []
 }
],
 // Information about rustc used to perform the compilation.
 "rustc": {
 // Compiler version
 "version": "1.86.0-nightly",
 // Compiler wrapper
 "wrapper": null,
 // Compiler workspace wrapper
 "workspace_wrapper": null,
 // Commit hash for rustc
 "commit_hash": "bef3c3b01f690de16738b1c9f36470fbfc6ac623",
 // Host target triple
 "host": "x86_64-pc-windows-msvc",
 // Verbose version string: `rustc -vV`
 "verbose_version": "rustc 1.86.0-nightly (bef3c3b01 2025-
02-04)\nbinary: rustc\ncommit-hash:
bef3c3b01f690de16738b1c9f36470fbfc6ac623\ncommit-date: 2025-
02-04\nhost: x86_64-pc-windows-msvc\nrelease: 1.86.0-
nightly\nLLVM version: 19.1.7\n"
 }
}

update-breaking

Tracking Issue: #12425
Allow upgrading dependencies version requirements in Cargo.toml

across SemVer incompatible versions using with the --breaking flag.
This only applies to dependencies when

The package is a dependency of a workspace member
The dependency is not renamed
A SemVer-incompatible version is available
The "SemVer operator" is used (^ which is the default)

Users may further restrict which packages get upgraded by specifying
them on the command line.

Example:
$ cargo +nightly -Zunstable-options update --breaking
$ cargo +nightly -Zunstable-options update --breaking clap

This is meant to fill a similar role as cargo-upgrade

https://github.com/rust-lang/cargo/issues/12425
https://github.com/killercup/cargo-edit/

build-std

Tracking Repository: https://github.com/rust-lang/wg-cargo-std-aware
The build-std feature enables Cargo to compile the standard library

itself as part of a crate graph compilation. This feature has also historically
been known as "std-aware Cargo". This feature is still in very early stages
of development, and is also a possible massive feature addition to Cargo.
This is a very large feature to document, even in the minimal form that it
exists in today, so if you're curious to stay up to date you'll want to follow
the tracking repository and its set of issues.

The functionality implemented today is behind a flag called -Z build-
std . This flag indicates that Cargo should compile the standard library from
source code using the same profile as the main build itself. Note that for this
to work you need to have the source code for the standard library available,
and at this time the only supported method of doing so is to add the rust-
src rust rustup component:
$ rustup component add rust-src --toolchain nightly

Usage looks like:
$ cargo new foo
$ cd foo
$ cargo +nightly run -Z build-std --target x86_64-unknown-
linux-gnu
 Compiling core v0.0.0 (...)
 ...
 Compiling foo v0.1.0 (...)
 Finished dev [unoptimized + debuginfo] target(s) in 21.00s
 Running `target/x86_64-unknown-linux-gnu/debug/foo`
Hello, world!

Here we recompiled the standard library in debug mode with debug
assertions (like src/main.rs is compiled) and everything was linked
together at the end.

https://github.com/rust-lang/wg-cargo-std-aware
https://github.com/rust-lang/wg-cargo-std-aware

Using -Z build-std will implicitly compile the stable crates core ,
std , alloc , and proc_macro . If you're using cargo test it will also
compile the test crate. If you're working with an environment which does
not support some of these crates, then you can pass an argument to -
Zbuild-std as well:
$ cargo +nightly build -Z build-std=core,alloc

The value here is a comma-separated list of standard library crates to
build.

Requirements
As a summary, a list of requirements today to use -Z build-std are:

You must install libstd's source code through rustup component add
rust-src

You must use both a nightly Cargo and a nightly rustc
The -Z build-std flag must be passed to all cargo invocations.

Reporting bugs and helping out
The -Z build-std feature is in the very early stages of development!

This feature for Cargo has an extremely long history and is very large in
scope, and this is just the beginning. If you'd like to report bugs please
either report them to:

Cargo --- https://github.com/rust-lang/cargo/issues/new --- for
implementation bugs
The tracking repository --- https://github.com/rust-lang/wg-cargo-std-
aware/issues/new --- for larger design questions.

Also if you'd like to see a feature that's not yet implemented and/or if
something doesn't quite work the way you'd like it to, feel free to check out
the issue tracker of the tracking repository, and if it's not there please file a
new issue!

https://github.com/rust-lang/cargo/issues/new
https://github.com/rust-lang/wg-cargo-std-aware/issues/new
https://github.com/rust-lang/wg-cargo-std-aware/issues

build-std-features

Tracking Repository: https://github.com/rust-lang/wg-cargo-std-aware
This flag is a sibling to the -Zbuild-std feature flag. This will

configure the features enabled for the standard library itself when building
the standard library. The default enabled features, at this time, are
backtrace and panic-unwind . This flag expects a comma-separated list
and, if provided, will override the default list of features enabled.

https://github.com/rust-lang/wg-cargo-std-aware

binary-dep-depinfo

Tracking rustc issue: #63012
The -Z binary-dep-depinfo flag causes Cargo to forward the same

flag to rustc which will then cause rustc to include the paths of all
binary dependencies in the "dep info" file (with the .d extension). Cargo
then uses that information for change-detection (if any binary dependency
changes, then the crate will be rebuilt). The primary use case is for building
the compiler itself, which has implicit dependencies on the standard library
that would otherwise be untracked for change-detection.

https://github.com/rust-lang/rust/issues/63012

checksum-freshness

Tracking issue: #14136
The -Z checksum-freshness flag will replace the use of file mtimes in

cargo's fingerprints with a file checksum value. This is most useful on
systems with a poor mtime implementation, or in CI/CD. The checksum
algorithm can change without notice between cargo versions. Fingerprints
are used by cargo to determine when a crate needs to be rebuilt.

For the time being files ingested by build script will continue to use
mtimes, even when checksum-freshness is enabled. This is not intended
as a long term solution.

https://github.com/rust-lang/cargo/issues/14136

panic-abort-tests

Tracking Issue: #67650
Original Pull Request: #7460

The -Z panic-abort-tests flag will enable nightly support to compile
test harness crates with -Cpanic=abort . Without this flag Cargo will
compile tests, and everything they depend on, with -Cpanic=unwind

because it's the only way test -the-crate knows how to operate. As of rust-
lang/rust#64158, however, the test crate supports -C panic=abort with a
test-per-process, and can help avoid compiling crate graphs multiple times.

It's currently unclear how this feature will be stabilized in Cargo, but
we'd like to stabilize it somehow!

https://github.com/rust-lang/rust/issues/67650
https://github.com/rust-lang/cargo/pull/7460
https://github.com/rust-lang/rust/pull/64158

config-include

Tracking Issue: #7723
This feature requires the -Zconfig-include command-line option.
The include key in a config file can be used to load another config file.

It takes a string for a path to another file relative to the config file, or an
array of config file paths. Only path ending with .toml is accepted.
a path ending with `.toml`
include = "path/to/mordor.toml"

or an array of paths
include = ["frodo.toml", "samwise.toml"]

Unlike other config values, the merge behavior of the include key is
different. When a config file contains an include key:

1. The config values are first loaded from the include path.

If the value of the include key is an array of paths, the config
values are loaded and merged from left to right for each path.
Recurse this step if the config values from the include path also
contain an include key.

2. Then, the config file's own values are merged on top of the config
from the include path.

https://github.com/rust-lang/cargo/issues/7723

target-applies-to-host

Original Pull Request: #9322
Tracking Issue: #9453

Historically, Cargo's behavior for whether the linker and rustflags
configuration options from environment variables and [target] are
respected for build scripts, plugins, and other artifacts that are always built
for the host platform has been somewhat inconsistent. When --target is
not passed, Cargo respects the same linker and rustflags for build
scripts as for all other compile artifacts. When --target is passed,
however, Cargo respects linker from [target.<host triple>] , and
does not pick up any rustflags configuration. This dual behavior is
confusing, but also makes it difficult to correctly configure builds where the
host triple and the target triple happen to be the same, but artifacts intended
to run on the build host should still be configured differently.

-Ztarget-applies-to-host enables the top-level target-applies-

to-host setting in Cargo configuration files which allows users to opt into
different (and more consistent) behavior for these properties. When
target-applies-to-host is unset, or set to true , in the configuration
file, the existing Cargo behavior is preserved (though see -Zhost-config ,
which changes that default). When it is set to false , no options from
[target.<host triple>] , RUSTFLAGS , or [build] are respected for host
artifacts regardless of whether --target is passed to Cargo. To customize
artifacts intended to be run on the host, use [host] (host-config).

In the future, target-applies-to-host may end up defaulting to
false to provide more sane and consistent default behavior.
config.toml
target-applies-to-host = false

cargo +nightly -Ztarget-applies-to-host build --target x86_64-
unknown-linux-gnu

https://github.com/rust-lang/cargo/pull/9322
https://github.com/rust-lang/cargo/issues/9453
clbr://internal.invalid/book/OEBPS/reference/config.md#target
clbr://internal.invalid/book/OEBPS/reference/config.md#targettriplelinker
clbr://internal.invalid/book/OEBPS/appendix/glossary.md#target

host-config

Original Pull Request: #9322
Tracking Issue: #9452

The host key in a config file can be used to pass flags to host build
targets such as build scripts that must run on the host system instead of the
target system when cross compiling. It supports both generic and host arch
specific tables. Matching host arch tables take precedence over generic host
tables.

It requires the -Zhost-config and -Ztarget-applies-to-host

command-line options to be set, and that target-applies-to-host =

false is set in the Cargo configuration file.
config.toml
[host]
linker = "/path/to/host/linker"
[host.x86_64-unknown-linux-gnu]
linker = "/path/to/host/arch/linker"
rustflags = ["-Clink-arg=--verbose"]
[target.x86_64-unknown-linux-gnu]
linker = "/path/to/target/linker"

The generic host table above will be entirely ignored when building on
an x86_64-unknown-linux-gnu host as the host.x86_64-unknown-linux-
gnu table takes precedence.

Setting -Zhost-config changes the default for target-applies-to-
host to false from true .
cargo +nightly -Ztarget-applies-to-host -Zhost-config build --
target x86_64-unknown-linux-gnu

https://github.com/rust-lang/cargo/pull/9322
https://github.com/rust-lang/cargo/issues/9452

unit-graph

Tracking Issue: #8002
The --unit-graph flag can be passed to any build command (build ,

check , run , test , bench , doc , etc.) to emit a JSON object to stdout
which represents Cargo's internal unit graph. Nothing is actually built, and
the command returns immediately after printing. Each "unit" corresponds to
an execution of the compiler. These objects also include which unit each
unit depends on.
cargo +nightly build --unit-graph -Z unstable-options

This structure provides a more complete view of the dependency
relationship as Cargo sees it. In particular, the "features" field supports the
new feature resolver where a dependency can be built multiple times with
different features. cargo metadata fundamentally cannot represent the
relationship of features between different dependency kinds, and features
now depend on which command is run and which packages and targets are
selected. Additionally it can provide details about intra-package
dependencies like build scripts or tests.

The following is a description of the JSON structure:
{
 /* Version of the JSON output structure. If any backwards
incompatible
 changes are made, this value will be increased.
 */
 "version": 1,
 /* Array of all build units. */
 "units": [
 {
 /* An opaque string which indicates the package.
 Information about the package can be obtained from
`cargo metadata`.
 */
 "pkg_id": "my-package 0.1.0 (path+file:///path/to/my-

https://github.com/rust-lang/cargo/issues/8002

package)",
 /* The Cargo target. See the `cargo metadata`
documentation for more
 information about these fields.
 https://doc.rust-lang.org/cargo/commands/cargo-
metadata.html
 */
 "target": {
 "kind": ["lib"],
 "crate_types": ["lib"],
 "name": "my_package",
 "src_path": "/path/to/my-package/src/lib.rs",
 "edition": "2018",
 "test": true,
 "doctest": true
 },
 /* The profile settings for this unit.
 These values may not match the profile defined in the
manifest.
 Units can use modified profile settings. For example,
the "panic"
 setting can be overridden for tests to force it to
"unwind".
 */
 "profile": {
 /* The profile name these settings are derived from.
*/
 "name": "dev",
 /* The optimization level as a string. */
 "opt_level": "0",
 /* The LTO setting as a string. */
 "lto": "false",
 /* The codegen units as an integer.
 `null` if it should use the compiler's default.
 */
 "codegen_units": null,

 /* The debug information level as an integer.
 `null` if it should use the compiler's default (0).
 */
 "debuginfo": 2,
 /* Whether or not debug-assertions are enabled. */
 "debug_assertions": true,
 /* Whether or not overflow-checks are enabled. */
 "overflow_checks": true,
 /* Whether or not rpath is enabled. */
 "rpath": false,
 /* Whether or not incremental is enabled. */
 "incremental": true,
 /* The panic strategy, "unwind" or "abort". */
 "panic": "unwind"
 },
 /* Which platform this target is being built for.
 A value of `null` indicates it is for the host.
 Otherwise it is a string of the target triple (such
as
 "x86_64-unknown-linux-gnu").
 */
 "platform": null,
 /* The "mode" for this unit. Valid values:

 * "test" --- Build using `rustc` as a test.
 * "build" --- Build using `rustc`.
 * "check" --- Build using `rustc` in "check" mode.
 * "doc" --- Build using `rustdoc`.
 * "doctest" --- Test using `rustdoc`.
 * "run-custom-build" --- Represents the execution of
a build script.
 */
 "mode": "build",
 /* Array of features enabled on this unit as strings. */
 "features": ["somefeat"],
 /* Whether or not this is a standard-library unit,

 part of the unstable build-std feature.
 If not set, treat as `false`.
 */
 "is_std": false,
 /* Array of dependencies of this unit. */
 "dependencies": [
 {
 /* Index in the "units" array for the dependency. */
 "index": 1,
 /* The name that this dependency will be referred
as. */
 "extern_crate_name": "unicode_xid",
 /* Whether or not this dependency is "public",
 part of the unstable public-dependency feature.
 If not set, the public-dependency feature is not
enabled.
 */
 "public": false,
 /* Whether or not this dependency is injected into
the prelude,
 currently used by the build-std feature.
 If not set, treat as `false`.
 */
 "noprelude": false
 }
]
 },
 // ...
],
 /* Array of indices in the "units" array that are the
"roots" of the
 dependency graph.
 */
 "roots": [0],
}

Profile rustflags option

Original Issue: rust-lang/cargo#7878
Tracking Issue: rust-lang/cargo#10271

This feature provides a new option in the [profile] section to specify
flags that are passed directly to rustc. This can be enabled like so:
cargo-features = ["profile-rustflags"]

[package]
...

[profile.release]
rustflags = ["-C", "..."]

To set this in a profile in Cargo configuration, you need to use either -Z
profile-rustflags or [unstable] table to enable it. For example,
.cargo/config.toml
[unstable]
profile-rustflags = true

[profile.release]
rustflags = ["-C", "..."]

https://github.com/rust-lang/cargo/issues/7878
https://github.com/rust-lang/cargo/issues/10271

Profile hint-mostly-unused option

Tracking Issue: #15644
This feature provides a new option in the [profile] section to enable

the rustc hint-mostly-unused option. This is primarily useful to enable
for specific dependencies:
[profile.dev.package.huge-mostly-unused-dependency]
hint-mostly-unused = true

To enable this feature, pass -Zprofile-hint-mostly-unused . However,
since this option is a hint, using it without passing -Zprofile-hint-

mostly-unused will only warn and ignore the profile option. Versions of
Cargo prior to the introduction of this feature will give an "unused manifest
key" warning, but will otherwise function without erroring. This allows
using the hint in a crate's Cargo.toml without mandating the use of a
newer Cargo to build it.

https://github.com/rust-lang/cargo/issues/15644

rustdoc-map

Tracking Issue: #8296
This feature adds configuration settings that are passed to rustdoc so

that it can generate links to dependencies whose documentation is hosted
elsewhere when the dependency is not documented. First, add this to
.cargo/config :
[doc.extern-map.registries]
crates-io = "https://docs.rs/"

Then, when building documentation, use the following flags to cause
links to dependencies to link to docs.rs:
cargo +nightly doc --no-deps -Zrustdoc-map

The registries table contains a mapping of registry name to the URL
to link to. The URL may have the markers {pkg_name} and {version}
which will get replaced with the corresponding values. If neither are
specified, then Cargo defaults to appending {pkg_name}/{version}/ to the
end of the URL.

Another config setting is available to redirect standard library links. By
default, rustdoc creates links to https://doc.rust-lang.org/nightly/. To change
this behavior, use the doc.extern-map.std setting:
[doc.extern-map]
std = "local"

A value of "local" means to link to the documentation found in the
rustc sysroot. If you are using rustup, this documentation can be installed
with rustup component add rust-docs .

The default value is "remote" .
The value may also take a URL for a custom location.

https://github.com/rust-lang/cargo/issues/8296
https://docs.rs/
https://doc.rust-lang.org/nightly/

per-package-target

Tracking Issue: #9406
Original Pull Request: #9030
Original Issue: #7004

The per-package-target feature adds two keys to the manifest:
package.default-target and package.forced-target . The first makes
the package be compiled by default (ie. when no --target argument is
passed) for some target. The second one makes the package always be
compiled for the target.

Example:
[package]
forced-target = "wasm32-unknown-unknown"

In this example, the crate is always built for wasm32-unknown-unknown ,
for instance because it is going to be used as a plugin for a main program
that runs on the host (or provided on the command line) target.

https://github.com/rust-lang/cargo/pull/9406
https://github.com/rust-lang/cargo/pull/9030
https://github.com/rust-lang/cargo/pull/7004

artifact-dependencies

Tracking Issue: #9096
Original Pull Request: #9992

Artifact dependencies allow Cargo packages to depend on bin , cdylib ,
and staticlib crates, and use the artifacts built by those crates at compile
time.

Run cargo with -Z bindeps to enable this functionality.

artifact-dependencies: Dependency declarations
Artifact-dependencies adds the following keys to a dependency

declaration in Cargo.toml :

artifact --- This specifies the Cargo Target to build. Normally
without this field, Cargo will only build the [lib] target from a
dependency. This field allows specifying which target will be built,
and made available as a binary at build time:

"bin" --- Compiled executable binaries, corresponding to all of
the [[bin]] sections in the dependency's manifest.
"bin:<bin-name>" --- Compiled executable binary,
corresponding to a specific binary target specified by the given
<bin-name> .
"cdylib" --- A C-compatible dynamic library, corresponding to
a [lib] section with crate-type = ["cdylib"] in the
dependency's manifest.
"staticlib" --- A C-compatible static library, corresponding to
a [lib] section with crate-type = ["staticlib"] in the
dependency's manifest.

The artifact value can be a string, or it can be an array of strings
to specify multiple targets.

Example:

https://github.com/rust-lang/cargo/pull/9096
https://github.com/rust-lang/cargo/pull/9992
clbr://internal.invalid/book/OEBPS/reference/cargo-targets.md

[dependencies]
bar = { version = "1.0", artifact = "staticlib" }
zoo = { version = "1.0", artifact = ["bin:cat",
"bin:dog"]}

lib --- This is a Boolean value which indicates whether or not to
also build the dependency's library as a normal Rust lib dependency.
This field can only be specified when artifact is specified.

The default for this field is false when artifact is specified. If
this is set to true , then the dependency's [lib] target will also be
built for the platform target the declaring package is being built for.
This allows the package to use the dependency from Rust code like a
normal dependency in addition to an artifact dependency.

Example:
[dependencies]
bar = { version = "1.0", artifact = "bin", lib = true }

target --- The platform target to build the dependency for. This
field can only be specified when artifact is specified.

The default if this is not specified depends on the dependency kind.
For build dependencies, it will be built for the host target. For all other
dependencies, it will be built for the same targets the declaring
package is built for.

For a build dependency, this can also take the special value of
"target" which means to build the dependency for the same targets
that the package is being built for.
[build-dependencies]
bar = { version = "1.0", artifact = "cdylib", target =
"wasm32-unknown-unknown"}
same-target = { version = "1.0", artifact = "bin", target
= "target" }

artifact-dependencies: Environment variables

After building an artifact dependency, Cargo provides the following
environment variables that you can use to access the artifact:

CARGO_<ARTIFACT-TYPE>_DIR_<DEP> --- This is the directory
containing all the artifacts from the dependency.

<ARTIFACT-TYPE> is the artifact specified for the dependency
(uppercased as in CDYLIB , STATICLIB , or BIN) and <DEP> is the
name of the dependency. As with other Cargo environment variables,
dependency names are converted to uppercase, with dashes replaced
by underscores.

If your manifest renames the dependency, <DEP> corresponds to the
name you specify, not the original package name.

CARGO_<ARTIFACT-TYPE>_FILE_<DEP>_<NAME> --- This is the full
path to the artifact.

<ARTIFACT-TYPE> is the artifact specified for the dependency
(uppercased as above), <DEP> is the name of the dependency
(transformed as above), and <NAME> is the name of the artifact from
the dependency.

Note that <NAME> is not modified in any way from the name
specified in the crate supplying the artifact, or the crate name if not
specified; for instance, it may be in lowercase, or contain dashes.

For convenience, if the artifact name matches the original package
name, cargo additionally supplies a copy of this variable with the
_<NAME> suffix omitted. For instance, if the cmake crate supplies a
binary named cmake , Cargo supplies both CARGO_BIN_FILE_CMAKE
and CARGO_BIN_FILE_CMAKE_cmake .

For each kind of dependency, these variables are supplied to the same
part of the build process that has access to that kind of dependency:

For build-dependencies, these variables are supplied to the build.rs
script, and can be accessed using std::env::var_os . (As with any
OS file path, these may or may not be valid UTF-8.)

https://doc.rust-lang.org/std/env/fn.var_os.html

For normal dependencies, these variables are supplied during the
compilation of the crate, and can be accessed using the env! macro.
For dev-dependencies, these variables are supplied during the
compilation of examples, tests, and benchmarks, and can be accessed
using the env! macro.

artifact-dependencies: Examples
Example: use a binary executable from a build script

In the Cargo.toml file, you can specify a dependency on a binary to
make available for a build script:
[build-dependencies]
some-build-tool = { version = "1.0", artifact = "bin" }

Then inside the build script, the binary can be executed at build time:
fn main() {
 let build_tool =
std::env::var_os("CARGO_BIN_FILE_SOME_BUILD_TOOL").unwrap();
 let status = std::process::Command::new(build_tool)
 .arg("do-stuff")
 .status()
 .unwrap();
 if !status.success() {
 eprintln!("failed!");
 std::process::exit(1);
 }
}

Example: use cdylib artifact in build script
The Cargo.toml in the consuming package, building the bar library as

cdylib for a specific build target…
[build-dependencies]
bar = { artifact = "cdylib", version = "1.0", target =
"wasm32-unknown-unknown" }

…along with the build script in build.rs .

https://doc.rust-lang.org/std/macro.env.html
https://doc.rust-lang.org/std/macro.env.html

fn main() {

wasm::run_file(std::env::var("CARGO_CDYLIB_FILE_BAR").unwrap()
);
}

Example: use binary artifact and its library in a binary
The Cargo.toml in the consuming package, building the bar binary for

inclusion as artifact while making it available as library as well…
[dependencies]
bar = { artifact = "bin", version = "1.0", lib = true }

…along with the executable using main.rs .
fn main() {
 bar::init();
 command::run(env!("CARGO_BIN_FILE_BAR"));
}

publish-timeout

Tracking Issue: 11222
The publish.timeout key in a config file can be used to control how

long cargo publish waits between posting a package to the registry and it
being available in the local index.

A timeout of 0 prevents any checks from occurring. The current default
is 60 seconds.

It requires the -Zpublish-timeout command-line options to be set.
config.toml
[publish]
timeout = 300 # in seconds

https://github.com/rust-lang/cargo/issues/11222

asymmetric-token

Tracking Issue: 10519
RFC: #3231

The -Z asymmetric-token flag enables the cargo:paseto credential
provider which allows Cargo to authenticate to registries without sending
secrets over the network.

In config.toml and credentials.toml files there is a field called
private-key , which is a private key formatted in the secret subset of
PASERK and is used to sign asymmetric tokens

A keypair can be generated with cargo login --generate-keypair
which will:

generate a public/private keypair in the currently recommended
fashion.
save the private key in credentials.toml .
print the public key in PASERK public format.

It is recommended that the private-key be saved in
credentials.toml . It is also supported in config.toml , primarily so that
it can be set using the associated environment variable, which is the
recommended way to provide it in CI contexts. This setup is what we have
for the token field for setting a secret token.

There is also an optional field called private-key-subject which is a
string chosen by the registry. This string will be included as part of an
asymmetric token and should not be secret. It is intended for the rare use
cases like "cryptographic proof that the central CA server authorized this
action". Cargo requires it to be non-whitespace printable ASCII. Registries
that need non-ASCII data should base64 encode it.

Both fields can be set with cargo login --registry=name --

private-key --private-key-subject="subject" which will prompt you
to put in the key value.

A registry can have at most one of private-key or token set.

https://github.com/rust-lang/cargo/issues/10519
https://github.com/rust-lang/rfcs/pull/3231
clbr://internal.invalid/book/OEBPS/reference/config.md
https://github.com/paseto-standard/paserk/blob/master/types/secret.md
https://github.com/paseto-standard/paserk/blob/master/types/public.md

All PASETOs will include iat , the current time in ISO 8601 format.
Cargo will include the following where appropriate:

sub an optional, non-secret string chosen by the registry that is
expected to be claimed with every request. The value will be the
private-key-subject from the config.toml file.
mutation if present, indicates that this request is a mutating operation
(or a read-only operation if not present), must be one of the strings
publish , yank , or unyank .

name name of the crate related to this request.
vers version string of the crate related to this request.
cksum the SHA256 hash of the crate contents, as a string of 64
lowercase hexadecimal digits, must be present only when
mutation is equal to publish

challenge the challenge string received from a 401/403 from this
server this session. Registries that issue challenges must track which
challenges have been issued/used and never accept a given challenge
more than once within the same validity period (avoiding the need to
track every challenge ever issued).

The "footer" (which is part of the signature) will be a JSON string in
UTF-8 and include:

url the RFC 3986 compliant URL where cargo got the config.json
file,

If this is a registry with an HTTP index, then this is the base URL
that all index queries are relative to.
If this is a registry with a GIT index, it is the URL Cargo used to
clone the index.

kid the identifier of the private key used to sign the request, using the
PASERK IDs standard.

PASETO includes the message that was signed, so the server does not
have to reconstruct the exact string from the request in order to check the

https://github.com/paseto-standard/paserk/blob/master/operations/ID.md

signature. The server does need to check that the signature is valid for the
string in the PASETO and that the contents of that string matches the
request. If a claim should be expected for the request but is missing in the
PASETO then the request must be rejected.

cargo config

Original Issue: #2362
Tracking Issue: #9301

The cargo config subcommand provides a way to display the
configuration files that cargo loads. It currently includes the get

subcommand which can take an optional config value to display.
cargo +nightly -Zunstable-options config get build.rustflags

If no config value is included, it will display all config values. See the -
-help output for more options available.

https://github.com/rust-lang/cargo/issues/2362
https://github.com/rust-lang/cargo/issues/9301

rustc --print

Tracking Issue: #9357
cargo rustc --print=VAL forwards the --print flag to rustc in

order to extract information from rustc . This runs rustc with the
corresponding --print flag, and then immediately exits without
compiling. Exposing this as a cargo flag allows cargo to inject the correct
target and RUSTFLAGS based on the current configuration.

The primary use case is to run cargo rustc --print=cfg to get config
values for the appropriate target and influenced by any other RUSTFLAGS.

https://github.com/rust-lang/cargo/issues/9357
https://doc.rust-lang.org/rustc/command-line-arguments.html#--print-print-compiler-information

Different binary name

Tracking Issue: #9778
PR: #9627

The different-binary-name feature allows setting the filename of the
binary without having to obey the restrictions placed on crate names. For
example, the crate name must use only alphanumeric characters or - or
_ , and cannot be empty.

The filename parameter should not include the binary extension,
cargo will figure out the appropriate extension and use that for the binary
on its own.

The filename parameter is only available in the [[bin]] section of the
manifest.
cargo-features = ["different-binary-name"]

[package]
name = "foo"
version = "0.0.1"

[[bin]]
name = "foo"
filename = "007bar"
path = "src/main.rs"

https://github.com/rust-lang/cargo/issues/9778
https://github.com/rust-lang/cargo/pull/9627

scrape-examples

RFC: #3123
Tracking Issue: #9910

The -Z rustdoc-scrape-examples flag tells Rustdoc to search crates
in the current workspace for calls to functions. Those call-sites are then
included as documentation. You can use the flag like this:
cargo doc -Z unstable-options -Z rustdoc-scrape-examples

By default, Cargo will scrape examples from the example targets of
packages being documented. You can individually enable or disable targets
from being scraped with the doc-scrape-examples flag, such as:
Enable scraping examples from a library
[lib]
doc-scrape-examples = true

Disable scraping examples from an example target
[[example]]
name = "my-example"
doc-scrape-examples = false

Note on tests: enabling doc-scrape-examples on test targets will not
currently have any effect. Scraping examples from tests is a work-in-
progress.

Note on dev-dependencies: documenting a library does not normally
require the crate's dev-dependencies. However, example targets require dev-
deps. For backwards compatibility, -Z rustdoc-scrape-examples will not
introduce a dev-deps requirement for cargo doc . Therefore examples will
not be scraped from example targets under the following conditions:

1. No target being documented requires dev-deps, AND
2. At least one crate with targets being documented has dev-deps, AND
3. The doc-scrape-examples parameter is unset or false for all

[[example]] targets.

https://github.com/rust-lang/rfcs/pull/3123
https://github.com/rust-lang/cargo/issues/9910

If you want examples to be scraped from example targets, then you must
not satisfy one of the above conditions. For example, you can set doc-
scrape-examples to true for one example target, and that signals to Cargo
that you are ok with dev-deps being build for cargo doc .

output-format for rustdoc

Tracking Issue: #13283
This flag determines the output format of cargo rustdoc , accepting

html or json , providing tools with a way to lean on rustdoc's experimental
JSON format.

You can use the flag like this:
cargo rustdoc -Z unstable-options --output-format json

https://github.com/rust-lang/cargo/issues/13283
https://doc.rust-lang.org/nightly/nightly-rustc/rustdoc_json_types/

codegen-backend
The codegen-backend feature makes it possible to select the codegen

backend used by rustc using a profile.
Example:

[package]
name = "foo"

[dependencies]
serde = "1.0.117"

[profile.dev.package.foo]
codegen-backend = "cranelift"

To set this in a profile in Cargo configuration, you need to use either -Z
codegen-backend or [unstable] table to enable it. For example,
.cargo/config.toml
[unstable]
codegen-backend = true

[profile.dev.package.foo]
codegen-backend = "cranelift"

gitoxide

Tracking Issue: #11813
With the 'gitoxide' unstable feature, all or the specified git operations

will be performed by the gitoxide crate instead of git2 .
While -Zgitoxide enables all currently implemented features, one can

individually select git operations to run with gitoxide with the -

Zgitoxide=operation[,operationN] syntax.
Valid operations are the following:

fetch - All fetches are done with gitoxide , which includes git
dependencies as well as the crates index.
checkout (planned) - checkout the worktree, with support for filters
and submodules.

https://github.com/rust-lang/cargo/issues/11813

git

Tracking Issue: #13285
With the 'git' unstable feature, both gitoxide and git2 will perform

shallow fetches of the crate index and git dependencies.
While -Zgit enables all currently implemented features, one can

individually select when to perform shallow fetches with the -

Zgit=operation[,operationN] syntax.
Valid operations are the following:

shallow-index - perform a shallow clone of the index.
shallow-deps - perform a shallow clone of git dependencies.

Details on shallow clones

To enable shallow clones, add -Zgit=shallow-deps for fetching git
dependencies or -Zgit=shallow-index for fetching registry index.
Shallow-cloned and shallow-checked-out git repositories reside at their
own -shallow suffixed directories, i.e,

~/.cargo/registry/index/*-shallow

~/.cargo/git/db/*-shallow

~/.cargo/git/checkouts/*-shallow

When the unstable feature is on, fetching/cloning a git repository is
always a shallow fetch. This roughly equals to git fetch --depth 1
everywhere.
Even with the presence of Cargo.lock or specifying a commit { rev
= "…" } , gitoxide and libgit2 are still smart enough to shallow fetch
without unshallowing the existing repository.

https://github.com/rust-lang/cargo/issues/13285

script

Tracking Issue: #12207
Cargo can directly run .rs files as:

$ cargo +nightly -Zscript file.rs

where file.rs can be as simple as:
fn main() {}

A user may optionally specify a manifest in a cargo code fence in a
module-level comment, like:
#!/usr/bin/env -S cargo +nightly -Zscript
---cargo
[dependencies]
clap = { version = "4.2", features = ["derive"] }

use clap::Parser;

#[derive(Parser, Debug)]
#[clap(version)]
struct Args {
 #[clap(short, long, help = "Path to config")]
 config: Option<std::path::PathBuf>,
}

fn main() {
 let args = Args::parse();
 println!("{:?}", args);
}

Single-file packages
In addition to today's multi-file packages (Cargo.toml file with other

.rs files), we are adding the concept of single-file packages which may

https://github.com/rust-lang/cargo/issues/12207

contain an embedded manifest. There is no required distinguishment for a
single-file .rs package from any other .rs file.

Single-file packages may be selected via --manifest-path , like cargo
test --manifest-path foo.rs . Unlike Cargo.toml , these files cannot be
auto-discovered.

A single-file package may contain an embedded manifest. An embedded
manifest is stored using TOML in rust "frontmatter", a markdown code-fence
with cargo at the start of the infostring at the top of the file.

Inferred / defaulted manifest fields:

package.name = <slugified file stem>

package.edition = <current> to avoid always having to add an
embedded manifest at the cost of potentially breaking scripts on rust
upgrades

Warn when edition is unspecified to raise awareness of this
Disallowed manifest fields:

[workspace] , [lib] , [[bin]] , [[example]] , [[test]] ,
[[bench]]

package.workspace , package.build , package.links ,
package.autolib , package.autobins , package.autoexamples ,
package.autotests , package.autobenches

The default CARGO_TARGET_DIR for single-file packages is at
$CARGO_HOME/target/<hash> :

Avoid conflicts from multiple single-file packages being in the same
directory
Avoid problems with the single-file package's parent directory being
read-only
Avoid cluttering the user's directory

The lockfile for single-file packages will be placed in
CARGO_TARGET_DIR . In the future, when workspaces are supported, that will

allow a user to have a persistent lockfile.

Manifest-commands
You may pass a manifest directly to the cargo command, without a

subcommand, like foo/Cargo.toml or a single-file package like foo.rs .
This is mostly intended for being put in #! lines.

The precedence for how to interpret cargo <subcommand> is

1. Built-in xor single-file packages
2. Aliases
3. External subcommands
A parameter is identified as a manifest-command if it has one of:

Path separators
A .rs extension
The file name is Cargo.toml

Differences between cargo run --manifest-path <path> and cargo
<path>

cargo <path> runs with the config for <path> and not the current
dir, more like cargo install --path <path>
cargo <path> is at a verbosity level below the normal default. Pass -
v to get normal output.

Documentation Updates

Profile trim-paths option

Tracking Issue: rust-lang/cargo#12137
Tracking Rustc Issue: rust-lang/rust#111540

This adds a new profile setting to control how paths are sanitized in the
resulting binary. This can be enabled like so:
cargo-features = ["trim-paths"]

[package]
...

[profile.release]
trim-paths = ["diagnostics", "object"]

To set this in a profile in Cargo configuration, you need to use either -Z
trim-paths or [unstable] table to enable it. For example,
.cargo/config.toml
[unstable]
trim-paths = true

[profile.release]
trim-paths = ["diagnostics", "object"]

Documentation updates
trim-paths

as a new "Profiles settings" entry
trim-paths is a profile setting which enables and controls the

sanitization of file paths in build outputs. It takes the following values:

"none" and false --- disable path sanitization
"macro" --- sanitize paths in the expansion of std::file!() macro.
This is where paths in embedded panic messages come from
"diagnostics" --- sanitize paths in printed compiler diagnostics

https://github.com/rust-lang/cargo/issues/12137
https://github.com/rust-lang/rust/issues/111540

"object" --- sanitize paths in compiled executables or libraries
"all" and true --- sanitize paths in all possible locations

It also takes an array with the combinations of "macro" ,
"diagnostics" , and "object" .

It is defaulted to none for the dev profile, and object for the release
profile. You can manually override it by specifying this option in
Cargo.toml :
[profile.dev]
trim-paths = "all"

[profile.release]
trim-paths = ["object", "diagnostics"]

The default release profile setting (object) sanitizes only the paths in
emitted executable or library files. It always affects paths from macros such
as panic messages, and in debug information only if they will be embedded
together with the binary (the default on platforms with ELF binaries, such
as Linux and windows-gnu), but will not touch them if they are in separate
files (the default on Windows MSVC and macOS). But the paths to these
separate files are sanitized.

If trim-paths is not none or false , then the following paths are
sanitized if they appear in a selected scope:

1. Path to the source files of the standard and core library (sysroot) will
begin with /rustc/[rustc commit hash], e.g.
/home/username/.rustup/toolchains/nightly-x86_64-unknown-

linux-gnu/lib/rustlib/src/rust/library/core/src/result.rs ->
/rustc/fe72845f7bb6a77b9e671e6a4f32fe714962cec4/library/cor

e/src/result.rs

2. Path to the current package will be stripped, relatively to the current
workspace root, e.g. /home/username/crate/src/lib.rs ->
src/lib.rs.

3. Path to dependency packages will be replaced with [package name]-
[version]. E.g. /home/username/deps/foo/src/lib.rs -> foo-
0.1.0/src/lib.rs

When a path to the source files of the standard and core library is not in
scope for sanitization, the emitted path will depend on if rust-src

component is present. If it is, then some paths will point to the copy of the
source files on your file system; if it isn't, then they will show up as
/rustc/[rustc commit hash]/library/... (just like when it is selected
for sanitization). Paths to all other source files will not be affected.

This will not affect any hard-coded paths in the source code, such as in
strings.

Environment variable
as a new entry of "Environment variables Cargo sets for build scripts"

CARGO_TRIM_PATHS --- The value of trim-paths profile option.
false , "none" , and empty arrays would be converted to none . true
and "all" become all . Values in a non-empty array would be joined
into a comma-separated list. If the build script introduces absolute
paths to built artifacts (such as by invoking a compiler), the user may
request them to be sanitized in different types of artifacts. Common
paths requiring sanitization include OUT_DIR , CARGO_MANIFEST_DIR
and CARGO_MANIFEST_PATH , plus any other introduced by the build
script, such as include directories.

clbr://internal.invalid/book/OEBPS/reference/environment-variables.md#environment-variables-cargo-sets-for-crates

gc

Tracking Issue: #12633
The -Zgc flag is used to enable certain features related to garbage-

collection of cargo's global cache within the cargo home directory.

Automatic gc configuration
The -Zgc flag will enable Cargo to read extra configuration options

related to garbage collection. The settings available are:
Example config.toml file.

Sub-table for defining specific settings for cleaning the
global cache.
[cache.global-clean]
Anything older than this duration will be deleted in the
source cache.
max-src-age = "1 month"
Anything older than this duration will be deleted in the
compressed crate cache.
max-crate-age = "3 months"
Any index older than this duration will be deleted from the
index cache.
max-index-age = "3 months"
Any git checkout older than this duration will be deleted
from the checkout cache.
max-git-co-age = "1 month"
Any git clone older than this duration will be deleted from
the git cache.
max-git-db-age = "3 months"

Note that the cache.auto-clean-frequency option was stabilized in
Rust 1.88.

Manual garbage collection with cargo clean

https://github.com/rust-lang/cargo/issues/12633
clbr://internal.invalid/book/OEBPS/reference/config.md#cacheauto-clean-frequency

Manual deletion can be done with the cargo clean gc -Zgc command.
Deletion of cache contents can be performed by passing one of the cache
options:

--max-src-age=DURATION --- Deletes source cache files that have not
been used since the given age.
--max-crate-age=DURATION --- Deletes crate cache files that have not
been used since the given age.
--max-index-age=DURATION --- Deletes registry indexes that have not
been used since then given age (including their .crate and src files).
--max-git-co-age=DURATION --- Deletes git dependency checkouts
that have not been used since then given age.
--max-git-db-age=DURATION --- Deletes git dependency clones that
have not been used since then given age.
--max-download-age=DURATION --- Deletes any downloaded cache
data that has not been used since then given age.
--max-src-size=SIZE --- Deletes the oldest source cache files until
the cache is under the given size.
--max-crate-size=SIZE --- Deletes the oldest crate cache files until
the cache is under the given size.
--max-git-size=SIZE --- Deletes the oldest git dependency caches
until the cache is under the given size.
--max-download-size=SIZE --- Deletes the oldest downloaded cache
data until the cache is under the given size.

A DURATION is specified in the form "N
seconds/minutes/days/weeks/months" where N is an integer.

A SIZE is specified in the form "N suffix" where suffix is B, kB, MB,
GB, kiB, MiB, or GiB, and N is an integer or floating point number. If no
suffix is specified, the number is the number of bytes.
cargo clean gc -Zgc
cargo clean gc -Zgc --max-download-age=1week
cargo clean gc -Zgc --max-git-size=0 --max-download-size=100MB

open-namespaces

Tracking Issue: #13576
Allow multiple packages to participate in the same API namespace
This can be enabled like so:

cargo-features = ["open-namespaces"]

[package]
...

https://github.com/rust-lang/cargo/issues/13576

[lints.cargo]

Tracking Issue: #12235
A new lints tool table for cargo that can be used to configure lints

emitted by cargo itself when -Zcargo-lints is used
[lints.cargo]
implicit-features = "warn"

This will work with RFC 2906 workspace-deduplicate :
[workspace.lints.cargo]
implicit-features = "warn"

[lints]
workspace = true

https://github.com/rust-lang/cargo/issues/12235
https://rust-lang.github.io/rfcs/2906-cargo-workspace-deduplicate.html

Path Bases

Tracking Issue: #14355
A path dependency may optionally specify a base by setting the base

key to the name of a path base from the [path-bases] table in either the
configuration or one of the built-in path bases. The value of that path base is
prepended to the path value (along with a path separator if necessary) to
produce the actual location where Cargo will look for the dependency.

For example, if the Cargo.toml contains:
cargo-features = ["path-bases"]

[dependencies]
foo = { base = "dev", path = "foo" }

Given a [path-bases] table in the configuration that contains:
[path-bases]
dev = "/home/user/dev/rust/libraries/"

This will produce a path dependency foo located at
/home/user/dev/rust/libraries/foo .

Path bases can be either absolute or relative. Relative path bases are
relative to the parent directory of the configuration file that declared that
path base.

The name of a path base must use only alphanumeric characters or - or
_ , must start with an alphabetic character, and must not be empty.

If the name of path base used in a dependency is neither in the
configuration nor one of the built-in path base, then Cargo will raise an
error.

Built-in path bases
Cargo provides implicit path bases that can be used without the need to

specify them in a [path-bases] table.

https://github.com/rust-lang/cargo/issues/14355
clbr://internal.invalid/book/OEBPS/reference/config.md
https://doc.rust-lang.org/std/primitive.char.html#method.is_alphanumeric
https://doc.rust-lang.org/std/primitive.char.html#method.is_alphabetic

workspace - If a project is a workspace or workspace member then
this path base is defined as the parent directory of the root
Cargo.toml of the workspace.

If a built-in path base name is also declared in the configuration, then
Cargo will prefer the value in the configuration. The allows Cargo to add
new built-in path bases without compatibility issues (as existing uses will
shadow the built-in name).

clbr://internal.invalid/book/OEBPS/reference/workspaces.md

lockfile-path

Original Issue: #5707
Tracking Issue: #14421

This feature allows you to specify the path of lockfile Cargo.lock. By
default, lockfile is written into <workspace_root>/Cargo.lock . However,
when sources are stored in read-only directory, most of the cargo commands
would fail, trying to write a lockfile. The --lockfile-path flag makes it
easier to work with readonly sources. Note, that currently path must end
with Cargo.lock . Meaning, if you want to use this feature in multiple
projects, lockfiles should be stored in different directories. Example:
cargo +nightly metadata --lockfile-path=$LOCKFILES_ROOT/my-
project/Cargo.lock -Z unstable-options

https://github.com/rust-lang/cargo/issues/5707
https://github.com/rust-lang/cargo/issues/14421

package-workspace

Tracking Issue: #10948
This allows cargo to package (or publish) multiple crates in a workspace,

even if they have inter-dependencies. For example, consider a workspace
containing packages foo and dep , where foo depends on dep . Then
cargo +nightly -Zpackage-workspace package -p foo -p dep

will package both foo and dep , while
cargo +nightly -Zpackage-workspace publish -p foo -p dep

will publish both foo and dep . If foo and dep are the only crates in
the workspace, you can use the --workspace flag instead of specifying the
crates individually:
cargo +nightly -Zpackage-workspace package --workspace
cargo +nightly -Zpackage-workspace publish --workspace

Lock-file behavior
When packaging a binary at the same time as one of its dependencies,

the binary will be packaged with a lock-file pointing at the dependency's
registry entry as though the dependency were already published, even
though it has not yet been. In this case, cargo needs to know the registry
that the dependency will eventually be published on. cargo will attempt to
infer this registry by examining the the publish field, falling back to
crates.io if no publish field is set. To explicitly set the registry, pass a -
-registry or --index flag.
cargo +nightly -Zpackage-workspace --registry=my-registry
package -p foo -p dep
cargo +nightly -Zpackage-workspace --index=https://example.com
package -p foo -p dep

https://github.com/rust-lang/cargo/issues/10948
clbr://internal.invalid/book/OEBPS/reference/manifest.md#the-publish-field

native-completions

Original Issue: #6645
Tracking Issue: #14520

This feature moves the handwritten completion scripts to Rust native,
making it easier for us to add, extend and test new completions. This feature
is enabled with the nightly channel, without requiring additional -Z

options.
Areas of particular interest for feedback

Arguments that need escaping or quoting that aren't handled correctly
Inaccuracies in the information
Bugs in parsing of the command-line
Arguments that don't report their completions
If a known issue is being problematic

Feedback can be broken down into

What completion candidates are reported

Known issues: #14520, A-completions
Report an issue or discuss the behavior

Shell integration, command-line parsing, and completion filtering

Known issues: clap#3166, clap's A-completions
Report an issue or discuss the behavior

When in doubt, you can discuss this in #14520 or on zulip

How to use native-completions feature:

bash: Add source <(CARGO_COMPLETE=bash cargo +nightly) to
~/.local/share/bash-completion/completions/cargo .

zsh: Add source <(CARGO_COMPLETE=zsh cargo +nightly) to
your .zshrc .

https://github.com/rust-lang/cargo/issues/6645
https://github.com/rust-lang/cargo/issues/14520
https://github.com/rust-lang/cargo/issues/14520
https://github.com/rust-lang/cargo/labels/A-completions
https://github.com/rust-lang/cargo/issues/new
https://github.com/rust-lang/cargo/issues/14520
https://github.com/clap-rs/clap/issues/3166
https://github.com/clap-rs/clap/labels/A-completion
https://github.com/clap-rs/clap/issues/new/choose
https://github.com/clap-rs/clap/discussions/new/choose
https://github.com/rust-lang/cargo/issues/14520
https://rust-lang.zulipchat.com/#narrow/stream/246057-t-cargo

fish: Add source (CARGO_COMPLETE=fish cargo +nightly |
psub) to $XDG_CONFIG_HOME/fish/completions/cargo.fish

elvish: Add eval (E:CARGO_COMPLETE=elvish cargo +nightly |
slurp) to $XDG_CONFIG_HOME/elvish/rc.elv

powershell: Add CARGO_COMPLETE=powershell cargo +nightly |
Invoke-Expression to $PROFILE .

warnings

Original Issue: #8424
Tracking Issue: #14802

The -Z warnings feature enables the build.warnings configuration
option to control how Cargo handles warnings. If the -Z warnings

unstable flag is not enabled, then the build.warnings config will be
ignored.

This setting currently only applies to rustc warnings. It may apply to
additional warnings (such as Cargo lints or Cargo warnings) in the future.

build.warnings

Type: string
Default: warn
Environment: CARGO_BUILD_WARNINGS

Controls how Cargo handles warnings. Allowed values are:

warn : warnings are emitted as warnings (default).
allow : warnings are hidden.
deny : if warnings are emitted, an error will be raised at the end of the
operation and the process will exit with a failure exit code.

https://github.com/rust-lang/cargo/issues/8424
https://github.com/rust-lang/cargo/issues/14802

feature unification

RFC: #3692
Tracking Issue: #14774

The -Z feature-unification enables the resolver.feature-

unification configuration option to control how features are unified
across a workspace. If the -Z feature-unification unstable flag is not
enabled, then the resolver.feature-unification configuration will be
ignored.

resolver.feature-unification

Type: string
Default: "selected"
Environment: CARGO_RESOLVER_FEATURE_UNIFICATION

Specify which packages participate in feature unification.

selected : Merge dependency features from all packages specified for
the current build.
workspace : Merge dependency features across all workspace
members, regardless of which packages are specified for the current
build.
package : Dependency features are considered on a package-by-
package basis, preferring duplicate builds of dependencies when
different sets of features are activated by the packages.

https://github.com/rust-lang/rfcs/blob/master/text/3692-feature-unification.md
https://github.com/rust-lang/cargo/issues/14774

Package message format

Original Issue: #11666
Tracking Issue: #15353

The --message-format flag in cargo package controls the output
message format. Currently, it only works with the --list flag and affects
the file listing format, Requires -Zunstable-options . See cargo package
--message-format for more information.

https://github.com/rust-lang/cargo/issues/11666
https://github.com/rust-lang/cargo/issues/15353
clbr://internal.invalid/book/OEBPS/commands/cargo-package.md#option-cargo-package---message-format

rustdoc depinfo

Original Issue: #12266
Tracking Issue: #15370

The -Z rustdoc-depinfo flag leverages rustdoc's dep-info files to
determine whether documentations are required to re-generate. This can be
combined with -Z checksum-freshness to detect checksum changes
rather than file mtime.

https://github.com/rust-lang/cargo/issues/12266
https://github.com/rust-lang/cargo/issues/15370

no-embed-metadata

Original Pull Request: #15378
Tracking Issue: #15495

The default behavior of Rust is to embed crate metadata into rlib and
dylib artifacts. Since Cargo also passes --emit=metadata to these
intermediate artifacts to enable pipelined compilation, this means that a lot
of metadata ends up being duplicated on disk, which wastes disk space in
the target directory.

This feature tells Cargo to pass the -Zembed-metadata=no flag to the
compiler, which instructs it not to embed metadata within rlib and dylib
artifacts. In this case, the metadata will only be stored in .rmeta files.
cargo +nightly -Zno-embed-metadata build

https://github.com/rust-lang/cargo/pull/15378
https://github.com/rust-lang/cargo/issues/15495

unstable-editions
The unstable-editions value in the cargo-features list allows a

Cargo.toml manifest to specify an edition that is not yet stable.
cargo-features = ["unstable-editions"]

[package]
name = "my-package"
edition = "future"

When new editions are introduced, the unstable-editions feature is
required until the edition is stabilized.

The special "future" edition is a home for new features that are under
development, and is permanently unstable. The "future" edition also has no
new behavior by itself. Each change in the future edition requires an opt-in
such as a #![feature(...)] attribute.

fix-edition
-Zfix-edition is a permanently unstable flag to assist with testing

edition migrations, particularly with the use of crater. It only works with the
cargo fix subcommand. It takes two different forms:

-Zfix-edition=start=$INITIAL --- This form checks if the current
edition is equal to the given number. If not, it exits with success
(because we want to ignore older editions). If it is, then it runs the
equivalent of cargo check . This is intended to be used with crater's
"start" toolchain to set a baseline for the "before" toolchain.
-Zfix-edition=end=$INITIAL,$NEXT --- This form checks if the
current edition is equal to the given $INITIAL value. If not, it exits
with success. If it is, then it performs an edition migration to the
edition specified in $NEXT . Afterwards, it will modify Cargo.toml to
add the appropriate cargo-features = ["unstable-edition"] ,
update the edition field, and run the equivalent of cargo check to
verify that the migration works on the new edition.

For example:
cargo +nightly fix -Zfix-edition=end=2024,future

Stabilized and removed features

Compile progress
The compile-progress feature has been stabilized in the 1.30 release.

Progress bars are now enabled by default. See term.progress for more
information about controlling this feature.

clbr://internal.invalid/book/OEBPS/reference/config.md#termprogresswhen

Edition
Specifying the edition in Cargo.toml has been stabilized in the 1.31

release. See the edition field for more information about specifying this
field.

clbr://internal.invalid/book/OEBPS/reference/manifest.md#the-edition-field

rename-dependency
Specifying renamed dependencies in Cargo.toml has been stabilized in

the 1.31 release. See renaming dependencies for more information about
renaming dependencies.

clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md#renaming-dependencies-in-cargotoml

Alternate Registries
Support for alternate registries has been stabilized in the 1.34 release.

See the Registries chapter for more information about alternate registries.

clbr://internal.invalid/book/OEBPS/reference/registries.md

Offline Mode
The offline feature has been stabilized in the 1.36 release. See the --

offline flag for more information on using the offline mode.

clbr://internal.invalid/book/OEBPS/commands/cargo.md#option-cargo---offline

publish-lockfile
The publish-lockfile feature has been removed in the 1.37 release.

The Cargo.lock file is always included when a package is published if the
package contains a binary target. cargo install requires the --locked
flag to use the Cargo.lock file. See cargo package and cargo install
for more information.

clbr://internal.invalid/book/OEBPS/commands/cargo-package.md
clbr://internal.invalid/book/OEBPS/commands/cargo-install.md

default-run
The default-run feature has been stabilized in the 1.37 release. See the

default-run field for more information about specifying the default target
to run.

clbr://internal.invalid/book/OEBPS/reference/manifest.md#the-default-run-field

cache-messages
Compiler message caching has been stabilized in the 1.40 release.

Compiler warnings are now cached by default and will be replayed
automatically when re-running Cargo.

install-upgrade
The install-upgrade feature has been stabilized in the 1.41 release.

cargo install will now automatically upgrade packages if they appear to
be out-of-date. See the cargo install documentation for more
information.

clbr://internal.invalid/book/OEBPS/commands/cargo-install.md
clbr://internal.invalid/book/OEBPS/commands/cargo-install.md

Profile Overrides
Profile overrides have been stabilized in the 1.41 release. See Profile

Overrides for more information on using overrides.

clbr://internal.invalid/book/OEBPS/reference/profiles.md#overrides

Config Profiles
Specifying profiles in Cargo config files and environment variables has

been stabilized in the 1.43 release. See the config [profile] table for more
information about specifying profiles in config files.

clbr://internal.invalid/book/OEBPS/reference/config.md#profile
clbr://internal.invalid/book/OEBPS/reference/profiles.md

crate-versions
The -Z crate-versions flag has been stabilized in the 1.47 release.

The crate version is now automatically included in the cargo doc

documentation sidebar.

clbr://internal.invalid/book/OEBPS/commands/cargo-doc.md

Features
The -Z features flag has been stabilized in the 1.51 release. See

feature resolver version 2 for more information on using the new feature
resolver.

clbr://internal.invalid/book/OEBPS/reference/features.md#feature-resolver-version-2

package-features
The -Z package-features flag has been stabilized in the 1.51 release.

See the resolver version 2 command-line flags for more information on
using the features CLI options.

clbr://internal.invalid/book/OEBPS/reference/features.md#resolver-version-2-command-line-flags

Resolver
The resolver feature in Cargo.toml has been stabilized in the 1.51

release. See the resolver versions for more information about specifying
resolvers.

clbr://internal.invalid/book/OEBPS/reference/resolver.md#resolver-versions

extra-link-arg
The extra-link-arg feature to specify additional linker arguments in

build scripts has been stabilized in the 1.56 release. See the build script
documentation for more information on specifying extra linker arguments.

clbr://internal.invalid/book/OEBPS/reference/build-scripts.md#outputs-of-the-build-script

configurable-env
The configurable-env feature to specify environment variables in

Cargo configuration has been stabilized in the 1.56 release. See the config
documentation for more information about configuring environment
variables.

rust-version
The rust-version field in Cargo.toml has been stabilized in the 1.56

release. See the rust-version field for more information on using the rust-
version field and the --ignore-rust-version option.

patch-in-config
The -Z patch-in-config flag, and the corresponding support for

[patch] section in Cargo configuration files has been stabilized in the 1.56
release. See the patch field for more information.

edition 2021
The 2021 edition has been stabilized in the 1.56 release. See the

edition field for more information on setting the edition. See cargo fix
--edition and The Edition Guide for more information on migrating
existing projects.

clbr://internal.invalid/book/OEBPS/reference/manifest.md#the-edition-field
clbr://internal.invalid/book/OEBPS/commands/cargo-fix.md
clbr://internal.invalid/book/edition-guide/index.html

Custom named profiles
Custom named profiles have been stabilized in the 1.57 release. See the

profiles chapter for more information.

clbr://internal.invalid/book/OEBPS/reference/profiles.md#custom-profiles

Profile strip option
The profile strip option has been stabilized in the 1.59 release. See the

profiles chapter for more information.

clbr://internal.invalid/book/OEBPS/reference/profiles.md#strip

Future incompat report
Support for generating a future-incompat report has been stabilized in

the 1.59 release. See the future incompat report chapter for more
information.

clbr://internal.invalid/book/OEBPS/reference/future-incompat-report.md

Namespaced features
Namespaced features has been stabilized in the 1.60 release. See the

Features chapter for more information.

clbr://internal.invalid/book/OEBPS/reference/features.md#optional-dependencies

Weak dependency features
Weak dependency features has been stabilized in the 1.60 release. See

the Features chapter for more information.

clbr://internal.invalid/book/OEBPS/reference/features.md#dependency-features

timings
The -Ztimings option has been stabilized as --timings in the 1.60

release. (--timings=html and the machine-readable --timings=json

output remain unstable and require -Zunstable-options .)

config-cli
The --config CLI option has been stabilized in the 1.63 release. See

the config documentation for more information.

multitarget
The -Z multitarget option has been stabilized in the 1.64 release. See

build.target for more information about setting the default target
platform triples.

clbr://internal.invalid/book/OEBPS/reference/config.md#buildtarget
clbr://internal.invalid/book/OEBPS/appendix/glossary.md#target

crate-type
The --crate-type flag for cargo rustc has been stabilized in the 1.64

release. See the cargo rustc documentation for more information.

clbr://internal.invalid/book/OEBPS/commands/cargo-rustc.md

Workspace Inheritance
Workspace Inheritance has been stabilized in the 1.64 release. See

workspace.package, workspace.dependencies, and inheriting-a-dependency-
from-a-workspace for more information.

clbr://internal.invalid/book/OEBPS/reference/workspaces.md#the-package-table
clbr://internal.invalid/book/OEBPS/reference/workspaces.md#the-dependencies-table
clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md#inheriting-a-dependency-from-a-workspace

terminal-width
The -Z terminal-width option has been stabilized in the 1.68 release.

The terminal width is always passed to the compiler when running from a
terminal where Cargo can automatically detect the width.

sparse-registry
Sparse registry support has been stabilized in the 1.68 release. See

Registry Protocols for more information.

cargo logout
The cargo logout command has been stabilized in the 1.70 release.

clbr://internal.invalid/book/OEBPS/reference/registries.md#registry-protocols
clbr://internal.invalid/book/OEBPS/commands/cargo-logout.md

doctest-in-workspace
The -Z doctest-in-workspace option for cargo test has been

stabilized and enabled by default in the 1.72 release. See the cargo test
documentation for more information about the working directory for
compiling and running tests.

clbr://internal.invalid/book/OEBPS/commands/cargo-test.md#working-directory-of-tests

keep-going
The --keep-going option has been stabilized in the 1.74 release. See

the --keep-going flag in cargo build as an example for more details.

[lints]
[lints] (enabled via -Zlints) has been stabilized in the 1.74 release.

credential-process
The -Z credential-process feature has been stabilized in the 1.74

release.
See Registry Authentication documentation for details.

clbr://internal.invalid/book/OEBPS/reference/registry-authentication.md

registry-auth
The -Z registry-auth feature has been stabilized in the 1.74 release

with the additional requirement that a credential-provider is configured.
See Registry Authentication documentation for details.

clbr://internal.invalid/book/OEBPS/reference/registry-authentication.md

check-cfg
The -Z check-cfg feature has been stabilized in the 1.80 release by

making it the default behavior.
See the build script documentation for information about specifying

custom cfgs.

clbr://internal.invalid/book/OEBPS/reference/build-scripts.md#rustc-check-cfg

Edition 2024
The 2024 edition has been stabilized in the 1.85 release. See the

edition field for more information on setting the edition. See cargo fix
--edition and The Edition Guide for more information on migrating
existing projects.

clbr://internal.invalid/book/OEBPS/reference/manifest.md#the-edition-field
clbr://internal.invalid/book/OEBPS/commands/cargo-fix.md
clbr://internal.invalid/book/edition-guide/index.html

Automatic garbage collection
Support for automatically deleting old files was stabilized in Rust 1.88.

More information can be found in the config chapter.

clbr://internal.invalid/book/OEBPS/reference/config.md#cache

doctest-xcompile
Doctest cross-compiling is now unconditionally enabled starting in Rust

1.89. Running doctests with cargo test will now honor the --target
flag.

compile-time-deps
This permanently-unstable flag to only build proc-macros and build

scripts (and their required dependencies), as well as run the build scripts.
It is intended for use by tools like rust-analyzer and will never be

stabilized.
Example:

cargo +nightly build --compile-time-deps -Z unstable-options
cargo +nightly check --compile-time-deps --all-targets -Z
unstable-options

Cargo Commands
General Commands
Build Commands
Manifest Commands
Package Commands
Publishing Commands
Deprecated and Removed

clbr://internal.invalid/book/OEBPS/commands/general-commands.md
clbr://internal.invalid/book/OEBPS/commands/build-commands.md
clbr://internal.invalid/book/OEBPS/commands/manifest-commands.md
clbr://internal.invalid/book/OEBPS/commands/package-commands.md
clbr://internal.invalid/book/OEBPS/commands/publishing-commands.md
clbr://internal.invalid/book/OEBPS/commands/deprecated-and-removed.md

General Commands
cargo
cargo help
cargo version

clbr://internal.invalid/book/OEBPS/commands/cargo.md
clbr://internal.invalid/book/OEBPS/commands/cargo-help.md
clbr://internal.invalid/book/OEBPS/commands/cargo-version.md

cargo(1)

NAME
cargo --- The Rust package manager

SYNOPSIS
cargo [options] command [args]

cargo [options] --version
cargo [options] --list
cargo [options] --help
cargo [options] --explain code

DESCRIPTION
This program is a package manager and build tool for the Rust language,

available at https://rust-lang.org.

https://rust-lang.org/

COMMANDS
Build Commands

cargo-bench(1)
 Execute benchmarks of a package.

cargo-build(1)
 Compile a package.

cargo-check(1)
 Check a local package and all of its dependencies for errors.

cargo-clean(1)
 Remove artifacts that Cargo has generated in the past.

cargo-doc(1)
 Build a package's documentation.

cargo-fetch(1)
 Fetch dependencies of a package from the network.

cargo-fix(1)
 Automatically fix lint warnings reported by rustc.

cargo-run(1)
 Run a binary or example of the local package.

cargo-rustc(1)
 Compile a package, and pass extra options to the compiler.

cargo-rustdoc(1)
 Build a package's documentation, using specified custom flags.

cargo-test(1)
 Execute unit and integration tests of a package.

Manifest Commands
cargo-add(1)

 Add dependencies to a Cargo.toml manifest file.
cargo-generate-lockfile(1)

 Generate Cargo.lock for a project.

cargo-info(1)
 Display information about a package in the registry. Default registry is
crates.io.

cargo-locate-project(1)
 Print a JSON representation of a Cargo.toml file's location.

cargo-metadata(1)
 Output the resolved dependencies of a package in machine-readable
format.

cargo-pkgid(1)
 Print a fully qualified package specification.

cargo-remove(1)
 Remove dependencies from a Cargo.toml manifest file.

cargo-tree(1)
 Display a tree visualization of a dependency graph.

cargo-update(1)
 Update dependencies as recorded in the local lock file.

cargo-vendor(1)
 Vendor all dependencies locally.

Package Commands
cargo-init(1)

 Create a new Cargo package in an existing directory.
cargo-install(1)

 Build and install a Rust binary.
cargo-new(1)

 Create a new Cargo package.
cargo-search(1)

 Search packages in crates.io.
cargo-uninstall(1)

 Remove a Rust binary.

Publishing Commands

cargo-login(1)
 Save an API token from the registry locally.

cargo-logout(1)
 Remove an API token from the registry locally.

cargo-owner(1)
 Manage the owners of a crate on the registry.

cargo-package(1)
 Assemble the local package into a distributable tarball.

cargo-publish(1)
 Upload a package to the registry.

cargo-yank(1)
 Remove a pushed crate from the index.

General Commands
cargo-help(1)

 Display help information about Cargo.
cargo-version(1)

 Show version information.

OPTIONS
Special Options
-V

--version

Print version info and exit. If used with --verbose, prints extra
information.
--list

List all installed Cargo subcommands. If used with --verbose, prints extra
information.
--explain code
Run rustc --explain CODE which will print out a detailed explanation of
an error message (for example, E0004).

Display Options
-v

--verbose

Use verbose output. May be specified twice for “very verbose” output
which includes extra output such as dependency warnings and build script
output. May also be specified with the term.verbose config value.
-q

--quiet

Do not print cargo log messages. May also be specified with the
term.quiet config value.
--color when
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on
the terminal.
always : Always display colors.
never : Never display colors.

May also be specified with the term.color config value.

Manifest Options
--locked

Asserts that the exact same dependencies and versions are used as when the
existing Cargo.lock file was originally generated. Cargo will exit with an
error when either of the following scenarios arises:

The lock file is missing.
Cargo attempted to change the lock file due to a different dependency
resolution.

It may be used in environments where deterministic builds are desired,
such as in CI pipelines.
--offline

Prevents Cargo from accessing the network for any reason. Without this
flag, Cargo will stop with an error if it needs to access the network and the
network is not available. With this flag, Cargo will attempt to proceed
without the network if possible.

Beware that this may result in different dependency resolution than
online mode. Cargo will restrict itself to crates that are downloaded locally,
even if there might be a newer version as indicated in the local copy of the
index. See the cargo-fetch(1) command to download dependencies before
going offline.

May also be specified with the net.offline config value.
--frozen

Equivalent to specifying both --locked and --offline.

Common Options
+toolchain
If Cargo has been installed with rustup, and the first argument to cargo
begins with +, it will be interpreted as a rustup toolchain name (such as
+stable or +nightly). See the rustup documentation for more information
about how toolchain overrides work.
--config KEY=VALUE or PATH

https://rust-lang.github.io/rustup/overrides.html

Overrides a Cargo configuration value. The argument should be in TOML
syntax of KEY=VALUE, or provided as a path to an extra configuration file.
This flag may be specified multiple times. See the command-line overrides
section for more information.
-C PATH
Changes the current working directory before executing any specified
operations. This affects things like where cargo looks by default for the
project manifest (Cargo.toml), as well as the directories searched for
discovering .cargo/config.toml, for example. This option must appear
before the command name, for example cargo -C path/to/my-project
build.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #10098).
-h

--help

Prints help information.
-Z flag
Unstable (nightly-only) flags to Cargo. Run cargo -Z help for details.

https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/10098

ENVIRONMENT
See the reference for details on environment variables that Cargo reads.

EXIT STATUS

0 : Cargo succeeded.
101 : Cargo failed to complete.

FILES
~/.cargo/

 Default location for Cargo's "home" directory where it stores various
files. The location can be changed with the CARGO_HOME environment
variable.

$CARGO_HOME/bin/
 Binaries installed by cargo-install(1) will be located here. If using rustup,
executables distributed with Rust are also located here.

$CARGO_HOME/config.toml
 The global configuration file. See the reference for more information
about configuration files.

.cargo/config.toml
 Cargo automatically searches for a file named .cargo/config.toml in
the current directory, and all parent directories. These configuration files
will be merged with the global configuration file.

$CARGO_HOME/credentials.toml
 Private authentication information for logging in to a registry.

$CARGO_HOME/registry/
 This directory contains cached downloads of the registry index and any
downloaded dependencies.

$CARGO_HOME/git/
 This directory contains cached downloads of git dependencies.

Please note that the internal structure of the $CARGO_HOME directory is
not stable yet and may be subject to change.

https://rust-lang.github.io/rustup/

EXAMPLES

1. Build a local package and all of its dependencies:
cargo build

2. Build a package with optimizations:
cargo build --release

3. Run tests for a cross-compiled target:
cargo test --target i686-unknown-linux-gnu

4. Create a new package that builds an executable:
cargo new foobar

5. Create a package in the current directory:
mkdir foo && cd foo
cargo init .

6. Learn about a command's options and usage:
cargo help clean

BUGS
See https://github.com/rust-lang/cargo/issues for issues.

https://github.com/rust-lang/cargo/issues

SEE ALSO
rustc(1), rustdoc(1)

https://doc.rust-lang.org/rustc/index.html
https://doc.rust-lang.org/rustdoc/index.html

cargo-help(1)

NAME
cargo-help --- Get help for a Cargo command

SYNOPSIS
cargo help [subcommand]

DESCRIPTION
Prints a help message for the given command.

EXAMPLES

1. Get help for a command:
cargo help build

2. Help is also available with the --help flag:
cargo build --help

SEE ALSO
cargo(1)

cargo-version(1)

NAME
cargo-version --- Show version information

SYNOPSIS
cargo version [options]

DESCRIPTION
Displays the version of Cargo.

OPTIONS
-v

--verbose

Display additional version information.

EXAMPLES

1. Display the version:
cargo version

2. The version is also available via flags:
cargo --version
cargo -V

3. Display extra version information:
cargo -Vv

SEE ALSO
cargo(1)

Build Commands
cargo bench
cargo build
cargo check
cargo clean
cargo clippy
cargo doc
cargo fetch
cargo fix
cargo fmt
cargo miri
cargo report
cargo run
cargo rustc
cargo rustdoc
cargo test

clbr://internal.invalid/book/OEBPS/commands/cargo-bench.md
clbr://internal.invalid/book/OEBPS/commands/cargo-build.md
clbr://internal.invalid/book/OEBPS/commands/cargo-check.md
clbr://internal.invalid/book/OEBPS/commands/cargo-clean.md
clbr://internal.invalid/book/OEBPS/commands/cargo-clippy.md
clbr://internal.invalid/book/OEBPS/commands/cargo-doc.md
clbr://internal.invalid/book/OEBPS/commands/cargo-fetch.md
clbr://internal.invalid/book/OEBPS/commands/cargo-fix.md
clbr://internal.invalid/book/OEBPS/commands/cargo-fmt.md
clbr://internal.invalid/book/OEBPS/commands/cargo-miri.md
clbr://internal.invalid/book/OEBPS/commands/cargo-report.md
clbr://internal.invalid/book/OEBPS/commands/cargo-run.md
clbr://internal.invalid/book/OEBPS/commands/cargo-rustc.md
clbr://internal.invalid/book/OEBPS/commands/cargo-rustdoc.md
clbr://internal.invalid/book/OEBPS/commands/cargo-test.md

cargo-bench(1)

NAME
cargo-bench --- Execute benchmarks of a package

SYNOPSIS
cargo bench [options] [benchname] [-- bench-options]

DESCRIPTION
Compile and execute benchmarks.
The benchmark filtering argument benchname and all the arguments

following the two dashes (--) are passed to the benchmark binaries and
thus to libtest (rustc's built in unit-test and micro-benchmarking
framework). If you are passing arguments to both Cargo and the binary, the
ones after -- go to the binary, the ones before go to Cargo. For details
about libtest's arguments see the output of cargo bench -- --help and
check out the rustc book's chapter on how tests work at https://doc.rust-
lang.org/rustc/tests/index.html.

As an example, this will run only the benchmark named foo (and skip
other similarly named benchmarks like foobar):
cargo bench -- foo --exact

Benchmarks are built with the --test option to rustc which creates a
special executable by linking your code with libtest. The executable
automatically runs all functions annotated with the #[bench] attribute.
Cargo passes the --bench flag to the test harness to tell it to run only
benchmarks, regardless of whether the harness is libtest or a custom
harness.

The libtest harness may be disabled by setting harness = false in the
target manifest settings, in which case your code will need to provide its
own main function to handle running benchmarks.

Note: The #[bench] attribute is currently unstable and only
available on the nightly channel. There are some packages available on
crates.io that may help with running benchmarks on the stable channel,
such as Criterion.

By default, cargo bench uses the bench profile, which enables
optimizations and disables debugging information. If you need to debug a
benchmark, you can use the --profile=dev command-line option to
switch to the dev profile. You can then run the debug-enabled benchmark
within a debugger.

https://doc.rust-lang.org/rustc/tests/index.html
https://doc.rust-lang.org/nightly/unstable-book/library-features/test.html
https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://crates.io/keywords/benchmark
https://crates.io/crates/criterion

Working directory of benchmarks
The working directory of every benchmark is set to the root directory of

the package the benchmark belongs to. Setting the working directory of
benchmarks to the package's root directory makes it possible for
benchmarks to reliably access the package's files using relative paths,
regardless from where cargo bench was executed from.

OPTIONS
Benchmark Options
--no-run

Compile, but don’t run benchmarks.
--no-fail-fast

Run all benchmarks regardless of failure. Without this flag, Cargo will exit
after the first executable fails. The Rust test harness will run all benchmarks
within the executable to completion, this flag only applies to the executable
as a whole.

Package Selection
By default, when no package selection options are given, the packages

selected depend on the selected manifest file (based on the current working
directory if --manifest-path is not given). If the manifest is the root of a
workspace then the workspaces default members are selected, otherwise
only the package defined by the manifest will be selected.

The default members of a workspace can be set explicitly with the
workspace.default-members key in the root manifest. If this is not set, a
virtual workspace will include all workspace members (equivalent to
passing --workspace), and a non-virtual workspace will include only the
root crate itself.
-p spec…
--package spec…
Benchmark only the specified packages. See cargo-pkgid(1) for the SPEC
format. This flag may be specified multiple times and supports common
Unix glob patterns like *, ? and []. However, to avoid your shell
accidentally expanding glob patterns before Cargo handles them, you must
use single quotes or double quotes around each pattern.
--workspace

Benchmark all members in the workspace.
--all

Deprecated alias for --workspace.

--exclude SPEC…
Exclude the specified packages. Must be used in conjunction with the --
workspace flag. This flag may be specified multiple times and supports
common Unix glob patterns like *, ? and []. However, to avoid your shell
accidentally expanding glob patterns before Cargo handles them, you must
use single quotes or double quotes around each pattern.

Target Selection
When no target selection options are given, cargo bench will build the

following targets of the selected packages:

lib --- used to link with binaries and benchmarks
bins (only if benchmark targets are built and required features are
available)
lib as a benchmark
bins as benchmarks
benchmark targets

The default behavior can be changed by setting the bench flag for the
target in the manifest settings. Setting examples to bench = true will
build and run the example as a benchmark, replacing the example's main
function with the libtest harness.

Setting targets to bench = false will stop them from being
benchmarked by default. Target selection options that take a target by name
(such as --example foo) ignore the bench flag and will always
benchmark the given target.

See Configuring a target for more information on per-target settings.
Binary targets are automatically built if there is an integration test or

benchmark being selected to benchmark. This allows an integration test to
execute the binary to exercise and test its behavior. The
CARGO_BIN_EXE_<name> environment variable is set when the integration
test is built so that it can use the env macro to locate the executable.

Passing target selection flags will benchmark only the specified targets.

https://doc.rust-lang.org/std/macro.env.html

Note that --bin , --example , --test and --bench flags also support
common Unix glob patterns like * , ? and [] . However, to avoid your
shell accidentally expanding glob patterns before Cargo handles them, you
must use single quotes or double quotes around each glob pattern.
--lib

Benchmark the package’s library.
--bin name…
Benchmark the specified binary. This flag may be specified multiple times
and supports common Unix glob patterns.
--bins

Benchmark all binary targets.
--example name…
Benchmark the specified example. This flag may be specified multiple
times and supports common Unix glob patterns.
--examples

Benchmark all example targets.
--test name…
Benchmark the specified integration test. This flag may be specified
multiple times and supports common Unix glob patterns.
--tests

Benchmark all targets that have the test = true manifest flag set. By
default this includes the library and binaries built as unittests, and
integration tests. Be aware that this will also build any required
dependencies, so the lib target may be built twice (once as a unittest, and
once as a dependency for binaries, integration tests, etc.). Targets may be
enabled or disabled by setting the test flag in the manifest settings for the
target.
--bench name…
Benchmark the specified benchmark. This flag may be specified multiple
times and supports common Unix glob patterns.
--benches

Benchmark all targets that have the bench = true manifest flag set. By
default this includes the library and binaries built as benchmarks, and bench
targets. Be aware that this will also build any required dependencies, so the

lib target may be built twice (once as a benchmark, and once as a
dependency for binaries, benchmarks, etc.). Targets may be enabled or
disabled by setting the bench flag in the manifest settings for the target.
--all-targets

Benchmark all targets. This is equivalent to specifying --lib --bins --
tests --benches --examples.

Feature Selection
The feature flags allow you to control which features are enabled. When

no feature options are given, the default feature is activated for every
selected package.

See the features documentation for more details.
-F features
--features features
Space or comma separated list of features to activate. Features of
workspace members may be enabled with package-name/feature-name
syntax. This flag may be specified multiple times, which enables all
specified features.
--all-features

Activate all available features of all selected packages.
--no-default-features

Do not activate the default feature of the selected packages.

Compilation Options
--target triple
Benchmark for the given architecture. The default is the host architecture.
The general format of the triple is <arch><sub>-<vendor>-<sys>-<abi>.
Run rustc --print target-list for a list of supported targets. This flag
may be specified multiple times.

This may also be specified with the build.target config value.
Note that specifying this flag makes Cargo run in a different mode where

the target artifacts are placed in a separate directory. See the build cache
documentation for more details.

--profile name
Benchmark with the given profile. See the reference for more details on
profiles.
--timings=fmts
Output information how long each compilation takes, and track
concurrency information over time. Accepts an optional comma-separated
list of output formats; --timings without an argument will default to --
timings=html. Specifying an output format (rather than the default) is
unstable and requires -Zunstable-options. Valid output formats:

html (unstable, requires -Zunstable-options): Write a human-
readable file cargo-timing.html to the target/cargo-timings
directory with a report of the compilation. Also write a report to the
same directory with a timestamp in the filename if you want to look at
older runs. HTML output is suitable for human consumption only, and
does not provide machine-readable timing data.
json (unstable, requires -Zunstable-options): Emit machine-
readable JSON information about timing information.

Output Options
--target-dir directory
Directory for all generated artifacts and intermediate files. May also be
specified with the CARGO_TARGET_DIR environment variable, or the
build.target-dir config value. Defaults to target in the root of the
workspace.

Display Options
By default the Rust test harness hides output from benchmark execution

to keep results readable. Benchmark output can be recovered (e.g., for
debugging) by passing --nocapture to the benchmark binaries:
cargo bench -- --nocapture

-v

--verbose

Use verbose output. May be specified twice for “very verbose” output
which includes extra output such as dependency warnings and build script
output. May also be specified with the term.verbose config value.
-q

--quiet

Do not print cargo log messages. May also be specified with the
term.quiet config value.
--color when
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on
the terminal.
always : Always display colors.
never : Never display colors.

May also be specified with the term.color config value.
--message-format fmt
The output format for diagnostic messages. Can be specified multiple times
and consists of comma-separated values. Valid values:

human (default): Display in a human-readable text format. Conflicts
with short and json .
short : Emit shorter, human-readable text messages. Conflicts with
human and json .
json : Emit JSON messages to stdout. See the reference for more
details. Conflicts with human and short .
json-diagnostic-short : Ensure the rendered field of JSON
messages contains the “short” rendering from rustc. Cannot be used
with human or short .
json-diagnostic-rendered-ansi : Ensure the rendered field of
JSON messages contains embedded ANSI color codes for respecting
rustc’s default color scheme. Cannot be used with human or short .
json-render-diagnostics : Instruct Cargo to not include rustc
diagnostics in JSON messages printed, but instead Cargo itself should

render the JSON diagnostics coming from rustc. Cargo’s own JSON
diagnostics and others coming from rustc are still emitted. Cannot be
used with human or short .

Manifest Options
--manifest-path path
Path to the Cargo.toml file. By default, Cargo searches for the Cargo.toml
file in the current directory or any parent directory.
--ignore-rust-version

Ignore rust-version specification in packages.
--locked

Asserts that the exact same dependencies and versions are used as when the
existing Cargo.lock file was originally generated. Cargo will exit with an
error when either of the following scenarios arises:

The lock file is missing.
Cargo attempted to change the lock file due to a different dependency
resolution.

It may be used in environments where deterministic builds are desired,
such as in CI pipelines.
--offline

Prevents Cargo from accessing the network for any reason. Without this
flag, Cargo will stop with an error if it needs to access the network and the
network is not available. With this flag, Cargo will attempt to proceed
without the network if possible.

Beware that this may result in different dependency resolution than
online mode. Cargo will restrict itself to crates that are downloaded locally,
even if there might be a newer version as indicated in the local copy of the
index. See the cargo-fetch(1) command to download dependencies before
going offline.

May also be specified with the net.offline config value.
--frozen

Equivalent to specifying both --locked and --offline.

--lockfile-path PATH
Changes the path of the lockfile from the default
(<workspace_root>/Cargo.lock) to PATH. PATH must end with
Cargo.lock (e.g. --lockfile-path /tmp/temporary-

lockfile/Cargo.lock). Note that providing --lockfile-path will ignore
existing lockfile at the default path, and instead will either use the lockfile
from PATH, or write a new lockfile into the provided PATH if it doesn’t
exist. This flag can be used to run most commands in read-only directories,
writing lockfile into the provided PATH.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #14421).

Common Options
+toolchain
If Cargo has been installed with rustup, and the first argument to cargo
begins with +, it will be interpreted as a rustup toolchain name (such as
+stable or +nightly). See the rustup documentation for more information
about how toolchain overrides work.
--config KEY=VALUE or PATH
Overrides a Cargo configuration value. The argument should be in TOML
syntax of KEY=VALUE, or provided as a path to an extra configuration file.
This flag may be specified multiple times. See the command-line overrides
section for more information.
-C PATH
Changes the current working directory before executing any specified
operations. This affects things like where cargo looks by default for the
project manifest (Cargo.toml), as well as the directories searched for
discovering .cargo/config.toml, for example. This option must appear
before the command name, for example cargo -C path/to/my-project
build.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #10098).
-h

https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/14421
https://rust-lang.github.io/rustup/overrides.html
https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/10098

--help

Prints help information.
-Z flag
Unstable (nightly-only) flags to Cargo. Run cargo -Z help for details.

Miscellaneous Options
The --jobs argument affects the building of the benchmark executable

but does not affect how many threads are used when running the
benchmarks. The Rust test harness runs benchmarks serially in a single
thread.
-j N
--jobs N
Number of parallel jobs to run. May also be specified with the build.jobs
config value. Defaults to the number of logical CPUs. If negative, it sets the
maximum number of parallel jobs to the number of logical CPUs plus
provided value. If a string default is provided, it sets the value back to
defaults. Should not be 0.

While cargo bench involves compilation, it does not provide a --
keep-going flag. Use --no-fail-fast to run as many benchmarks as
possible without stopping at the first failure. To "compile" as many
benchmarks as possible, use --benches to build benchmark binaries
separately. For example:
cargo build --benches --release --keep-going
cargo bench --no-fail-fast

ENVIRONMENT
See the reference for details on environment variables that Cargo reads.

EXIT STATUS

0 : Cargo succeeded.
101 : Cargo failed to complete.

EXAMPLES

1. Build and execute all the benchmarks of the current package:
cargo bench

2. Run only a specific benchmark within a specific benchmark target:
cargo bench --bench bench_name -- modname::some_benchmark

SEE ALSO
cargo(1), cargo-test(1)

cargo-build(1)

NAME
cargo-build --- Compile the current package

SYNOPSIS
cargo build [options]

DESCRIPTION
Compile local packages and all of their dependencies.

OPTIONS
Package Selection

By default, when no package selection options are given, the packages
selected depend on the selected manifest file (based on the current working
directory if --manifest-path is not given). If the manifest is the root of a
workspace then the workspaces default members are selected, otherwise
only the package defined by the manifest will be selected.

The default members of a workspace can be set explicitly with the
workspace.default-members key in the root manifest. If this is not set, a
virtual workspace will include all workspace members (equivalent to
passing --workspace), and a non-virtual workspace will include only the
root crate itself.
-p spec…
--package spec…
Build only the specified packages. See cargo-pkgid(1) for the SPEC format.
This flag may be specified multiple times and supports common Unix glob
patterns like *, ? and []. However, to avoid your shell accidentally
expanding glob patterns before Cargo handles them, you must use single
quotes or double quotes around each pattern.
--workspace

Build all members in the workspace.
--all

Deprecated alias for --workspace.
--exclude SPEC…
Exclude the specified packages. Must be used in conjunction with the --
workspace flag. This flag may be specified multiple times and supports
common Unix glob patterns like *, ? and []. However, to avoid your shell
accidentally expanding glob patterns before Cargo handles them, you must
use single quotes or double quotes around each pattern.

Target Selection

When no target selection options are given, cargo build will build all
binary and library targets of the selected packages. Binaries are skipped if
they have required-features that are missing.

Binary targets are automatically built if there is an integration test or
benchmark being selected to build. This allows an integration test to
execute the binary to exercise and test its behavior. The
CARGO_BIN_EXE_<name> environment variable is set when the integration
test is built so that it can use the env macro to locate the executable.

Passing target selection flags will build only the specified targets.
Note that --bin , --example , --test and --bench flags also support

common Unix glob patterns like * , ? and [] . However, to avoid your
shell accidentally expanding glob patterns before Cargo handles them, you
must use single quotes or double quotes around each glob pattern.
--lib

Build the package’s library.
--bin name…
Build the specified binary. This flag may be specified multiple times and
supports common Unix glob patterns.
--bins

Build all binary targets.
--example name…
Build the specified example. This flag may be specified multiple times and
supports common Unix glob patterns.
--examples

Build all example targets.
--test name…
Build the specified integration test. This flag may be specified multiple
times and supports common Unix glob patterns.
--tests

Build all targets that have the test = true manifest flag set. By default this
includes the library and binaries built as unittests, and integration tests. Be
aware that this will also build any required dependencies, so the lib target
may be built twice (once as a unittest, and once as a dependency for

https://doc.rust-lang.org/std/macro.env.html

binaries, integration tests, etc.). Targets may be enabled or disabled by
setting the test flag in the manifest settings for the target.
--bench name…
Build the specified benchmark. This flag may be specified multiple times
and supports common Unix glob patterns.
--benches

Build all targets that have the bench = true manifest flag set. By default
this includes the library and binaries built as benchmarks, and bench targets.
Be aware that this will also build any required dependencies, so the lib
target may be built twice (once as a benchmark, and once as a dependency
for binaries, benchmarks, etc.). Targets may be enabled or disabled by
setting the bench flag in the manifest settings for the target.
--all-targets

Build all targets. This is equivalent to specifying --lib --bins --tests -
-benches --examples.

Feature Selection
The feature flags allow you to control which features are enabled. When

no feature options are given, the default feature is activated for every
selected package.

See the features documentation for more details.
-F features
--features features
Space or comma separated list of features to activate. Features of
workspace members may be enabled with package-name/feature-name
syntax. This flag may be specified multiple times, which enables all
specified features.
--all-features

Activate all available features of all selected packages.
--no-default-features

Do not activate the default feature of the selected packages.

Compilation Options

--target triple
Build for the given architecture. The default is the host architecture. The
general format of the triple is <arch><sub>-<vendor>-<sys>-<abi>. Run
rustc --print target-list for a list of supported targets. This flag may
be specified multiple times.

This may also be specified with the build.target config value.
Note that specifying this flag makes Cargo run in a different mode where

the target artifacts are placed in a separate directory. See the build cache
documentation for more details.
-r

--release

Build optimized artifacts with the release profile. See also the --profile
option for choosing a specific profile by name.
--profile name
Build with the given profile. See the reference for more details on profiles.
--timings=fmts
Output information how long each compilation takes, and track
concurrency information over time. Accepts an optional comma-separated
list of output formats; --timings without an argument will default to --
timings=html. Specifying an output format (rather than the default) is
unstable and requires -Zunstable-options. Valid output formats:

html (unstable, requires -Zunstable-options): Write a human-
readable file cargo-timing.html to the target/cargo-timings
directory with a report of the compilation. Also write a report to the
same directory with a timestamp in the filename if you want to look at
older runs. HTML output is suitable for human consumption only, and
does not provide machine-readable timing data.
json (unstable, requires -Zunstable-options): Emit machine-
readable JSON information about timing information.

Output Options
--target-dir directory

Directory for all generated artifacts and intermediate files. May also be
specified with the CARGO_TARGET_DIR environment variable, or the
build.target-dir config value. Defaults to target in the root of the
workspace.
--artifact-dir directory
Copy final artifacts to this directory.

This option is unstable and available only on the nightly channel and
requires the -Z unstable-options flag to enable. See
https://github.com/rust-lang/cargo/issues/6790 for more information.

Display Options
-v

--verbose

Use verbose output. May be specified twice for “very verbose” output
which includes extra output such as dependency warnings and build script
output. May also be specified with the term.verbose config value.
-q

--quiet

Do not print cargo log messages. May also be specified with the
term.quiet config value.
--color when
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on
the terminal.
always : Always display colors.
never : Never display colors.

May also be specified with the term.color config value.
--message-format fmt
The output format for diagnostic messages. Can be specified multiple times
and consists of comma-separated values. Valid values:

https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/6790

human (default): Display in a human-readable text format. Conflicts
with short and json .
short : Emit shorter, human-readable text messages. Conflicts with
human and json .
json : Emit JSON messages to stdout. See the reference for more
details. Conflicts with human and short .
json-diagnostic-short : Ensure the rendered field of JSON
messages contains the “short” rendering from rustc. Cannot be used
with human or short .
json-diagnostic-rendered-ansi : Ensure the rendered field of
JSON messages contains embedded ANSI color codes for respecting
rustc’s default color scheme. Cannot be used with human or short .
json-render-diagnostics : Instruct Cargo to not include rustc
diagnostics in JSON messages printed, but instead Cargo itself should
render the JSON diagnostics coming from rustc. Cargo’s own JSON
diagnostics and others coming from rustc are still emitted. Cannot be
used with human or short .

--build-plan

Outputs a series of JSON messages to stdout that indicate the commands to
run the build.

This option is unstable and available only on the nightly channel and
requires the -Z unstable-options flag to enable. See
https://github.com/rust-lang/cargo/issues/5579 for more information.

Manifest Options
--manifest-path path
Path to the Cargo.toml file. By default, Cargo searches for the Cargo.toml
file in the current directory or any parent directory.
--ignore-rust-version

Ignore rust-version specification in packages.
--locked

Asserts that the exact same dependencies and versions are used as when the
existing Cargo.lock file was originally generated. Cargo will exit with an

https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/5579

error when either of the following scenarios arises:

The lock file is missing.
Cargo attempted to change the lock file due to a different dependency
resolution.

It may be used in environments where deterministic builds are desired,
such as in CI pipelines.
--offline

Prevents Cargo from accessing the network for any reason. Without this
flag, Cargo will stop with an error if it needs to access the network and the
network is not available. With this flag, Cargo will attempt to proceed
without the network if possible.

Beware that this may result in different dependency resolution than
online mode. Cargo will restrict itself to crates that are downloaded locally,
even if there might be a newer version as indicated in the local copy of the
index. See the cargo-fetch(1) command to download dependencies before
going offline.

May also be specified with the net.offline config value.
--frozen

Equivalent to specifying both --locked and --offline.
--lockfile-path PATH
Changes the path of the lockfile from the default
(<workspace_root>/Cargo.lock) to PATH. PATH must end with
Cargo.lock (e.g. --lockfile-path /tmp/temporary-

lockfile/Cargo.lock). Note that providing --lockfile-path will ignore
existing lockfile at the default path, and instead will either use the lockfile
from PATH, or write a new lockfile into the provided PATH if it doesn’t
exist. This flag can be used to run most commands in read-only directories,
writing lockfile into the provided PATH.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #14421).

Common Options

https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/14421

+toolchain
If Cargo has been installed with rustup, and the first argument to cargo
begins with +, it will be interpreted as a rustup toolchain name (such as
+stable or +nightly). See the rustup documentation for more information
about how toolchain overrides work.
--config KEY=VALUE or PATH
Overrides a Cargo configuration value. The argument should be in TOML
syntax of KEY=VALUE, or provided as a path to an extra configuration file.
This flag may be specified multiple times. See the command-line overrides
section for more information.
-C PATH
Changes the current working directory before executing any specified
operations. This affects things like where cargo looks by default for the
project manifest (Cargo.toml), as well as the directories searched for
discovering .cargo/config.toml, for example. This option must appear
before the command name, for example cargo -C path/to/my-project
build.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #10098).
-h

--help

Prints help information.
-Z flag
Unstable (nightly-only) flags to Cargo. Run cargo -Z help for details.

Miscellaneous Options
-j N
--jobs N
Number of parallel jobs to run. May also be specified with the build.jobs
config value. Defaults to the number of logical CPUs. If negative, it sets the
maximum number of parallel jobs to the number of logical CPUs plus
provided value. If a string default is provided, it sets the value back to
defaults. Should not be 0.

https://rust-lang.github.io/rustup/overrides.html
https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/10098

--keep-going

Build as many crates in the dependency graph as possible, rather than
aborting the build on the first one that fails to build.

For example if the current package depends on dependencies fails and
works , one of which fails to build, cargo build -j1 may or may not
build the one that succeeds (depending on which one of the two builds
Cargo picked to run first), whereas cargo build -j1 --keep-going

would definitely run both builds, even if the one run first fails.
--future-incompat-report

Displays a future-incompat report for any future-incompatible warnings
produced during execution of this command

See cargo-report(1)

ENVIRONMENT
See the reference for details on environment variables that Cargo reads.

EXIT STATUS

0 : Cargo succeeded.
101 : Cargo failed to complete.

EXAMPLES

1. Build the local package and all of its dependencies:
cargo build

2. Build with optimizations:
cargo build --release

SEE ALSO
cargo(1), cargo-rustc(1)

cargo-check(1)

NAME
cargo-check --- Check the current package

SYNOPSIS
cargo check [options]

DESCRIPTION
Check a local package and all of its dependencies for errors. This will

essentially compile the packages without performing the final step of code
generation, which is faster than running cargo build . The compiler will
save metadata files to disk so that future runs will reuse them if the source
has not been modified. Some diagnostics and errors are only emitted during
code generation, so they inherently won't be reported with cargo check .

OPTIONS
Package Selection

By default, when no package selection options are given, the packages
selected depend on the selected manifest file (based on the current working
directory if --manifest-path is not given). If the manifest is the root of a
workspace then the workspaces default members are selected, otherwise
only the package defined by the manifest will be selected.

The default members of a workspace can be set explicitly with the
workspace.default-members key in the root manifest. If this is not set, a
virtual workspace will include all workspace members (equivalent to
passing --workspace), and a non-virtual workspace will include only the
root crate itself.
-p spec…
--package spec…
Check only the specified packages. See cargo-pkgid(1) for the SPEC
format. This flag may be specified multiple times and supports common
Unix glob patterns like *, ? and []. However, to avoid your shell
accidentally expanding glob patterns before Cargo handles them, you must
use single quotes or double quotes around each pattern.
--workspace

Check all members in the workspace.
--all

Deprecated alias for --workspace.
--exclude SPEC…
Exclude the specified packages. Must be used in conjunction with the --
workspace flag. This flag may be specified multiple times and supports
common Unix glob patterns like *, ? and []. However, to avoid your shell
accidentally expanding glob patterns before Cargo handles them, you must
use single quotes or double quotes around each pattern.

Target Selection

When no target selection options are given, cargo check will check all
binary and library targets of the selected packages. Binaries are skipped if
they have required-features that are missing.

Passing target selection flags will check only the specified targets.
Note that --bin , --example , --test and --bench flags also support

common Unix glob patterns like * , ? and [] . However, to avoid your
shell accidentally expanding glob patterns before Cargo handles them, you
must use single quotes or double quotes around each glob pattern.
--lib

Check the package’s library.
--bin name…
Check the specified binary. This flag may be specified multiple times and
supports common Unix glob patterns.
--bins

Check all binary targets.
--example name…
Check the specified example. This flag may be specified multiple times and
supports common Unix glob patterns.
--examples

Check all example targets.
--test name…
Check the specified integration test. This flag may be specified multiple
times and supports common Unix glob patterns.
--tests

Check all targets that have the test = true manifest flag set. By default
this includes the library and binaries built as unittests, and integration tests.
Be aware that this will also build any required dependencies, so the lib
target may be built twice (once as a unittest, and once as a dependency for
binaries, integration tests, etc.). Targets may be enabled or disabled by
setting the test flag in the manifest settings for the target.
--bench name…
Check the specified benchmark. This flag may be specified multiple times
and supports common Unix glob patterns.

--benches

Check all targets that have the bench = true manifest flag set. By default
this includes the library and binaries built as benchmarks, and bench targets.
Be aware that this will also build any required dependencies, so the lib
target may be built twice (once as a benchmark, and once as a dependency
for binaries, benchmarks, etc.). Targets may be enabled or disabled by
setting the bench flag in the manifest settings for the target.
--all-targets

Check all targets. This is equivalent to specifying --lib --bins --tests
--benches --examples.

Feature Selection
The feature flags allow you to control which features are enabled. When

no feature options are given, the default feature is activated for every
selected package.

See the features documentation for more details.
-F features
--features features
Space or comma separated list of features to activate. Features of
workspace members may be enabled with package-name/feature-name
syntax. This flag may be specified multiple times, which enables all
specified features.
--all-features

Activate all available features of all selected packages.
--no-default-features

Do not activate the default feature of the selected packages.

Compilation Options
--target triple
Check for the given architecture. The default is the host architecture. The
general format of the triple is <arch><sub>-<vendor>-<sys>-<abi>. Run
rustc --print target-list for a list of supported targets. This flag may
be specified multiple times.

This may also be specified with the build.target config value.
Note that specifying this flag makes Cargo run in a different mode where

the target artifacts are placed in a separate directory. See the build cache
documentation for more details.
-r

--release

Check optimized artifacts with the release profile. See also the --profile
option for choosing a specific profile by name.
--profile name
Check with the given profile.

As a special case, specifying the test profile will also enable checking
in test mode which will enable checking tests and enable the test cfg
option. See rustc tests for more detail.

See the reference for more details on profiles.
--timings=fmts
Output information how long each compilation takes, and track
concurrency information over time. Accepts an optional comma-separated
list of output formats; --timings without an argument will default to --
timings=html. Specifying an output format (rather than the default) is
unstable and requires -Zunstable-options. Valid output formats:

html (unstable, requires -Zunstable-options): Write a human-
readable file cargo-timing.html to the target/cargo-timings
directory with a report of the compilation. Also write a report to the
same directory with a timestamp in the filename if you want to look at
older runs. HTML output is suitable for human consumption only, and
does not provide machine-readable timing data.
json (unstable, requires -Zunstable-options): Emit machine-
readable JSON information about timing information.

Output Options
--target-dir directory

https://doc.rust-lang.org/rustc/tests/index.html

Directory for all generated artifacts and intermediate files. May also be
specified with the CARGO_TARGET_DIR environment variable, or the
build.target-dir config value. Defaults to target in the root of the
workspace.

Display Options
-v

--verbose

Use verbose output. May be specified twice for “very verbose” output
which includes extra output such as dependency warnings and build script
output. May also be specified with the term.verbose config value.
-q

--quiet

Do not print cargo log messages. May also be specified with the
term.quiet config value.
--color when
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on
the terminal.
always : Always display colors.
never : Never display colors.

May also be specified with the term.color config value.
--message-format fmt
The output format for diagnostic messages. Can be specified multiple times
and consists of comma-separated values. Valid values:

human (default): Display in a human-readable text format. Conflicts
with short and json .
short : Emit shorter, human-readable text messages. Conflicts with
human and json .
json : Emit JSON messages to stdout. See the reference for more
details. Conflicts with human and short .

json-diagnostic-short : Ensure the rendered field of JSON
messages contains the “short” rendering from rustc. Cannot be used
with human or short .
json-diagnostic-rendered-ansi : Ensure the rendered field of
JSON messages contains embedded ANSI color codes for respecting
rustc’s default color scheme. Cannot be used with human or short .
json-render-diagnostics : Instruct Cargo to not include rustc
diagnostics in JSON messages printed, but instead Cargo itself should
render the JSON diagnostics coming from rustc. Cargo’s own JSON
diagnostics and others coming from rustc are still emitted. Cannot be
used with human or short .

Manifest Options
--manifest-path path
Path to the Cargo.toml file. By default, Cargo searches for the Cargo.toml
file in the current directory or any parent directory.
--ignore-rust-version

Ignore rust-version specification in packages.
--locked

Asserts that the exact same dependencies and versions are used as when the
existing Cargo.lock file was originally generated. Cargo will exit with an
error when either of the following scenarios arises:

The lock file is missing.
Cargo attempted to change the lock file due to a different dependency
resolution.

It may be used in environments where deterministic builds are desired,
such as in CI pipelines.
--offline

Prevents Cargo from accessing the network for any reason. Without this
flag, Cargo will stop with an error if it needs to access the network and the
network is not available. With this flag, Cargo will attempt to proceed
without the network if possible.

Beware that this may result in different dependency resolution than
online mode. Cargo will restrict itself to crates that are downloaded locally,
even if there might be a newer version as indicated in the local copy of the
index. See the cargo-fetch(1) command to download dependencies before
going offline.

May also be specified with the net.offline config value.
--frozen

Equivalent to specifying both --locked and --offline.
--lockfile-path PATH
Changes the path of the lockfile from the default
(<workspace_root>/Cargo.lock) to PATH. PATH must end with
Cargo.lock (e.g. --lockfile-path /tmp/temporary-

lockfile/Cargo.lock). Note that providing --lockfile-path will ignore
existing lockfile at the default path, and instead will either use the lockfile
from PATH, or write a new lockfile into the provided PATH if it doesn’t
exist. This flag can be used to run most commands in read-only directories,
writing lockfile into the provided PATH.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #14421).

Common Options
+toolchain
If Cargo has been installed with rustup, and the first argument to cargo
begins with +, it will be interpreted as a rustup toolchain name (such as
+stable or +nightly). See the rustup documentation for more information
about how toolchain overrides work.
--config KEY=VALUE or PATH
Overrides a Cargo configuration value. The argument should be in TOML
syntax of KEY=VALUE, or provided as a path to an extra configuration file.
This flag may be specified multiple times. See the command-line overrides
section for more information.
-C PATH

https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/14421
https://rust-lang.github.io/rustup/overrides.html

Changes the current working directory before executing any specified
operations. This affects things like where cargo looks by default for the
project manifest (Cargo.toml), as well as the directories searched for
discovering .cargo/config.toml, for example. This option must appear
before the command name, for example cargo -C path/to/my-project
build.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #10098).
-h

--help

Prints help information.
-Z flag
Unstable (nightly-only) flags to Cargo. Run cargo -Z help for details.

Miscellaneous Options
-j N
--jobs N
Number of parallel jobs to run. May also be specified with the build.jobs
config value. Defaults to the number of logical CPUs. If negative, it sets the
maximum number of parallel jobs to the number of logical CPUs plus
provided value. If a string default is provided, it sets the value back to
defaults. Should not be 0.
--keep-going

Build as many crates in the dependency graph as possible, rather than
aborting the build on the first one that fails to build.

For example if the current package depends on dependencies fails and
works , one of which fails to build, cargo check -j1 may or may not
build the one that succeeds (depending on which one of the two builds
Cargo picked to run first), whereas cargo check -j1 --keep-going

would definitely run both builds, even if the one run first fails.
--future-incompat-report

https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/10098

Displays a future-incompat report for any future-incompatible warnings
produced during execution of this command

See cargo-report(1)

ENVIRONMENT
See the reference for details on environment variables that Cargo reads.

EXIT STATUS

0 : Cargo succeeded.
101 : Cargo failed to complete.

EXAMPLES

1. Check the local package for errors:
cargo check

2. Check all targets, including unit tests:
cargo check --all-targets --profile=test

SEE ALSO
cargo(1), cargo-build(1)

cargo-clean(1)

NAME
cargo-clean --- Remove generated artifacts

SYNOPSIS
cargo clean [options]

DESCRIPTION
Remove artifacts from the target directory that Cargo has generated in

the past.
With no options, cargo clean will delete the entire target directory.

OPTIONS
Package Selection

When no packages are selected, all packages and all dependencies in the
workspace are cleaned.
-p spec…
--package spec…
Clean only the specified packages. This flag may be specified multiple
times. See cargo-pkgid(1) for the SPEC format.

Clean Options
--dry-run

Displays a summary of what would be deleted without deleting anything.
Use with --verbose to display the actual files that would be deleted.
--doc

This option will cause cargo clean to remove only the doc directory in the
target directory.
--release

Remove all artifacts in the release directory.
--profile name
Remove all artifacts in the directory with the given profile name.
--target-dir directory
Directory for all generated artifacts and intermediate files. May also be
specified with the CARGO_TARGET_DIR environment variable, or the
build.target-dir config value. Defaults to target in the root of the
workspace.
--target triple
Clean for the given architecture. The default is the host architecture. The
general format of the triple is <arch><sub>-<vendor>-<sys>-<abi>. Run
rustc --print target-list for a list of supported targets. This flag may
be specified multiple times.

This may also be specified with the build.target config value.

Note that specifying this flag makes Cargo run in a different mode where
the target artifacts are placed in a separate directory. See the build cache
documentation for more details.

Display Options
-v

--verbose

Use verbose output. May be specified twice for “very verbose” output
which includes extra output such as dependency warnings and build script
output. May also be specified with the term.verbose config value.
-q

--quiet

Do not print cargo log messages. May also be specified with the
term.quiet config value.
--color when
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on
the terminal.
always : Always display colors.
never : Never display colors.

May also be specified with the term.color config value.

Manifest Options
--manifest-path path
Path to the Cargo.toml file. By default, Cargo searches for the Cargo.toml
file in the current directory or any parent directory.
--locked

Asserts that the exact same dependencies and versions are used as when the
existing Cargo.lock file was originally generated. Cargo will exit with an
error when either of the following scenarios arises:

The lock file is missing.

Cargo attempted to change the lock file due to a different dependency
resolution.

It may be used in environments where deterministic builds are desired,
such as in CI pipelines.
--offline

Prevents Cargo from accessing the network for any reason. Without this
flag, Cargo will stop with an error if it needs to access the network and the
network is not available. With this flag, Cargo will attempt to proceed
without the network if possible.

Beware that this may result in different dependency resolution than
online mode. Cargo will restrict itself to crates that are downloaded locally,
even if there might be a newer version as indicated in the local copy of the
index. See the cargo-fetch(1) command to download dependencies before
going offline.

May also be specified with the net.offline config value.
--frozen

Equivalent to specifying both --locked and --offline.
--lockfile-path PATH
Changes the path of the lockfile from the default
(<workspace_root>/Cargo.lock) to PATH. PATH must end with
Cargo.lock (e.g. --lockfile-path /tmp/temporary-

lockfile/Cargo.lock). Note that providing --lockfile-path will ignore
existing lockfile at the default path, and instead will either use the lockfile
from PATH, or write a new lockfile into the provided PATH if it doesn’t
exist. This flag can be used to run most commands in read-only directories,
writing lockfile into the provided PATH.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #14421).

Common Options
+toolchain
If Cargo has been installed with rustup, and the first argument to cargo
begins with +, it will be interpreted as a rustup toolchain name (such as

https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/14421

+stable or +nightly). See the rustup documentation for more information
about how toolchain overrides work.
--config KEY=VALUE or PATH
Overrides a Cargo configuration value. The argument should be in TOML
syntax of KEY=VALUE, or provided as a path to an extra configuration file.
This flag may be specified multiple times. See the command-line overrides
section for more information.
-C PATH
Changes the current working directory before executing any specified
operations. This affects things like where cargo looks by default for the
project manifest (Cargo.toml), as well as the directories searched for
discovering .cargo/config.toml, for example. This option must appear
before the command name, for example cargo -C path/to/my-project
build.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #10098).
-h

--help

Prints help information.
-Z flag
Unstable (nightly-only) flags to Cargo. Run cargo -Z help for details.

https://rust-lang.github.io/rustup/overrides.html
https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/10098

ENVIRONMENT
See the reference for details on environment variables that Cargo reads.

EXIT STATUS

0 : Cargo succeeded.
101 : Cargo failed to complete.

EXAMPLES

1. Remove the entire target directory:
cargo clean

2. Remove only the release artifacts:
cargo clean --release

SEE ALSO
cargo(1), cargo-build(1)

cargo-clippy(1)

NAME
cargo-clippy --- Checks a package to catch common mistakes and

improve your Rust code

DESCRIPTION
This is an external command distributed with the Rust toolchain as an

optional component. It is not built into Cargo, and may require additional
installation.

For information about usage and installation, see Clippy Documentation.

clbr://internal.invalid/book/clippy/index.html

SEE ALSO
cargo(1), cargo-fix(1), cargo-fmt(1), Custom subcommands

clbr://internal.invalid/book/OEBPS/commands/cargo.md
clbr://internal.invalid/book/OEBPS/commands/cargo-fix.md
clbr://internal.invalid/book/OEBPS/commands/cargo-fmt.md
clbr://internal.invalid/book/OEBPS/reference/external-tools.md#custom-subcommands

cargo-doc(1)

NAME
cargo-doc --- Build a package's documentation

SYNOPSIS
cargo doc [options]

DESCRIPTION
Build the documentation for the local package and all dependencies. The

output is placed in target/doc in rustdoc's usual format.

OPTIONS
Documentation Options
--open

Open the docs in a browser after building them. This will use your default
browser unless you define another one in the BROWSER environment variable
or use the doc.browser configuration option.
--no-deps

Do not build documentation for dependencies.
--document-private-items

Include non-public items in the documentation. This will be enabled by
default if documenting a binary target.

Package Selection
By default, when no package selection options are given, the packages

selected depend on the selected manifest file (based on the current working
directory if --manifest-path is not given). If the manifest is the root of a
workspace then the workspaces default members are selected, otherwise
only the package defined by the manifest will be selected.

The default members of a workspace can be set explicitly with the
workspace.default-members key in the root manifest. If this is not set, a
virtual workspace will include all workspace members (equivalent to
passing --workspace), and a non-virtual workspace will include only the
root crate itself.
-p spec…
--package spec…
Document only the specified packages. See cargo-pkgid(1) for the SPEC
format. This flag may be specified multiple times and supports common
Unix glob patterns like *, ? and []. However, to avoid your shell
accidentally expanding glob patterns before Cargo handles them, you must
use single quotes or double quotes around each pattern.
--workspace

Document all members in the workspace.

--all

Deprecated alias for --workspace.
--exclude SPEC…
Exclude the specified packages. Must be used in conjunction with the --
workspace flag. This flag may be specified multiple times and supports
common Unix glob patterns like *, ? and []. However, to avoid your shell
accidentally expanding glob patterns before Cargo handles them, you must
use single quotes or double quotes around each pattern.

Target Selection
When no target selection options are given, cargo doc will document

all binary and library targets of the selected package. The binary will be
skipped if its name is the same as the lib target. Binaries are skipped if they
have required-features that are missing.

The default behavior can be changed by setting doc = false for the
target in the manifest settings. Using target selection options will ignore the
doc flag and will always document the given target.
--lib

Document the package’s library.
--bin name…
Document the specified binary. This flag may be specified multiple times
and supports common Unix glob patterns.
--bins

Document all binary targets.
--example name…
Document the specified example. This flag may be specified multiple times
and supports common Unix glob patterns.
--examples

Document all example targets.

Feature Selection
The feature flags allow you to control which features are enabled. When

no feature options are given, the default feature is activated for every

selected package.
See the features documentation for more details.

-F features
--features features
Space or comma separated list of features to activate. Features of
workspace members may be enabled with package-name/feature-name
syntax. This flag may be specified multiple times, which enables all
specified features.
--all-features

Activate all available features of all selected packages.
--no-default-features

Do not activate the default feature of the selected packages.

Compilation Options
--target triple
Document for the given architecture. The default is the host architecture.
The general format of the triple is <arch><sub>-<vendor>-<sys>-<abi>.
Run rustc --print target-list for a list of supported targets. This flag
may be specified multiple times.

This may also be specified with the build.target config value.
Note that specifying this flag makes Cargo run in a different mode where

the target artifacts are placed in a separate directory. See the build cache
documentation for more details.
-r

--release

Document optimized artifacts with the release profile. See also the --
profile option for choosing a specific profile by name.
--profile name
Document with the given profile. See the reference for more details on
profiles.
--timings=fmts
Output information how long each compilation takes, and track
concurrency information over time. Accepts an optional comma-separated

list of output formats; --timings without an argument will default to --
timings=html. Specifying an output format (rather than the default) is
unstable and requires -Zunstable-options. Valid output formats:

html (unstable, requires -Zunstable-options): Write a human-
readable file cargo-timing.html to the target/cargo-timings
directory with a report of the compilation. Also write a report to the
same directory with a timestamp in the filename if you want to look at
older runs. HTML output is suitable for human consumption only, and
does not provide machine-readable timing data.
json (unstable, requires -Zunstable-options): Emit machine-
readable JSON information about timing information.

Output Options
--target-dir directory
Directory for all generated artifacts and intermediate files. May also be
specified with the CARGO_TARGET_DIR environment variable, or the
build.target-dir config value. Defaults to target in the root of the
workspace.

Display Options
-v

--verbose

Use verbose output. May be specified twice for “very verbose” output
which includes extra output such as dependency warnings and build script
output. May also be specified with the term.verbose config value.
-q

--quiet

Do not print cargo log messages. May also be specified with the
term.quiet config value.
--color when
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on
the terminal.
always : Always display colors.
never : Never display colors.

May also be specified with the term.color config value.
--message-format fmt
The output format for diagnostic messages. Can be specified multiple times
and consists of comma-separated values. Valid values:

human (default): Display in a human-readable text format. Conflicts
with short and json .
short : Emit shorter, human-readable text messages. Conflicts with
human and json .
json : Emit JSON messages to stdout. See the reference for more
details. Conflicts with human and short .
json-diagnostic-short : Ensure the rendered field of JSON
messages contains the “short” rendering from rustc. Cannot be used
with human or short .
json-diagnostic-rendered-ansi : Ensure the rendered field of
JSON messages contains embedded ANSI color codes for respecting
rustc’s default color scheme. Cannot be used with human or short .
json-render-diagnostics : Instruct Cargo to not include rustc
diagnostics in JSON messages printed, but instead Cargo itself should
render the JSON diagnostics coming from rustc. Cargo’s own JSON
diagnostics and others coming from rustc are still emitted. Cannot be
used with human or short .

Manifest Options
--manifest-path path
Path to the Cargo.toml file. By default, Cargo searches for the Cargo.toml
file in the current directory or any parent directory.
--ignore-rust-version

Ignore rust-version specification in packages.

--locked

Asserts that the exact same dependencies and versions are used as when the
existing Cargo.lock file was originally generated. Cargo will exit with an
error when either of the following scenarios arises:

The lock file is missing.
Cargo attempted to change the lock file due to a different dependency
resolution.

It may be used in environments where deterministic builds are desired,
such as in CI pipelines.
--offline

Prevents Cargo from accessing the network for any reason. Without this
flag, Cargo will stop with an error if it needs to access the network and the
network is not available. With this flag, Cargo will attempt to proceed
without the network if possible.

Beware that this may result in different dependency resolution than
online mode. Cargo will restrict itself to crates that are downloaded locally,
even if there might be a newer version as indicated in the local copy of the
index. See the cargo-fetch(1) command to download dependencies before
going offline.

May also be specified with the net.offline config value.
--frozen

Equivalent to specifying both --locked and --offline.
--lockfile-path PATH
Changes the path of the lockfile from the default
(<workspace_root>/Cargo.lock) to PATH. PATH must end with
Cargo.lock (e.g. --lockfile-path /tmp/temporary-

lockfile/Cargo.lock). Note that providing --lockfile-path will ignore
existing lockfile at the default path, and instead will either use the lockfile
from PATH, or write a new lockfile into the provided PATH if it doesn’t
exist. This flag can be used to run most commands in read-only directories,
writing lockfile into the provided PATH.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #14421).

Common Options
+toolchain
If Cargo has been installed with rustup, and the first argument to cargo
begins with +, it will be interpreted as a rustup toolchain name (such as
+stable or +nightly). See the rustup documentation for more information
about how toolchain overrides work.
--config KEY=VALUE or PATH
Overrides a Cargo configuration value. The argument should be in TOML
syntax of KEY=VALUE, or provided as a path to an extra configuration file.
This flag may be specified multiple times. See the command-line overrides
section for more information.
-C PATH
Changes the current working directory before executing any specified
operations. This affects things like where cargo looks by default for the
project manifest (Cargo.toml), as well as the directories searched for
discovering .cargo/config.toml, for example. This option must appear
before the command name, for example cargo -C path/to/my-project
build.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #10098).
-h

--help

Prints help information.
-Z flag
Unstable (nightly-only) flags to Cargo. Run cargo -Z help for details.

Miscellaneous Options
-j N
--jobs N

https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/14421
https://rust-lang.github.io/rustup/overrides.html
https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/10098

Number of parallel jobs to run. May also be specified with the build.jobs
config value. Defaults to the number of logical CPUs. If negative, it sets the
maximum number of parallel jobs to the number of logical CPUs plus
provided value. If a string default is provided, it sets the value back to
defaults. Should not be 0.
--keep-going

Build as many crates in the dependency graph as possible, rather than
aborting the build on the first one that fails to build.

For example if the current package depends on dependencies fails and
works , one of which fails to build, cargo doc -j1 may or may not build
the one that succeeds (depending on which one of the two builds Cargo
picked to run first), whereas cargo doc -j1 --keep-going would
definitely run both builds, even if the one run first fails.

ENVIRONMENT
See the reference for details on environment variables that Cargo reads.

EXIT STATUS

0 : Cargo succeeded.
101 : Cargo failed to complete.

EXAMPLES

1. Build the local package documentation and its dependencies and
output to target/doc .
cargo doc

SEE ALSO
cargo(1), cargo-rustdoc(1), rustdoc(1)

https://doc.rust-lang.org/rustdoc/index.html

cargo-fetch(1)

NAME
cargo-fetch --- Fetch dependencies of a package from the network

SYNOPSIS
cargo fetch [options]

DESCRIPTION
If a Cargo.lock file is available, this command will ensure that all of

the git dependencies and/or registry dependencies are downloaded and
locally available. Subsequent Cargo commands will be able to run offline
after a cargo fetch unless the lock file changes.

If the lock file is not available, then this command will generate the lock
file before fetching the dependencies.

If --target is not specified, then all target dependencies are fetched.
See also the cargo-prefetch plugin which adds a command to download

popular crates. This may be useful if you plan to use Cargo without a
network with the --offline flag.

https://crates.io/crates/cargo-prefetch

OPTIONS
Fetch options
--target triple
Fetch for the given architecture. The default is all architectures. The general
format of the triple is <arch><sub>-<vendor>-<sys>-<abi>. Run rustc --
print target-list for a list of supported targets. This flag may be
specified multiple times.

This may also be specified with the build.target config value.
Note that specifying this flag makes Cargo run in a different mode where

the target artifacts are placed in a separate directory. See the build cache
documentation for more details.

Display Options
-v

--verbose

Use verbose output. May be specified twice for “very verbose” output
which includes extra output such as dependency warnings and build script
output. May also be specified with the term.verbose config value.
-q

--quiet

Do not print cargo log messages. May also be specified with the
term.quiet config value.
--color when
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on
the terminal.
always : Always display colors.
never : Never display colors.

May also be specified with the term.color config value.

Manifest Options

--manifest-path path
Path to the Cargo.toml file. By default, Cargo searches for the Cargo.toml
file in the current directory or any parent directory.
--locked

Asserts that the exact same dependencies and versions are used as when the
existing Cargo.lock file was originally generated. Cargo will exit with an
error when either of the following scenarios arises:

The lock file is missing.
Cargo attempted to change the lock file due to a different dependency
resolution.

It may be used in environments where deterministic builds are desired,
such as in CI pipelines.
--offline

Prevents Cargo from accessing the network for any reason. Without this
flag, Cargo will stop with an error if it needs to access the network and the
network is not available. With this flag, Cargo will attempt to proceed
without the network if possible.

Beware that this may result in different dependency resolution than
online mode. Cargo will restrict itself to crates that are downloaded locally,
even if there might be a newer version as indicated in the local copy of the
index.

May also be specified with the net.offline config value.
--frozen

Equivalent to specifying both --locked and --offline.
--lockfile-path PATH
Changes the path of the lockfile from the default
(<workspace_root>/Cargo.lock) to PATH. PATH must end with
Cargo.lock (e.g. --lockfile-path /tmp/temporary-

lockfile/Cargo.lock). Note that providing --lockfile-path will ignore
existing lockfile at the default path, and instead will either use the lockfile
from PATH, or write a new lockfile into the provided PATH if it doesn’t

exist. This flag can be used to run most commands in read-only directories,
writing lockfile into the provided PATH.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #14421).

Common Options
+toolchain
If Cargo has been installed with rustup, and the first argument to cargo
begins with +, it will be interpreted as a rustup toolchain name (such as
+stable or +nightly). See the rustup documentation for more information
about how toolchain overrides work.
--config KEY=VALUE or PATH
Overrides a Cargo configuration value. The argument should be in TOML
syntax of KEY=VALUE, or provided as a path to an extra configuration file.
This flag may be specified multiple times. See the command-line overrides
section for more information.
-C PATH
Changes the current working directory before executing any specified
operations. This affects things like where cargo looks by default for the
project manifest (Cargo.toml), as well as the directories searched for
discovering .cargo/config.toml, for example. This option must appear
before the command name, for example cargo -C path/to/my-project
build.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #10098).
-h

--help

Prints help information.
-Z flag
Unstable (nightly-only) flags to Cargo. Run cargo -Z help for details.

https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/14421
https://rust-lang.github.io/rustup/overrides.html
https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/10098

ENVIRONMENT
See the reference for details on environment variables that Cargo reads.

EXIT STATUS

0 : Cargo succeeded.
101 : Cargo failed to complete.

EXAMPLES

1. Fetch all dependencies:
cargo fetch

SEE ALSO
cargo(1), cargo-update(1), cargo-generate-lockfile(1)

cargo-fix(1)

NAME
cargo-fix --- Automatically fix lint warnings reported by rustc

SYNOPSIS
cargo fix [options]

DESCRIPTION
This Cargo subcommand will automatically take rustc's suggestions

from diagnostics like warnings and apply them to your source code. This is
intended to help automate tasks that rustc itself already knows how to tell
you to fix!

Executing cargo fix will under the hood execute cargo-check(1). Any
warnings applicable to your crate will be automatically fixed (if possible)
and all remaining warnings will be displayed when the check process is
finished. For example if you'd like to apply all fixes to the current package,
you can run:
cargo fix

which behaves the same as cargo check --all-targets .
cargo fix is only capable of fixing code that is normally compiled with

cargo check . If code is conditionally enabled with optional features, you
will need to enable those features for that code to be analyzed:
cargo fix --features foo

Similarly, other cfg expressions like platform-specific code will need to
pass --target to fix code for the given target.
cargo fix --target x86_64-pc-windows-gnu

If you encounter any problems with cargo fix or otherwise have any
questions or feature requests please don't hesitate to file an issue at
https://github.com/rust-lang/cargo.

Edition migration
The cargo fix subcommand can also be used to migrate a package

from one edition to the next. The general procedure is:

1. Run cargo fix --edition. Consider also using the --all-features
flag if your project has multiple features. You may also want to run
cargo fix --edition multiple times with different --target flags if
your project has platform-specific code gated by cfg attributes.

https://github.com/rust-lang/cargo
https://doc.rust-lang.org/edition-guide/editions/transitioning-an-existing-project-to-a-new-edition.html

2. Modify Cargo.toml to set the edition field to the new edition.
3. Run your project tests to verify that everything still works. If new

warnings are issued, you may want to consider running cargo fix
again (without the --edition flag) to apply any suggestions given by
the compiler.

And hopefully that's it! Just keep in mind of the caveats mentioned
above that cargo fix cannot update code for inactive features or cfg
expressions. Also, in some rare cases the compiler is unable to
automatically migrate all code to the new edition, and this may require
manual changes after building with the new edition.

OPTIONS
Fix options
--broken-code

Fix code even if it already has compiler errors. This is useful if cargo fix
fails to apply the changes. It will apply the changes and leave the broken
code in the working directory for you to inspect and manually fix.
--edition

Apply changes that will update the code to the next edition. This will not
update the edition in the Cargo.toml manifest, which must be updated
manually after cargo fix --edition has finished.
--edition-idioms

Apply suggestions that will update code to the preferred style for the
current edition.
--allow-no-vcs

Fix code even if a VCS was not detected.
--allow-dirty

Fix code even if the working directory has changes (including staged
changes).
--allow-staged

Fix code even if the working directory has staged changes.

Package Selection
By default, when no package selection options are given, the packages

selected depend on the selected manifest file (based on the current working
directory if --manifest-path is not given). If the manifest is the root of a
workspace then the workspaces default members are selected, otherwise
only the package defined by the manifest will be selected.

The default members of a workspace can be set explicitly with the
workspace.default-members key in the root manifest. If this is not set, a
virtual workspace will include all workspace members (equivalent to
passing --workspace), and a non-virtual workspace will include only the
root crate itself.

-p spec…
--package spec…
Fix only the specified packages. See cargo-pkgid(1) for the SPEC format.
This flag may be specified multiple times and supports common Unix glob
patterns like *, ? and []. However, to avoid your shell accidentally
expanding glob patterns before Cargo handles them, you must use single
quotes or double quotes around each pattern.
--workspace

Fix all members in the workspace.
--all

Deprecated alias for --workspace.
--exclude SPEC…
Exclude the specified packages. Must be used in conjunction with the --
workspace flag. This flag may be specified multiple times and supports
common Unix glob patterns like *, ? and []. However, to avoid your shell
accidentally expanding glob patterns before Cargo handles them, you must
use single quotes or double quotes around each pattern.

Target Selection
When no target selection options are given, cargo fix will fix all

targets (--all-targets implied). Binaries are skipped if they have
required-features that are missing.

Passing target selection flags will fix only the specified targets.
Note that --bin , --example , --test and --bench flags also support

common Unix glob patterns like * , ? and [] . However, to avoid your
shell accidentally expanding glob patterns before Cargo handles them, you
must use single quotes or double quotes around each glob pattern.
--lib

Fix the package’s library.
--bin name…
Fix the specified binary. This flag may be specified multiple times and
supports common Unix glob patterns.
--bins

Fix all binary targets.
--example name…
Fix the specified example. This flag may be specified multiple times and
supports common Unix glob patterns.
--examples

Fix all example targets.
--test name…
Fix the specified integration test. This flag may be specified multiple times
and supports common Unix glob patterns.
--tests

Fix all targets that have the test = true manifest flag set. By default this
includes the library and binaries built as unittests, and integration tests. Be
aware that this will also build any required dependencies, so the lib target
may be built twice (once as a unittest, and once as a dependency for
binaries, integration tests, etc.). Targets may be enabled or disabled by
setting the test flag in the manifest settings for the target.
--bench name…
Fix the specified benchmark. This flag may be specified multiple times and
supports common Unix glob patterns.
--benches

Fix all targets that have the bench = true manifest flag set. By default this
includes the library and binaries built as benchmarks, and bench targets. Be
aware that this will also build any required dependencies, so the lib target
may be built twice (once as a benchmark, and once as a dependency for
binaries, benchmarks, etc.). Targets may be enabled or disabled by setting
the bench flag in the manifest settings for the target.
--all-targets

Fix all targets. This is equivalent to specifying --lib --bins --tests --
benches --examples.

Feature Selection
The feature flags allow you to control which features are enabled. When

no feature options are given, the default feature is activated for every
selected package.

See the features documentation for more details.
-F features
--features features
Space or comma separated list of features to activate. Features of
workspace members may be enabled with package-name/feature-name
syntax. This flag may be specified multiple times, which enables all
specified features.
--all-features

Activate all available features of all selected packages.
--no-default-features

Do not activate the default feature of the selected packages.

Compilation Options
--target triple
Fix for the given architecture. The default is the host architecture. The
general format of the triple is <arch><sub>-<vendor>-<sys>-<abi>. Run
rustc --print target-list for a list of supported targets. This flag may
be specified multiple times.

This may also be specified with the build.target config value.
Note that specifying this flag makes Cargo run in a different mode where

the target artifacts are placed in a separate directory. See the build cache
documentation for more details.
-r

--release

Fix optimized artifacts with the release profile. See also the --profile
option for choosing a specific profile by name.
--profile name
Fix with the given profile.

As a special case, specifying the test profile will also enable checking
in test mode which will enable checking tests and enable the test cfg
option. See rustc tests for more detail.

See the reference for more details on profiles.

https://doc.rust-lang.org/rustc/tests/index.html

--timings=fmts
Output information how long each compilation takes, and track
concurrency information over time. Accepts an optional comma-separated
list of output formats; --timings without an argument will default to --
timings=html. Specifying an output format (rather than the default) is
unstable and requires -Zunstable-options. Valid output formats:

html (unstable, requires -Zunstable-options): Write a human-
readable file cargo-timing.html to the target/cargo-timings
directory with a report of the compilation. Also write a report to the
same directory with a timestamp in the filename if you want to look at
older runs. HTML output is suitable for human consumption only, and
does not provide machine-readable timing data.
json (unstable, requires -Zunstable-options): Emit machine-
readable JSON information about timing information.

Output Options
--target-dir directory
Directory for all generated artifacts and intermediate files. May also be
specified with the CARGO_TARGET_DIR environment variable, or the
build.target-dir config value. Defaults to target in the root of the
workspace.

Display Options
-v

--verbose

Use verbose output. May be specified twice for “very verbose” output
which includes extra output such as dependency warnings and build script
output. May also be specified with the term.verbose config value.
-q

--quiet

Do not print cargo log messages. May also be specified with the
term.quiet config value.
--color when

Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on
the terminal.
always : Always display colors.
never : Never display colors.

May also be specified with the term.color config value.
--message-format fmt
The output format for diagnostic messages. Can be specified multiple times
and consists of comma-separated values. Valid values:

human (default): Display in a human-readable text format. Conflicts
with short and json .
short : Emit shorter, human-readable text messages. Conflicts with
human and json .
json : Emit JSON messages to stdout. See the reference for more
details. Conflicts with human and short .
json-diagnostic-short : Ensure the rendered field of JSON
messages contains the “short” rendering from rustc. Cannot be used
with human or short .
json-diagnostic-rendered-ansi : Ensure the rendered field of
JSON messages contains embedded ANSI color codes for respecting
rustc’s default color scheme. Cannot be used with human or short .
json-render-diagnostics : Instruct Cargo to not include rustc
diagnostics in JSON messages printed, but instead Cargo itself should
render the JSON diagnostics coming from rustc. Cargo’s own JSON
diagnostics and others coming from rustc are still emitted. Cannot be
used with human or short .

Manifest Options
--manifest-path path
Path to the Cargo.toml file. By default, Cargo searches for the Cargo.toml
file in the current directory or any parent directory.

--ignore-rust-version

Ignore rust-version specification in packages.
--locked

Asserts that the exact same dependencies and versions are used as when the
existing Cargo.lock file was originally generated. Cargo will exit with an
error when either of the following scenarios arises:

The lock file is missing.
Cargo attempted to change the lock file due to a different dependency
resolution.

It may be used in environments where deterministic builds are desired,
such as in CI pipelines.
--offline

Prevents Cargo from accessing the network for any reason. Without this
flag, Cargo will stop with an error if it needs to access the network and the
network is not available. With this flag, Cargo will attempt to proceed
without the network if possible.

Beware that this may result in different dependency resolution than
online mode. Cargo will restrict itself to crates that are downloaded locally,
even if there might be a newer version as indicated in the local copy of the
index. See the cargo-fetch(1) command to download dependencies before
going offline.

May also be specified with the net.offline config value.
--frozen

Equivalent to specifying both --locked and --offline.
--lockfile-path PATH
Changes the path of the lockfile from the default
(<workspace_root>/Cargo.lock) to PATH. PATH must end with
Cargo.lock (e.g. --lockfile-path /tmp/temporary-

lockfile/Cargo.lock). Note that providing --lockfile-path will ignore
existing lockfile at the default path, and instead will either use the lockfile
from PATH, or write a new lockfile into the provided PATH if it doesn’t

exist. This flag can be used to run most commands in read-only directories,
writing lockfile into the provided PATH.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #14421).

Common Options
+toolchain
If Cargo has been installed with rustup, and the first argument to cargo
begins with +, it will be interpreted as a rustup toolchain name (such as
+stable or +nightly). See the rustup documentation for more information
about how toolchain overrides work.
--config KEY=VALUE or PATH
Overrides a Cargo configuration value. The argument should be in TOML
syntax of KEY=VALUE, or provided as a path to an extra configuration file.
This flag may be specified multiple times. See the command-line overrides
section for more information.
-C PATH
Changes the current working directory before executing any specified
operations. This affects things like where cargo looks by default for the
project manifest (Cargo.toml), as well as the directories searched for
discovering .cargo/config.toml, for example. This option must appear
before the command name, for example cargo -C path/to/my-project
build.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #10098).
-h

--help

Prints help information.
-Z flag
Unstable (nightly-only) flags to Cargo. Run cargo -Z help for details.

Miscellaneous Options
-j N

https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/14421
https://rust-lang.github.io/rustup/overrides.html
https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/10098

--jobs N
Number of parallel jobs to run. May also be specified with the build.jobs
config value. Defaults to the number of logical CPUs. If negative, it sets the
maximum number of parallel jobs to the number of logical CPUs plus
provided value. If a string default is provided, it sets the value back to
defaults. Should not be 0.
--keep-going

Build as many crates in the dependency graph as possible, rather than
aborting the build on the first one that fails to build.

For example if the current package depends on dependencies fails and
works , one of which fails to build, cargo fix -j1 may or may not build
the one that succeeds (depending on which one of the two builds Cargo
picked to run first), whereas cargo fix -j1 --keep-going would
definitely run both builds, even if the one run first fails.

ENVIRONMENT
See the reference for details on environment variables that Cargo reads.

EXIT STATUS

0 : Cargo succeeded.
101 : Cargo failed to complete.

EXAMPLES

1. Apply compiler suggestions to the local package:
cargo fix

2. Update a package to prepare it for the next edition:
cargo fix --edition

3. Apply suggested idioms for the current edition:
cargo fix --edition-idioms

SEE ALSO
cargo(1), cargo-check(1)

cargo-fmt(1)

NAME
cargo-fmt --- Formats all bin and lib files of the current crate using

rustfmt

DESCRIPTION
This is an external command distributed with the Rust toolchain as an

optional component. It is not built into Cargo, and may require additional
installation.

For information about usage and installation, see https://github.com/rust-
lang/rustfmt.

https://github.com/rust-lang/rustfmt

SEE ALSO
cargo(1), cargo-fix(1), cargo-clippy(1), Custom subcommands

clbr://internal.invalid/book/OEBPS/commands/cargo.md
clbr://internal.invalid/book/OEBPS/commands/cargo-fix.md
clbr://internal.invalid/book/OEBPS/commands/cargo-clippy.md
clbr://internal.invalid/book/OEBPS/reference/external-tools.md#custom-subcommands

cargo-miri(1)

NAME
cargo-miri --- Runs binary crates and tests in Miri

DESCRIPTION
This is an external command distributed with the Rust toolchain as an

optional component. It is not built into Cargo, and may require additional
installation.

This command is only available on the nightly channel.
For information about usage and installation, see https://github.com/rust-

lang/miri.

https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/miri

SEE ALSO
cargo(1), cargo-run(1), cargo-test(1), Custom subcommands

clbr://internal.invalid/book/OEBPS/commands/cargo.md
clbr://internal.invalid/book/OEBPS/commands/cargo-run.md
clbr://internal.invalid/book/OEBPS/commands/cargo-test.md
clbr://internal.invalid/book/OEBPS/reference/external-tools.md#custom-subcommands

cargo-report(1)

NAME
cargo-report --- Generate and display various kinds of reports

SYNOPSIS
cargo report type [options]

DESCRIPTION
Displays a report of the given type --- currently, only future-incompat

is supported

OPTIONS
--id id
Show the report with the specified Cargo-generated id
-p spec…
--package spec…
Only display a report for the specified package

EXAMPLES

1. Display the latest future-incompat report:
cargo report future-incompat

2. Display the latest future-incompat report for a specific package:
cargo report future-incompat --package my-dep:0.0.1

SEE ALSO
Future incompat report
cargo(1)

cargo-run(1)

NAME
cargo-run --- Run the current package

SYNOPSIS
cargo run [options] [-- args]

DESCRIPTION
Run a binary or example of the local package.
All the arguments following the two dashes (--) are passed to the

binary to run. If you're passing arguments to both Cargo and the binary, the
ones after -- go to the binary, the ones before go to Cargo.

Unlike cargo-test(1) and cargo-bench(1), cargo run sets the working
directory of the binary executed to the current working directory, same as if
it was executed in the shell directly.

OPTIONS
Package Selection

By default, the package in the current working directory is selected. The
-p flag can be used to choose a different package in a workspace.
-p spec
--package spec
The package to run. See cargo-pkgid(1) for the SPEC format.

Target Selection
When no target selection options are given, cargo run will run the

binary target. If there are multiple binary targets, you must pass a target flag
to choose one. Or, the default-run field may be specified in the
[package] section of Cargo.toml to choose the name of the binary to run
by default.
--bin name
Run the specified binary.
--example name
Run the specified example.

Feature Selection
The feature flags allow you to control which features are enabled. When

no feature options are given, the default feature is activated for every
selected package.

See the features documentation for more details.
-F features
--features features
Space or comma separated list of features to activate. Features of
workspace members may be enabled with package-name/feature-name
syntax. This flag may be specified multiple times, which enables all
specified features.
--all-features

Activate all available features of all selected packages.
--no-default-features

Do not activate the default feature of the selected packages.

Compilation Options
--target triple
Run for the given architecture. The default is the host architecture. The
general format of the triple is <arch><sub>-<vendor>-<sys>-<abi>. Run
rustc --print target-list for a list of supported targets.

This may also be specified with the build.target config value.
Note that specifying this flag makes Cargo run in a different mode where

the target artifacts are placed in a separate directory. See the build cache
documentation for more details.
-r

--release

Run optimized artifacts with the release profile. See also the --profile
option for choosing a specific profile by name.
--profile name
Run with the given profile. See the reference for more details on profiles.
--timings=fmts
Output information how long each compilation takes, and track
concurrency information over time. Accepts an optional comma-separated
list of output formats; --timings without an argument will default to --
timings=html. Specifying an output format (rather than the default) is
unstable and requires -Zunstable-options. Valid output formats:

html (unstable, requires -Zunstable-options): Write a human-
readable file cargo-timing.html to the target/cargo-timings
directory with a report of the compilation. Also write a report to the
same directory with a timestamp in the filename if you want to look at
older runs. HTML output is suitable for human consumption only, and
does not provide machine-readable timing data.

json (unstable, requires -Zunstable-options): Emit machine-
readable JSON information about timing information.

Output Options
--target-dir directory
Directory for all generated artifacts and intermediate files. May also be
specified with the CARGO_TARGET_DIR environment variable, or the
build.target-dir config value. Defaults to target in the root of the
workspace.

Display Options
-v

--verbose

Use verbose output. May be specified twice for “very verbose” output
which includes extra output such as dependency warnings and build script
output. May also be specified with the term.verbose config value.
-q

--quiet

Do not print cargo log messages. May also be specified with the
term.quiet config value.
--color when
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on
the terminal.
always : Always display colors.
never : Never display colors.

May also be specified with the term.color config value.
--message-format fmt
The output format for diagnostic messages. Can be specified multiple times
and consists of comma-separated values. Valid values:

human (default): Display in a human-readable text format. Conflicts
with short and json .
short : Emit shorter, human-readable text messages. Conflicts with
human and json .
json : Emit JSON messages to stdout. See the reference for more
details. Conflicts with human and short .
json-diagnostic-short : Ensure the rendered field of JSON
messages contains the “short” rendering from rustc. Cannot be used
with human or short .
json-diagnostic-rendered-ansi : Ensure the rendered field of
JSON messages contains embedded ANSI color codes for respecting
rustc’s default color scheme. Cannot be used with human or short .
json-render-diagnostics : Instruct Cargo to not include rustc
diagnostics in JSON messages printed, but instead Cargo itself should
render the JSON diagnostics coming from rustc. Cargo’s own JSON
diagnostics and others coming from rustc are still emitted. Cannot be
used with human or short .

Manifest Options
--manifest-path path
Path to the Cargo.toml file. By default, Cargo searches for the Cargo.toml
file in the current directory or any parent directory.
--ignore-rust-version

Ignore rust-version specification in packages.
--locked

Asserts that the exact same dependencies and versions are used as when the
existing Cargo.lock file was originally generated. Cargo will exit with an
error when either of the following scenarios arises:

The lock file is missing.
Cargo attempted to change the lock file due to a different dependency
resolution.

It may be used in environments where deterministic builds are desired,
such as in CI pipelines.
--offline

Prevents Cargo from accessing the network for any reason. Without this
flag, Cargo will stop with an error if it needs to access the network and the
network is not available. With this flag, Cargo will attempt to proceed
without the network if possible.

Beware that this may result in different dependency resolution than
online mode. Cargo will restrict itself to crates that are downloaded locally,
even if there might be a newer version as indicated in the local copy of the
index. See the cargo-fetch(1) command to download dependencies before
going offline.

May also be specified with the net.offline config value.
--frozen

Equivalent to specifying both --locked and --offline.
--lockfile-path PATH
Changes the path of the lockfile from the default
(<workspace_root>/Cargo.lock) to PATH. PATH must end with
Cargo.lock (e.g. --lockfile-path /tmp/temporary-

lockfile/Cargo.lock). Note that providing --lockfile-path will ignore
existing lockfile at the default path, and instead will either use the lockfile
from PATH, or write a new lockfile into the provided PATH if it doesn’t
exist. This flag can be used to run most commands in read-only directories,
writing lockfile into the provided PATH.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #14421).

Common Options
+toolchain
If Cargo has been installed with rustup, and the first argument to cargo
begins with +, it will be interpreted as a rustup toolchain name (such as
+stable or +nightly). See the rustup documentation for more information
about how toolchain overrides work.

https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/14421
https://rust-lang.github.io/rustup/overrides.html

--config KEY=VALUE or PATH
Overrides a Cargo configuration value. The argument should be in TOML
syntax of KEY=VALUE, or provided as a path to an extra configuration file.
This flag may be specified multiple times. See the command-line overrides
section for more information.
-C PATH
Changes the current working directory before executing any specified
operations. This affects things like where cargo looks by default for the
project manifest (Cargo.toml), as well as the directories searched for
discovering .cargo/config.toml, for example. This option must appear
before the command name, for example cargo -C path/to/my-project
build.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #10098).
-h

--help

Prints help information.
-Z flag
Unstable (nightly-only) flags to Cargo. Run cargo -Z help for details.

Miscellaneous Options
-j N
--jobs N
Number of parallel jobs to run. May also be specified with the build.jobs
config value. Defaults to the number of logical CPUs. If negative, it sets the
maximum number of parallel jobs to the number of logical CPUs plus
provided value. If a string default is provided, it sets the value back to
defaults. Should not be 0.
--keep-going

Build as many crates in the dependency graph as possible, rather than
aborting the build on the first one that fails to build.

For example if the current package depends on dependencies fails and
works , one of which fails to build, cargo run -j1 may or may not build

https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/10098

the one that succeeds (depending on which one of the two builds Cargo
picked to run first), whereas cargo run -j1 --keep-going would
definitely run both builds, even if the one run first fails.

ENVIRONMENT
See the reference for details on environment variables that Cargo reads.

EXIT STATUS

0 : Cargo succeeded.
101 : Cargo failed to complete.

EXAMPLES

1. Build the local package and run its main target (assuming only one
binary):
cargo run

2. Run an example with extra arguments:
cargo run --example exname -- --exoption exarg1 exarg2

SEE ALSO
cargo(1), cargo-build(1)

cargo-rustc(1)

NAME
cargo-rustc --- Compile the current package, and pass extra options to

the compiler

SYNOPSIS
cargo rustc [options] [-- args]

DESCRIPTION
The specified target for the current package (or package specified by -p

if provided) will be compiled along with all of its dependencies. The
specified args will all be passed to the final compiler invocation, not any of
the dependencies. Note that the compiler will still unconditionally receive
arguments such as -L , --extern , and --crate-type , and the specified
args will simply be added to the compiler invocation.

See https://doc.rust-lang.org/rustc/index.html for documentation on rustc
flags.

This command requires that only one target is being compiled when
additional arguments are provided. If more than one target is available for
the current package the filters of --lib , --bin , etc, must be used to select
which target is compiled.

To pass flags to all compiler processes spawned by Cargo, use the
RUSTFLAGS environment variable or the build.rustflags config value.

https://doc.rust-lang.org/rustc/index.html

OPTIONS
Package Selection

By default, the package in the current working directory is selected. The
-p flag can be used to choose a different package in a workspace.
-p spec
--package spec
The package to build. See cargo-pkgid(1) for the SPEC format.

Target Selection
When no target selection options are given, cargo rustc will build all

binary and library targets of the selected package.
Binary targets are automatically built if there is an integration test or

benchmark being selected to build. This allows an integration test to
execute the binary to exercise and test its behavior. The
CARGO_BIN_EXE_<name> environment variable is set when the integration
test is built so that it can use the env macro to locate the executable.

Passing target selection flags will build only the specified targets.
Note that --bin , --example , --test and --bench flags also support

common Unix glob patterns like * , ? and [] . However, to avoid your
shell accidentally expanding glob patterns before Cargo handles them, you
must use single quotes or double quotes around each glob pattern.
--lib

Build the package’s library.
--bin name…
Build the specified binary. This flag may be specified multiple times and
supports common Unix glob patterns.
--bins

Build all binary targets.
--example name…
Build the specified example. This flag may be specified multiple times and
supports common Unix glob patterns.

https://doc.rust-lang.org/std/macro.env.html

--examples

Build all example targets.
--test name…
Build the specified integration test. This flag may be specified multiple
times and supports common Unix glob patterns.
--tests

Build all targets that have the test = true manifest flag set. By default this
includes the library and binaries built as unittests, and integration tests. Be
aware that this will also build any required dependencies, so the lib target
may be built twice (once as a unittest, and once as a dependency for
binaries, integration tests, etc.). Targets may be enabled or disabled by
setting the test flag in the manifest settings for the target.
--bench name…
Build the specified benchmark. This flag may be specified multiple times
and supports common Unix glob patterns.
--benches

Build all targets that have the bench = true manifest flag set. By default
this includes the library and binaries built as benchmarks, and bench targets.
Be aware that this will also build any required dependencies, so the lib
target may be built twice (once as a benchmark, and once as a dependency
for binaries, benchmarks, etc.). Targets may be enabled or disabled by
setting the bench flag in the manifest settings for the target.
--all-targets

Build all targets. This is equivalent to specifying --lib --bins --tests -
-benches --examples.

Feature Selection
The feature flags allow you to control which features are enabled. When

no feature options are given, the default feature is activated for every
selected package.

See the features documentation for more details.
-F features
--features features

Space or comma separated list of features to activate. Features of
workspace members may be enabled with package-name/feature-name
syntax. This flag may be specified multiple times, which enables all
specified features.
--all-features

Activate all available features of all selected packages.
--no-default-features

Do not activate the default feature of the selected packages.

Compilation Options
--target triple
Build for the given architecture. The default is the host architecture. The
general format of the triple is <arch><sub>-<vendor>-<sys>-<abi>. Run
rustc --print target-list for a list of supported targets. This flag may
be specified multiple times.

This may also be specified with the build.target config value.
Note that specifying this flag makes Cargo run in a different mode where

the target artifacts are placed in a separate directory. See the build cache
documentation for more details.
-r

--release

Build optimized artifacts with the release profile. See also the --profile
option for choosing a specific profile by name.
--profile name
Build with the given profile.

The rustc subcommand will treat the following named profiles with
special behaviors:

check — Builds in the same way as the cargo-check(1) command
with the dev profile.
test — Builds in the same way as the cargo-test(1) command,
enabling building in test mode which will enable tests and enable the
test cfg option. See rustc tests for more detail.

https://doc.rust-lang.org/rustc/tests/index.html

bench — Builds in the same was as the cargo-bench(1) command,
similar to the test profile.

See the reference for more details on profiles.
--timings=fmts
Output information how long each compilation takes, and track
concurrency information over time. Accepts an optional comma-separated
list of output formats; --timings without an argument will default to --
timings=html. Specifying an output format (rather than the default) is
unstable and requires -Zunstable-options. Valid output formats:

html (unstable, requires -Zunstable-options): Write a human-
readable file cargo-timing.html to the target/cargo-timings
directory with a report of the compilation. Also write a report to the
same directory with a timestamp in the filename if you want to look at
older runs. HTML output is suitable for human consumption only, and
does not provide machine-readable timing data.
json (unstable, requires -Zunstable-options): Emit machine-
readable JSON information about timing information.

--crate-type crate-type
Build for the given crate type. This flag accepts a comma-separated list of 1
or more crate types, of which the allowed values are the same as crate-
type field in the manifest for configuring a Cargo target. See crate-type
field for possible values.

If the manifest contains a list, and --crate-type is provided, the
command-line argument value will override what is in the manifest.

This flag only works when building a lib or example library target.

Output Options
--target-dir directory
Directory for all generated artifacts and intermediate files. May also be
specified with the CARGO_TARGET_DIR environment variable, or the
build.target-dir config value. Defaults to target in the root of the
workspace.

Display Options
-v

--verbose

Use verbose output. May be specified twice for “very verbose” output
which includes extra output such as dependency warnings and build script
output. May also be specified with the term.verbose config value.
-q

--quiet

Do not print cargo log messages. May also be specified with the
term.quiet config value.
--color when
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on
the terminal.
always : Always display colors.
never : Never display colors.

May also be specified with the term.color config value.
--message-format fmt
The output format for diagnostic messages. Can be specified multiple times
and consists of comma-separated values. Valid values:

human (default): Display in a human-readable text format. Conflicts
with short and json .
short : Emit shorter, human-readable text messages. Conflicts with
human and json .
json : Emit JSON messages to stdout. See the reference for more
details. Conflicts with human and short .
json-diagnostic-short : Ensure the rendered field of JSON
messages contains the “short” rendering from rustc. Cannot be used
with human or short .

json-diagnostic-rendered-ansi : Ensure the rendered field of
JSON messages contains embedded ANSI color codes for respecting
rustc’s default color scheme. Cannot be used with human or short .
json-render-diagnostics : Instruct Cargo to not include rustc
diagnostics in JSON messages printed, but instead Cargo itself should
render the JSON diagnostics coming from rustc. Cargo’s own JSON
diagnostics and others coming from rustc are still emitted. Cannot be
used with human or short .

Manifest Options
--manifest-path path
Path to the Cargo.toml file. By default, Cargo searches for the Cargo.toml
file in the current directory or any parent directory.
--ignore-rust-version

Ignore rust-version specification in packages.
--locked

Asserts that the exact same dependencies and versions are used as when the
existing Cargo.lock file was originally generated. Cargo will exit with an
error when either of the following scenarios arises:

The lock file is missing.
Cargo attempted to change the lock file due to a different dependency
resolution.

It may be used in environments where deterministic builds are desired,
such as in CI pipelines.
--offline

Prevents Cargo from accessing the network for any reason. Without this
flag, Cargo will stop with an error if it needs to access the network and the
network is not available. With this flag, Cargo will attempt to proceed
without the network if possible.

Beware that this may result in different dependency resolution than
online mode. Cargo will restrict itself to crates that are downloaded locally,
even if there might be a newer version as indicated in the local copy of the

index. See the cargo-fetch(1) command to download dependencies before
going offline.

May also be specified with the net.offline config value.
--frozen

Equivalent to specifying both --locked and --offline.
--lockfile-path PATH
Changes the path of the lockfile from the default
(<workspace_root>/Cargo.lock) to PATH. PATH must end with
Cargo.lock (e.g. --lockfile-path /tmp/temporary-

lockfile/Cargo.lock). Note that providing --lockfile-path will ignore
existing lockfile at the default path, and instead will either use the lockfile
from PATH, or write a new lockfile into the provided PATH if it doesn’t
exist. This flag can be used to run most commands in read-only directories,
writing lockfile into the provided PATH.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #14421).

Common Options
+toolchain
If Cargo has been installed with rustup, and the first argument to cargo
begins with +, it will be interpreted as a rustup toolchain name (such as
+stable or +nightly). See the rustup documentation for more information
about how toolchain overrides work.
--config KEY=VALUE or PATH
Overrides a Cargo configuration value. The argument should be in TOML
syntax of KEY=VALUE, or provided as a path to an extra configuration file.
This flag may be specified multiple times. See the command-line overrides
section for more information.
-C PATH
Changes the current working directory before executing any specified
operations. This affects things like where cargo looks by default for the
project manifest (Cargo.toml), as well as the directories searched for
discovering .cargo/config.toml, for example. This option must appear

https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/14421
https://rust-lang.github.io/rustup/overrides.html

before the command name, for example cargo -C path/to/my-project
build.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #10098).
-h

--help

Prints help information.
-Z flag
Unstable (nightly-only) flags to Cargo. Run cargo -Z help for details.

Miscellaneous Options
-j N
--jobs N
Number of parallel jobs to run. May also be specified with the build.jobs
config value. Defaults to the number of logical CPUs. If negative, it sets the
maximum number of parallel jobs to the number of logical CPUs plus
provided value. If a string default is provided, it sets the value back to
defaults. Should not be 0.
--keep-going

Build as many crates in the dependency graph as possible, rather than
aborting the build on the first one that fails to build.

For example if the current package depends on dependencies fails and
works , one of which fails to build, cargo rustc -j1 may or may not
build the one that succeeds (depending on which one of the two builds
Cargo picked to run first), whereas cargo rustc -j1 --keep-going

would definitely run both builds, even if the one run first fails.
--future-incompat-report

Displays a future-incompat report for any future-incompatible warnings
produced during execution of this command

See cargo-report(1)

https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/10098

ENVIRONMENT
See the reference for details on environment variables that Cargo reads.

EXIT STATUS

0 : Cargo succeeded.
101 : Cargo failed to complete.

EXAMPLES

1. Check if your package (not including dependencies) uses unsafe
code:
cargo rustc --lib -- -D unsafe-code

2. Try an experimental flag on the nightly compiler, such as this which
prints the size of every type:
cargo rustc --lib -- -Z print-type-sizes

3. Override crate-type field in Cargo.toml with command-line
option:
cargo rustc --lib --crate-type lib,cdylib

SEE ALSO
cargo(1), cargo-build(1), rustc(1)

https://doc.rust-lang.org/rustc/index.html

cargo-rustdoc(1)

NAME
cargo-rustdoc --- Build a package's documentation, using specified

custom flags

SYNOPSIS
cargo rustdoc [options] [-- args]

DESCRIPTION
The specified target for the current package (or package specified by -p

if provided) will be documented with the specified args being passed to the
final rustdoc invocation. Dependencies will not be documented as part of
this command. Note that rustdoc will still unconditionally receive
arguments such as -L , --extern , and --crate-type , and the specified
args will simply be added to the rustdoc invocation.

See https://doc.rust-lang.org/rustdoc/index.html for documentation on
rustdoc flags.

This command requires that only one target is being compiled when
additional arguments are provided. If more than one target is available for
the current package the filters of --lib , --bin , etc, must be used to select
which target is compiled.

To pass flags to all rustdoc processes spawned by Cargo, use the
RUSTDOCFLAGS environment variable or the build.rustdocflags config
value.

https://doc.rust-lang.org/rustdoc/index.html

OPTIONS
Documentation Options
--open

Open the docs in a browser after building them. This will use your default
browser unless you define another one in the BROWSER environment variable
or use the doc.browser configuration option.

Package Selection
By default, the package in the current working directory is selected. The

-p flag can be used to choose a different package in a workspace.
-p spec
--package spec
The package to document. See cargo-pkgid(1) for the SPEC format.

Target Selection
When no target selection options are given, cargo rustdoc will

document all binary and library targets of the selected package. The binary
will be skipped if its name is the same as the lib target. Binaries are skipped
if they have required-features that are missing.

Passing target selection flags will document only the specified targets.
Note that --bin , --example , --test and --bench flags also support

common Unix glob patterns like * , ? and [] . However, to avoid your
shell accidentally expanding glob patterns before Cargo handles them, you
must use single quotes or double quotes around each glob pattern.
--lib

Document the package’s library.
--bin name…
Document the specified binary. This flag may be specified multiple times
and supports common Unix glob patterns.
--bins

Document all binary targets.

--example name…
Document the specified example. This flag may be specified multiple times
and supports common Unix glob patterns.
--examples

Document all example targets.
--test name…
Document the specified integration test. This flag may be specified multiple
times and supports common Unix glob patterns.
--tests

Document all targets that have the test = true manifest flag set. By
default this includes the library and binaries built as unittests, and
integration tests. Be aware that this will also build any required
dependencies, so the lib target may be built twice (once as a unittest, and
once as a dependency for binaries, integration tests, etc.). Targets may be
enabled or disabled by setting the test flag in the manifest settings for the
target.
--bench name…
Document the specified benchmark. This flag may be specified multiple
times and supports common Unix glob patterns.
--benches

Document all targets that have the bench = true manifest flag set. By
default this includes the library and binaries built as benchmarks, and bench
targets. Be aware that this will also build any required dependencies, so the
lib target may be built twice (once as a benchmark, and once as a
dependency for binaries, benchmarks, etc.). Targets may be enabled or
disabled by setting the bench flag in the manifest settings for the target.
--all-targets

Document all targets. This is equivalent to specifying --lib --bins --
tests --benches --examples.

Feature Selection
The feature flags allow you to control which features are enabled. When

no feature options are given, the default feature is activated for every
selected package.

See the features documentation for more details.
-F features
--features features
Space or comma separated list of features to activate. Features of
workspace members may be enabled with package-name/feature-name
syntax. This flag may be specified multiple times, which enables all
specified features.
--all-features

Activate all available features of all selected packages.
--no-default-features

Do not activate the default feature of the selected packages.

Compilation Options
--target triple
Document for the given architecture. The default is the host architecture.
The general format of the triple is <arch><sub>-<vendor>-<sys>-<abi>.
Run rustc --print target-list for a list of supported targets. This flag
may be specified multiple times.

This may also be specified with the build.target config value.
Note that specifying this flag makes Cargo run in a different mode where

the target artifacts are placed in a separate directory. See the build cache
documentation for more details.
-r

--release

Document optimized artifacts with the release profile. See also the --
profile option for choosing a specific profile by name.
--profile name
Document with the given profile. See the reference for more details on
profiles.
--timings=fmts
Output information how long each compilation takes, and track
concurrency information over time. Accepts an optional comma-separated
list of output formats; --timings without an argument will default to --

timings=html. Specifying an output format (rather than the default) is
unstable and requires -Zunstable-options. Valid output formats:

html (unstable, requires -Zunstable-options): Write a human-
readable file cargo-timing.html to the target/cargo-timings
directory with a report of the compilation. Also write a report to the
same directory with a timestamp in the filename if you want to look at
older runs. HTML output is suitable for human consumption only, and
does not provide machine-readable timing data.
json (unstable, requires -Zunstable-options): Emit machine-
readable JSON information about timing information.

Output Options
--target-dir directory
Directory for all generated artifacts and intermediate files. May also be
specified with the CARGO_TARGET_DIR environment variable, or the
build.target-dir config value. Defaults to target in the root of the
workspace.

Display Options
-v

--verbose

Use verbose output. May be specified twice for “very verbose” output
which includes extra output such as dependency warnings and build script
output. May also be specified with the term.verbose config value.
-q

--quiet

Do not print cargo log messages. May also be specified with the
term.quiet config value.
--color when
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on
the terminal.

always : Always display colors.
never : Never display colors.

May also be specified with the term.color config value.
--message-format fmt
The output format for diagnostic messages. Can be specified multiple times
and consists of comma-separated values. Valid values:

human (default): Display in a human-readable text format. Conflicts
with short and json .
short : Emit shorter, human-readable text messages. Conflicts with
human and json .
json : Emit JSON messages to stdout. See the reference for more
details. Conflicts with human and short .
json-diagnostic-short : Ensure the rendered field of JSON
messages contains the “short” rendering from rustc. Cannot be used
with human or short .
json-diagnostic-rendered-ansi : Ensure the rendered field of
JSON messages contains embedded ANSI color codes for respecting
rustc’s default color scheme. Cannot be used with human or short .
json-render-diagnostics : Instruct Cargo to not include rustc
diagnostics in JSON messages printed, but instead Cargo itself should
render the JSON diagnostics coming from rustc. Cargo’s own JSON
diagnostics and others coming from rustc are still emitted. Cannot be
used with human or short .

Manifest Options
--manifest-path path
Path to the Cargo.toml file. By default, Cargo searches for the Cargo.toml
file in the current directory or any parent directory.
--ignore-rust-version

Ignore rust-version specification in packages.
--locked

Asserts that the exact same dependencies and versions are used as when the
existing Cargo.lock file was originally generated. Cargo will exit with an
error when either of the following scenarios arises:

The lock file is missing.
Cargo attempted to change the lock file due to a different dependency
resolution.

It may be used in environments where deterministic builds are desired,
such as in CI pipelines.
--offline

Prevents Cargo from accessing the network for any reason. Without this
flag, Cargo will stop with an error if it needs to access the network and the
network is not available. With this flag, Cargo will attempt to proceed
without the network if possible.

Beware that this may result in different dependency resolution than
online mode. Cargo will restrict itself to crates that are downloaded locally,
even if there might be a newer version as indicated in the local copy of the
index. See the cargo-fetch(1) command to download dependencies before
going offline.

May also be specified with the net.offline config value.
--frozen

Equivalent to specifying both --locked and --offline.
--lockfile-path PATH
Changes the path of the lockfile from the default
(<workspace_root>/Cargo.lock) to PATH. PATH must end with
Cargo.lock (e.g. --lockfile-path /tmp/temporary-

lockfile/Cargo.lock). Note that providing --lockfile-path will ignore
existing lockfile at the default path, and instead will either use the lockfile
from PATH, or write a new lockfile into the provided PATH if it doesn’t
exist. This flag can be used to run most commands in read-only directories,
writing lockfile into the provided PATH.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #14421).

https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/14421

Common Options
+toolchain
If Cargo has been installed with rustup, and the first argument to cargo
begins with +, it will be interpreted as a rustup toolchain name (such as
+stable or +nightly). See the rustup documentation for more information
about how toolchain overrides work.
--config KEY=VALUE or PATH
Overrides a Cargo configuration value. The argument should be in TOML
syntax of KEY=VALUE, or provided as a path to an extra configuration file.
This flag may be specified multiple times. See the command-line overrides
section for more information.
-C PATH
Changes the current working directory before executing any specified
operations. This affects things like where cargo looks by default for the
project manifest (Cargo.toml), as well as the directories searched for
discovering .cargo/config.toml, for example. This option must appear
before the command name, for example cargo -C path/to/my-project
build.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #10098).
-h

--help

Prints help information.
-Z flag
Unstable (nightly-only) flags to Cargo. Run cargo -Z help for details.

Miscellaneous Options
-j N
--jobs N
Number of parallel jobs to run. May also be specified with the build.jobs
config value. Defaults to the number of logical CPUs. If negative, it sets the
maximum number of parallel jobs to the number of logical CPUs plus

https://rust-lang.github.io/rustup/overrides.html
https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/10098

provided value. If a string default is provided, it sets the value back to
defaults. Should not be 0.
--keep-going

Build as many crates in the dependency graph as possible, rather than
aborting the build on the first one that fails to build.

For example if the current package depends on dependencies fails and
works , one of which fails to build, cargo rustdoc -j1 may or may not
build the one that succeeds (depending on which one of the two builds
Cargo picked to run first), whereas cargo rustdoc -j1 --keep-going
would definitely run both builds, even if the one run first fails.
--output-format

The output type for the documentation emitted. Valid values:

html (default): Emit the documentation in HTML format.
json : Emit the documentation in the experimental JSON format.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable.

https://doc.rust-lang.org/nightly/nightly-rustc/rustdoc_json_types
https://doc.rust-lang.org/book/appendix-07-nightly-rust.html

ENVIRONMENT
See the reference for details on environment variables that Cargo reads.

EXIT STATUS

0 : Cargo succeeded.
101 : Cargo failed to complete.

EXAMPLES

1. Build documentation with custom CSS included from a given file:
cargo rustdoc --lib -- --extend-css extra.css

SEE ALSO
cargo(1), cargo-doc(1), rustdoc(1)

https://doc.rust-lang.org/rustdoc/index.html

cargo-test(1)

NAME
cargo-test --- Execute unit and integration tests of a package

SYNOPSIS
cargo test [options] [testname] [-- test-options]

DESCRIPTION
Compile and execute unit, integration, and documentation tests.
The test filtering argument TESTNAME and all the arguments following

the two dashes (--) are passed to the test binaries and thus to libtest (rustc's
built in unit-test and micro-benchmarking framework). If you're passing
arguments to both Cargo and the binary, the ones after -- go to the binary,
the ones before go to Cargo. For details about libtest's arguments see the
output of cargo test -- --help and check out the rustc book's chapter
on how tests work at https://doc.rust-lang.org/rustc/tests/index.html.

As an example, this will filter for tests with foo in their name and run
them on 3 threads in parallel:
cargo test foo -- --test-threads 3

Tests are built with the --test option to rustc which creates a special
executable by linking your code with libtest. The executable automatically
runs all functions annotated with the #[test] attribute in multiple threads.
#[bench] annotated functions will also be run with one iteration to verify
that they are functional.

If the package contains multiple test targets, each target compiles to a
special executable as aforementioned, and then is run serially.

The libtest harness may be disabled by setting harness = false in the
target manifest settings, in which case your code will need to provide its
own main function to handle running tests.

Documentation tests
Documentation tests are also run by default, which is handled by

rustdoc . It extracts code samples from documentation comments of the
library target, and then executes them.

Different from normal test targets, each code block compiles to a doctest
executable on the fly with rustc . These executables run in parallel in
separate processes. The compilation of a code block is in fact a part of test
function controlled by libtest, so some options such as --jobs might not

https://doc.rust-lang.org/rustc/tests/index.html

take effect. Note that this execution model of doctests is not guaranteed and
may change in the future; beware of depending on it.

See the rustdoc book for more information on writing doc tests.

Working directory of tests
The working directory when running each unit and integration test is set

to the root directory of the package the test belongs to. Setting the working
directory of tests to the package's root directory makes it possible for tests
to reliably access the package's files using relative paths, regardless from
where cargo test was executed from.

For documentation tests, the working directory when invoking rustdoc
is set to the workspace root directory, and is also the directory rustdoc
uses as the compilation directory of each documentation test. The working
directory when running each documentation test is set to the root directory
of the package the test belongs to, and is controlled via rustdoc 's --test-
run-directory option.

https://doc.rust-lang.org/rustdoc/

OPTIONS
Test Options
--no-run

Compile, but don’t run tests.
--no-fail-fast

Run all tests regardless of failure. Without this flag, Cargo will exit after the
first executable fails. The Rust test harness will run all tests within the
executable to completion, this flag only applies to the executable as a
whole.

Package Selection
By default, when no package selection options are given, the packages

selected depend on the selected manifest file (based on the current working
directory if --manifest-path is not given). If the manifest is the root of a
workspace then the workspaces default members are selected, otherwise
only the package defined by the manifest will be selected.

The default members of a workspace can be set explicitly with the
workspace.default-members key in the root manifest. If this is not set, a
virtual workspace will include all workspace members (equivalent to
passing --workspace), and a non-virtual workspace will include only the
root crate itself.
-p spec…
--package spec…
Test only the specified packages. See cargo-pkgid(1) for the SPEC format.
This flag may be specified multiple times and supports common Unix glob
patterns like *, ? and []. However, to avoid your shell accidentally
expanding glob patterns before Cargo handles them, you must use single
quotes or double quotes around each pattern.
--workspace

Test all members in the workspace.
--all

Deprecated alias for --workspace.

--exclude SPEC…
Exclude the specified packages. Must be used in conjunction with the --
workspace flag. This flag may be specified multiple times and supports
common Unix glob patterns like *, ? and []. However, to avoid your shell
accidentally expanding glob patterns before Cargo handles them, you must
use single quotes or double quotes around each pattern.

Target Selection
When no target selection options are given, cargo test will build the

following targets of the selected packages:

lib --- used to link with binaries, examples, integration tests, and doc
tests
bins (only if integration tests are built and required features are
available)
examples --- to ensure they compile
lib as a unit test
bins as unit tests
integration tests
doc tests for the lib target

The default behavior can be changed by setting the test flag for the
target in the manifest settings. Setting examples to test = true will build
and run the example as a test, replacing the example's main function with
the libtest harness. If you don't want the main function replaced, also
include harness = false , in which case the example will be built and
executed as-is.

Setting targets to test = false will stop them from being tested by
default. Target selection options that take a target by name (such as --
example foo) ignore the test flag and will always test the given target.

Doc tests for libraries may be disabled by setting doctest = false for
the library in the manifest.

See Configuring a target for more information on per-target settings.

Binary targets are automatically built if there is an integration test or
benchmark being selected to test. This allows an integration test to execute
the binary to exercise and test its behavior. The CARGO_BIN_EXE_<name>
environment variable is set when the integration test is built so that it can
use the env macro to locate the executable.

Passing target selection flags will test only the specified targets.
Note that --bin , --example , --test and --bench flags also support

common Unix glob patterns like * , ? and [] . However, to avoid your
shell accidentally expanding glob patterns before Cargo handles them, you
must use single quotes or double quotes around each glob pattern.
--lib

Test the package’s library.
--bin name…
Test the specified binary. This flag may be specified multiple times and
supports common Unix glob patterns.
--bins

Test all binary targets.
--example name…
Test the specified example. This flag may be specified multiple times and
supports common Unix glob patterns.
--examples

Test all example targets.
--test name…
Test the specified integration test. This flag may be specified multiple times
and supports common Unix glob patterns.
--tests

Test all targets that have the test = true manifest flag set. By default this
includes the library and binaries built as unittests, and integration tests. Be
aware that this will also build any required dependencies, so the lib target
may be built twice (once as a unittest, and once as a dependency for
binaries, integration tests, etc.). Targets may be enabled or disabled by
setting the test flag in the manifest settings for the target.
--bench name…

https://doc.rust-lang.org/std/macro.env.html

Test the specified benchmark. This flag may be specified multiple times and
supports common Unix glob patterns.
--benches

Test all targets that have the bench = true manifest flag set. By default this
includes the library and binaries built as benchmarks, and bench targets. Be
aware that this will also build any required dependencies, so the lib target
may be built twice (once as a benchmark, and once as a dependency for
binaries, benchmarks, etc.). Targets may be enabled or disabled by setting
the bench flag in the manifest settings for the target.
--all-targets

Test all targets. This is equivalent to specifying --lib --bins --tests --
benches --examples.
--doc

Test only the library’s documentation. This cannot be mixed with other
target options.

Feature Selection
The feature flags allow you to control which features are enabled. When

no feature options are given, the default feature is activated for every
selected package.

See the features documentation for more details.
-F features
--features features
Space or comma separated list of features to activate. Features of
workspace members may be enabled with package-name/feature-name
syntax. This flag may be specified multiple times, which enables all
specified features.
--all-features

Activate all available features of all selected packages.
--no-default-features

Do not activate the default feature of the selected packages.

Compilation Options

--target triple
Test for the given architecture. The default is the host architecture. The
general format of the triple is <arch><sub>-<vendor>-<sys>-<abi>. Run
rustc --print target-list for a list of supported targets. This flag may
be specified multiple times.

This may also be specified with the build.target config value.
Note that specifying this flag makes Cargo run in a different mode where

the target artifacts are placed in a separate directory. See the build cache
documentation for more details.
-r

--release

Test optimized artifacts with the release profile. See also the --profile
option for choosing a specific profile by name.
--profile name
Test with the given profile. See the reference for more details on profiles.
--timings=fmts
Output information how long each compilation takes, and track
concurrency information over time. Accepts an optional comma-separated
list of output formats; --timings without an argument will default to --
timings=html. Specifying an output format (rather than the default) is
unstable and requires -Zunstable-options. Valid output formats:

html (unstable, requires -Zunstable-options): Write a human-
readable file cargo-timing.html to the target/cargo-timings
directory with a report of the compilation. Also write a report to the
same directory with a timestamp in the filename if you want to look at
older runs. HTML output is suitable for human consumption only, and
does not provide machine-readable timing data.
json (unstable, requires -Zunstable-options): Emit machine-
readable JSON information about timing information.

Output Options
--target-dir directory

Directory for all generated artifacts and intermediate files. May also be
specified with the CARGO_TARGET_DIR environment variable, or the
build.target-dir config value. Defaults to target in the root of the
workspace.

Display Options
By default the Rust test harness hides output from test execution to keep

results readable. Test output can be recovered (e.g., for debugging) by
passing --nocapture to the test binaries:
cargo test -- --nocapture

-v

--verbose

Use verbose output. May be specified twice for “very verbose” output
which includes extra output such as dependency warnings and build script
output. May also be specified with the term.verbose config value.
-q

--quiet

Do not print cargo log messages. May also be specified with the
term.quiet config value.
--color when
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on
the terminal.
always : Always display colors.
never : Never display colors.

May also be specified with the term.color config value.
--message-format fmt
The output format for diagnostic messages. Can be specified multiple times
and consists of comma-separated values. Valid values:

human (default): Display in a human-readable text format. Conflicts
with short and json .

short : Emit shorter, human-readable text messages. Conflicts with
human and json .
json : Emit JSON messages to stdout. See the reference for more
details. Conflicts with human and short .
json-diagnostic-short : Ensure the rendered field of JSON
messages contains the “short” rendering from rustc. Cannot be used
with human or short .
json-diagnostic-rendered-ansi : Ensure the rendered field of
JSON messages contains embedded ANSI color codes for respecting
rustc’s default color scheme. Cannot be used with human or short .
json-render-diagnostics : Instruct Cargo to not include rustc
diagnostics in JSON messages printed, but instead Cargo itself should
render the JSON diagnostics coming from rustc. Cargo’s own JSON
diagnostics and others coming from rustc are still emitted. Cannot be
used with human or short .

Manifest Options
--manifest-path path
Path to the Cargo.toml file. By default, Cargo searches for the Cargo.toml
file in the current directory or any parent directory.
--ignore-rust-version

Ignore rust-version specification in packages.
--locked

Asserts that the exact same dependencies and versions are used as when the
existing Cargo.lock file was originally generated. Cargo will exit with an
error when either of the following scenarios arises:

The lock file is missing.
Cargo attempted to change the lock file due to a different dependency
resolution.

It may be used in environments where deterministic builds are desired,
such as in CI pipelines.
--offline

Prevents Cargo from accessing the network for any reason. Without this
flag, Cargo will stop with an error if it needs to access the network and the
network is not available. With this flag, Cargo will attempt to proceed
without the network if possible.

Beware that this may result in different dependency resolution than
online mode. Cargo will restrict itself to crates that are downloaded locally,
even if there might be a newer version as indicated in the local copy of the
index. See the cargo-fetch(1) command to download dependencies before
going offline.

May also be specified with the net.offline config value.
--frozen

Equivalent to specifying both --locked and --offline.
--lockfile-path PATH
Changes the path of the lockfile from the default
(<workspace_root>/Cargo.lock) to PATH. PATH must end with
Cargo.lock (e.g. --lockfile-path /tmp/temporary-

lockfile/Cargo.lock). Note that providing --lockfile-path will ignore
existing lockfile at the default path, and instead will either use the lockfile
from PATH, or write a new lockfile into the provided PATH if it doesn’t
exist. This flag can be used to run most commands in read-only directories,
writing lockfile into the provided PATH.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #14421).

Common Options
+toolchain
If Cargo has been installed with rustup, and the first argument to cargo
begins with +, it will be interpreted as a rustup toolchain name (such as
+stable or +nightly). See the rustup documentation for more information
about how toolchain overrides work.
--config KEY=VALUE or PATH
Overrides a Cargo configuration value. The argument should be in TOML
syntax of KEY=VALUE, or provided as a path to an extra configuration file.

https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/14421
https://rust-lang.github.io/rustup/overrides.html

This flag may be specified multiple times. See the command-line overrides
section for more information.
-C PATH
Changes the current working directory before executing any specified
operations. This affects things like where cargo looks by default for the
project manifest (Cargo.toml), as well as the directories searched for
discovering .cargo/config.toml, for example. This option must appear
before the command name, for example cargo -C path/to/my-project
build.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #10098).
-h

--help

Prints help information.
-Z flag
Unstable (nightly-only) flags to Cargo. Run cargo -Z help for details.

Miscellaneous Options
The --jobs argument affects the building of the test executable but

does not affect how many threads are used when running the tests. The Rust
test harness includes an option to control the number of threads used:
cargo test -j 2 -- --test-threads=2

-j N
--jobs N
Number of parallel jobs to run. May also be specified with the build.jobs
config value. Defaults to the number of logical CPUs. If negative, it sets the
maximum number of parallel jobs to the number of logical CPUs plus
provided value. If a string default is provided, it sets the value back to
defaults. Should not be 0.
--future-incompat-report

Displays a future-incompat report for any future-incompatible warnings
produced during execution of this command

https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/10098

See cargo-report(1)
While cargo test involves compilation, it does not provide a --keep-

going flag. Use --no-fail-fast to run as many tests as possible without
stopping at the first failure. To "compile" as many tests as possible, use --
tests to build test binaries separately. For example:
cargo build --tests --keep-going
cargo test --tests --no-fail-fast

ENVIRONMENT
See the reference for details on environment variables that Cargo reads.

EXIT STATUS

0 : Cargo succeeded.
101 : Cargo failed to complete.

EXAMPLES

1. Execute all the unit and integration tests of the current package:
cargo test

2. Run only tests whose names match against a filter string:
cargo test name_filter

3. Run only a specific test within a specific integration test:
cargo test --test int_test_name -- modname::test_name

SEE ALSO
cargo(1), cargo-bench(1), types of tests, how to write tests

https://doc.rust-lang.org/rustc/tests/index.html

Manifest Commands
cargo add
cargo_info
cargo generate-lockfile
cargo locate-project
cargo metadata
cargo pkgid
cargo remove
cargo tree
cargo update
cargo vendor

clbr://internal.invalid/book/OEBPS/commands/cargo-add.md
clbr://internal.invalid/book/OEBPS/commands/cargo-info.md
clbr://internal.invalid/book/OEBPS/commands/cargo-generate-lockfile.md
clbr://internal.invalid/book/OEBPS/commands/cargo-locate-project.md
clbr://internal.invalid/book/OEBPS/commands/cargo-metadata.md
clbr://internal.invalid/book/OEBPS/commands/cargo-pkgid.md
clbr://internal.invalid/book/OEBPS/commands/cargo-remove.md
clbr://internal.invalid/book/OEBPS/commands/cargo-tree.md
clbr://internal.invalid/book/OEBPS/commands/cargo-update.md
clbr://internal.invalid/book/OEBPS/commands/cargo-vendor.md

cargo-add(1)

NAME
cargo-add --- Add dependencies to a Cargo.toml manifest file

SYNOPSIS
cargo add [options] crate...

cargo add [options] --path path
cargo add [options] --git url [crate...]

DESCRIPTION
This command can add or modify dependencies.
The source for the dependency can be specified with:

crate @ version: Fetch from a registry with a version constraint of
"version"
--path path: Fetch from the specified path
--git url: Pull from a git repo at url

If no source is specified, then a best effort will be made to select one,
including:

Existing dependencies in other tables (like dev-dependencies)
Workspace members
Latest release in the registry

When you add a package that is already present, the existing entry will
be updated with the flags specified.

Upon successful invocation, the enabled (+) and disabled (-) features
of the specified dependency will be listed in the command's output.

OPTIONS
Source options
--git url
Git URL to add the specified crate from.
--branch branch
Branch to use when adding from git.
--tag tag
Tag to use when adding from git.
--rev sha
Specific commit to use when adding from git.
--path path
Filesystem path to local crate to add.
--base base
The path base to use when adding a local crate.

Unstable (nightly-only)
--registry registry
Name of the registry to use. Registry names are defined in Cargo config
files. If not specified, the default registry is used, which is defined by the
registry.default config key which defaults to crates-io.

Section options
--dev

Add as a development dependency.
--build

Add as a build dependency.
--target target
Add as a dependency to the given target platform.

To avoid unexpected shell expansions, you may use quotes around each
target, e.g., --target 'cfg(unix)' .

Dependency options

--dry-run

Don’t actually write the manifest
--rename name
Rename the dependency.
--optional

Mark the dependency as optional.
--no-optional

Mark the dependency as required.
--public

Mark the dependency as public.
The dependency can be referenced in your library’s public API.
Unstable (nightly-only)

--no-public

Mark the dependency as private.
While you can use the crate in your implementation, it cannot be

referenced in your public API.
Unstable (nightly-only)

--no-default-features

Disable the default features.
--default-features

Re-enable the default features.
-F features
--features features
Space or comma separated list of features to activate. When adding multiple
crates, the features for a specific crate may be enabled with package-
name/feature-name syntax. This flag may be specified multiple times,
which enables all specified features.

Display Options
-v

--verbose

Use verbose output. May be specified twice for “very verbose” output
which includes extra output such as dependency warnings and build script

output. May also be specified with the term.verbose config value.
-q

--quiet

Do not print cargo log messages. May also be specified with the
term.quiet config value.
--color when
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on
the terminal.
always : Always display colors.
never : Never display colors.

May also be specified with the term.color config value.

Manifest Options
--manifest-path path
Path to the Cargo.toml file. By default, Cargo searches for the Cargo.toml
file in the current directory or any parent directory.
-p spec
--package spec
Add dependencies to only the specified package.
--ignore-rust-version

Ignore rust-version specification in packages.
--locked

Asserts that the exact same dependencies and versions are used as when the
existing Cargo.lock file was originally generated. Cargo will exit with an
error when either of the following scenarios arises:

The lock file is missing.
Cargo attempted to change the lock file due to a different dependency
resolution.

It may be used in environments where deterministic builds are desired,
such as in CI pipelines.

--offline

Prevents Cargo from accessing the network for any reason. Without this
flag, Cargo will stop with an error if it needs to access the network and the
network is not available. With this flag, Cargo will attempt to proceed
without the network if possible.

Beware that this may result in different dependency resolution than
online mode. Cargo will restrict itself to crates that are downloaded locally,
even if there might be a newer version as indicated in the local copy of the
index. See the cargo-fetch(1) command to download dependencies before
going offline.

May also be specified with the net.offline config value.
--frozen

Equivalent to specifying both --locked and --offline.
--lockfile-path PATH
Changes the path of the lockfile from the default
(<workspace_root>/Cargo.lock) to PATH. PATH must end with
Cargo.lock (e.g. --lockfile-path /tmp/temporary-

lockfile/Cargo.lock). Note that providing --lockfile-path will ignore
existing lockfile at the default path, and instead will either use the lockfile
from PATH, or write a new lockfile into the provided PATH if it doesn’t
exist. This flag can be used to run most commands in read-only directories,
writing lockfile into the provided PATH.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #14421).

Common Options
+toolchain
If Cargo has been installed with rustup, and the first argument to cargo
begins with +, it will be interpreted as a rustup toolchain name (such as
+stable or +nightly). See the rustup documentation for more information
about how toolchain overrides work.
--config KEY=VALUE or PATH

https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/14421
https://rust-lang.github.io/rustup/overrides.html

Overrides a Cargo configuration value. The argument should be in TOML
syntax of KEY=VALUE, or provided as a path to an extra configuration file.
This flag may be specified multiple times. See the command-line overrides
section for more information.
-C PATH
Changes the current working directory before executing any specified
operations. This affects things like where cargo looks by default for the
project manifest (Cargo.toml), as well as the directories searched for
discovering .cargo/config.toml, for example. This option must appear
before the command name, for example cargo -C path/to/my-project
build.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #10098).
-h

--help

Prints help information.
-Z flag
Unstable (nightly-only) flags to Cargo. Run cargo -Z help for details.

https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/10098

ENVIRONMENT
See the reference for details on environment variables that Cargo reads.

EXIT STATUS

0 : Cargo succeeded.
101 : Cargo failed to complete.

EXAMPLES

1. Add regex as a dependency
cargo add regex

2. Add trybuild as a dev-dependency
cargo add --dev trybuild

3. Add an older version of nom as a dependency
cargo add nom@5

4. Add support for serializing data structures to json with derive s
cargo add serde serde_json -F serde/derive

5. Add windows as a platform specific dependency on cfg(windows)
cargo add windows --target 'cfg(windows)'

SEE ALSO
cargo(1), cargo-remove(1)

cargo-generate-lockfile(1)

NAME
cargo-generate-lockfile --- Generate the lockfile for a package

SYNOPSIS
cargo generate-lockfile [options]

DESCRIPTION
This command will create the Cargo.lock lockfile for the current

package or workspace. If the lockfile already exists, it will be rebuilt with
the latest available version of every package.

See also cargo-update(1) which is also capable of creating a
Cargo.lock lockfile and has more options for controlling update behavior.

OPTIONS
Display Options
-v

--verbose

Use verbose output. May be specified twice for “very verbose” output
which includes extra output such as dependency warnings and build script
output. May also be specified with the term.verbose config value.
-q

--quiet

Do not print cargo log messages. May also be specified with the
term.quiet config value.
--color when
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on
the terminal.
always : Always display colors.
never : Never display colors.

May also be specified with the term.color config value.

Manifest Options
--manifest-path path
Path to the Cargo.toml file. By default, Cargo searches for the Cargo.toml
file in the current directory or any parent directory.
--ignore-rust-version

Ignore rust-version specification in packages.
--locked

Asserts that the exact same dependencies and versions are used as when the
existing Cargo.lock file was originally generated. Cargo will exit with an
error when either of the following scenarios arises:

The lock file is missing.

Cargo attempted to change the lock file due to a different dependency
resolution.

It may be used in environments where deterministic builds are desired,
such as in CI pipelines.
--offline

Prevents Cargo from accessing the network for any reason. Without this
flag, Cargo will stop with an error if it needs to access the network and the
network is not available. With this flag, Cargo will attempt to proceed
without the network if possible.

Beware that this may result in different dependency resolution than
online mode. Cargo will restrict itself to crates that are downloaded locally,
even if there might be a newer version as indicated in the local copy of the
index. See the cargo-fetch(1) command to download dependencies before
going offline.

May also be specified with the net.offline config value.
--frozen

Equivalent to specifying both --locked and --offline.
--lockfile-path PATH
Changes the path of the lockfile from the default
(<workspace_root>/Cargo.lock) to PATH. PATH must end with
Cargo.lock (e.g. --lockfile-path /tmp/temporary-

lockfile/Cargo.lock). Note that providing --lockfile-path will ignore
existing lockfile at the default path, and instead will either use the lockfile
from PATH, or write a new lockfile into the provided PATH if it doesn’t
exist. This flag can be used to run most commands in read-only directories,
writing lockfile into the provided PATH.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #14421).

Common Options
+toolchain
If Cargo has been installed with rustup, and the first argument to cargo
begins with +, it will be interpreted as a rustup toolchain name (such as

https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/14421

+stable or +nightly). See the rustup documentation for more information
about how toolchain overrides work.
--config KEY=VALUE or PATH
Overrides a Cargo configuration value. The argument should be in TOML
syntax of KEY=VALUE, or provided as a path to an extra configuration file.
This flag may be specified multiple times. See the command-line overrides
section for more information.
-C PATH
Changes the current working directory before executing any specified
operations. This affects things like where cargo looks by default for the
project manifest (Cargo.toml), as well as the directories searched for
discovering .cargo/config.toml, for example. This option must appear
before the command name, for example cargo -C path/to/my-project
build.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #10098).
-h

--help

Prints help information.
-Z flag
Unstable (nightly-only) flags to Cargo. Run cargo -Z help for details.

https://rust-lang.github.io/rustup/overrides.html
https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/10098

ENVIRONMENT
See the reference for details on environment variables that Cargo reads.

EXIT STATUS

0 : Cargo succeeded.
101 : Cargo failed to complete.

EXAMPLES

1. Create or update the lockfile for the current package or workspace:
cargo generate-lockfile

SEE ALSO
cargo(1), cargo-update(1)

cargo-info(1)

NAME
cargo-info --- Display information about a package.

SYNOPSIS
cargo info [options] spec

DESCRIPTION
This command displays information about a package. It fetches data

from the package's Cargo.toml file and presents it in a human-readable
format.

OPTIONS
Info Options
spec
Fetch information about the specified package. The spec can be a package
ID, see cargo-pkgid(1) for the SPEC format. If the specified package is part
of the current workspace, information from the local Cargo.toml file will be
displayed. If the Cargo.lock file does not exist, it will be created. If no
version is specified, the appropriate version will be selected based on the
Minimum Supported Rust Version (MSRV).
--index index
The URL of the registry index to use.
--registry registry
Name of the registry to use. Registry names are defined in Cargo config
files. If not specified, the default registry is used, which is defined by the
registry.default config key which defaults to crates-io.

Display Options
-v

--verbose

Use verbose output. May be specified twice for “very verbose” output
which includes extra output such as dependency warnings and build script
output. May also be specified with the term.verbose config value.
-q

--quiet

Do not print cargo log messages. May also be specified with the
term.quiet config value.
--color when
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on
the terminal.
always : Always display colors.

never : Never display colors.
May also be specified with the term.color config value.

Manifest Options
--locked

Asserts that the exact same dependencies and versions are used as when the
existing Cargo.lock file was originally generated. Cargo will exit with an
error when either of the following scenarios arises:

The lock file is missing.
Cargo attempted to change the lock file due to a different dependency
resolution.

It may be used in environments where deterministic builds are desired,
such as in CI pipelines.
--offline

Prevents Cargo from accessing the network for any reason. Without this
flag, Cargo will stop with an error if it needs to access the network and the
network is not available. With this flag, Cargo will attempt to proceed
without the network if possible.

Beware that this may result in different dependency resolution than
online mode. Cargo will restrict itself to crates that are downloaded locally,
even if there might be a newer version as indicated in the local copy of the
index. See the cargo-fetch(1) command to download dependencies before
going offline.

May also be specified with the net.offline config value.
--frozen

Equivalent to specifying both --locked and --offline.

Common Options
+toolchain
If Cargo has been installed with rustup, and the first argument to cargo
begins with +, it will be interpreted as a rustup toolchain name (such as

+stable or +nightly). See the rustup documentation for more information
about how toolchain overrides work.
--config KEY=VALUE or PATH
Overrides a Cargo configuration value. The argument should be in TOML
syntax of KEY=VALUE, or provided as a path to an extra configuration file.
This flag may be specified multiple times. See the command-line overrides
section for more information.
-C PATH
Changes the current working directory before executing any specified
operations. This affects things like where cargo looks by default for the
project manifest (Cargo.toml), as well as the directories searched for
discovering .cargo/config.toml, for example. This option must appear
before the command name, for example cargo -C path/to/my-project
build.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #10098).
-h

--help

Prints help information.
-Z flag
Unstable (nightly-only) flags to Cargo. Run cargo -Z help for details.

https://rust-lang.github.io/rustup/overrides.html
https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/10098

ENVIRONMENT
See the reference for details on environment variables that Cargo reads.

EXIT STATUS

0 : Cargo succeeded.
101 : Cargo failed to complete.

EXAMPLES

1. Inspect the serde package from crates.io:
 cargo info serde

2. Inspect the serde package with version 1.0.0 :
 cargo info serde@1.0.0

3. Inspect the serde package form the local registry:
 cargo info serde --registry my-registry

SEE ALSO
cargo(1), cargo-search(1)

cargo-locate-project(1)

NAME
cargo-locate-project --- Print a JSON representation of a Cargo.toml

file's location

SYNOPSIS
cargo locate-project [options]

DESCRIPTION
This command will print a JSON object to stdout with the full path to the

manifest. The manifest is found by searching upward for a file named
Cargo.toml starting from the current working directory.

If the project happens to be a part of a workspace, the manifest of the
project, rather than the workspace root, is output. This can be overridden by
the --workspace flag. The root workspace is found by traversing further
upward or by using the field package.workspace after locating the
manifest of a workspace member.

OPTIONS
--workspace

Locate the Cargo.toml at the root of the workspace, as opposed to the
current workspace member.

Display Options
--message-format fmt
The representation in which to print the project location. Valid values:

json (default): JSON object with the path under the key “root”.
plain : Just the path.

-v

--verbose

Use verbose output. May be specified twice for “very verbose” output
which includes extra output such as dependency warnings and build script
output. May also be specified with the term.verbose config value.
-q

--quiet

Do not print cargo log messages. May also be specified with the
term.quiet config value.
--color when
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on
the terminal.
always : Always display colors.
never : Never display colors.

May also be specified with the term.color config value.

Manifest Options
--manifest-path path

Path to the Cargo.toml file. By default, Cargo searches for the Cargo.toml
file in the current directory or any parent directory.

Common Options
+toolchain
If Cargo has been installed with rustup, and the first argument to cargo
begins with +, it will be interpreted as a rustup toolchain name (such as
+stable or +nightly). See the rustup documentation for more information
about how toolchain overrides work.
--config KEY=VALUE or PATH
Overrides a Cargo configuration value. The argument should be in TOML
syntax of KEY=VALUE, or provided as a path to an extra configuration file.
This flag may be specified multiple times. See the command-line overrides
section for more information.
-C PATH
Changes the current working directory before executing any specified
operations. This affects things like where cargo looks by default for the
project manifest (Cargo.toml), as well as the directories searched for
discovering .cargo/config.toml, for example. This option must appear
before the command name, for example cargo -C path/to/my-project
build.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #10098).
-h

--help

Prints help information.
-Z flag
Unstable (nightly-only) flags to Cargo. Run cargo -Z help for details.

https://rust-lang.github.io/rustup/overrides.html
https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/10098

ENVIRONMENT
See the reference for details on environment variables that Cargo reads.

EXIT STATUS

0 : Cargo succeeded.
101 : Cargo failed to complete.

EXAMPLES

1. Display the path to the manifest based on the current directory:
cargo locate-project

SEE ALSO
cargo(1), cargo-metadata(1)

cargo-metadata(1)

NAME
cargo-metadata --- Machine-readable metadata about the current package

SYNOPSIS
cargo metadata [options]

DESCRIPTION
Output JSON to stdout containing information about the workspace

members and resolved dependencies of the current package.
The output format is subject to change in future versions of Cargo. It is

recommended to include the --format-version flag to future-proof your
code and ensure the output is in the format you are expecting. For more on
the expectations, see "Compatibility".

See the cargo_metadata crate for a Rust API for reading the metadata.

https://crates.io/crates/cargo_metadata

OUTPUT FORMAT
Compatibility

Within the same output format version, the compatibility is maintained,
except some scenarios. The following is a non-exhaustive list of changes
that are not considered as incompatible:

Adding new fields — New fields will be added when needed.
Reserving this helps Cargo evolve without bumping the format version
too often.
Adding new values for enum-like fields — Same as adding new
fields. It keeps metadata evolving without stagnation.
Changing opaque representations — The inner representations of
some fields are implementation details. For example, fields related to
"Source ID" are treated as opaque identifiers to differentiate packages
or sources. Consumers shouldn't rely on those representations unless
specified.

JSON format
The JSON output has the following format:

{
 /* Array of all packages in the workspace.
 It also includes all feature-enabled dependencies
unless --no-deps is used.
 */
 "packages": [
 {
 /* The name of the package. */
 "name": "my-package",
 /* The version of the package. */
 "version": "0.1.0",
 /* The Package ID for referring to the
 package within the document and as the `--
package` argument to many commands

 */
 "id": "file:///path/to/my-package#0.1.0",
 /* The license value from the manifest, or null.
*/
 "license": "MIT/Apache-2.0",
 /* The license-file value from the manifest, or
null. */
 "license_file": "LICENSE",
 /* The description value from the manifest, or
null. */
 "description": "Package description.",
 /* The source ID of the package, an "opaque"
identifier representing
 where a package is retrieved from. See
"Compatibility" above for
 the stability guarantee.

 This is null for path dependencies and
workspace members.

 For other dependencies, it is a string with the
format:
 - "registry+URL" for registry-based
dependencies.
 Example: "registry+https://github.com/rust-
lang/crates.io-index"
 - "git+URL" for git-based dependencies.
 Example: "git+https://github.com/rust-
lang/cargo?
rev=5e85ba14aaa20f8133863373404cb0af69eeef2c#5e85ba14aaa20f813
3863373404cb0af69eeef2c"
 - "sparse+URL" for dependencies from a sparse
registry
 Example: "sparse+https://my-sparse-
registry.org"

 The value after the `+` is not explicitly
defined, and may change
 between versions of Cargo and may not directly
correlate to other
 things, such as registry definitions in a
config file. New source
 kinds may be added in the future which will
have different `+`
 prefixed identifiers.
 */
 "source": null,
 /* Array of dependencies declared in the package's
manifest. */
 "dependencies": [
 {
 /* The name of the dependency. */
 "name": "bitflags",
 /* The source ID of the dependency. May be
null, see
 description for the package source.
 */
 "source":
"registry+https://github.com/rust-lang/crates.io-index",
 /* The version requirement for the
dependency.
 Dependencies without a version
requirement have a value of "*".
 */
 "req": "^1.0",
 /* The dependency kind.
 "dev", "build", or null for a normal
dependency.
 */
 "kind": null,
 /* If the dependency is renamed, this is
the new name for

 the dependency as a string. null if it
is not renamed.
 */
 "rename": null,
 /* Boolean of whether or not this is an
optional dependency. */
 "optional": false,
 /* Boolean of whether or not default
features are enabled. */
 "uses_default_features": true,
 /* Array of features enabled. */
 "features": [],
 /* The target platform for the dependency.
 null if not a target dependency.
 */
 "target": "cfg(windows)",
 /* The file system path for a local path
dependency.
 not present if not a path dependency.
 */
 "path": "/path/to/dep",
 /* A string of the URL of the registry
this dependency is from.
 If not specified or null, the
dependency is from the default
 registry (crates.io).
 */
 "registry": null,
 /* (unstable) Boolean flag of whether or
not this is a pulbic
 dependency. This field is only present
when
 `-Zpublic-dependency` is enabled.
 */
 "public": false
 }

],
 /* Array of Cargo targets. */
 "targets": [
 {
 /* Array of target kinds.
 - lib targets list the `crate-type`
values from the
 manifest such as "lib", "rlib",
"dylib",
 "proc-macro", etc. (default ["lib"])
 - binary is ["bin"]
 - example is ["example"]
 - integration test is ["test"]
 - benchmark is ["bench"]
 - build script is ["custom-build"]
 */
 "kind": [
 "bin"
],
 /* Array of crate types.
 - lib and example libraries list the
`crate-type` values
 from the manifest such as "lib",
"rlib", "dylib",
 "proc-macro", etc. (default ["lib"])
 - all other target kinds are ["bin"]
 */
 "crate_types": [
 "bin"
],
 /* The name of the target.
 For lib targets, dashes will be
replaced with underscores.
 */
 "name": "my-package",
 /* Absolute path to the root source file

of the target. */
 "src_path": "/path/to/my-
package/src/main.rs",
 /* The Rust edition of the target.
 Defaults to the package edition.
 */
 "edition": "2018",
 /* Array of required features.
 This property is not included if no
required features are set.
 */
 "required-features": ["feat1"],
 /* Whether the target should be documented
by `cargo doc`. */
 "doc": true,
 /* Whether or not this target has doc
tests enabled, and
 the target is compatible with doc
testing.
 */
 "doctest": false,
 /* Whether or not this target should be
built and run with `--test`
 */
 "test": true
 }
],
 /* Set of features defined for the package.
 Each feature maps to an array of features or
dependencies it
 enables.
 */
 "features": {
 "default": [
 "feat1"
],

 "feat1": [],
 "feat2": []
 },
 /* Absolute path to this package's manifest. */
 "manifest_path": "/path/to/my-package/Cargo.toml",
 /* Package metadata.
 This is null if no metadata is specified.
 */
 "metadata": {
 "docs": {
 "rs": {
 "all-features": true
 }
 }
 },
 /* List of registries to which this package may be
published.
 Publishing is unrestricted if null, and
forbidden if an empty array. */
 "publish": [
 "crates-io"
],
 /* Array of authors from the manifest.
 Empty array if no authors specified.
 */
 "authors": [
 "Jane Doe <user@example.com>"
],
 /* Array of categories from the manifest. */
 "categories": [
 "command-line-utilities"
],
 /* Optional string that is the default binary
picked by cargo run. */
 "default_run": null,
 /* Optional string that is the minimum supported

rust version */
 "rust_version": "1.56",
 /* Array of keywords from the manifest. */
 "keywords": [
 "cli"
],
 /* The readme value from the manifest or null if
not specified. */
 "readme": "README.md",
 /* The repository value from the manifest or null
if not specified. */
 "repository": "https://github.com/rust-
lang/cargo",
 /* The homepage value from the manifest or null if
not specified. */
 "homepage": "https://rust-lang.org",
 /* The documentation value from the manifest or
null if not specified. */
 "documentation": "https://doc.rust-
lang.org/stable/std",
 /* The default edition of the package.
 Note that individual targets may have different
editions.
 */
 "edition": "2018",
 /* Optional string that is the name of a native
library the package
 is linking to.
 */
 "links": null,
 }
],
 /* Array of members of the workspace.
 Each entry is the Package ID for the package.
 */
 "workspace_members": [

 "file:///path/to/my-package#0.1.0",
],
 /* Array of default members of the workspace.
 Each entry is the Package ID for the package.
 */
 "workspace_default_members": [
 "file:///path/to/my-package#0.1.0",
],
 // The resolved dependency graph for the entire workspace.
The enabled
 // features are based on the enabled features for the
"current" package.
 // Inactivated optional dependencies are not listed.
 //
 // This is null if --no-deps is specified.
 //
 // By default, this includes all dependencies for all
target platforms.
 // The `--filter-platform` flag may be used to narrow to a
specific
 // target triple.
 "resolve": {
 /* Array of nodes within the dependency graph.
 Each node is a package.
 */
 "nodes": [
 {
 /* The Package ID of this node. */
 "id": "file:///path/to/my-package#0.1.0",
 /* The dependencies of this package, an array
of Package IDs. */
 "dependencies": [
 "https://github.com/rust-lang/crates.io-
index#bitflags@1.0.4"
],
 /* The dependencies of this package. This is

an alternative to
 "dependencies" which contains additional
information. In
 particular, this handles renamed
dependencies.
 */
 "deps": [
 {
 /* The name of the dependency's
library target.
 If this is a renamed dependency,
this is the new
 name.
 */
 "name": "bitflags",
 /* The Package ID of the dependency.
*/
 "pkg": "https://github.com/rust-
lang/crates.io-index#bitflags@1.0.4"
 /* Array of dependency kinds. Added in
Cargo 1.40. */
 "dep_kinds": [
 {
 /* The dependency kind.
 "dev", "build", or null for
a normal dependency.
 */
 "kind": null,
 /* The target platform for the
dependency.
 null if not a target
dependency.
 */
 "target": "cfg(windows)"
 }
]

 }
],
 /* Array of features enabled on this package.
*/
 "features": [
 "default"
]
 }
],
 /* The package in the current working directory (if --
manifest-path is not given).
 This is null if there is a virtual workspace.
Otherwise it is
 the Package ID of the package.
 */
 "root": "file:///path/to/my-package#0.1.0",
 },
 /* The absolute path to the target directory where Cargo
places its output. */
 "target_directory": "/path/to/my-package/target",
 /* The absolute path to the build directory where Cargo
places intermediate build artifacts. (unstable) */
 "build_directory": "/path/to/my-package/build-dir",
 /* The version of the schema for this metadata structure.
 This will be changed if incompatible changes are ever
made.
 */
 "version": 1,
 /* The absolute path to the root of the workspace. */
 "workspace_root": "/path/to/my-package"
 /* Workspace metadata.
 This is null if no metadata is specified. */
 "metadata": {
 "docs": {
 "rs": {
 "all-features": true

 }
 }
 }
}

Notes:

For "id" field syntax, see Package ID Specifications in the reference.

OPTIONS
Output Options
--no-deps

Output information only about the workspace members and don’t fetch
dependencies.
--format-version version
Specify the version of the output format to use. Currently 1 is the only
possible value.
--filter-platform triple
This filters the resolve output to only include dependencies for the given
target triple. Without this flag, the resolve includes all targets.

Note that the dependencies listed in the “packages” array still includes
all dependencies. Each package definition is intended to be an unaltered
reproduction of the information within Cargo.toml .

Feature Selection
The feature flags allow you to control which features are enabled. When

no feature options are given, the default feature is activated for every
selected package.

See the features documentation for more details.
-F features
--features features
Space or comma separated list of features to activate. Features of
workspace members may be enabled with package-name/feature-name
syntax. This flag may be specified multiple times, which enables all
specified features.
--all-features

Activate all available features of all selected packages.
--no-default-features

Do not activate the default feature of the selected packages.

Display Options

-v

--verbose

Use verbose output. May be specified twice for “very verbose” output
which includes extra output such as dependency warnings and build script
output. May also be specified with the term.verbose config value.
-q

--quiet

Do not print cargo log messages. May also be specified with the
term.quiet config value.
--color when
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on
the terminal.
always : Always display colors.
never : Never display colors.

May also be specified with the term.color config value.

Manifest Options
--manifest-path path
Path to the Cargo.toml file. By default, Cargo searches for the Cargo.toml
file in the current directory or any parent directory.
--locked

Asserts that the exact same dependencies and versions are used as when the
existing Cargo.lock file was originally generated. Cargo will exit with an
error when either of the following scenarios arises:

The lock file is missing.
Cargo attempted to change the lock file due to a different dependency
resolution.

It may be used in environments where deterministic builds are desired,
such as in CI pipelines.
--offline

Prevents Cargo from accessing the network for any reason. Without this
flag, Cargo will stop with an error if it needs to access the network and the
network is not available. With this flag, Cargo will attempt to proceed
without the network if possible.

Beware that this may result in different dependency resolution than
online mode. Cargo will restrict itself to crates that are downloaded locally,
even if there might be a newer version as indicated in the local copy of the
index. See the cargo-fetch(1) command to download dependencies before
going offline.

May also be specified with the net.offline config value.
--frozen

Equivalent to specifying both --locked and --offline.
--lockfile-path PATH
Changes the path of the lockfile from the default
(<workspace_root>/Cargo.lock) to PATH. PATH must end with
Cargo.lock (e.g. --lockfile-path /tmp/temporary-

lockfile/Cargo.lock). Note that providing --lockfile-path will ignore
existing lockfile at the default path, and instead will either use the lockfile
from PATH, or write a new lockfile into the provided PATH if it doesn’t
exist. This flag can be used to run most commands in read-only directories,
writing lockfile into the provided PATH.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #14421).

Common Options
+toolchain
If Cargo has been installed with rustup, and the first argument to cargo
begins with +, it will be interpreted as a rustup toolchain name (such as
+stable or +nightly). See the rustup documentation for more information
about how toolchain overrides work.
--config KEY=VALUE or PATH
Overrides a Cargo configuration value. The argument should be in TOML
syntax of KEY=VALUE, or provided as a path to an extra configuration file.

https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/14421
https://rust-lang.github.io/rustup/overrides.html

This flag may be specified multiple times. See the command-line overrides
section for more information.
-C PATH
Changes the current working directory before executing any specified
operations. This affects things like where cargo looks by default for the
project manifest (Cargo.toml), as well as the directories searched for
discovering .cargo/config.toml, for example. This option must appear
before the command name, for example cargo -C path/to/my-project
build.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #10098).
-h

--help

Prints help information.
-Z flag
Unstable (nightly-only) flags to Cargo. Run cargo -Z help for details.

https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/10098

ENVIRONMENT
See the reference for details on environment variables that Cargo reads.

EXIT STATUS

0 : Cargo succeeded.
101 : Cargo failed to complete.

EXAMPLES

1. Output JSON about the current package:
cargo metadata --format-version=1

SEE ALSO
cargo(1), cargo-pkgid(1), Package ID Specifications, JSON messages

cargo-pkgid(1)

NAME
cargo-pkgid --- Print a fully qualified package specification

SYNOPSIS
cargo pkgid [options] [spec]

DESCRIPTION
Given a spec argument, print out the fully qualified package ID specifier

for a package or dependency in the current workspace. This command will
generate an error if spec is ambiguous as to which package it refers to in the
dependency graph. If no spec is given, then the specifier for the local
package is printed.

This command requires that a lockfile is available and dependencies
have been fetched.

A package specifier consists of a name, version, and source URL. You
are allowed to use partial specifiers to succinctly match a specific package
as long as it matches only one package. This specifier is also used by other
parts in Cargo, such as cargo-metadata(1) and JSON messages emitted by
Cargo.

The format of a spec can be one of the following:

SPEC
Structure

Example SPEC

name bitflags

name @ version bitflags@1.0.4

url https://github.com/rust-lang/cargo

url # version https://github.com/rust-lang/cargo#0.33.0

url # name https://github.com/rust-lang/crates.io-

index#bitflags

url # name @ v
ersion

https://github.com/rust-

lang/cargo#crates-io@0.21.0

The specification grammar can be found in chapter Package ID
Specifications.

OPTIONS
Package Selection
-p spec
--package spec
Get the package ID for the given package instead of the current package.

Display Options
-v

--verbose

Use verbose output. May be specified twice for “very verbose” output
which includes extra output such as dependency warnings and build script
output. May also be specified with the term.verbose config value.
-q

--quiet

Do not print cargo log messages. May also be specified with the
term.quiet config value.
--color when
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on
the terminal.
always : Always display colors.
never : Never display colors.

May also be specified with the term.color config value.

Manifest Options
--manifest-path path
Path to the Cargo.toml file. By default, Cargo searches for the Cargo.toml
file in the current directory or any parent directory.
--locked

Asserts that the exact same dependencies and versions are used as when the
existing Cargo.lock file was originally generated. Cargo will exit with an
error when either of the following scenarios arises:

The lock file is missing.
Cargo attempted to change the lock file due to a different dependency
resolution.

It may be used in environments where deterministic builds are desired,
such as in CI pipelines.
--offline

Prevents Cargo from accessing the network for any reason. Without this
flag, Cargo will stop with an error if it needs to access the network and the
network is not available. With this flag, Cargo will attempt to proceed
without the network if possible.

Beware that this may result in different dependency resolution than
online mode. Cargo will restrict itself to crates that are downloaded locally,
even if there might be a newer version as indicated in the local copy of the
index. See the cargo-fetch(1) command to download dependencies before
going offline.

May also be specified with the net.offline config value.
--frozen

Equivalent to specifying both --locked and --offline.
--lockfile-path PATH
Changes the path of the lockfile from the default
(<workspace_root>/Cargo.lock) to PATH. PATH must end with
Cargo.lock (e.g. --lockfile-path /tmp/temporary-

lockfile/Cargo.lock). Note that providing --lockfile-path will ignore
existing lockfile at the default path, and instead will either use the lockfile
from PATH, or write a new lockfile into the provided PATH if it doesn’t
exist. This flag can be used to run most commands in read-only directories,
writing lockfile into the provided PATH.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #14421).

https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/14421

Common Options
+toolchain
If Cargo has been installed with rustup, and the first argument to cargo
begins with +, it will be interpreted as a rustup toolchain name (such as
+stable or +nightly). See the rustup documentation for more information
about how toolchain overrides work.
--config KEY=VALUE or PATH
Overrides a Cargo configuration value. The argument should be in TOML
syntax of KEY=VALUE, or provided as a path to an extra configuration file.
This flag may be specified multiple times. See the command-line overrides
section for more information.
-C PATH
Changes the current working directory before executing any specified
operations. This affects things like where cargo looks by default for the
project manifest (Cargo.toml), as well as the directories searched for
discovering .cargo/config.toml, for example. This option must appear
before the command name, for example cargo -C path/to/my-project
build.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #10098).
-h

--help

Prints help information.
-Z flag
Unstable (nightly-only) flags to Cargo. Run cargo -Z help for details.

https://rust-lang.github.io/rustup/overrides.html
https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/10098

ENVIRONMENT
See the reference for details on environment variables that Cargo reads.

EXIT STATUS

0 : Cargo succeeded.
101 : Cargo failed to complete.

EXAMPLES

1. Retrieve package specification for foo package:
cargo pkgid foo

2. Retrieve package specification for version 1.0.0 of foo :
cargo pkgid foo@1.0.0

3. Retrieve package specification for foo from crates.io:
cargo pkgid https://github.com/rust-lang/crates.io-
index#foo

4. Retrieve package specification for foo from a local package:
cargo pkgid file:///path/to/local/package#foo

SEE ALSO
cargo(1), cargo-generate-lockfile(1), cargo-metadata(1), Package ID

Specifications, JSON messages

cargo-remove(1)

NAME
cargo-remove --- Remove dependencies from a Cargo.toml manifest file

SYNOPSIS
cargo remove [options] dependency...

DESCRIPTION
Remove one or more dependencies from a Cargo.toml manifest.

OPTIONS
Section options
--dev

Remove as a development dependency.
--build

Remove as a build dependency.
--target target
Remove as a dependency to the given target platform.

To avoid unexpected shell expansions, you may use quotes around each
target, e.g., --target 'cfg(unix)' .

Miscellaneous Options
--dry-run

Don’t actually write to the manifest.

Display Options
-v

--verbose

Use verbose output. May be specified twice for “very verbose” output
which includes extra output such as dependency warnings and build script
output. May also be specified with the term.verbose config value.
-q

--quiet

Do not print cargo log messages. May also be specified with the
term.quiet config value.
--color when
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on
the terminal.
always : Always display colors.
never : Never display colors.

May also be specified with the term.color config value.

Manifest Options
--manifest-path path
Path to the Cargo.toml file. By default, Cargo searches for the Cargo.toml
file in the current directory or any parent directory.
--locked

Asserts that the exact same dependencies and versions are used as when the
existing Cargo.lock file was originally generated. Cargo will exit with an
error when either of the following scenarios arises:

The lock file is missing.
Cargo attempted to change the lock file due to a different dependency
resolution.

It may be used in environments where deterministic builds are desired,
such as in CI pipelines.
--offline

Prevents Cargo from accessing the network for any reason. Without this
flag, Cargo will stop with an error if it needs to access the network and the
network is not available. With this flag, Cargo will attempt to proceed
without the network if possible.

Beware that this may result in different dependency resolution than
online mode. Cargo will restrict itself to crates that are downloaded locally,
even if there might be a newer version as indicated in the local copy of the
index. See the cargo-fetch(1) command to download dependencies before
going offline.

May also be specified with the net.offline config value.
--frozen

Equivalent to specifying both --locked and --offline.
--lockfile-path PATH
Changes the path of the lockfile from the default
(<workspace_root>/Cargo.lock) to PATH. PATH must end with
Cargo.lock (e.g. --lockfile-path /tmp/temporary-

lockfile/Cargo.lock). Note that providing --lockfile-path will ignore
existing lockfile at the default path, and instead will either use the lockfile
from PATH, or write a new lockfile into the provided PATH if it doesn’t
exist. This flag can be used to run most commands in read-only directories,
writing lockfile into the provided PATH.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #14421).

Package Selection
-p spec…
--package spec…
Package to remove from.

Common Options
+toolchain
If Cargo has been installed with rustup, and the first argument to cargo
begins with +, it will be interpreted as a rustup toolchain name (such as
+stable or +nightly). See the rustup documentation for more information
about how toolchain overrides work.
--config KEY=VALUE or PATH
Overrides a Cargo configuration value. The argument should be in TOML
syntax of KEY=VALUE, or provided as a path to an extra configuration file.
This flag may be specified multiple times. See the command-line overrides
section for more information.
-C PATH
Changes the current working directory before executing any specified
operations. This affects things like where cargo looks by default for the
project manifest (Cargo.toml), as well as the directories searched for
discovering .cargo/config.toml, for example. This option must appear
before the command name, for example cargo -C path/to/my-project
build.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #10098).

https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/14421
https://rust-lang.github.io/rustup/overrides.html
https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/10098

-h

--help

Prints help information.
-Z flag
Unstable (nightly-only) flags to Cargo. Run cargo -Z help for details.

ENVIRONMENT
See the reference for details on environment variables that Cargo reads.

EXIT STATUS

0 : Cargo succeeded.
101 : Cargo failed to complete.

EXAMPLES

1. Remove regex as a dependency
cargo remove regex

2. Remove trybuild as a dev-dependency
cargo remove --dev trybuild

3. Remove nom from the x86_64-pc-windows-gnu dependencies
table
cargo remove --target x86_64-pc-windows-gnu nom

SEE ALSO
cargo(1), cargo-add(1)

cargo-tree(1)

NAME
cargo-tree --- Display a tree visualization of a dependency graph

SYNOPSIS
cargo tree [options]

DESCRIPTION
This command will display a tree of dependencies to the terminal. An

example of a simple project that depends on the "rand" package:
myproject v0.1.0 (/myproject)
└── rand v0.7.3
 ├── getrandom v0.1.14
 │ ├── cfg-if v0.1.10
 │ └── libc v0.2.68
 ├── libc v0.2.68 (*)
 ├── rand_chacha v0.2.2
 │ ├── ppv-lite86 v0.2.6
 │ └── rand_core v0.5.1
 │ └── getrandom v0.1.14 (*)
 └── rand_core v0.5.1 (*)
[build-dependencies]
└── cc v1.0.50

Packages marked with (*) have been "de-duplicated". The
dependencies for the package have already been shown elsewhere in the
graph, and so are not repeated. Use the --no-dedupe option to repeat the
duplicates.

The -e flag can be used to select the dependency kinds to display. The
"features" kind changes the output to display the features enabled by each
dependency. For example, cargo tree -e features :
myproject v0.1.0 (/myproject)
└── log feature "serde"
 └── log v0.4.8
 ├── serde v1.0.106
 └── cfg-if feature "default"
 └── cfg-if v0.1.10

In this tree, myproject depends on log with the serde feature. log in
turn depends on cfg-if with "default" features. When using -e features

it can be helpful to use -i flag to show how the features flow into a
package. See the examples below for more detail.

Feature Unification
This command shows a graph much closer to a feature-unified graph

Cargo will build, rather than what you list in Cargo.toml . For instance, if
you specify the same dependency in both [dependencies] and [dev-
dependencies] but with different features on. This command may merge
all features and show a (*) on one of the dependency to indicate the
duplicate.

As a result, for a mostly equivalent overview of what cargo build
does, cargo tree -e normal,build is pretty close; for a mostly
equivalent overview of what cargo test does, cargo tree is pretty
close. However, it doesn't guarantee the exact equivalence to what Cargo is
going to build, since a compilation is complex and depends on lots of
different factors.

To learn more about feature unification, check out this dedicated section.

OPTIONS
Tree Options
-i spec
--invert spec
Show the reverse dependencies for the given package. This flag will invert
the tree and display the packages that depend on the given package.

Note that in a workspace, by default it will only display the package’s
reverse dependencies inside the tree of the workspace member in the
current directory. The --workspace flag can be used to extend it so that it
will show the package’s reverse dependencies across the entire workspace.
The -p flag can be used to display the package’s reverse dependencies only
with the subtree of the package given to -p .
--prune spec
Prune the given package from the display of the dependency tree.
--depth depth
Maximum display depth of the dependency tree. A depth of 1 displays the
direct dependencies, for example.

If the given value is workspace , only shows the dependencies that are
member of the current workspace, instead.
--no-dedupe

Do not de-duplicate repeated dependencies. Usually, when a package has
already displayed its dependencies, further occurrences will not re-display
its dependencies, and will include a (*) to indicate it has already been
shown. This flag will cause those duplicates to be repeated.
-d

--duplicates

Show only dependencies which come in multiple versions (implies --
invert). When used with the -p flag, only shows duplicates within the
subtree of the given package.

It can be beneficial for build times and executable sizes to avoid building
that same package multiple times. This flag can help identify the offending

packages. You can then investigate if the package that depends on the
duplicate with the older version can be updated to the newer version so that
only one instance is built.
-e kinds
--edges kinds
The dependency kinds to display. Takes a comma separated list of values:

all — Show all edge kinds.
normal — Show normal dependencies.
build — Show build dependencies.
dev — Show development dependencies.
features — Show features enabled by each dependency. If this is the
only kind given, then it will automatically include the other
dependency kinds.
no-normal — Do not include normal dependencies.
no-build — Do not include build dependencies.
no-dev — Do not include development dependencies.
no-proc-macro — Do not include procedural macro dependencies.

The normal , build , dev , and all dependency kinds cannot be mixed
with no-normal , no-build , or no-dev dependency kinds.

The default is normal,build,dev .
--target triple
Filter dependencies matching the given target triple. The default is the host
platform. Use the value all to include all targets.

Tree Formatting Options
--charset charset
Chooses the character set to use for the tree. Valid values are “utf8” or
“ascii”. When unspecified, cargo will auto-select a value.
-f format
--format format
Set the format string for each package. The default is “{p}”.

This is an arbitrary string which will be used to display each package.
The following strings will be replaced with the corresponding value:

{p} — The package name.
{l} — The package license.
{r} — The package repository URL.
{f} — Comma-separated list of package features that are enabled.
{lib} — The name, as used in a use statement, of the package’s
library.

--prefix prefix
Sets how each line is displayed. The prefix value can be one of:

indent (default) — Shows each line indented as a tree.
depth — Show as a list, with the numeric depth printed before each
entry.
none — Show as a flat list.

Package Selection
By default, when no package selection options are given, the packages

selected depend on the selected manifest file (based on the current working
directory if --manifest-path is not given). If the manifest is the root of a
workspace then the workspaces default members are selected, otherwise
only the package defined by the manifest will be selected.

The default members of a workspace can be set explicitly with the
workspace.default-members key in the root manifest. If this is not set, a
virtual workspace will include all workspace members (equivalent to
passing --workspace), and a non-virtual workspace will include only the
root crate itself.
-p spec…
--package spec…
Display only the specified packages. See cargo-pkgid(1) for the SPEC
format. This flag may be specified multiple times and supports common
Unix glob patterns like *, ? and []. However, to avoid your shell

accidentally expanding glob patterns before Cargo handles them, you must
use single quotes or double quotes around each pattern.
--workspace

Display all members in the workspace.
--exclude SPEC…
Exclude the specified packages. Must be used in conjunction with the --
workspace flag. This flag may be specified multiple times and supports
common Unix glob patterns like *, ? and []. However, to avoid your shell
accidentally expanding glob patterns before Cargo handles them, you must
use single quotes or double quotes around each pattern.

Manifest Options
--manifest-path path
Path to the Cargo.toml file. By default, Cargo searches for the Cargo.toml
file in the current directory or any parent directory.
--locked

Asserts that the exact same dependencies and versions are used as when the
existing Cargo.lock file was originally generated. Cargo will exit with an
error when either of the following scenarios arises:

The lock file is missing.
Cargo attempted to change the lock file due to a different dependency
resolution.

It may be used in environments where deterministic builds are desired,
such as in CI pipelines.
--offline

Prevents Cargo from accessing the network for any reason. Without this
flag, Cargo will stop with an error if it needs to access the network and the
network is not available. With this flag, Cargo will attempt to proceed
without the network if possible.

Beware that this may result in different dependency resolution than
online mode. Cargo will restrict itself to crates that are downloaded locally,
even if there might be a newer version as indicated in the local copy of the

index. See the cargo-fetch(1) command to download dependencies before
going offline.

May also be specified with the net.offline config value.
--frozen

Equivalent to specifying both --locked and --offline.
--lockfile-path PATH
Changes the path of the lockfile from the default
(<workspace_root>/Cargo.lock) to PATH. PATH must end with
Cargo.lock (e.g. --lockfile-path /tmp/temporary-

lockfile/Cargo.lock). Note that providing --lockfile-path will ignore
existing lockfile at the default path, and instead will either use the lockfile
from PATH, or write a new lockfile into the provided PATH if it doesn’t
exist. This flag can be used to run most commands in read-only directories,
writing lockfile into the provided PATH.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #14421).

Feature Selection
The feature flags allow you to control which features are enabled. When

no feature options are given, the default feature is activated for every
selected package.

See the features documentation for more details.
-F features
--features features
Space or comma separated list of features to activate. Features of
workspace members may be enabled with package-name/feature-name
syntax. This flag may be specified multiple times, which enables all
specified features.
--all-features

Activate all available features of all selected packages.
--no-default-features

Do not activate the default feature of the selected packages.

https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/14421

Display Options
-v

--verbose

Use verbose output. May be specified twice for “very verbose” output
which includes extra output such as dependency warnings and build script
output. May also be specified with the term.verbose config value.
-q

--quiet

Do not print cargo log messages. May also be specified with the
term.quiet config value.
--color when
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on
the terminal.
always : Always display colors.
never : Never display colors.

May also be specified with the term.color config value.

Common Options
+toolchain
If Cargo has been installed with rustup, and the first argument to cargo
begins with +, it will be interpreted as a rustup toolchain name (such as
+stable or +nightly). See the rustup documentation for more information
about how toolchain overrides work.
--config KEY=VALUE or PATH
Overrides a Cargo configuration value. The argument should be in TOML
syntax of KEY=VALUE, or provided as a path to an extra configuration file.
This flag may be specified multiple times. See the command-line overrides
section for more information.
-C PATH
Changes the current working directory before executing any specified
operations. This affects things like where cargo looks by default for the

https://rust-lang.github.io/rustup/overrides.html

project manifest (Cargo.toml), as well as the directories searched for
discovering .cargo/config.toml, for example. This option must appear
before the command name, for example cargo -C path/to/my-project
build.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #10098).
-h

--help

Prints help information.
-Z flag
Unstable (nightly-only) flags to Cargo. Run cargo -Z help for details.

https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/10098

ENVIRONMENT
See the reference for details on environment variables that Cargo reads.

EXIT STATUS

0 : Cargo succeeded.
101 : Cargo failed to complete.

EXAMPLES

1. Display the tree for the package in the current directory:
cargo tree

2. Display all the packages that depend on the syn package:
cargo tree -i syn

3. Show the features enabled on each package:
cargo tree --format "{p} {f}"

4. Show all packages that are built multiple times. This can happen if
multiple semver-incompatible versions appear in the tree (like 1.0.0
and 2.0.0).
cargo tree -d

5. Explain why features are enabled for the syn package:
cargo tree -e features -i syn

The -e features flag is used to show features. The -i flag is
used to invert the graph so that it displays the packages that depend on
syn . An example of what this would display:
syn v1.0.17
├── syn feature "clone-impls"
│ └── syn feature "default"
│ └── rustversion v1.0.2
│ └── rustversion feature "default"
│ └── myproject v0.1.0 (/myproject)
│ └── myproject feature "default"
(command-line)
├── syn feature "default" (*)
├── syn feature "derive"
│ └── syn feature "default" (*)
├── syn feature "full"
│ └── rustversion v1.0.2 (*)
├── syn feature "parsing"

│ └── syn feature "default" (*)
├── syn feature "printing"
│ └── syn feature "default" (*)
├── syn feature "proc-macro"
│ └── syn feature "default" (*)
└── syn feature "quote"
 ├── syn feature "printing" (*)
 └── syn feature "proc-macro" (*)

To read this graph, you can follow the chain for each feature from
the root to see why it is included. For example, the "full" feature is
added by the rustversion crate which is included from myproject
(with the default features), and myproject is the package selected on
the command-line. All of the other syn features are added by the
"default" feature ("quote" is added by "printing" and "proc-macro",
both of which are default features).

If you're having difficulty cross-referencing the de-duplicated (*)
entries, try with the --no-dedupe flag to get the full output.

SEE ALSO
cargo(1), cargo-metadata(1)

cargo-update(1)

NAME
cargo-update --- Update dependencies as recorded in the local lock file

SYNOPSIS
cargo update [options] spec

DESCRIPTION
This command will update dependencies in the Cargo.lock file to the

latest version. If the Cargo.lock file does not exist, it will be created with
the latest available versions.

OPTIONS
Update Options
spec…
Update only the specified packages. This flag may be specified multiple
times. See cargo-pkgid(1) for the SPEC format.

If packages are specified with spec, then a conservative update of the
lockfile will be performed. This means that only the dependency specified
by SPEC will be updated. Its transitive dependencies will be updated only if
SPEC cannot be updated without updating dependencies. All other
dependencies will remain locked at their currently recorded versions.

If spec is not specified, all dependencies are updated.
--recursive

When used with spec, dependencies of spec are forced to update as well.
Cannot be used with --precise.
--precise precise
When used with spec, allows you to specify a specific version number to set
the package to. If the package comes from a git repository, this can be a git
revision (such as a SHA hash or tag).

While not recommended, you can specify a yanked version of a package.
When possible, try other non-yanked SemVer-compatible versions or seek
help from the maintainers of the package.

A compatible pre-release version can also be specified even when the
version requirement in Cargo.toml doesn’t contain any pre-release
identifier (nightly only).
--breaking directory
Update spec to latest SemVer-breaking version.

Version requirements will be modified to allow this update.
This only applies to dependencies when

The package is a dependency of a workspace member
The dependency is not renamed
A SemVer-incompatible version is available

The “SemVer operator” is used (^ which is the default)
This option is unstable and available only on the nightly channel and

requires the -Z unstable-options flag to enable. See
https://github.com/rust-lang/cargo/issues/12425 for more information.
-w

--workspace

Attempt to update only packages defined in the workspace. Other packages
are updated only if they don’t already exist in the lockfile. This option is
useful for updating Cargo.lock after you’ve changed version numbers in
Cargo.toml.
--dry-run

Displays what would be updated, but doesn’t actually write the lockfile.

Display Options
-v

--verbose

Use verbose output. May be specified twice for “very verbose” output
which includes extra output such as dependency warnings and build script
output. May also be specified with the term.verbose config value.
-q

--quiet

Do not print cargo log messages. May also be specified with the
term.quiet config value.
--color when
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on
the terminal.
always : Always display colors.
never : Never display colors.

May also be specified with the term.color config value.

Manifest Options

https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/12425

--manifest-path path
Path to the Cargo.toml file. By default, Cargo searches for the Cargo.toml
file in the current directory or any parent directory.
--ignore-rust-version

Ignore rust-version specification in packages.
--locked

Asserts that the exact same dependencies and versions are used as when the
existing Cargo.lock file was originally generated. Cargo will exit with an
error when either of the following scenarios arises:

The lock file is missing.
Cargo attempted to change the lock file due to a different dependency
resolution.

It may be used in environments where deterministic builds are desired,
such as in CI pipelines.
--offline

Prevents Cargo from accessing the network for any reason. Without this
flag, Cargo will stop with an error if it needs to access the network and the
network is not available. With this flag, Cargo will attempt to proceed
without the network if possible.

Beware that this may result in different dependency resolution than
online mode. Cargo will restrict itself to crates that are downloaded locally,
even if there might be a newer version as indicated in the local copy of the
index. See the cargo-fetch(1) command to download dependencies before
going offline.

May also be specified with the net.offline config value.
--frozen

Equivalent to specifying both --locked and --offline.
--lockfile-path PATH
Changes the path of the lockfile from the default
(<workspace_root>/Cargo.lock) to PATH. PATH must end with
Cargo.lock (e.g. --lockfile-path /tmp/temporary-

lockfile/Cargo.lock). Note that providing --lockfile-path will ignore

existing lockfile at the default path, and instead will either use the lockfile
from PATH, or write a new lockfile into the provided PATH if it doesn’t
exist. This flag can be used to run most commands in read-only directories,
writing lockfile into the provided PATH.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #14421).

Common Options
+toolchain
If Cargo has been installed with rustup, and the first argument to cargo
begins with +, it will be interpreted as a rustup toolchain name (such as
+stable or +nightly). See the rustup documentation for more information
about how toolchain overrides work.
--config KEY=VALUE or PATH
Overrides a Cargo configuration value. The argument should be in TOML
syntax of KEY=VALUE, or provided as a path to an extra configuration file.
This flag may be specified multiple times. See the command-line overrides
section for more information.
-C PATH
Changes the current working directory before executing any specified
operations. This affects things like where cargo looks by default for the
project manifest (Cargo.toml), as well as the directories searched for
discovering .cargo/config.toml, for example. This option must appear
before the command name, for example cargo -C path/to/my-project
build.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #10098).
-h

--help

Prints help information.
-Z flag
Unstable (nightly-only) flags to Cargo. Run cargo -Z help for details.

https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/14421
https://rust-lang.github.io/rustup/overrides.html
https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/10098

ENVIRONMENT
See the reference for details on environment variables that Cargo reads.

EXIT STATUS

0 : Cargo succeeded.
101 : Cargo failed to complete.

EXAMPLES

1. Update all dependencies in the lockfile:
cargo update

2. Update only specific dependencies:
cargo update foo bar

3. Set a specific dependency to a specific version:
cargo update foo --precise 1.2.3

SEE ALSO
cargo(1), cargo-generate-lockfile(1)

cargo-vendor(1)

NAME
cargo-vendor --- Vendor all dependencies locally

SYNOPSIS
cargo vendor [options] [path]

DESCRIPTION
This cargo subcommand will vendor all crates.io and git dependencies

for a project into the specified directory at <path> . After this command
completes the vendor directory specified by <path> will contain all remote
sources from dependencies specified. Additional manifests beyond the
default one can be specified with the -s option.

The configuration necessary to use the vendored sources would be
printed to stdout after cargo vendor completes the vendoring process. You
will need to add or redirect it to your Cargo configuration file, which is
usually .cargo/config.toml locally for the current package.

Cargo treats vendored sources as read-only as it does to registry and git
sources. If you intend to modify a crate from a remote source, use [patch]
or a path dependency pointing to a local copy of that crate. Cargo will then
correctly handle the crate on incremental rebuilds, as it knows that it is no
longer a read-only dependency.

OPTIONS
Vendor Options
-s manifest
--sync manifest
Specify an extra Cargo.toml manifest to workspaces which should also be
vendored and synced to the output. May be specified multiple times.
--no-delete

Don’t delete the “vendor” directory when vendoring, but rather keep all
existing contents of the vendor directory
--respect-source-config

Instead of ignoring [source] configuration by default in
.cargo/config.toml read it and use it when downloading crates from
crates.io, for example
--versioned-dirs

Normally versions are only added to disambiguate multiple versions of the
same package. This option causes all directories in the “vendor” directory
to be versioned, which makes it easier to track the history of vendored
packages over time, and can help with the performance of re-vendoring
when only a subset of the packages have changed.

Manifest Options
--manifest-path path
Path to the Cargo.toml file. By default, Cargo searches for the Cargo.toml
file in the current directory or any parent directory.
--locked

Asserts that the exact same dependencies and versions are used as when the
existing Cargo.lock file was originally generated. Cargo will exit with an
error when either of the following scenarios arises:

The lock file is missing.
Cargo attempted to change the lock file due to a different dependency
resolution.

It may be used in environments where deterministic builds are desired,
such as in CI pipelines.
--offline

Prevents Cargo from accessing the network for any reason. Without this
flag, Cargo will stop with an error if it needs to access the network and the
network is not available. With this flag, Cargo will attempt to proceed
without the network if possible.

Beware that this may result in different dependency resolution than
online mode. Cargo will restrict itself to crates that are downloaded locally,
even if there might be a newer version as indicated in the local copy of the
index. See the cargo-fetch(1) command to download dependencies before
going offline.

May also be specified with the net.offline config value.
--frozen

Equivalent to specifying both --locked and --offline.
--lockfile-path PATH
Changes the path of the lockfile from the default
(<workspace_root>/Cargo.lock) to PATH. PATH must end with
Cargo.lock (e.g. --lockfile-path /tmp/temporary-

lockfile/Cargo.lock). Note that providing --lockfile-path will ignore
existing lockfile at the default path, and instead will either use the lockfile
from PATH, or write a new lockfile into the provided PATH if it doesn’t
exist. This flag can be used to run most commands in read-only directories,
writing lockfile into the provided PATH.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #14421).

Display Options
-v

--verbose

Use verbose output. May be specified twice for “very verbose” output
which includes extra output such as dependency warnings and build script
output. May also be specified with the term.verbose config value.

https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/14421

-q

--quiet

Do not print cargo log messages. May also be specified with the
term.quiet config value.
--color when
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on
the terminal.
always : Always display colors.
never : Never display colors.

May also be specified with the term.color config value.

Common Options
+toolchain
If Cargo has been installed with rustup, and the first argument to cargo
begins with +, it will be interpreted as a rustup toolchain name (such as
+stable or +nightly). See the rustup documentation for more information
about how toolchain overrides work.
--config KEY=VALUE or PATH
Overrides a Cargo configuration value. The argument should be in TOML
syntax of KEY=VALUE, or provided as a path to an extra configuration file.
This flag may be specified multiple times. See the command-line overrides
section for more information.
-C PATH
Changes the current working directory before executing any specified
operations. This affects things like where cargo looks by default for the
project manifest (Cargo.toml), as well as the directories searched for
discovering .cargo/config.toml, for example. This option must appear
before the command name, for example cargo -C path/to/my-project
build.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #10098).

https://rust-lang.github.io/rustup/overrides.html
https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/10098

-h

--help

Prints help information.
-Z flag
Unstable (nightly-only) flags to Cargo. Run cargo -Z help for details.

ENVIRONMENT
See the reference for details on environment variables that Cargo reads.

EXIT STATUS

0 : Cargo succeeded.
101 : Cargo failed to complete.

EXAMPLES

1. Vendor all dependencies into a local "vendor" folder
cargo vendor

2. Vendor all dependencies into a local "third-party/vendor" folder
cargo vendor third-party/vendor

3. Vendor the current workspace as well as another to "vendor"
cargo vendor -s ../path/to/Cargo.toml

4. Vendor and redirect the necessary vendor configs to a config file.
cargo vendor > path/to/my/cargo/config.toml

SEE ALSO
cargo(1)

Package Commands
cargo init
cargo install
cargo new
cargo search
cargo uninstall

clbr://internal.invalid/book/OEBPS/commands/cargo-init.md
clbr://internal.invalid/book/OEBPS/commands/cargo-install.md
clbr://internal.invalid/book/OEBPS/commands/cargo-new.md
clbr://internal.invalid/book/OEBPS/commands/cargo-search.md
clbr://internal.invalid/book/OEBPS/commands/cargo-uninstall.md

cargo-init(1)

NAME
cargo-init --- Create a new Cargo package in an existing directory

SYNOPSIS
cargo init [options] [path]

DESCRIPTION
This command will create a new Cargo manifest in the current directory.

Give a path as an argument to create in the given directory.
If there are typically-named Rust source files already in the directory,

those will be used. If not, then a sample src/main.rs file will be created,
or src/lib.rs if --lib is passed.

If the directory is not already in a VCS repository, then a new repository
is created (see --vcs below).

See cargo-new(1) for a similar command which will create a new
package in a new directory.

OPTIONS
Init Options
--bin

Create a package with a binary target (src/main.rs). This is the default
behavior.
--lib

Create a package with a library target (src/lib.rs).
--edition edition
Specify the Rust edition to use. Default is 2024. Possible values: 2015,
2018, 2021, 2024
--name name
Set the package name. Defaults to the directory name.
--vcs vcs
Initialize a new VCS repository for the given version control system (git,
hg, pijul, or fossil) or do not initialize any version control at all (none). If
not specified, defaults to git or the configuration value cargo-new.vcs, or
none if already inside a VCS repository.
--registry registry
This sets the publish field in Cargo.toml to the given registry name which
will restrict publishing only to that registry.

Registry names are defined in Cargo config files. If not specified, the
default registry defined by the registry.default config key is used. If the
default registry is not set and --registry is not used, the publish field
will not be set which means that publishing will not be restricted.

Display Options
-v

--verbose

Use verbose output. May be specified twice for “very verbose” output
which includes extra output such as dependency warnings and build script
output. May also be specified with the term.verbose config value.

-q

--quiet

Do not print cargo log messages. May also be specified with the
term.quiet config value.
--color when
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on
the terminal.
always : Always display colors.
never : Never display colors.

May also be specified with the term.color config value.

Common Options
+toolchain
If Cargo has been installed with rustup, and the first argument to cargo
begins with +, it will be interpreted as a rustup toolchain name (such as
+stable or +nightly). See the rustup documentation for more information
about how toolchain overrides work.
--config KEY=VALUE or PATH
Overrides a Cargo configuration value. The argument should be in TOML
syntax of KEY=VALUE, or provided as a path to an extra configuration file.
This flag may be specified multiple times. See the command-line overrides
section for more information.
-C PATH
Changes the current working directory before executing any specified
operations. This affects things like where cargo looks by default for the
project manifest (Cargo.toml), as well as the directories searched for
discovering .cargo/config.toml, for example. This option must appear
before the command name, for example cargo -C path/to/my-project
build.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #10098).

https://rust-lang.github.io/rustup/overrides.html
https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/10098

-h

--help

Prints help information.
-Z flag
Unstable (nightly-only) flags to Cargo. Run cargo -Z help for details.

ENVIRONMENT
See the reference for details on environment variables that Cargo reads.

EXIT STATUS

0 : Cargo succeeded.
101 : Cargo failed to complete.

EXAMPLES

1. Create a binary Cargo package in the current directory:
cargo init

SEE ALSO
cargo(1), cargo-new(1)

cargo-install(1)

NAME
cargo-install --- Build and install a Rust binary

SYNOPSIS
cargo install [options] crate[@version]...

cargo install [options] --path path
cargo install [options] --git url [crate...]
cargo install [options] --list

DESCRIPTION
This command manages Cargo's local set of installed binary crates. Only

packages which have executable [[bin]] or [[example]] targets can be
installed, and all executables are installed into the installation root's bin
folder. By default only binaries, not examples, are installed.

The installation root is determined, in order of precedence:

--root option
CARGO_INSTALL_ROOT environment variable
install.root Cargo config value
CARGO_HOME environment variable
$HOME/.cargo

There are multiple sources from which a crate can be installed. The
default source location is crates.io but the --git , --path , and --

registry flags can change this source. If the source contains more than one
package (such as crates.io or a git repository with multiple crates) the crate
argument is required to indicate which crate should be installed.

Crates from crates.io can optionally specify the version they wish to
install via the --version flags, and similarly packages from git
repositories can optionally specify the branch, tag, or revision that should
be installed. If a crate has multiple binaries, the --bin argument can
selectively install only one of them, and if you'd rather install examples the
--example argument can be used as well.

If the package is already installed, Cargo will reinstall it if the installed
version does not appear to be up-to-date. If any of the following values
change, then Cargo will reinstall the package:

The package version and source.
The set of binary names installed.
The chosen features.
The profile (--profile).
The target (--target).

Installing with --path will always build and install, unless there are
conflicting binaries from another package. The --force flag may be used
to force Cargo to always reinstall the package.

If the source is crates.io or --git then by default the crate will be built
in a temporary target directory. To avoid this, the target directory can be
specified by setting the CARGO_TARGET_DIR environment variable to a
relative path. In particular, this can be useful for caching build artifacts on
continuous integration systems.

Dealing with the Lockfile
By default, the Cargo.lock file that is included with the package will be

ignored. This means that Cargo will recompute which versions of
dependencies to use, possibly using newer versions that have been released
since the package was published. The --locked flag can be used to force
Cargo to use the packaged Cargo.lock file if it is available. This may be
useful for ensuring reproducible builds, to use the exact same set of
dependencies that were available when the package was published. It may
also be useful if a newer version of a dependency is published that no
longer builds on your system, or has other problems. The downside to using
--locked is that you will not receive any fixes or updates to any
dependency. Note that Cargo did not start publishing Cargo.lock files until
version 1.37, which means packages published with prior versions will not
have a Cargo.lock file available.

Configuration Discovery
This command operates on system or user level, not project level. This

means that the local configuration discovery is ignored. Instead, the
configuration discovery begins at $CARGO_HOME/config.toml . If the
package is installed with --path $PATH , the local configuration will be
used, beginning discovery at $PATH/.cargo/config.toml .

OPTIONS
Install Options
--vers version
--version version
Specify a version to install. This may be a version requirement, like ~1.2, to
have Cargo select the newest version from the given requirement. If the
version does not have a requirement operator (such as ^ or ~), then it must
be in the form MAJOR.MINOR.PATCH, and will install exactly that
version; it is not treated as a caret requirement like Cargo dependencies are.
--git url
Git URL to install the specified crate from.
--branch branch
Branch to use when installing from git.
--tag tag
Tag to use when installing from git.
--rev sha
Specific commit to use when installing from git.
--path path
Filesystem path to local crate to install from.
--list

List all installed packages and their versions.
-n

--dry-run

(unstable) Perform all checks without installing.
-f

--force

Force overwriting existing crates or binaries. This can be used if a package
has installed a binary with the same name as another package. This is also
useful if something has changed on the system that you want to rebuild
with, such as a newer version of rustc.
--no-track

By default, Cargo keeps track of the installed packages with a metadata file
stored in the installation root directory. This flag tells Cargo not to use or
create that file. With this flag, Cargo will refuse to overwrite any existing
files unless the --force flag is used. This also disables Cargo’s ability to
protect against multiple concurrent invocations of Cargo installing at the
same time.
--bin name…
Install only the specified binary.
--bins

Install all binaries. This is the default behavior.
--example name…
Install only the specified example.
--examples

Install all examples.
--root dir
Directory to install packages into.
--registry registry
Name of the registry to use. Registry names are defined in Cargo config
files. If not specified, the default registry is used, which is defined by the
registry.default config key which defaults to crates-io.
--index index
The URL of the registry index to use.

Feature Selection
The feature flags allow you to control which features are enabled. When

no feature options are given, the default feature is activated for every
selected package.

See the features documentation for more details.
-F features
--features features
Space or comma separated list of features to activate. Features of
workspace members may be enabled with package-name/feature-name
syntax. This flag may be specified multiple times, which enables all
specified features.

--all-features

Activate all available features of all selected packages.
--no-default-features

Do not activate the default feature of the selected packages.

Compilation Options
--target triple
Install for the given architecture. The default is the host architecture. The
general format of the triple is <arch><sub>-<vendor>-<sys>-<abi>. Run
rustc --print target-list for a list of supported targets.

This may also be specified with the build.target config value.
Note that specifying this flag makes Cargo run in a different mode where

the target artifacts are placed in a separate directory. See the build cache
documentation for more details.
--target-dir directory
Directory for all generated artifacts and intermediate files. May also be
specified with the CARGO_TARGET_DIR environment variable, or the
build.target-dir config value. Defaults to a new temporary folder
located in the temporary directory of the platform.

When using --path , by default it will use target directory in the
workspace of the local crate unless --target-dir is specified.
--debug

Build with the dev profile instead of the release profile. See also the --
profile option for choosing a specific profile by name.
--profile name
Install with the given profile. See the reference for more details on profiles.
--timings=fmts
Output information how long each compilation takes, and track
concurrency information over time. Accepts an optional comma-separated
list of output formats; --timings without an argument will default to --
timings=html. Specifying an output format (rather than the default) is
unstable and requires -Zunstable-options. Valid output formats:

html (unstable, requires -Zunstable-options): Write a human-
readable file cargo-timing.html to the target/cargo-timings
directory with a report of the compilation. Also write a report to the
same directory with a timestamp in the filename if you want to look at
older runs. HTML output is suitable for human consumption only, and
does not provide machine-readable timing data.
json (unstable, requires -Zunstable-options): Emit machine-
readable JSON information about timing information.

Manifest Options
--ignore-rust-version

Ignore rust-version specification in packages.
--locked

Asserts that the exact same dependencies and versions are used as when the
existing Cargo.lock file was originally generated. Cargo will exit with an
error when either of the following scenarios arises:

The lock file is missing.
Cargo attempted to change the lock file due to a different dependency
resolution.

It may be used in environments where deterministic builds are desired,
such as in CI pipelines.
--offline

Prevents Cargo from accessing the network for any reason. Without this
flag, Cargo will stop with an error if it needs to access the network and the
network is not available. With this flag, Cargo will attempt to proceed
without the network if possible.

Beware that this may result in different dependency resolution than
online mode. Cargo will restrict itself to crates that are downloaded locally,
even if there might be a newer version as indicated in the local copy of the
index. See the cargo-fetch(1) command to download dependencies before
going offline.

May also be specified with the net.offline config value.
--frozen

Equivalent to specifying both --locked and --offline.

Miscellaneous Options
-j N
--jobs N
Number of parallel jobs to run. May also be specified with the build.jobs
config value. Defaults to the number of logical CPUs. If negative, it sets the
maximum number of parallel jobs to the number of logical CPUs plus
provided value. If a string default is provided, it sets the value back to
defaults. Should not be 0.
--keep-going

Build as many crates in the dependency graph as possible, rather than
aborting the build on the first one that fails to build.

For example if the current package depends on dependencies fails and
works , one of which fails to build, cargo install -j1 may or may not
build the one that succeeds (depending on which one of the two builds
Cargo picked to run first), whereas cargo install -j1 --keep-going
would definitely run both builds, even if the one run first fails.

Display Options
-v

--verbose

Use verbose output. May be specified twice for “very verbose” output
which includes extra output such as dependency warnings and build script
output. May also be specified with the term.verbose config value.
-q

--quiet

Do not print cargo log messages. May also be specified with the
term.quiet config value.
--color when
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on
the terminal.
always : Always display colors.
never : Never display colors.

May also be specified with the term.color config value.
--message-format fmt
The output format for diagnostic messages. Can be specified multiple times
and consists of comma-separated values. Valid values:

human (default): Display in a human-readable text format. Conflicts
with short and json .
short : Emit shorter, human-readable text messages. Conflicts with
human and json .
json : Emit JSON messages to stdout. See the reference for more
details. Conflicts with human and short .
json-diagnostic-short : Ensure the rendered field of JSON
messages contains the “short” rendering from rustc. Cannot be used
with human or short .
json-diagnostic-rendered-ansi : Ensure the rendered field of
JSON messages contains embedded ANSI color codes for respecting
rustc’s default color scheme. Cannot be used with human or short .
json-render-diagnostics : Instruct Cargo to not include rustc
diagnostics in JSON messages printed, but instead Cargo itself should
render the JSON diagnostics coming from rustc. Cargo’s own JSON
diagnostics and others coming from rustc are still emitted. Cannot be
used with human or short .

Common Options
+toolchain
If Cargo has been installed with rustup, and the first argument to cargo
begins with +, it will be interpreted as a rustup toolchain name (such as
+stable or +nightly). See the rustup documentation for more information
about how toolchain overrides work.

https://rust-lang.github.io/rustup/overrides.html

--config KEY=VALUE or PATH
Overrides a Cargo configuration value. The argument should be in TOML
syntax of KEY=VALUE, or provided as a path to an extra configuration file.
This flag may be specified multiple times. See the command-line overrides
section for more information.
-C PATH
Changes the current working directory before executing any specified
operations. This affects things like where cargo looks by default for the
project manifest (Cargo.toml), as well as the directories searched for
discovering .cargo/config.toml, for example. This option must appear
before the command name, for example cargo -C path/to/my-project
build.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #10098).
-h

--help

Prints help information.
-Z flag
Unstable (nightly-only) flags to Cargo. Run cargo -Z help for details.

https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/10098

ENVIRONMENT
See the reference for details on environment variables that Cargo reads.

EXIT STATUS

0 : Cargo succeeded.
101 : Cargo failed to complete.

EXAMPLES

1. Install or upgrade a package from crates.io:
cargo install ripgrep

2. Install or reinstall the package in the current directory:
cargo install --path .

3. View the list of installed packages:
cargo install --list

SEE ALSO
cargo(1), cargo-uninstall(1), cargo-search(1), cargo-publish(1)

cargo-new(1)

NAME
cargo-new --- Create a new Cargo package

SYNOPSIS
cargo new [options] path

DESCRIPTION
This command will create a new Cargo package in the given directory.

This includes a simple template with a Cargo.toml manifest, sample
source file, and a VCS ignore file. If the directory is not already in a VCS
repository, then a new repository is created (see --vcs below).

See cargo-init(1) for a similar command which will create a new
manifest in an existing directory.

OPTIONS
New Options
--bin

Create a package with a binary target (src/main.rs). This is the default
behavior.
--lib

Create a package with a library target (src/lib.rs).
--edition edition
Specify the Rust edition to use. Default is 2024. Possible values: 2015,
2018, 2021, 2024
--name name
Set the package name. Defaults to the directory name.
--vcs vcs
Initialize a new VCS repository for the given version control system (git,
hg, pijul, or fossil) or do not initialize any version control at all (none). If
not specified, defaults to git or the configuration value cargo-new.vcs, or
none if already inside a VCS repository.
--registry registry
This sets the publish field in Cargo.toml to the given registry name which
will restrict publishing only to that registry.

Registry names are defined in Cargo config files. If not specified, the
default registry defined by the registry.default config key is used. If the
default registry is not set and --registry is not used, the publish field
will not be set which means that publishing will not be restricted.

Display Options
-v

--verbose

Use verbose output. May be specified twice for “very verbose” output
which includes extra output such as dependency warnings and build script
output. May also be specified with the term.verbose config value.

-q

--quiet

Do not print cargo log messages. May also be specified with the
term.quiet config value.
--color when
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on
the terminal.
always : Always display colors.
never : Never display colors.

May also be specified with the term.color config value.

Common Options
+toolchain
If Cargo has been installed with rustup, and the first argument to cargo
begins with +, it will be interpreted as a rustup toolchain name (such as
+stable or +nightly). See the rustup documentation for more information
about how toolchain overrides work.
--config KEY=VALUE or PATH
Overrides a Cargo configuration value. The argument should be in TOML
syntax of KEY=VALUE, or provided as a path to an extra configuration file.
This flag may be specified multiple times. See the command-line overrides
section for more information.
-C PATH
Changes the current working directory before executing any specified
operations. This affects things like where cargo looks by default for the
project manifest (Cargo.toml), as well as the directories searched for
discovering .cargo/config.toml, for example. This option must appear
before the command name, for example cargo -C path/to/my-project
build.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #10098).

https://rust-lang.github.io/rustup/overrides.html
https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/10098

-h

--help

Prints help information.
-Z flag
Unstable (nightly-only) flags to Cargo. Run cargo -Z help for details.

ENVIRONMENT
See the reference for details on environment variables that Cargo reads.

EXIT STATUS

0 : Cargo succeeded.
101 : Cargo failed to complete.

EXAMPLES

1. Create a binary Cargo package in the given directory:
cargo new foo

SEE ALSO
cargo(1), cargo-init(1)

cargo-search(1)

NAME
cargo-search --- Search packages in the registry. Default registry is

crates.io

SYNOPSIS
cargo search [options] [query...]

DESCRIPTION
This performs a textual search for crates on https://crates.io. The

matching crates will be displayed along with their description in TOML
format suitable for copying into a Cargo.toml manifest.

https://crates.io/

OPTIONS
Search Options
--limit limit
Limit the number of results (default: 10, max: 100).
--index index
The URL of the registry index to use.
--registry registry
Name of the registry to use. Registry names are defined in Cargo config
files. If not specified, the default registry is used, which is defined by the
registry.default config key which defaults to crates-io.

Display Options
-v

--verbose

Use verbose output. May be specified twice for “very verbose” output
which includes extra output such as dependency warnings and build script
output. May also be specified with the term.verbose config value.
-q

--quiet

Do not print cargo log messages. May also be specified with the
term.quiet config value.
--color when
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on
the terminal.
always : Always display colors.
never : Never display colors.

May also be specified with the term.color config value.

Common Options

+toolchain
If Cargo has been installed with rustup, and the first argument to cargo
begins with +, it will be interpreted as a rustup toolchain name (such as
+stable or +nightly). See the rustup documentation for more information
about how toolchain overrides work.
--config KEY=VALUE or PATH
Overrides a Cargo configuration value. The argument should be in TOML
syntax of KEY=VALUE, or provided as a path to an extra configuration file.
This flag may be specified multiple times. See the command-line overrides
section for more information.
-C PATH
Changes the current working directory before executing any specified
operations. This affects things like where cargo looks by default for the
project manifest (Cargo.toml), as well as the directories searched for
discovering .cargo/config.toml, for example. This option must appear
before the command name, for example cargo -C path/to/my-project
build.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #10098).
-h

--help

Prints help information.
-Z flag
Unstable (nightly-only) flags to Cargo. Run cargo -Z help for details.

https://rust-lang.github.io/rustup/overrides.html
https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/10098

ENVIRONMENT
See the reference for details on environment variables that Cargo reads.

EXIT STATUS

0 : Cargo succeeded.
101 : Cargo failed to complete.

EXAMPLES

1. Search for a package from crates.io:
cargo search serde

SEE ALSO
cargo(1), cargo-install(1), cargo-publish(1)

cargo-uninstall(1)

NAME
cargo-uninstall --- Remove a Rust binary

SYNOPSIS
cargo uninstall [options] [spec...]

DESCRIPTION
This command removes a package installed with cargo-install(1). The

spec argument is a package ID specification of the package to remove (see
cargo-pkgid(1)).

By default all binaries are removed for a crate but the --bin and --
example flags can be used to only remove particular binaries.

The installation root is determined, in order of precedence:

--root option
CARGO_INSTALL_ROOT environment variable
install.root Cargo config value
CARGO_HOME environment variable
$HOME/.cargo

OPTIONS
Uninstall Options
-p

--package spec…
Package to uninstall.
--bin name…
Only uninstall the binary name.
--root dir
Directory to uninstall packages from.

Display Options
-v

--verbose

Use verbose output. May be specified twice for “very verbose” output
which includes extra output such as dependency warnings and build script
output. May also be specified with the term.verbose config value.
-q

--quiet

Do not print cargo log messages. May also be specified with the
term.quiet config value.
--color when
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on
the terminal.
always : Always display colors.
never : Never display colors.

May also be specified with the term.color config value.

Common Options
+toolchain

If Cargo has been installed with rustup, and the first argument to cargo
begins with +, it will be interpreted as a rustup toolchain name (such as
+stable or +nightly). See the rustup documentation for more information
about how toolchain overrides work.
--config KEY=VALUE or PATH
Overrides a Cargo configuration value. The argument should be in TOML
syntax of KEY=VALUE, or provided as a path to an extra configuration file.
This flag may be specified multiple times. See the command-line overrides
section for more information.
-C PATH
Changes the current working directory before executing any specified
operations. This affects things like where cargo looks by default for the
project manifest (Cargo.toml), as well as the directories searched for
discovering .cargo/config.toml, for example. This option must appear
before the command name, for example cargo -C path/to/my-project
build.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #10098).
-h

--help

Prints help information.
-Z flag
Unstable (nightly-only) flags to Cargo. Run cargo -Z help for details.

https://rust-lang.github.io/rustup/overrides.html
https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/10098

ENVIRONMENT
See the reference for details on environment variables that Cargo reads.

EXIT STATUS

0 : Cargo succeeded.
101 : Cargo failed to complete.

EXAMPLES

1. Uninstall a previously installed package.
cargo uninstall ripgrep

SEE ALSO
cargo(1), cargo-install(1)

Publishing Commands
cargo login
cargo logout
cargo owner
cargo package
cargo publish
cargo yank

clbr://internal.invalid/book/OEBPS/commands/cargo-login.md
clbr://internal.invalid/book/OEBPS/commands/cargo-logout.md
clbr://internal.invalid/book/OEBPS/commands/cargo-owner.md
clbr://internal.invalid/book/OEBPS/commands/cargo-package.md
clbr://internal.invalid/book/OEBPS/commands/cargo-publish.md
clbr://internal.invalid/book/OEBPS/commands/cargo-yank.md

cargo-login(1)

NAME
cargo-login --- Log in to a registry

SYNOPSIS
cargo login [options] [-- args]

DESCRIPTION
This command will run a credential provider to save a token so that

commands that require authentication, such as cargo-publish(1), will be
automatically authenticated.

All the arguments following the two dashes (--) are passed to the
credential provider.

For the default cargo:token credential provider, the token is saved in
$CARGO_HOME/credentials.toml . CARGO_HOME defaults to .cargo in your
home directory.

If a registry has a credential-provider specified, it will be used.
Otherwise, the providers from the config value registry.global-

credential-providers will be attempted, starting from the end of the list.
The token will be read from stdin.
The API token for crates.io may be retrieved from https://crates.io/me.
Take care to keep the token secret, it should not be shared with anyone

else.

https://crates.io/me

OPTIONS
Login Options
--registry registry
Name of the registry to use. Registry names are defined in Cargo config
files. If not specified, the default registry is used, which is defined by the
registry.default config key which defaults to crates-io.

Display Options
-v

--verbose

Use verbose output. May be specified twice for “very verbose” output
which includes extra output such as dependency warnings and build script
output. May also be specified with the term.verbose config value.
-q

--quiet

Do not print cargo log messages. May also be specified with the
term.quiet config value.
--color when
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on
the terminal.
always : Always display colors.
never : Never display colors.

May also be specified with the term.color config value.

Common Options
+toolchain
If Cargo has been installed with rustup, and the first argument to cargo
begins with +, it will be interpreted as a rustup toolchain name (such as

+stable or +nightly). See the rustup documentation for more information
about how toolchain overrides work.
--config KEY=VALUE or PATH
Overrides a Cargo configuration value. The argument should be in TOML
syntax of KEY=VALUE, or provided as a path to an extra configuration file.
This flag may be specified multiple times. See the command-line overrides
section for more information.
-C PATH
Changes the current working directory before executing any specified
operations. This affects things like where cargo looks by default for the
project manifest (Cargo.toml), as well as the directories searched for
discovering .cargo/config.toml, for example. This option must appear
before the command name, for example cargo -C path/to/my-project
build.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #10098).
-h

--help

Prints help information.
-Z flag
Unstable (nightly-only) flags to Cargo. Run cargo -Z help for details.

https://rust-lang.github.io/rustup/overrides.html
https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/10098

ENVIRONMENT
See the reference for details on environment variables that Cargo reads.

EXIT STATUS

0 : Cargo succeeded.
101 : Cargo failed to complete.

EXAMPLES

1. Save the token for the default registry:
cargo login

2. Save the token for a specific registry:
cargo login --registry my-registry

SEE ALSO
cargo(1), cargo-logout(1), cargo-publish(1)

cargo-logout(1)

NAME
cargo-logout --- Remove an API token from the registry locally

SYNOPSIS
cargo logout [options]

DESCRIPTION
This command will run a credential provider to remove a saved token.
For the default cargo:token credential provider, credentials are stored

in $CARGO_HOME/credentials.toml where $CARGO_HOME defaults to
.cargo in your home directory.

If a registry has a credential-provider specified, it will be used.
Otherwise, the providers from the config value registry.global-

credential-providers will be attempted, starting from the end of the list.
If --registry is not specified, then the credentials for the default

registry will be removed (configured by registry.default , which
defaults to https://crates.io/).

This will not revoke the token on the server. If you need to revoke the
token, visit the registry website and follow its instructions (see
https://crates.io/me to revoke the token for https://crates.io/).

https://crates.io/
https://crates.io/me
https://crates.io/

OPTIONS
Logout Options
--registry registry
Name of the registry to use. Registry names are defined in Cargo config
files. If not specified, the default registry is used, which is defined by the
registry.default config key which defaults to crates-io.

Display Options
-v

--verbose

Use verbose output. May be specified twice for “very verbose” output
which includes extra output such as dependency warnings and build script
output. May also be specified with the term.verbose config value.
-q

--quiet

Do not print cargo log messages. May also be specified with the
term.quiet config value.
--color when
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on
the terminal.
always : Always display colors.
never : Never display colors.

May also be specified with the term.color config value.

Common Options
+toolchain
If Cargo has been installed with rustup, and the first argument to cargo
begins with +, it will be interpreted as a rustup toolchain name (such as

+stable or +nightly). See the rustup documentation for more information
about how toolchain overrides work.
--config KEY=VALUE or PATH
Overrides a Cargo configuration value. The argument should be in TOML
syntax of KEY=VALUE, or provided as a path to an extra configuration file.
This flag may be specified multiple times. See the command-line overrides
section for more information.
-C PATH
Changes the current working directory before executing any specified
operations. This affects things like where cargo looks by default for the
project manifest (Cargo.toml), as well as the directories searched for
discovering .cargo/config.toml, for example. This option must appear
before the command name, for example cargo -C path/to/my-project
build.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #10098).
-h

--help

Prints help information.
-Z flag
Unstable (nightly-only) flags to Cargo. Run cargo -Z help for details.

https://rust-lang.github.io/rustup/overrides.html
https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/10098

ENVIRONMENT
See the reference for details on environment variables that Cargo reads.

EXIT STATUS

0 : Cargo succeeded.
101 : Cargo failed to complete.

EXAMPLES

1. Remove the default registry token:
cargo logout

2. Remove the token for a specific registry:
cargo logout --registry my-registry

SEE ALSO
cargo(1), cargo-login(1)

cargo-owner(1)

NAME
cargo-owner --- Manage the owners of a crate on the registry

SYNOPSIS
cargo owner [options] --add login [crate]

cargo owner [options] --remove login [crate]
cargo owner [options] --list [crate]

DESCRIPTION
This command will modify the owners for a crate on the registry.

Owners of a crate can upload new versions and yank old versions. Non-
team owners can also modify the set of owners, so take care!

This command requires you to be authenticated with either the --token
option or using cargo-login(1).

If the crate name is not specified, it will use the package name from the
current directory.

See the reference for more information about owners and publishing.

OPTIONS
Owner Options
-a

--add login…
Invite the given user or team as an owner.
-r

--remove login…
Remove the given user or team as an owner.
-l

--list

List owners of a crate.
--token token
API token to use when authenticating. This overrides the token stored in the
credentials file (which is created by cargo-login(1)).

Cargo config environment variables can be used to override the tokens
stored in the credentials file. The token for crates.io may be specified with
the CARGO_REGISTRY_TOKEN environment variable. Tokens for other
registries may be specified with environment variables of the form
CARGO_REGISTRIES_NAME_TOKEN where NAME is the name of the registry in
all capital letters.
--index index
The URL of the registry index to use.
--registry registry
Name of the registry to use. Registry names are defined in Cargo config
files. If not specified, the default registry is used, which is defined by the
registry.default config key which defaults to crates-io.

Display Options
-v

--verbose

Use verbose output. May be specified twice for “very verbose” output
which includes extra output such as dependency warnings and build script
output. May also be specified with the term.verbose config value.
-q

--quiet

Do not print cargo log messages. May also be specified with the
term.quiet config value.
--color when
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on
the terminal.
always : Always display colors.
never : Never display colors.

May also be specified with the term.color config value.

Common Options
+toolchain
If Cargo has been installed with rustup, and the first argument to cargo
begins with +, it will be interpreted as a rustup toolchain name (such as
+stable or +nightly). See the rustup documentation for more information
about how toolchain overrides work.
--config KEY=VALUE or PATH
Overrides a Cargo configuration value. The argument should be in TOML
syntax of KEY=VALUE, or provided as a path to an extra configuration file.
This flag may be specified multiple times. See the command-line overrides
section for more information.
-C PATH
Changes the current working directory before executing any specified
operations. This affects things like where cargo looks by default for the
project manifest (Cargo.toml), as well as the directories searched for
discovering .cargo/config.toml, for example. This option must appear

https://rust-lang.github.io/rustup/overrides.html

before the command name, for example cargo -C path/to/my-project
build.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #10098).
-h

--help

Prints help information.
-Z flag
Unstable (nightly-only) flags to Cargo. Run cargo -Z help for details.

https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/10098

ENVIRONMENT
See the reference for details on environment variables that Cargo reads.

EXIT STATUS

0 : Cargo succeeded.
101 : Cargo failed to complete.

EXAMPLES

1. List owners of a package:
cargo owner --list foo

2. Invite an owner to a package:
cargo owner --add username foo

3. Remove an owner from a package:
cargo owner --remove username foo

SEE ALSO
cargo(1), cargo-login(1), cargo-publish(1)

cargo-package(1)

NAME
cargo-package --- Assemble the local package into a distributable tarball

SYNOPSIS
cargo package [options]

DESCRIPTION
This command will create a distributable, compressed .crate file with

the source code of the package in the current directory. The resulting file
will be stored in the target/package directory. This performs the
following steps:

1. Load and check the current workspace, performing some basic
checks.

Path dependencies are not allowed unless they have a version key.
Cargo will ignore the path key for dependencies in published
packages. dev-dependencies do not have this restriction.

2. Create the compressed .crate file.

The original Cargo.toml file is rewritten and normalized.
[patch] , [replace] , and [workspace] sections are removed
from the manifest.
Cargo.lock is always included. When missing, a new lock file
will be generated unless the --exclude-lockfile flag is used.
cargo-install(1) will use the packaged lock file if the --locked
flag is used.
A .cargo_vcs_info.json file is included that contains
information about the current VCS checkout hash if available, as
well as a flag if the worktree is dirty.
Symlinks are flattened to their target files.
Files and directories are included or excluded based on rules
mentioned in the [include] and [exclude] fields.

3. Extract the .crate file and build it to verify it can build.

This will rebuild your package from scratch to ensure that it can
be built from a pristine state. The --no-verify flag can be used
to skip this step.

4. Check that build scripts did not modify any source files.

The list of files included can be controlled with the include and
exclude fields in the manifest.

See the reference for more details about packaging and publishing.

.cargo_vcs_info.json format
Will generate a .cargo_vcs_info.json in the following format

{
 "git": {
 "sha1": "aac20b6e7e543e6dd4118b246c77225e3a3a1302",
 "dirty": true
 },
 "path_in_vcs": ""
}

dirty indicates that the Git worktree was dirty when the package was
built.

path_in_vcs will be set to a repo-relative path for packages in
subdirectories of the version control repository.

The compatibility of this file is maintained under the same policy as the
JSON output of cargo-metadata(1).

Note that this file provides a best-effort snapshot of the VCS
information. However, the provenance of the package is not verified. There
is no guarantee that the source code in the tarball matches the VCS
information.

OPTIONS
Package Options
-l

--list

Print files included in a package without making one.
--no-verify

Don’t verify the contents by building them.
--no-metadata

Ignore warnings about a lack of human-usable metadata (such as the
description or the license).
--allow-dirty

Allow working directories with uncommitted VCS changes to be packaged.
--exclude-lockfile

Don’t include the lock file when packaging.
This flag is not for general use. Some tools may expect a lock file to be

present (e.g. cargo install --locked). Consider other options before
using this.
--index index
The URL of the registry index to use.
--registry registry
Name of the registry to package for; see cargo publish --help for more
details about configuration of registry names. The packages will not be
published to this registry, but if we are packaging multiple inter-dependent
crates, lock-files will be generated under the assumption that dependencies
will be published to this registry.
--message-format fmt
Specifies the output message format. Currently, it only works with --list
and affects the file listing format. This is unstable and requires -Zunstable-
options. Valid output formats:

human (default): Display in a file-per-line format.

json : Emit machine-readable JSON information about each package.
One package per JSON line (Newline delimited JSON).
{
 /* The Package ID Spec of the package. */
 "id": "path+file:///home/foo#0.0.0",
 /* Files of this package */
 "files" {
 /* Relative path in the archive file. */
 "Cargo.toml.orig": {
 /* Where the file is from.
 - "generate" for file being generated during
packaging
 - "copy" for file being copied from another
location.
 */
 "kind": "copy",
 /* For the "copy" kind,
 it is an absolute path to the actual file
content.
 For the "generate" kind,
 it is the original file the generated one is
based on.
 */
 "path": "/home/foo/Cargo.toml"
 },
 "Cargo.toml": {
 "kind": "generate",
 "path": "/home/foo/Cargo.toml"
 },
 "src/main.rs": {
 "kind": "copy",
 "path": "/home/foo/src/main.rs"
 }
 }
}

Package Selection
By default, when no package selection options are given, the packages

selected depend on the selected manifest file (based on the current working
directory if --manifest-path is not given). If the manifest is the root of a
workspace then the workspaces default members are selected, otherwise
only the package defined by the manifest will be selected.

The default members of a workspace can be set explicitly with the
workspace.default-members key in the root manifest. If this is not set, a
virtual workspace will include all workspace members (equivalent to
passing --workspace), and a non-virtual workspace will include only the
root crate itself.
-p spec…
--package spec…
Package only the specified packages. See cargo-pkgid(1) for the SPEC
format. This flag may be specified multiple times and supports common
Unix glob patterns like *, ? and []. However, to avoid your shell
accidentally expanding glob patterns before Cargo handles them, you must
use single quotes or double quotes around each pattern.
--workspace

Package all members in the workspace.
--exclude SPEC…
Exclude the specified packages. Must be used in conjunction with the --
workspace flag. This flag may be specified multiple times and supports
common Unix glob patterns like *, ? and []. However, to avoid your shell
accidentally expanding glob patterns before Cargo handles them, you must
use single quotes or double quotes around each pattern.

Compilation Options
--target triple
Package for the given architecture. The default is the host architecture. The
general format of the triple is <arch><sub>-<vendor>-<sys>-<abi>. Run
rustc --print target-list for a list of supported targets. This flag may
be specified multiple times.

This may also be specified with the build.target config value.
Note that specifying this flag makes Cargo run in a different mode where

the target artifacts are placed in a separate directory. See the build cache
documentation for more details.
--target-dir directory
Directory for all generated artifacts and intermediate files. May also be
specified with the CARGO_TARGET_DIR environment variable, or the
build.target-dir config value. Defaults to target in the root of the
workspace.

Feature Selection
The feature flags allow you to control which features are enabled. When

no feature options are given, the default feature is activated for every
selected package.

See the features documentation for more details.
-F features
--features features
Space or comma separated list of features to activate. Features of
workspace members may be enabled with package-name/feature-name
syntax. This flag may be specified multiple times, which enables all
specified features.
--all-features

Activate all available features of all selected packages.
--no-default-features

Do not activate the default feature of the selected packages.

Manifest Options
--manifest-path path
Path to the Cargo.toml file. By default, Cargo searches for the Cargo.toml
file in the current directory or any parent directory.
--locked

Asserts that the exact same dependencies and versions are used as when the
existing Cargo.lock file was originally generated. Cargo will exit with an

error when either of the following scenarios arises:

The lock file is missing.
Cargo attempted to change the lock file due to a different dependency
resolution.

It may be used in environments where deterministic builds are desired,
such as in CI pipelines.
--offline

Prevents Cargo from accessing the network for any reason. Without this
flag, Cargo will stop with an error if it needs to access the network and the
network is not available. With this flag, Cargo will attempt to proceed
without the network if possible.

Beware that this may result in different dependency resolution than
online mode. Cargo will restrict itself to crates that are downloaded locally,
even if there might be a newer version as indicated in the local copy of the
index. See the cargo-fetch(1) command to download dependencies before
going offline.

May also be specified with the net.offline config value.
--frozen

Equivalent to specifying both --locked and --offline.
--lockfile-path PATH
Changes the path of the lockfile from the default
(<workspace_root>/Cargo.lock) to PATH. PATH must end with
Cargo.lock (e.g. --lockfile-path /tmp/temporary-

lockfile/Cargo.lock). Note that providing --lockfile-path will ignore
existing lockfile at the default path, and instead will either use the lockfile
from PATH, or write a new lockfile into the provided PATH if it doesn’t
exist. This flag can be used to run most commands in read-only directories,
writing lockfile into the provided PATH.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #14421).

Miscellaneous Options

https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/14421

-j N
--jobs N
Number of parallel jobs to run. May also be specified with the build.jobs
config value. Defaults to the number of logical CPUs. If negative, it sets the
maximum number of parallel jobs to the number of logical CPUs plus
provided value. If a string default is provided, it sets the value back to
defaults. Should not be 0.
--keep-going

Build as many crates in the dependency graph as possible, rather than
aborting the build on the first one that fails to build.

For example if the current package depends on dependencies fails and
works , one of which fails to build, cargo package -j1 may or may not
build the one that succeeds (depending on which one of the two builds
Cargo picked to run first), whereas cargo package -j1 --keep-going
would definitely run both builds, even if the one run first fails.

Display Options
-v

--verbose

Use verbose output. May be specified twice for “very verbose” output
which includes extra output such as dependency warnings and build script
output. May also be specified with the term.verbose config value.
-q

--quiet

Do not print cargo log messages. May also be specified with the
term.quiet config value.
--color when
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on
the terminal.
always : Always display colors.
never : Never display colors.

May also be specified with the term.color config value.

Common Options
+toolchain
If Cargo has been installed with rustup, and the first argument to cargo
begins with +, it will be interpreted as a rustup toolchain name (such as
+stable or +nightly). See the rustup documentation for more information
about how toolchain overrides work.
--config KEY=VALUE or PATH
Overrides a Cargo configuration value. The argument should be in TOML
syntax of KEY=VALUE, or provided as a path to an extra configuration file.
This flag may be specified multiple times. See the command-line overrides
section for more information.
-C PATH
Changes the current working directory before executing any specified
operations. This affects things like where cargo looks by default for the
project manifest (Cargo.toml), as well as the directories searched for
discovering .cargo/config.toml, for example. This option must appear
before the command name, for example cargo -C path/to/my-project
build.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #10098).
-h

--help

Prints help information.
-Z flag
Unstable (nightly-only) flags to Cargo. Run cargo -Z help for details.

https://rust-lang.github.io/rustup/overrides.html
https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/10098

ENVIRONMENT
See the reference for details on environment variables that Cargo reads.

EXIT STATUS

0 : Cargo succeeded.
101 : Cargo failed to complete.

EXAMPLES

1. Create a compressed .crate file of the current package:
cargo package

SEE ALSO
cargo(1), cargo-publish(1)

cargo-publish(1)

NAME
cargo-publish --- Upload a package to the registry

SYNOPSIS
cargo publish [options]

DESCRIPTION
This command will create a distributable, compressed .crate file with

the source code of the package in the current directory and upload it to a
registry. The default registry is https://crates.io. This performs the following
steps:

1. Performs a few checks, including:

Checks the package.publish key in the manifest for restrictions
on which registries you are allowed to publish to.

2. Create a .crate file by following the steps in cargo-package(1).
3. Upload the crate to the registry. The server will perform additional

checks on the crate.
4. The client will poll waiting for the package to appear in the index, and

may timeout. In that case, you will need to check for completion
manually. This timeout does not affect the upload.

This command requires you to be authenticated with either the --token
option or using cargo-login(1).

See the reference for more details about packaging and publishing.

https://crates.io/

OPTIONS
Publish Options
--dry-run

Perform all checks without uploading.
--token token
API token to use when authenticating. This overrides the token stored in the
credentials file (which is created by cargo-login(1)).

Cargo config environment variables can be used to override the tokens
stored in the credentials file. The token for crates.io may be specified with
the CARGO_REGISTRY_TOKEN environment variable. Tokens for other
registries may be specified with environment variables of the form
CARGO_REGISTRIES_NAME_TOKEN where NAME is the name of the registry in
all capital letters.
--no-verify

Don’t verify the contents by building them.
--allow-dirty

Allow working directories with uncommitted VCS changes to be packaged.
--index index
The URL of the registry index to use.
--registry registry
Name of the registry to publish to. Registry names are defined in Cargo
config files. If not specified, and there is a package.publish field in
Cargo.toml with a single registry, then it will publish to that registry.
Otherwise it will use the default registry, which is defined by the
registry.default config key which defaults to crates-io.

Package Selection
By default, when no package selection options are given, the packages

selected depend on the selected manifest file (based on the current working
directory if --manifest-path is not given). If the manifest is the root of a
workspace then the workspaces default members are selected, otherwise
only the package defined by the manifest will be selected.

The default members of a workspace can be set explicitly with the
workspace.default-members key in the root manifest. If this is not set, a
virtual workspace will include all workspace members (equivalent to
passing --workspace), and a non-virtual workspace will include only the
root crate itself.

Selecting more than one package is unstable and available only on the
nightly channel and requires the -Z package-workspace flag to enable.
See https://github.com/rust-lang/cargo/issues/10948 for more information.
-p spec…
--package spec…
Publish only the specified packages. See cargo-pkgid(1) for the SPEC
format. This flag may be specified multiple times and supports common
Unix glob patterns like *, ? and []. However, to avoid your shell
accidentally expanding glob patterns before Cargo handles them, you must
use single quotes or double quotes around each pattern.

Selecting more than one package with this option is unstable and
available only on the nightly channel and requires the -Z package-

workspace flag to enable. See https://github.com/rust-
lang/cargo/issues/10948 for more information.
--workspace

Publish all members in the workspace.
This option is unstable and available only on the nightly channel and

requires the -Z package-workspace flag to enable. See
https://github.com/rust-lang/cargo/issues/10948 for more information.
--exclude SPEC…
Exclude the specified packages. Must be used in conjunction with the --
workspace flag. This flag may be specified multiple times and supports
common Unix glob patterns like *, ? and []. However, to avoid your shell
accidentally expanding glob patterns before Cargo handles them, you must
use single quotes or double quotes around each pattern.

This option is unstable and available only on the nightly channel and
requires the -Z package-workspace flag to enable. See

https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/10948
https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/10948
https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/10948
https://doc.rust-lang.org/book/appendix-07-nightly-rust.html

https://github.com/rust-lang/cargo/issues/10948 for more information.

Compilation Options
--target triple
Publish for the given architecture. The default is the host architecture. The
general format of the triple is <arch><sub>-<vendor>-<sys>-<abi>. Run
rustc --print target-list for a list of supported targets. This flag may
be specified multiple times.

This may also be specified with the build.target config value.
Note that specifying this flag makes Cargo run in a different mode where

the target artifacts are placed in a separate directory. See the build cache
documentation for more details.
--target-dir directory
Directory for all generated artifacts and intermediate files. May also be
specified with the CARGO_TARGET_DIR environment variable, or the
build.target-dir config value. Defaults to target in the root of the
workspace.

Feature Selection
The feature flags allow you to control which features are enabled. When

no feature options are given, the default feature is activated for every
selected package.

See the features documentation for more details.
-F features
--features features
Space or comma separated list of features to activate. Features of
workspace members may be enabled with package-name/feature-name
syntax. This flag may be specified multiple times, which enables all
specified features.
--all-features

Activate all available features of all selected packages.
--no-default-features

Do not activate the default feature of the selected packages.

https://github.com/rust-lang/cargo/issues/10948

Manifest Options
--manifest-path path
Path to the Cargo.toml file. By default, Cargo searches for the Cargo.toml
file in the current directory or any parent directory.
--locked

Asserts that the exact same dependencies and versions are used as when the
existing Cargo.lock file was originally generated. Cargo will exit with an
error when either of the following scenarios arises:

The lock file is missing.
Cargo attempted to change the lock file due to a different dependency
resolution.

It may be used in environments where deterministic builds are desired,
such as in CI pipelines.
--offline

Prevents Cargo from accessing the network for any reason. Without this
flag, Cargo will stop with an error if it needs to access the network and the
network is not available. With this flag, Cargo will attempt to proceed
without the network if possible.

Beware that this may result in different dependency resolution than
online mode. Cargo will restrict itself to crates that are downloaded locally,
even if there might be a newer version as indicated in the local copy of the
index. See the cargo-fetch(1) command to download dependencies before
going offline.

May also be specified with the net.offline config value.
--frozen

Equivalent to specifying both --locked and --offline.
--lockfile-path PATH
Changes the path of the lockfile from the default
(<workspace_root>/Cargo.lock) to PATH. PATH must end with
Cargo.lock (e.g. --lockfile-path /tmp/temporary-

lockfile/Cargo.lock). Note that providing --lockfile-path will ignore
existing lockfile at the default path, and instead will either use the lockfile

from PATH, or write a new lockfile into the provided PATH if it doesn’t
exist. This flag can be used to run most commands in read-only directories,
writing lockfile into the provided PATH.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #14421).

Miscellaneous Options
-j N
--jobs N
Number of parallel jobs to run. May also be specified with the build.jobs
config value. Defaults to the number of logical CPUs. If negative, it sets the
maximum number of parallel jobs to the number of logical CPUs plus
provided value. If a string default is provided, it sets the value back to
defaults. Should not be 0.
--keep-going

Build as many crates in the dependency graph as possible, rather than
aborting the build on the first one that fails to build.

For example if the current package depends on dependencies fails and
works , one of which fails to build, cargo publish -j1 may or may not
build the one that succeeds (depending on which one of the two builds
Cargo picked to run first), whereas cargo publish -j1 --keep-going
would definitely run both builds, even if the one run first fails.

Display Options
-v

--verbose

Use verbose output. May be specified twice for “very verbose” output
which includes extra output such as dependency warnings and build script
output. May also be specified with the term.verbose config value.
-q

--quiet

Do not print cargo log messages. May also be specified with the
term.quiet config value.

https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/14421

--color when
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on
the terminal.
always : Always display colors.
never : Never display colors.

May also be specified with the term.color config value.

Common Options
+toolchain
If Cargo has been installed with rustup, and the first argument to cargo
begins with +, it will be interpreted as a rustup toolchain name (such as
+stable or +nightly). See the rustup documentation for more information
about how toolchain overrides work.
--config KEY=VALUE or PATH
Overrides a Cargo configuration value. The argument should be in TOML
syntax of KEY=VALUE, or provided as a path to an extra configuration file.
This flag may be specified multiple times. See the command-line overrides
section for more information.
-C PATH
Changes the current working directory before executing any specified
operations. This affects things like where cargo looks by default for the
project manifest (Cargo.toml), as well as the directories searched for
discovering .cargo/config.toml, for example. This option must appear
before the command name, for example cargo -C path/to/my-project
build.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #10098).
-h

--help

Prints help information.
-Z flag

https://rust-lang.github.io/rustup/overrides.html
https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/10098

Unstable (nightly-only) flags to Cargo. Run cargo -Z help for details.

ENVIRONMENT
See the reference for details on environment variables that Cargo reads.

EXIT STATUS

0 : Cargo succeeded.
101 : Cargo failed to complete.

EXAMPLES

1. Publish the current package:
cargo publish

SEE ALSO
cargo(1), cargo-package(1), cargo-login(1)

cargo-yank(1)

NAME
cargo-yank --- Remove a pushed crate from the index

SYNOPSIS
cargo yank [options] crate@version

cargo yank [options] --version version [crate]

DESCRIPTION
The yank command removes a previously published crate's version from

the server's index. This command does not delete any data, and the crate
will still be available for download via the registry's download link.

Cargo will not use a yanked version for any new project or checkout
without a pre-existing lockfile, and will generate an error if there are no
longer any compatible versions for your crate.

This command requires you to be authenticated with either the --token
option or using cargo-login(1).

If the crate name is not specified, it will use the package name from the
current directory.

How yank works
For example, the foo crate published version 1.5.0 and another crate

bar declared a dependency on version foo = "1.5" . Now foo releases a
new, but not semver compatible, version 2.0.0 , and finds a critical issue
with 1.5.0 . If 1.5.0 is yanked, no new project or checkout without an
existing lockfile will be able to use crate bar as it relies on 1.5 .

In this case, the maintainers of foo should first publish a semver
compatible version such as 1.5.1 prior to yanking 1.5.0 so that bar and
all projects that depend on bar will continue to work.

As another example, consider a crate bar with published versions
1.5.0 , 1.5.1 , 1.5.2 , 2.0.0 and 3.0.0 . The following table identifies
the versions cargo could use in the absence of a lockfile for different
SemVer requirements, following a given release being yanked:

Yanked Version /
SemVer
requirement

bar = "1.5.0" bar =

"=1.5.

0"

bar =

"2.0.0

"

1.5.0 Use either 1.5.1
or 1.5.2

Return
Error

Use
2.0.0

Yanked Version /
SemVer
requirement

bar = "1.5.0" bar =

"=1.5.

0"

bar =

"2.0.0

"

1.5.1 Use either 1.5.0
or 1.5.2

Use
1.5.0

Use
2.0.0

2.0.0 Use either 1.5.0 ,
1.5.1 or 1.5.2

Use
1.5.0

Return
Error

When to yank
Crates should only be yanked in exceptional circumstances, for example,

an accidental publish, an unintentional SemVer breakages, or a significantly
broken and unusable crate. In the case of security vulnerabilities, RustSec is
typically a less disruptive mechanism to inform users and encourage them
to upgrade, and avoids the possibility of significant downstream disruption
irrespective of susceptibility to the vulnerability in question.

A common workflow is to yank a crate having already published a
semver compatible version, to reduce the probability of preventing
dependent crates from compiling.

When addressing copyright, licensing, or personal data issues with a
published crate, simply yanking it may not suffice. In such cases, contact
the maintainers of the registry you used. For crates.io, refer to their policies
and contact them at help@crates.io.

If credentials have been leaked, the recommended course of action is to
revoke them immediately. Once a crate has been published, it is impossible
to determine if the leaked credentials have been copied. Yanking the crate
only prevents new users from downloading it, but cannot stop those who
have already downloaded it from keeping or even spreading the leaked
credentials.

https://rustsec.org/
https://crates.io/policies
mailto:help@crates.io

OPTIONS
Yank Options
--vers version
--version version
The version to yank or un-yank.
--undo

Undo a yank, putting a version back into the index.
--token token
API token to use when authenticating. This overrides the token stored in the
credentials file (which is created by cargo-login(1)).

Cargo config environment variables can be used to override the tokens
stored in the credentials file. The token for crates.io may be specified with
the CARGO_REGISTRY_TOKEN environment variable. Tokens for other
registries may be specified with environment variables of the form
CARGO_REGISTRIES_NAME_TOKEN where NAME is the name of the registry in
all capital letters.
--index index
The URL of the registry index to use.
--registry registry
Name of the registry to use. Registry names are defined in Cargo config
files. If not specified, the default registry is used, which is defined by the
registry.default config key which defaults to crates-io.

Display Options
-v

--verbose

Use verbose output. May be specified twice for “very verbose” output
which includes extra output such as dependency warnings and build script
output. May also be specified with the term.verbose config value.
-q

--quiet

Do not print cargo log messages. May also be specified with the
term.quiet config value.
--color when
Control when colored output is used. Valid values:

auto (default): Automatically detect if color support is available on
the terminal.
always : Always display colors.
never : Never display colors.

May also be specified with the term.color config value.

Common Options
+toolchain
If Cargo has been installed with rustup, and the first argument to cargo
begins with +, it will be interpreted as a rustup toolchain name (such as
+stable or +nightly). See the rustup documentation for more information
about how toolchain overrides work.
--config KEY=VALUE or PATH
Overrides a Cargo configuration value. The argument should be in TOML
syntax of KEY=VALUE, or provided as a path to an extra configuration file.
This flag may be specified multiple times. See the command-line overrides
section for more information.
-C PATH
Changes the current working directory before executing any specified
operations. This affects things like where cargo looks by default for the
project manifest (Cargo.toml), as well as the directories searched for
discovering .cargo/config.toml, for example. This option must appear
before the command name, for example cargo -C path/to/my-project
build.

This option is only available on the nightly channel and requires the -Z
unstable-options flag to enable (see #10098).
-h

--help

https://rust-lang.github.io/rustup/overrides.html
https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://github.com/rust-lang/cargo/issues/10098

Prints help information.
-Z flag
Unstable (nightly-only) flags to Cargo. Run cargo -Z help for details.

ENVIRONMENT
See the reference for details on environment variables that Cargo reads.

EXIT STATUS

0 : Cargo succeeded.
101 : Cargo failed to complete.

EXAMPLES

1. Yank a crate from the index:
cargo yank foo@1.0.7

SEE ALSO
cargo(1), cargo-login(1), cargo-publish(1)

Deprecated and Removed Commands
These commands have been deprecated or removed in early Rust

releases. Deprecated commands receive only critical bug fixes, and may be
removed in future versions. Removed commands are no longer functional
and are unsupported.

read-manifest --- deprecated since Rust 1.13
git-checkout --- removed since Rust 1.44
verify-project --- deprecated since Rust 1.84

Frequently Asked Questions

Is the plan to use GitHub as a package repository?
No. The plan for Cargo is to use crates.io, like npm or Rubygems do

with npmjs.com and rubygems.org.
We plan to support git repositories as a source of packages forever,

because they can be used for early development and temporary patches,
even when people use the registry as the primary source of packages.

https://crates.io/
https://www.npmjs.com/
https://rubygems.org/

Why build crates.io rather than use GitHub as a
registry?

We think that it’s very important to support multiple ways to download
packages, including downloading from GitHub and copying packages into
your package itself.

That said, we think that crates.io offers a number of important benefits,
and will likely become the primary way that people download packages in
Cargo.

For precedent, both Node.js’s npm and Ruby’s bundler support both a
central registry model as well as a Git-based model, and most packages are
downloaded through the registry in those ecosystems, with an important
minority of packages making use of git-based packages.

Some of the advantages that make a central registry popular in other
languages include:

Discoverability. A central registry provides an easy place to look for
existing packages. Combined with tagging, this also makes it possible
for a registry to provide ecosystem-wide information, such as a list of
the most popular or most-depended-on packages.
Speed. A central registry makes it possible to easily fetch just the
metadata for packages quickly and efficiently, and then to efficiently
download just the published package, and not other bloat that happens
to exist in the repository. This adds up to a significant improvement in
the speed of dependency resolution and fetching. As dependency
graphs scale up, downloading all of the git repositories bogs down fast.
Also remember that not everybody has a high-speed, low-latency
Internet connection.

https://crates.io/
https://www.npmjs.com/
https://bundler.io/

Will Cargo work with C code (or other
languages)?

Yes!
Cargo handles compiling Rust code, but we know that many Rust

packages link against C code. We also know that there are decades of
tooling built up around compiling languages other than Rust.

Our solution: Cargo allows a package to specify a script (written in Rust)
to run before invoking rustc . Rust is leveraged to implement platform-
specific configuration and refactor out common build functionality among
packages.

clbr://internal.invalid/book/OEBPS/reference/build-scripts.md

Can Cargo be used inside of make (or ninja, or ...)
Indeed. While we intend Cargo to be useful as a standalone way to

compile Rust packages at the top-level, we know that some people will
want to invoke Cargo from other build tools.

We have designed Cargo to work well in those contexts, paying attention
to things like error codes and machine-readable output modes. We still have
some work to do on those fronts, but using Cargo in the context of
conventional scripts is something we designed for from the beginning and
will continue to prioritize.

Does Cargo handle multi-platform packages or
cross-compilation?

Rust itself provides facilities for configuring sections of code based on
the platform. Cargo also supports platform-specific dependencies, and we
plan to support more per-platform configuration in Cargo.toml in the
future.

In the longer-term, we’re looking at ways to conveniently cross-compile
packages using Cargo.

clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md#platform-specific-dependencies

Does Cargo support environments, like
production or test?

We support environments through the use of profiles to support:

environment-specific flags (like -g --opt-level=0 for development
and --opt-level=3 for production).
environment-specific dependencies (like hamcrest for test assertions).
environment-specific #[cfg]
a cargo test command

clbr://internal.invalid/book/OEBPS/reference/profiles.md

Does Cargo work on Windows?
Yes!
All commits to Cargo are required to pass the local test suite on

Windows. If you encounter an issue while running on Windows, we
consider it a bug, so please file an issue.

https://github.com/rust-lang/cargo/issues

Why have Cargo.lock in version control?
While cargo new defaults to tracking Cargo.lock in version control,

whether you do is dependent on the needs of your package.
The purpose of a Cargo.lock lockfile is to describe the state of the

world at the time of a successful build. Cargo uses the lockfile to provide
deterministic builds at different times and on different systems, by ensuring
that the exact same dependencies and versions are used as when the
Cargo.lock file was originally generated.

Deterministic builds help with

Running git bisect to find the root cause of a bug
Ensuring CI only fails due to new commits and not external factors
Reducing confusion when contributors see different behavior as
compared to other contributors or CI

Having this snapshot of dependencies can also help when projects need
to be verified against consistent versions of dependencies, like when

Verifying a minimum-supported Rust version (MSRV) that is less than
the latest version of a dependency supports
Verifying human readable output which won't have compatibility
guarantees (e.g. snapshot testing error messages to ensure they are
"understandable", a metric too fuzzy to automate)

However, this determinism can give a false sense of security because
Cargo.lock does not affect the consumers of your package, only
Cargo.toml does that. For example:

cargo install will select the latest dependencies unless --locked is
passed in.
New dependencies, like those added with cargo add , will be locked
to the latest version

The lockfile can also be a source of merge conflicts.
For strategies to verify newer versions of dependencies via CI, see

Verifying Latest Dependencies.

clbr://internal.invalid/book/OEBPS/commands/cargo-new.md
clbr://internal.invalid/book/OEBPS/commands/cargo-install.md
clbr://internal.invalid/book/OEBPS/commands/cargo-add.md
clbr://internal.invalid/book/OEBPS/guide/continuous-integration.md#verifying-latest-dependencies

Can libraries use * as a version for their
dependencies?

As of January 22nd, 2016, crates.io rejects all packages (not just
libraries) with wildcard dependency constraints.

While libraries can, strictly speaking, they should not. A version
requirement of * says “This will work with every version ever”, which is
never going to be true. Libraries should always specify the range that they
do work with, even if it’s something as general as “every 1.x.y version”.

https://crates.io/

Why Cargo.toml?
As one of the most frequent interactions with Cargo, the question of why

the configuration file is named Cargo.toml arises from time to time. The
leading capital- C was chosen to ensure that the manifest was grouped with
other similar configuration files in directory listings. Sorting files often puts
capital letters before lowercase letters, ensuring files like Makefile and
Cargo.toml are placed together. The trailing .toml was chosen to
emphasize the fact that the file is in the TOML configuration format.

Cargo does not allow other names such as cargo.toml or Cargofile to
emphasize the ease of how a Cargo repository can be identified. An option
of many possible names has historically led to confusion where one case
was handled but others were accidentally forgotten.

https://toml.io/

How can Cargo work offline?
The --offline or --frozen flags tell Cargo to not touch the network.

It returns an error in case it would access the network. You can use cargo
fetch in one project to download dependencies before going offline, and
then use those same dependencies in another project. Refer to configuration
value) to set via Cargo configuration.

Vendoring is also related, for more information see documentation on
source replacement.

clbr://internal.invalid/book/OEBPS/commands/cargo-fetch.md
clbr://internal.invalid/book/OEBPS/reference/config.md#netoffline
clbr://internal.invalid/book/OEBPS/reference/source-replacement.md

Why is Cargo rebuilding my code?
Cargo is responsible for incrementally compiling crates in your project.

This means that if you type cargo build twice the second one shouldn't
rebuild your crates.io dependencies, for example. Nevertheless bugs arise
and Cargo can sometimes rebuild code when you're not expecting it!

We've long wanted to provide better diagnostics about this but
unfortunately haven't been able to make progress on that issue in quite some
time. In the meantime, however, you can debug a rebuild at least a little by
setting the CARGO_LOG environment variable:
$ CARGO_LOG=cargo::core::compiler::fingerprint=info cargo
build

This will cause Cargo to print out a lot of information about diagnostics
and rebuilding. This can often contain clues as to why your project is
getting rebuilt, although you'll often need to connect some dots yourself
since this output isn't super easy to read just yet. Note that the CARGO_LOG
needs to be set for the command that rebuilds when you think it should not.
Unfortunately Cargo has no way right now of after-the-fact debugging "why
was that rebuilt?"

Some issues we've seen historically which can cause crates to get rebuilt
are:

A build script prints cargo::rerun-if-changed=foo where foo is
a file that doesn't exist and nothing generates it. In this case Cargo will
keep running the build script thinking it will generate the file but
nothing ever does. The fix is to avoid printing rerun-if-changed in
this scenario.

Two successive Cargo builds may differ in the set of features
enabled for some dependencies. For example if the first build
command builds the whole workspace and the second command builds
only one crate, this may cause a dependency on crates.io to have a
different set of features enabled, causing it and everything that depends
on it to get rebuilt. There's unfortunately not really a great fix for this,

https://github.com/rust-lang/cargo/issues/2904

although if possible it's best to have the set of features enabled on a
crate constant regardless of what you're building in your workspace.

Some filesystems exhibit unusual behavior around timestamps.
Cargo primarily uses timestamps on files to govern whether rebuilding
needs to happen, but if you're using a nonstandard filesystem it may be
affecting the timestamps somehow (e.g. truncating them, causing them
to drift, etc). In this scenario, feel free to open an issue and we can see
if we can accommodate the filesystem somehow.

A concurrent build process is either deleting artifacts or modifying
files. Sometimes you might have a background process that either tries
to build or check your project. These background processes might
surprisingly delete some build artifacts or touch files (or maybe just by
accident), which can cause rebuilds to look spurious! The best fix here
would be to wrangle the background process to avoid clashing with
your work.

If after trying to debug your issue, however, you're still running into
problems then feel free to open an issue!

https://github.com/rust-lang/cargo/issues/new

What does "version conflict" mean and how to
resolve it?

failed to select a version for x which could resolve this conflict

Have you seen the error message above?
This is one of the most annoying error messages for Cargo users. There

are several situations which may lead to a version conflict. Below we'll
walk through possible causes and provide diagnostic techniques to help you
out there:

The project and its dependencies use links to repeatedly link the
local library. Cargo forbids linking two packages with the same native
library, so even with multiple layers of dependencies it is not allowed.
In this case, the error message will prompt: Only one package in
the dependency graph may specify the same links value , you
may need to manually check and delete duplicate link values. The
community also have conventions in place to alleviate this.

When depending on different crates in the project, if these crates
use the same dependent library, but the version used is restricted,
making it impossible to determine the correct version, it will also
cause conflicts. The error message will prompt: all possible
versions conflict with previously selected packages . You
may need to modify the version requirements to make them consistent.

If there are multiple versions of dependencies in the project, when
using direct-minimal-versions , the minimum version requirements
cannot be met, which will cause conflicts. You may need to modify
version requirements of your direct dependencies to meet the
minimum SemVer version accordingly.

If the dependent crate does not have the features you choose, it will
also cause conflicts. At this time, you need to check the dependent
version and its features.

Conflicts may occur when merging branches or PRs, if there are
non-trivial conflicts, you can reset all "yours" changes, fix all other

https://doc.rust-lang.org/cargo/reference/resolver.html#links
https://doc.rust-lang.org/cargo/reference/build-scripts.html#-sys-packages
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#direct-minimal-versions

conflicts in the branch, and then run some cargo command (like cargo
tree or cargo check), which should re-update the lockfile with your
own local changes. If you previously ran some cargo update
commands in your branch, you can re-run them that this time. The
community has been looking to resolve merge conflicts with
Cargo.lock and Cargo.toml using a custom merge tool.

https://github.com/rust-lang/cargo/issues/1818

Changelog

Cargo 1.90 (2025-09-18)
c24e1064...HEAD

Added
Changed
Fixed

Expanded error messages around path dependency on cargo package
and cargo publish #15705

Nightly only

feat(toml): Parse support for multiple build scripts #15630

Documentation
Internal

https://github.com/rust-lang/cargo/compare/c24e1064...HEAD
https://github.com/rust-lang/cargo/pull/15705
https://github.com/rust-lang/cargo/pull/15630

Cargo 1.89 (2025-08-07)
873a0649...rust-1.89.0

Added

Add * and ? pattern support for SSH known hosts matching. #15508
Stabilize doctest-xcompile. Doctests will now automatically be tested
when cross-compiling to a target that is different from the host, just
like other tests. #15462

Changed

❗ cargo fix and cargo clippy --fix now run only on the default
Cargo targets by default, matching the behavior of cargo check . To
run on all Cargo targets, use the --all-targets flag. This change
aligns the behavior with other commands. Edition flags like --
edition and --edition-idioms remain implying --all-targets by
default. #15192
Respect Retry-After header for HTTP 429 responses when talking to
registries. #15463
Improved error message for the CRATE[@<VER>] argument prefixed
with v . #15484
Improved error message for the CRATE[@<VER>] argument with invalid
package name characters. #15441
cargo-add: suggest similarly named features #15438

Fixed

Fixed potential deadlock in CacheState::lock #15698 #15699
Fixed the --manifest-path arg being ignored in cargo fix #15633
When publishing, don't tell people to ctrl-c without knowing
consequences. #15632
Added missing --offline in shell completions. #15623
cargo-credential-libsecret: load libsecret only once #15295

https://github.com/rust-lang/cargo/compare/873a0649...rust-1.89.0
https://github.com/rust-lang/cargo/pull/15508
https://github.com/rust-lang/cargo/pull/15462
https://github.com/rust-lang/cargo/pull/15192
https://github.com/rust-lang/cargo/pull/15463
https://github.com/rust-lang/cargo/pull/15484
https://github.com/rust-lang/cargo/pull/15441
https://github.com/rust-lang/cargo/pull/15438
https://github.com/rust-lang/cargo/pull/15698
https://github.com/rust-lang/cargo/pull/15699
https://github.com/rust-lang/cargo/pull/15633
https://github.com/rust-lang/cargo/pull/15632
https://github.com/rust-lang/cargo/pull/15623
https://github.com/rust-lang/cargo/pull/15295

When failing to find the mtime of a file for rebuild detection, report an
explicit reason rather than "stale; unknown reason". #15617
Fixed cargo add overwriting symlinked Cargo.toml files #15281
Vendor files with .rej/.orig suffix #15569
Vendor using direct extraction for registry sources. This should ensure
that vendored files now always match the originals. #15514
In the network retry message, use singular "try" for the last retry.
#15328

Nightly only

🔥 -Zno-embed-metadata : This tells Cargo to pass the -Zembed-
metadata=no flag to the compiler, which instructs it not to embed
metadata within rlib and dylib artifacts. In this case, the metadata will
only be stored in .rmeta files. (docs) #15378
🔥 Plumb rustc -Zhint-mostly-unused flag through as a profile
option (docs) #15643
Added the "future" edition #15595
Added -Zfix-edition #15596
Added perma unstable --compile-time-deps option for cargo
build #15674
-Zscript : Make cargo script ignore workspaces. #15496
-Zpackage-workspace : keep dev-dependencies if they have a version.
#15470
Added custom completer for cargo remove <TAB> #15662
Test improvements in prep for -Zpackage-workspace stabilization
#15628
Allow packaging of self-cycles with -Zpackage-workspace #15626
With trim-paths, remap all paths to build.build-dir #15614
Enable more trim-paths tests for windows-msvc #15621
Fix doc rebuild detection by passing toolchain-shared-resources
to get doc styled for rustdoc-depinfo tracking #15605
Resolve multiple bugs in frontmatter parser for -Zscript #15573

https://github.com/rust-lang/cargo/pull/15617
https://github.com/rust-lang/cargo/pull/15281
https://github.com/rust-lang/cargo/pull/15569
https://github.com/rust-lang/cargo/pull/15514
https://github.com/rust-lang/cargo/pull/15328
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#no-embed-metadata
https://github.com/rust-lang/cargo/pull/15378
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#profile-hint-mostly-unused-option
https://github.com/rust-lang/cargo/pull/15643
https://github.com/rust-lang/cargo/pull/15595
https://github.com/rust-lang/cargo/pull/15596
https://github.com/rust-lang/cargo/pull/15674
https://github.com/rust-lang/cargo/pull/15496
https://github.com/rust-lang/cargo/pull/15470
https://github.com/rust-lang/cargo/pull/15662
https://github.com/rust-lang/cargo/pull/15628
https://github.com/rust-lang/cargo/pull/15626
https://github.com/rust-lang/cargo/pull/15614
https://github.com/rust-lang/cargo/pull/15621
https://github.com/rust-lang/cargo/pull/15605
https://github.com/rust-lang/cargo/pull/15573

Remove workaround for rustc frontmatter support for -Zscript
#15570
Allow configuring arbitrary codegen backends #15562
skip publish=false pkg when publishing entire workspace for -
Zpackage-workspace . #15525
Update instructions on using native-completions #15480
Skip registry check if its not needed with -Zpackage-workspace .
#15629

Documentation

Clarify what commands need and remove confusing example #15457
Update fingerprint footnote #15478
home: update version notice for deprecation removal #15511
docs(contrib): change clap URL to docs.rs/clap #15682
Update links in contrib docs #15659
docs: clarify --all-features not available for all commmands
#15572
docs(README): fix the link to the changelog in the Cargo book
#15597

Internal

Refactor artifact deps in FeatureResolver::deps #15492
Added tracing spans for rustc invocations #15464
ci: migrate renovate config #15501
ci: Require schema job to pass #15504
test: Remove unused nightly requirements #15498
Update dependencies. #15456
refactor: replace InternedString with Cow in IndexPackage #15559
Use Not::not rather than a custom is_false function #15645
fix: Make UI tests handle hyperlinks consistently #15640
Update dependencies #15635 #15557
refactor: clean up clippy::perf lint warnings #15631
chore(deps): update alpine docker tag to v3.22 #15616

https://github.com/rust-lang/cargo/pull/15570
https://github.com/rust-lang/cargo/pull/15562
https://github.com/rust-lang/cargo/pull/15525
https://github.com/rust-lang/cargo/pull/15480
https://github.com/rust-lang/cargo/pull/15629
https://github.com/rust-lang/cargo/pull/15457
https://github.com/rust-lang/cargo/pull/15478
https://github.com/rust-lang/cargo/pull/15511
https://github.com/rust-lang/cargo/pull/15682
https://github.com/rust-lang/cargo/pull/15659
https://github.com/rust-lang/cargo/pull/15572
https://github.com/rust-lang/cargo/pull/15597
https://github.com/rust-lang/cargo/pull/15492
https://github.com/rust-lang/cargo/pull/15464
https://github.com/rust-lang/cargo/pull/15501
https://github.com/rust-lang/cargo/pull/15504
https://github.com/rust-lang/cargo/pull/15498
https://github.com/rust-lang/cargo/pull/15456
https://github.com/rust-lang/cargo/pull/15559
https://github.com/rust-lang/cargo/pull/15645
https://github.com/rust-lang/cargo/pull/15640
https://github.com/rust-lang/cargo/pull/15635
https://github.com/rust-lang/cargo/pull/15557
https://github.com/rust-lang/cargo/pull/15631
https://github.com/rust-lang/cargo/pull/15616

chore: remove HTML comments in PR template and inline guide
#15613
Added .git-blame-ignore-revs #15612
refactor: cleanup for CompileMode #15608
refactor: separate "global" mode from CompileMode #15601
chore: Upgrade schemars #15602
Update gix & socket2 #15600
chore(toml): disable toml 's default features, unless necessary, to
reduce cargo-util-schemas build time #15598
chore(gh): Add new-lint issue template #15575
Fix comment for cargo/core/compiler/fingerprint/mod.rs #15565

https://github.com/rust-lang/cargo/pull/15613
https://github.com/rust-lang/cargo/pull/15612
https://github.com/rust-lang/cargo/pull/15608
https://github.com/rust-lang/cargo/pull/15601
https://github.com/rust-lang/cargo/pull/15602
https://github.com/rust-lang/cargo/pull/15600
https://github.com/rust-lang/cargo/pull/15598
https://github.com/rust-lang/cargo/pull/15575
https://github.com/rust-lang/cargo/pull/15565

Cargo 1.88 (2025-06-26)
a6c604d1...rust-1.88.0

Added

🎉 Stabilize automatic garbage collection for global caches.
When building, Cargo downloads and caches crates needed as

dependencies. Historically, these downloaded files would never be
cleaned up, leading to an unbounded amount of disk usage in Cargo's
home directory. In this version, Cargo introduces a garbage collection
mechanism to automatically clean up old files (e.g. .crate files). Cargo
will remove files downloaded from the network if not accessed in 3
months, and files obtained from the local system if not accessed in 1
month. Note that this automatic garbage collection will not take place
if running offline (using --offline or --frozen).

Cargo 1.78 and newer track the access information needed for this
garbage collection. If you regularly use versions of Cargo older than
1.78, in addition to running current versions of Cargo, and you expect
to have some crates accessed exclusively by the older versions of
Cargo and don't want to re-download those crates every ~3 months,
you may wish to set cache.auto-clean-frequency = "never" in the
Cargo configuration. (docs) #14287

Allow boolean literals as cfg predicates in Cargo.toml and
configurations. For example,
[target.'cfg(not(false))'.dependencies] is a valid cfg
predicate. (RFC 3695) #14649

Changed

Don't canonicalize executable path for the CARGO environment
variable. #15355
Print target and package names formatted as file hyperlinks. #15405
Make sure library search paths inside OUT_DIR precede external paths.
#15221

https://github.com/rust-lang/cargo/compare/a6c604d1...rust-1.88.0
https://doc.rust-lang.org/nightly/cargo/reference/config.html#cache
https://github.com/rust-lang/cargo/pull/14287
https://github.com/rust-lang/rfcs/pull/3695
https://github.com/rust-lang/cargo/pull/14649
https://github.com/rust-lang/cargo/pull/15355
https://github.com/rust-lang/cargo/pull/15405
https://github.com/rust-lang/cargo/pull/15221

Suggest similar looking feature names when feature is missing.
#15454
Use zlib-rs for gzip (de)compression for .crate tarballs. #15417

Fixed

build-rs: Correct name of CARGO_CFG_FEATURE #15420
cargo-tree: Make output more deterministic #15369
cargo-package: dont fail the entire command when the dirtiness check
failed, as git status check is mostly informational. #15416 #15419
Fixed cargo rustc --bin panicking on unknown bin names #15515
#15497

Nightly only

🔥 -Zrustdoc-depinfo : A new unstable flag leveraging rustdoc’s
dep-info files to determine whether documentations are required to re-
generate. (docs) #15359 #15371
build-dir : Added validation for unmatched brackets in build-dir
template #15414
build-dir : Improved error message when build-dir template var is
invalid #15418
build-dir : Added build_directory field to cargo metadata output
#15377
build-dir : Added symlink resolution for workspace-path-hash
#15400
build-dir : Added build_directory to cargo metadata documentation
#15410
unit-graph : switch to Package ID Spec. #15447
-Zgc : Rename the gc config table to [cache] . Low-level settings is
now under [cache.global-clean] . #15367
-Zdoctest-xcompile : Update doctest xcompile flags. #15455

Documentation

https://github.com/rust-lang/cargo/pull/15454
https://github.com/rust-lang/cargo/pull/15417
https://github.com/rust-lang/cargo/pull/15420
https://github.com/rust-lang/cargo/pull/15369
https://github.com/rust-lang/cargo/pull/15416
https://github.com/rust-lang/cargo/pull/15419
https://github.com/rust-lang/cargo/pull/15515
https://github.com/rust-lang/cargo/pull/15497
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#rustdoc-depinfo
https://github.com/rust-lang/cargo/pull/15359
https://github.com/rust-lang/cargo/pull/15371
https://github.com/rust-lang/cargo/pull/15414
https://github.com/rust-lang/cargo/pull/15418
https://github.com/rust-lang/cargo/pull/15377
https://github.com/rust-lang/cargo/pull/15400
https://github.com/rust-lang/cargo/pull/15410
https://github.com/rust-lang/cargo/pull/15447
https://github.com/rust-lang/cargo/pull/15367
https://github.com/rust-lang/cargo/pull/15455

Mention the convention of kebab-case for Cargo targets naming.
#14439
Use better example value in CARGO_CFG_TARGET_ABI #15404

Internal

Fix formatting of CliUnstable parsing #15434
ci: restore semver-checks for cargo-util #15389
ci: add aarch64 linux runner #15077
rustfix: Use snapbox for snapshot testing #15429
test:Prevent undeclared public network access #15368
Update dependencies. #15373 #15381 #15391 #15394 #15403 #15415
#15421 #15446

https://github.com/rust-lang/cargo/pull/14439
https://github.com/rust-lang/cargo/pull/15404
https://github.com/rust-lang/cargo/pull/15434
https://github.com/rust-lang/cargo/pull/15389
https://github.com/rust-lang/cargo/pull/15077
https://github.com/rust-lang/cargo/pull/15429
https://github.com/rust-lang/cargo/pull/15368
https://github.com/rust-lang/cargo/pull/15373
https://github.com/rust-lang/cargo/pull/15381
https://github.com/rust-lang/cargo/pull/15391
https://github.com/rust-lang/cargo/pull/15394
https://github.com/rust-lang/cargo/pull/15403
https://github.com/rust-lang/cargo/pull/15415
https://github.com/rust-lang/cargo/pull/15421
https://github.com/rust-lang/cargo/pull/15446

Cargo 1.87 (2025-05-15)
ce948f46...rust-1.87.0

Added

Add terminal integration via ANSI OSC 9;4 sequences via the
term.progress.term-integration configuration field. This reports
progress to the terminal emulator for display in places like the task bar.
(docs) #14615
Forward bash completions of third party subcommands #15247
cargo-tree: Color the output. #15242
cargo-package: add --exclude-lockfile flag, which will stop
verifying the lock file if present. #15234

Changed

❗ Cargo now depends on OpenSSL v3. This implies that Cargo in the
official Rust distribution will have a hard dependency on libatomic on
32-bit platforms. #15232
Report <target>.edition deprecation to users. #15321
Leverage clap for providing default values for --vcs , --color , and -
-message-format flags. #15322
Mention "3" as a valid value for "resolver" field in error message
#15215
Uplift windows Cygwin DLL import libraries #15193
Include the package name also in the target hint message. #15199
cargo-add: collapse large feature lists #15200
cargo-vendor: Add context which workspace failed to resolve #15297

Fixed

Do not pass cdylib link args from cargo::rustc-link-arg-cdylib to
tests. #15317 #15326
Don't use $CARGO_BUILD_TARGET in cargo metadata . #15271

https://github.com/rust-lang/cargo/compare/ce948f46...rust-1.87.0
https://doc.rust-lang.org/nightly/cargo/reference/config.html#termprogressterm-integration
https://github.com/rust-lang/cargo/pull/14615
https://github.com/rust-lang/cargo/pull/15247
https://github.com/rust-lang/cargo/pull/15242
https://github.com/rust-lang/cargo/pull/15234
https://github.com/rust-lang/cargo/pull/15232
https://github.com/rust-lang/cargo/pull/15321
https://github.com/rust-lang/cargo/pull/15322
https://github.com/rust-lang/cargo/pull/15215
https://github.com/rust-lang/cargo/pull/15193
https://github.com/rust-lang/cargo/pull/15199
https://github.com/rust-lang/cargo/pull/15200
https://github.com/rust-lang/cargo/pull/15297
https://github.com/rust-lang/cargo/pull/15317
https://github.com/rust-lang/cargo/pull/15326
https://github.com/rust-lang/cargo/pull/15271

Allow term.progress.when to have default values.
CARGO_TERM_PROGRESS_WIDTH can now be correctly set even when
other settings are missing. #15287
Fix the CARGO environment variable setting for external subcommands
pointing to the wrong Cargo binary path . Note that the environment
variable is never designed as a general Cargo wrapper. #15208
Fix some issues with future-incompat report generation. #15345
Respect --frozen everywhere --offline or --locked is accepted.
#15263
cargo-package: report also the VCS status of the workspace manifest if
dirty. #15276 #15341
cargo-publish: Fix man page with malformed {{#options}} block
#15191
cargo-run: Disambiguate bins from different packages that share a
name. #15298
cargo-rustc: de-duplicate crate types. #15314
cargo-vendor: dont remove non-cached sources. #15260

Nightly only

🔥 cargo-package: add unstable --message-format flag. The flag is
providing an alternative JSON output format for file listing of the --
list flag. (docs) #15311 #15354
🔥 build-dir : the build.build-dir config option to set the
directory where intermediate build artifacts will be stored.
Intermediate artifacts are produced by Rustc/Cargo during the build
process. (docs) #15104 #15236 #15334
🔥 -Zsbom : The build.sbom config allows to generate so-called
SBOM pre-cursor files alongside each compiled artifact. (RFC 3553)
(docs) #13709
🔥 -Zpublic-dependency : new --depth public value for cargo
tree to display public dependencies. #15243
-Zscript : Handle more frontmatter parsing corner cases #15187

https://github.com/rust-lang/cargo/pull/15287
https://github.com/rust-lang/cargo/pull/15208
https://github.com/rust-lang/cargo/pull/15345
https://github.com/rust-lang/cargo/pull/15263
https://github.com/rust-lang/cargo/pull/15276
https://github.com/rust-lang/cargo/pull/15341
https://github.com/rust-lang/cargo/pull/15191
https://github.com/rust-lang/cargo/pull/15298
https://github.com/rust-lang/cargo/pull/15314
https://github.com/rust-lang/cargo/pull/15260
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#package-message-format
https://github.com/rust-lang/cargo/pull/15311
https://github.com/rust-lang/cargo/pull/15354
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#build-dir
https://github.com/rust-lang/cargo/pull/15104
https://github.com/rust-lang/cargo/pull/15236
https://github.com/rust-lang/cargo/pull/15334
https://github.com/rust-lang/rfcs/pull/3553
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#sbom
https://github.com/rust-lang/cargo/pull/13709
https://github.com/rust-lang/cargo/pull/15243
https://github.com/rust-lang/cargo/pull/15187

-Zpackage-workspace : Fix lookups to capitalized workspace
member's index entry #15216
-Zpackage-workspace : Register workspace member renames in
overlay #15228
-Zpackage-workspace : Ensure we can package directories ending
with '.rs' #15240
native-completions : add completions for --profile #15308
native-completions : add completions for aliases #15319
native-completions : add completions for cargo add --path
#15288
native-completions : add completions for --manifest-path #15225
native-completions : add completions for --lockfile-path #15238
native-completions : add completions for cargo install --path
#15266
native-completions : add completions fro +<toolchain> #15301

Documentation

Note that target-edition is deprecated #15292
Mention wrong URLs as a cause of git authentication errors #15304
Shift focus to resolver v3 #15213
Lockfile is always included since 1.84 #15257
Remove Cargo.toml from package.include in example #15253
Make it clearer that rust_version is enforced during compile #15303
Fix [env] relative description in reference #15332
Add unsafe to extern while using build scripts in Cargo Book
#15294
Mention x.y.* as a kind of version requirement to avoid. #15310
contrib: Expand the description of team meetings #15349

Internal

Show extra build description from bootstrap via the
CFG_VER_DESCRIPTION env var. #15269

https://github.com/rust-lang/cargo/pull/15216
https://github.com/rust-lang/cargo/pull/15228
https://github.com/rust-lang/cargo/pull/15240
https://github.com/rust-lang/cargo/pull/15308
https://github.com/rust-lang/cargo/pull/15319
https://github.com/rust-lang/cargo/pull/15288
https://github.com/rust-lang/cargo/pull/15225
https://github.com/rust-lang/cargo/pull/15238
https://github.com/rust-lang/cargo/pull/15266
https://github.com/rust-lang/cargo/pull/15301
https://github.com/rust-lang/cargo/pull/15292
https://github.com/rust-lang/cargo/pull/15304
https://github.com/rust-lang/cargo/pull/15213
https://github.com/rust-lang/cargo/pull/15257
https://github.com/rust-lang/cargo/pull/15253
https://github.com/rust-lang/cargo/pull/15303
https://github.com/rust-lang/cargo/pull/15332
https://github.com/rust-lang/cargo/pull/15294
https://github.com/rust-lang/cargo/pull/15310
https://github.com/rust-lang/cargo/pull/15349
https://github.com/rust-lang/cargo/pull/15269

Control byte display precision with std::fmt options. #15246
Replace humantime crate with jiff. #15290
Dont check cargo-util semver until 1.86 is released #15222
Redox OS is part of the unix family #15307
cargo-tree: Abstract the concept of a NodeId #15237
cargo-tree: Abstract the concept of an edge #15233
ci: Auto-update cargo-semver-checks #15212
ci: Visually group output in Github #15218
manifest: Centralize Cargo target descriptions #15291
Update dependencies. #15250 #15249 #15245 #15224 #15282 #15211
#15217 #15268

https://github.com/rust-lang/cargo/pull/15246
https://github.com/rust-lang/cargo/pull/15290
https://github.com/rust-lang/cargo/pull/15222
https://github.com/rust-lang/cargo/pull/15307
https://github.com/rust-lang/cargo/pull/15237
https://github.com/rust-lang/cargo/pull/15233
https://github.com/rust-lang/cargo/pull/15212
https://github.com/rust-lang/cargo/pull/15218
https://github.com/rust-lang/cargo/pull/15291
https://github.com/rust-lang/cargo/pull/15250
https://github.com/rust-lang/cargo/pull/15249
https://github.com/rust-lang/cargo/pull/15245
https://github.com/rust-lang/cargo/pull/15224
https://github.com/rust-lang/cargo/pull/15282
https://github.com/rust-lang/cargo/pull/15211
https://github.com/rust-lang/cargo/pull/15217
https://github.com/rust-lang/cargo/pull/15268

Cargo 1.86 (2025-04-03)
d73d2caf...rust-1.86.0

Added
Changed

❗ When merging, replace rather than combine configuration keys
that refer to a program path and its arguments. #15066
These keys include:

registry.credential-provider

registries.*.credential-provider

target.*.runner

host.runner

credential-alias.*

doc.browser

❗ Error if both --package and --workspace are passed but the
requested package is missing. This was previously silently ignored,
which was considered a bug since missing packages should be
reported. #15071
Added warning when failing to update index cache. #15014
Don't use "did you mean" in errors. Be upfront about what the
suggestion is. #15138
Provide a better error message for invalid SSH URLs in dependency
sources. #15185
Suggest similar feature names when the package doesn't have given
features. #15133
Print globs when workspace members can't be found. #15093
cargo-fix: Make --allow-dirty imply --allow-staged #15013
cargo-login: hide the token argument from CLI help for the
preparation of deprecation. #15057
cargo-login: Don't suggest cargo login when using incompatible
credential providers. #15124

https://github.com/rust-lang/cargo/compare/d73d2caf...rust-1.86.0
https://github.com/rust-lang/cargo/pull/15066
https://github.com/rust-lang/cargo/pull/15071
https://github.com/rust-lang/cargo/pull/15014
https://github.com/rust-lang/cargo/pull/15138
https://github.com/rust-lang/cargo/pull/15185
https://github.com/rust-lang/cargo/pull/15133
https://github.com/rust-lang/cargo/pull/15093
https://github.com/rust-lang/cargo/pull/15013
https://github.com/rust-lang/cargo/pull/15057
https://github.com/rust-lang/cargo/pull/15124

cargo-package: improve the performance of VCS status check by
matching certain path prefixes with pathspec. #14997

Fixed

The rerun-if-env-changed build script instruction can now correctly
detect changes in the [env] configuration table. #14756
Force emitting warnings as warnings when learning Rust target info
for an unsupported crate type. #15036
cargo-package: Verify the VCS status of symlinks when they point to
paths outside the current package root. #14981

Nightly only

🔥 -Z feature-unification : This new unstable flag enables the
resolver.feature-unification configuration option to control how
features are unified across a workspace. (RFC 3529) (docs) #15157
cargo-util-schemas: Correct and update the JSON Schema #15000
cargo-util-schemas: Fix the [lints] JSON Schema #15035
cargo-util-schemas: Fix 'metadata' JSON Schema #15033
cargo rustc --print : Setup cargo environment for cargo rustc -
-print . #15026
-Zbuild-std : parse value as comma-separated list, also extends the
behavior to build-std-features . #15065
-Zgc : Make cache tracking resilient to unexpected files. #15147
-Zscript : Consolidate creation of SourceId from manifest path
#15172
-Zscript : Integrate cargo-script logic into main parser #15168
-Zscript : add cargo pkgid support for cargo-script #14961
-Zpackage-workspace : Report all unpublishable packages #15070

Documentation

Document that Cargo automatically registers variables used in the
env! macro to trigger rebuilds since 1.46. #15062

https://github.com/rust-lang/cargo/pull/14997
https://github.com/rust-lang/cargo/pull/14756
https://github.com/rust-lang/cargo/pull/15036
https://github.com/rust-lang/cargo/pull/14981
https://github.com/rust-lang/rfcs/blob/master/text/3692-feature-unification.md
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#feature-unification
https://github.com/rust-lang/cargo/pull/15157
https://github.com/rust-lang/cargo/pull/15000
https://github.com/rust-lang/cargo/pull/15035
https://github.com/rust-lang/cargo/pull/15033
https://github.com/rust-lang/cargo/pull/15026
https://github.com/rust-lang/cargo/pull/15065
https://github.com/rust-lang/cargo/pull/15147
https://github.com/rust-lang/cargo/pull/15172
https://github.com/rust-lang/cargo/pull/15168
https://github.com/rust-lang/cargo/pull/14961
https://github.com/rust-lang/cargo/pull/15070
https://github.com/rust-lang/cargo/pull/15062

Move the changelog to The Cargo Book. #15119 #15123 #15142
Note package.authors is deprecated. #15068
Fix the wrong grammar of a Package Id Specification. #15049
Fix the inverted logic about MSRV #15044
cargo-metadata: Fix description of the "root" field. #15182
cargo-package: note the lock file is always included. #15067
contrib: Start guidelines for schema design. #15037

Internal

Don't use libc::LOCK_* on Solaris. #15143
Clean up field -> env var handling. #15008
Simplify SourceID Ord/Eq. #14980 #15103
Add manual Hash impl for SourceKind and document the reason.
#15029
ci: allow Windows reserved names in CI #15135
cargo-test-macro: Remove condition on
RUSTUP_WINDOWS_PATH_ADD_BIN #15017
resolver: Simplify backtrack #15150
resolver: Small cleanups #15040
test: Clean up shallow fetch tests #15002
test: Fix https::self_signed_should_fail for macOS #15016
test: Fix benchsuite issue with newer versions of git #15069
test: Fix shared_std_dependency_rebuild running on Windows #15111
test: Update tests to fix nightly errors #15110
test: Remove unused -C link-arg=-fuse-ld=lld #15097
test: Remove unsafe by using LazyLock #15096
test: Remove unnecessary into conversions #15042
test: Fix race condition in panic_abort_tests #15169
Update deny.toml #15164
Update dependencies. #14995 #14996 #14998 #15012 #15018 #15041
#15050 #15121 #15128 #15129 #15162 #15163 #15165 #15166

https://github.com/rust-lang/cargo/pull/15119
https://github.com/rust-lang/cargo/pull/15123
https://github.com/rust-lang/cargo/pull/15142
https://github.com/rust-lang/cargo/pull/15068
https://github.com/rust-lang/cargo/pull/15049
https://github.com/rust-lang/cargo/pull/15044
https://github.com/rust-lang/cargo/pull/15182
https://github.com/rust-lang/cargo/pull/15067
https://github.com/rust-lang/cargo/pull/15037
https://github.com/rust-lang/cargo/pull/15143
https://github.com/rust-lang/cargo/pull/15008
https://github.com/rust-lang/cargo/pull/14980
https://github.com/rust-lang/cargo/pull/15103
https://github.com/rust-lang/cargo/pull/15029
https://github.com/rust-lang/cargo/pull/15135
https://github.com/rust-lang/cargo/pull/15017
https://github.com/rust-lang/cargo/pull/15150
https://github.com/rust-lang/cargo/pull/15040
https://github.com/rust-lang/cargo/pull/15002
https://github.com/rust-lang/cargo/pull/15016
https://github.com/rust-lang/cargo/pull/15069
https://github.com/rust-lang/cargo/pull/15111
https://github.com/rust-lang/cargo/pull/15110
https://github.com/rust-lang/cargo/pull/15097
https://github.com/rust-lang/cargo/pull/15096
https://github.com/rust-lang/cargo/pull/15042
https://github.com/rust-lang/cargo/pull/15169
https://github.com/rust-lang/cargo/pull/15164
https://github.com/rust-lang/cargo/pull/14995
https://github.com/rust-lang/cargo/pull/14996
https://github.com/rust-lang/cargo/pull/14998
https://github.com/rust-lang/cargo/pull/15012
https://github.com/rust-lang/cargo/pull/15018
https://github.com/rust-lang/cargo/pull/15041
https://github.com/rust-lang/cargo/pull/15050
https://github.com/rust-lang/cargo/pull/15121
https://github.com/rust-lang/cargo/pull/15128
https://github.com/rust-lang/cargo/pull/15129
https://github.com/rust-lang/cargo/pull/15162
https://github.com/rust-lang/cargo/pull/15163
https://github.com/rust-lang/cargo/pull/15165
https://github.com/rust-lang/cargo/pull/15166

Cargo 1.85 (2025-02-20)
66221abd...rust-1.85.0

Added

🎉 Cargo now supports the 2024 edition. More information is
available in the edition guide. #14828
cargo-tree: The --depth flag now accepts workspace , which shows
only dependencies that are members of the current workspace. #14928
Build scripts now receive a new environment variable,
CARGO_CFG_FEATURE , which contains each activated feature of the
package being built. #14902
perf: Dependency resolution is now faster due to a more efficient hash
for ActivationsKey #14915

Changed

❗ cargo-rustc: Trailing flags now have higher precedence. This
behavior was nightly-only since 1.83 and is now stabilized. #14900
❗ Cargo now uses a cross-platform hash algorithm from rustc-
stable-hash . As a result, the hash part of paths to dependency caches
(e.g., $CARGO_HOME/registry/index/index.crates.io-<hash>) will
change. This will trigger re-downloads of registry indices and .crate
tarballs, as well as re-cloning of Git dependencies. #14917
Added a future-incompatibility warning for keywords in cfg s in
Cargo.toml and Cargo configuration. cfg s with keywords like
cfg(true) and cfg(false) were incorrectly accepted. For backward
compatibility, support for raw identifiers has been introduced; for
example, use cfg(r#true) instead. #14671
Dependency resolution now provides richer error messages explaining
why some versions were rejected, unmatched, or invalid.
#14897 #14921 #14923 #14927
cargo-doc: improve the error message when --open ing a doc while no
doc generated. #14969

https://github.com/rust-lang/cargo/compare/66221abd...rust-1.85.0
https://doc.rust-lang.org/nightly/edition-guide/rust-2024/index.html
https://github.com/rust-lang/cargo/pull/14828
https://github.com/rust-lang/cargo/pull/14928
https://github.com/rust-lang/cargo/pull/14902
https://github.com/rust-lang/cargo/pull/14915
https://github.com/rust-lang/cargo/pull/14900
https://github.com/rust-lang/cargo/pull/14917
https://github.com/rust-lang/cargo/pull/14671
https://github.com/rust-lang/cargo/pull/14897
https://github.com/rust-lang/cargo/pull/14921
https://github.com/rust-lang/cargo/pull/14923
https://github.com/rust-lang/cargo/pull/14927
https://github.com/rust-lang/cargo/pull/14969

cargo-package: warn if symlinks checked out as plain text files #14994
cargo-package: Shows dirty file paths relative to the Git working
directory. #14968 #14970

Fixed

Set GIT_DIR to ensure compatibility with bare repositories for
net.git-fetch-with-cli=true . #14860
Fixed workspace Cargo.toml modification didn't invalidate build
cache. #14973
Prevented build caches from being discarded after changes to
RUSTFLAGS . #14830 #14898
cargo-add: Don't select yanked versions when normalizing names.
#14895
cargo-fix: Migrate workspace dependencies to the 2024 edition also
for virtual manifests. #14890
cargo-package: Verify the VCS status of package.readme and
package.license-file when they point to paths outside the current
package root. #14966
cargo-package: assure possibly blocking non-files (like FIFOs) won't
be picked up for publishing. #14977

Nightly only

path-bases : Support bases in [patch] es in virtual manifests #14931
unit-graph : Use the configured shell to print output. #14926
-Zbuild-std : Check if the build target supports std by probing the
metadata.std field in the target spec JSON. #14183 #14938 #14899
-Zbuild-std : always link to std when testing proc-macros. #14850
#14861
-Zbuild-std : clean up build-std tests #14943 #14933 #14896
-Zbuild-std : Hash relative paths to std workspace instead of absolute
paths. #14951
-Zpackage-workspace : Allow dry-run of a non-bumped workspace.
#14847

https://github.com/rust-lang/cargo/pull/14994
https://github.com/rust-lang/cargo/pull/14968
https://github.com/rust-lang/cargo/pull/14970
https://github.com/rust-lang/cargo/pull/14860
https://github.com/rust-lang/cargo/pull/14973
https://github.com/rust-lang/cargo/pull/14830
https://github.com/rust-lang/cargo/pull/14898
https://github.com/rust-lang/cargo/pull/14895
https://github.com/rust-lang/cargo/pull/14890
https://github.com/rust-lang/cargo/pull/14966
https://github.com/rust-lang/cargo/pull/14977
https://github.com/rust-lang/cargo/pull/14931
https://github.com/rust-lang/cargo/pull/14926
https://github.com/rust-lang/cargo/pull/14183
https://github.com/rust-lang/cargo/pull/14938
https://github.com/rust-lang/cargo/pull/14899
https://github.com/rust-lang/cargo/pull/14850
https://github.com/rust-lang/cargo/pull/14861
https://github.com/rust-lang/cargo/pull/14943
https://github.com/rust-lang/cargo/pull/14933
https://github.com/rust-lang/cargo/pull/14896
https://github.com/rust-lang/cargo/pull/14951
https://github.com/rust-lang/cargo/pull/14847

-Zscript : Allow adding/removing dependencies from cargo scripts
#14857
-Zscript : Migrate cargo script manifests across editions #14864
-Zscript : Don't override the release profile. #14925
-Ztrim-paths : Use Path::push to construct the remap-path-
prefix flag. #14908

Documentation

Clarify how cargo::metadata env var is selected. #14842
cargo-info: Remove references to the default registry in cargo-info
docs #14880
contrib: add missing argument to Rustup Cargo workaround #14954
SemVer: Add section on RPIT capturing #14849

Internal

Add the test cfg as a well known cfg before of compiler change.
#14963
Enable triagebot merge conflict notifications #14972
Limit release trigger to 0.* tags #14940
Simplify SourceID Hash. #14800
build-rs: Automatically emits rerun-if-env-changed when accessing
environment variables Cargo sets for build script executions. #14911
build-rs: Correctly refer to the item in assert #14913
build-rs: Add the 'error' directive #14910
build-rs: Remove meaningless 'cargo_cfg_debug_assertions' #14901
cargo-package: split cargo_package to modules #14959 #14982
cargo-test-support: requires attribute accepts string literals for cmds
#14875
cargo-test-support: Switch from 'exec_with_output' to 'run' #14848
cargo-test-support: track caller for .crate file publish verification
#14992

https://github.com/rust-lang/cargo/pull/14857
https://github.com/rust-lang/cargo/pull/14864
https://github.com/rust-lang/cargo/pull/14925
https://github.com/rust-lang/cargo/pull/14908
https://github.com/rust-lang/cargo/pull/14842
https://github.com/rust-lang/cargo/pull/14880
https://github.com/rust-lang/cargo/pull/14954
https://github.com/rust-lang/cargo/pull/14849
https://github.com/rust-lang/cargo/pull/14963
https://github.com/rust-lang/cargo/pull/14972
https://github.com/rust-lang/cargo/pull/14940
https://github.com/rust-lang/cargo/pull/14800
https://github.com/rust-lang/cargo/pull/14911
https://github.com/rust-lang/cargo/pull/14913
https://github.com/rust-lang/cargo/pull/14910
https://github.com/rust-lang/cargo/pull/14901
https://github.com/rust-lang/cargo/pull/14959
https://github.com/rust-lang/cargo/pull/14982
https://github.com/rust-lang/cargo/pull/14875
https://github.com/rust-lang/cargo/pull/14848
https://github.com/rust-lang/cargo/pull/14992

test: Verify -Cmetadata directly, not through -Cextra-filename
#14846
test: ensure PGO works #14859 #14874 #14887
Update dependencies. #14867 #14871 #14878 #14879 #14975

https://github.com/rust-lang/cargo/pull/14846
https://github.com/rust-lang/cargo/pull/14859
https://github.com/rust-lang/cargo/pull/14874
https://github.com/rust-lang/cargo/pull/14887
https://github.com/rust-lang/cargo/pull/14867
https://github.com/rust-lang/cargo/pull/14871
https://github.com/rust-lang/cargo/pull/14878
https://github.com/rust-lang/cargo/pull/14879
https://github.com/rust-lang/cargo/pull/14975

Cargo 1.84 (2025-01-09)
15fbd2f6...rust-1.84.0

Added

🎉 Stabilize resolver v3, a.k.a the MSRV-aware dependency resolver.
The stabilization includes package.resolver = "3" in Cargo.toml,
and the [resolver] table in Cargo configuration. (RFC 3537)
(manifest docs) (config docs) #14639 #14662 #14711 #14725 #14748
#14753 #14754
Added a new build script invocation cargo::error=MESSAGE to report
error messages. (docs) #14743

Changed

❗ cargo-publish: Always include Cargo.lock in published crates.
Originally it was only included for packages that have executables or
examples for use with cargo install . #14815
Dependency resolver performance improvements, including shared
caching, reduced iteration overhead, and removing redundant fetches
and clones. #14663 #14690 #14692 #14694
Deprecate cargo verify-project . #14736
Add source replacement info when no matching package found during
dependency resolving. #14715
Hint for using crates-io when [patch.crates.io] found. #14700
Normalize source paths of Cargo targets for better diagnostics. #14497
#14750
Allow registries to omit empty/default fields in index metadata JSON.
Due to backward compatibility, crates.io continues to emit them.
#14838 #14839
cargo-doc: display env vars in extra verbose mode. #14812
cargo-fix: replace special-case handling of duplicate insert-only
replacement. #14765 #14782

https://github.com/rust-lang/cargo/compare/15fbd2f6...rust-1.84.0
https://github.com/rust-lang/rfcs/blob/master/text/3537-msrv-resolver.md
https://doc.rust-lang.org/nightly/cargo/reference/resolver.html#resolver-versions
https://doc.rust-lang.org/nightly/cargo/reference/config.html#resolver
https://github.com/rust-lang/cargo/pull/14639
https://github.com/rust-lang/cargo/pull/14662
https://github.com/rust-lang/cargo/pull/14711
https://github.com/rust-lang/cargo/pull/14725
https://github.com/rust-lang/cargo/pull/14748
https://github.com/rust-lang/cargo/pull/14753
https://github.com/rust-lang/cargo/pull/14754
https://doc.rust-lang.org/nightly/cargo/reference/build-scripts.html#cargo-error
https://github.com/rust-lang/cargo/pull/14743
https://github.com/rust-lang/cargo/pull/14815
https://github.com/rust-lang/cargo/pull/14663
https://github.com/rust-lang/cargo/pull/14690
https://github.com/rust-lang/cargo/pull/14692
https://github.com/rust-lang/cargo/pull/14694
https://github.com/rust-lang/cargo/pull/14736
https://github.com/rust-lang/cargo/pull/14715
https://github.com/rust-lang/cargo/pull/14700
https://github.com/rust-lang/cargo/pull/14497
https://github.com/rust-lang/cargo/pull/14750
https://github.com/rust-lang/cargo/pull/14838
https://github.com/rust-lang/cargo/pull/14839
https://github.com/rust-lang/cargo/pull/14812
https://github.com/rust-lang/cargo/pull/14765
https://github.com/rust-lang/cargo/pull/14782

cargo-remove: when a dependency is not found, try suggesting other
dependencies with similar names. #14818
git: skip unnecessary submodule validations for fresh checkouts on Git
dependencies. #14605
git: Enhanced the error message for fetching Git dependencies when
refspec not found. #14806
git: Pass --no-tags by default to git CLI when net.git-fetch-
with-cli = true . #14688

Fixed

Fixed old Cargos failing to read the newer format of dep-info in build
caches. #14751 #14745
Fixed rebuild detection not respecting changes in the [env] table.
#14701 #14730
cargo-fix: Added transactional semantics to rustfix to keep code fix
in a valid state when multiple suggestions contain overlapping spans.
#14747

Nightly only

The unstable environment variable CARGO_RUSTC_CURRENT_DIR has
been removed. #14799
🔥 Cargo now includes an experimental JSON Schema file for
Cargo.toml in the source code. It helps external tools validate or
auto-complete the schema of the manifest. (manifest.schema.json)
#14683
🔥 Zroot-dir : A new unstable -Zroot-dir flag to configure the
path from which rustc should be invoked. (docs) #14752
🔥 -Zwarnings : A new unstable feature to control how Cargo handles
warnings via the build.warnings configuration field. (docs) #14388
#14827 #14836
edition2024 : Verify 2024 edition / resolver=3 doesn't affect
resolution #14724
native-completions : Include descriptions in zsh #14726

https://github.com/rust-lang/cargo/pull/14818
https://github.com/rust-lang/cargo/pull/14605
https://github.com/rust-lang/cargo/pull/14806
https://github.com/rust-lang/cargo/pull/14688
https://github.com/rust-lang/cargo/pull/14751
https://github.com/rust-lang/cargo/pull/14745
https://github.com/rust-lang/cargo/pull/14701
https://github.com/rust-lang/cargo/pull/14730
https://github.com/rust-lang/cargo/pull/14747
https://github.com/rust-lang/cargo/pull/14799
https://github.com/rust-lang/cargo/blob/master/crates/cargo-util-schemas/manifest.schema.json
https://github.com/rust-lang/cargo/pull/14683
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#root-dir
https://github.com/rust-lang/cargo/pull/14752
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#warnings
https://github.com/rust-lang/cargo/pull/14388
https://github.com/rust-lang/cargo/pull/14827
https://github.com/rust-lang/cargo/pull/14836
https://github.com/rust-lang/cargo/pull/14724
https://github.com/rust-lang/cargo/pull/14726

-Zbindeps : Fix panic when running cargo tree on a package with a
cross compiled bindep #14593
-Zbindeps : download targeted transitive deps of with artifact deps'
target platform #14723
-Zbuild-std : Remove the requirement for --target . #14317
-Zpackage-workspace : Support package selection options, such as --
exclude , in cargo publish #14659
-Zscript : Remove support for accepting Cargo.toml . #14670
-Zscript : Change config paths to only check CARGO_HOME #14749
-Zscript : Update the frontmatter parser for RFC 3503. #14792

Documentation

Clarify the meaning of --tests and --benches flags. #14675
Clarify tools should only interpret messages with a line starting with {
as JSON. #14677
Clarify what is and isn't included by cargo package #14684
Document official external commands: cargo-clippy , cargo-fmt ,
and cargo-miri . #14669 #14805
Enhance documentation on environment variables #14676
Simplify English used in documentations. #14825 #14829
A new doc page for deprecated and removed commands. #14739
cargo-test-support: Document Execs assertions based on port effort
#14793

Internal

🎉 Migrate build-rs crate to the rust-lang/cargo repository as an
intentional artifact of the Cargo team. #14786 #14817
Enable transfer feature in triagebot #14777
clone-on-write when needed for InternedString #14808
ci: Switch CI from bors to merge queue #14718
ci: make the lint-docs job required #14797
ci: Check for clippy correctness #14796

https://github.com/rust-lang/cargo/pull/14593
https://github.com/rust-lang/cargo/pull/14723
https://github.com/rust-lang/cargo/pull/14317
https://github.com/rust-lang/cargo/pull/14659
https://github.com/rust-lang/cargo/pull/14670
https://github.com/rust-lang/cargo/pull/14749
https://github.com/rust-lang/cargo/pull/14792
https://github.com/rust-lang/cargo/pull/14675
https://github.com/rust-lang/cargo/pull/14677
https://github.com/rust-lang/cargo/pull/14684
https://github.com/rust-lang/cargo/pull/14669
https://github.com/rust-lang/cargo/pull/14805
https://github.com/rust-lang/cargo/pull/14676
https://github.com/rust-lang/cargo/pull/14825
https://github.com/rust-lang/cargo/pull/14829
https://github.com/rust-lang/cargo/pull/14739
https://github.com/rust-lang/cargo/pull/14793
https://github.com/rust-lang/cargo/pull/14786
https://github.com/rust-lang/cargo/pull/14817
https://github.com/rust-lang/cargo/pull/14777
https://github.com/rust-lang/cargo/pull/14808
https://github.com/rust-lang/cargo/pull/14718
https://github.com/rust-lang/cargo/pull/14797
https://github.com/rust-lang/cargo/pull/14796

ci: Switch matchPackageNames to matchDepNames for renovate
#14704
fingerprint: Track the intent for each use of UnitHash #14826
fingerprint: Add more metadata to rustc_fingerprint . #14761
test: Migrate remaining snapshotting to snapbox #14642 #14760
#14781 #14785 #14790
Update dependencies. #14668 #14705 #14762 #14766 #14772

https://github.com/rust-lang/cargo/pull/14704
https://github.com/rust-lang/cargo/pull/14826
https://github.com/rust-lang/cargo/pull/14761
https://github.com/rust-lang/cargo/pull/14642
https://github.com/rust-lang/cargo/pull/14760
https://github.com/rust-lang/cargo/pull/14781
https://github.com/rust-lang/cargo/pull/14785
https://github.com/rust-lang/cargo/pull/14790
https://github.com/rust-lang/cargo/pull/14668
https://github.com/rust-lang/cargo/pull/14705
https://github.com/rust-lang/cargo/pull/14762
https://github.com/rust-lang/cargo/pull/14766
https://github.com/rust-lang/cargo/pull/14772

Cargo 1.83 (2024-11-28)
8f40fc59...rust-1.83.0

Added

--timings HTML output can now auto-switch between light and dark
color schemes based on browser preference. #14588
Introduced a new CARGO_MANIFEST_PATH environment variable,
similar to CARGO_MANIFEST_DIR but pointing directly to the manifest
file. #14404
manifest: Added package.autolib , allowing [lib] auto-discovery
to be disabled. #14591

Changed

❗ Lockfile format v4 is now the default for creating/updating a
lockfile. Rust toolchains 1.78+ support lockfile v4. For compatibility
with earlier MSRV, consider setting the package.rust-version to
1.82 or earlier. #14595
❗ cargo-package: When using the --package flag, only the specified
packages are packaged. Previously, the package in the current working
directory was automatically selected for packaging. #14488
cargo-publish: Now fails fast if the package version is already
published. #14448
Improved error messages for missing features. #14436
Log details of rustc invocation failure if no errors are seen #14453
Uplifted windows-gnullvm import libraries, aligning them with
windows-gnu . #14451
Suggest cargo info command in the cargo search result #14537
Enhanced dependency update status messages, now displaying updates
(compatible, incompatible, direct-dep) in different colors, along with
messages and MSRVs. #14440 #14457 #14459 #14461 #14471
#14568

https://github.com/rust-lang/cargo/compare/8f40fc59...rust-1.83.0
https://github.com/rust-lang/cargo/pull/14588
https://github.com/rust-lang/cargo/pull/14404
https://github.com/rust-lang/cargo/pull/14591
https://github.com/rust-lang/cargo/pull/14595
https://github.com/rust-lang/cargo/pull/14488
https://github.com/rust-lang/cargo/pull/14448
https://github.com/rust-lang/cargo/pull/14436
https://github.com/rust-lang/cargo/pull/14453
https://github.com/rust-lang/cargo/pull/14451
https://github.com/rust-lang/cargo/pull/14537
https://github.com/rust-lang/cargo/pull/14440
https://github.com/rust-lang/cargo/pull/14457
https://github.com/rust-lang/cargo/pull/14459
https://github.com/rust-lang/cargo/pull/14461
https://github.com/rust-lang/cargo/pull/14471
https://github.com/rust-lang/cargo/pull/14568

The Locking status message no longer displays workspace members.
#14445

Fixed

Prevented duplicate library search environment variables when calling
cargo recursively. #14464
Don't double-warn about $CARGO_HOME/config not having .toml
extension. #14579
Correct diagnostic count message when using --message-format
json . #14598
cargo-add: Perform fuzzy searches when translating package names
#13765
cargo-new: only auto-add new packages to the workspace relative to
the manifest, rather than the current directory. #14505
cargo-rustc: Fixed parsing of comma-separated values in the --crate-
type flag. #14499
cargo-vendor: trusts the crate version only when it originates from
registries. This causes git dependencies to be re-vendored even if they
haven't changed. #14530
cargo-publish: Downgrade version-exists error to warning on dry-run
#14742 #14744

Nightly only

❗ cargo-rustc: give trailing flags higher precedence on nightly. The
nightly gate will be removed after a few releases. Please give feedback
if it breaks any workflow. A temporary environment variable
__CARGO_RUSTC_ORIG_ARGS_PRIO=1 is provided to opt-out of the
behavior. #14587
🔥 cargo-install: a new --dry-run flag without actually installing
binaries. #14280
🔥 native-completions : moves the handwritten shell completion
scripts to Rust native, making it easier for us to add, extend, and test
new completions. (docs) #14493 #14531 #14532 #14533 #14534

https://github.com/rust-lang/cargo/pull/14445
https://github.com/rust-lang/cargo/pull/14464
https://github.com/rust-lang/cargo/pull/14579
https://github.com/rust-lang/cargo/pull/14598
https://github.com/rust-lang/cargo/pull/13765
https://github.com/rust-lang/cargo/pull/14505
https://github.com/rust-lang/cargo/pull/14499
https://github.com/rust-lang/cargo/pull/14530
https://github.com/rust-lang/cargo/pull/14742
https://github.com/rust-lang/cargo/pull/14744
https://github.com/rust-lang/cargo/pull/14587
https://github.com/rust-lang/cargo/pull/14280
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#native-completions
https://github.com/rust-lang/cargo/pull/14493
https://github.com/rust-lang/cargo/pull/14531
https://github.com/rust-lang/cargo/pull/14532
https://github.com/rust-lang/cargo/pull/14533
https://github.com/rust-lang/cargo/pull/14534

#14535 #14536 #14546 #14547 #14548 #14552 #14557 #14558
#14563 #14564 #14573 #14590 #14592 #14653 #14656
🔥 -Zchecksum-freshness : replace the use of file mtimes in cargo’s
rebuild detection with a file checksum algorithm. This is most useful
on systems with a poor mtime implementation, or in CI/CD. (docs)
#14137
cargo-update: Add matches_prerelease semantic #14305
build-plan : document it as being deprecated. #14657
edition2024 : Remove implicit feature removal from 2024 edition.
#14630
lockfile-path : implies --locked on cargo install . #14556
open-namespaces : Allow open namespaces in PackageIdSpec s
#14467
path-bases : cargo [add|remove|update] support #14427
-Zmsrv-policy : determine the workspace's MSRV by the most
number of MSRVs within it. #14569
-Zpackage-workspace : allows to publish multiple crates in a
workspace, even if they have inter-dependencies. (docs) #14433
#14496
-Zpublic-dependency : Include public/private dependency status in
cargo metadata #14504
-Zpublic-dependency : Don't require MSRV bump #14507

Documentation

🎉 New chapter about the uses, support expectations, and
management of package.rust-version a.k.a MSRV. (docs) #14619
#14636
Clarify target.'cfg(...)' doesn't respect cfg from build script
#14312
Clarify [[bin]] target auto-discovery can be src/main.rs and/or in
src/bin/ #14515
Disambiguate the use of 'target' in the feature resolver v2 doc. #14540
Make --config <PATH> more prominent #14631

https://github.com/rust-lang/cargo/pull/14535
https://github.com/rust-lang/cargo/pull/14536
https://github.com/rust-lang/cargo/pull/14546
https://github.com/rust-lang/cargo/pull/14547
https://github.com/rust-lang/cargo/pull/14548
https://github.com/rust-lang/cargo/pull/14552
https://github.com/rust-lang/cargo/pull/14557
https://github.com/rust-lang/cargo/pull/14558
https://github.com/rust-lang/cargo/pull/14563
https://github.com/rust-lang/cargo/pull/14564
https://github.com/rust-lang/cargo/pull/14573
https://github.com/rust-lang/cargo/pull/14590
https://github.com/rust-lang/cargo/pull/14592
https://github.com/rust-lang/cargo/pull/14653
https://github.com/rust-lang/cargo/pull/14656
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#checksum-freshness
https://github.com/rust-lang/cargo/pull/14137
https://github.com/rust-lang/cargo/pull/14305
https://github.com/rust-lang/cargo/pull/14657
https://github.com/rust-lang/cargo/pull/14630
https://github.com/rust-lang/cargo/pull/14556
https://github.com/rust-lang/cargo/pull/14467
https://github.com/rust-lang/cargo/pull/14427
https://github.com/rust-lang/cargo/pull/14569
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#package-workspace
https://github.com/rust-lang/cargo/pull/14433
https://github.com/rust-lang/cargo/pull/14496
https://github.com/rust-lang/cargo/pull/14504
https://github.com/rust-lang/cargo/pull/14507
https://doc.rust-lang.org/nightly/cargo/reference/rust-version.html
https://github.com/rust-lang/cargo/pull/14619
https://github.com/rust-lang/cargo/pull/14636
https://github.com/rust-lang/cargo/pull/14312
https://github.com/rust-lang/cargo/pull/14515
https://github.com/rust-lang/cargo/pull/14540
https://github.com/rust-lang/cargo/pull/14631

Minor re-grouping of pages. #14620
contrib: Update docs for how cargo is published #14539
contrib: Declare support level for each crate in Cargo's Charter / crate
docs #14600
contrib: Declare new Intentional Artifacts as 'small' changes #14599

Internal

Cleanup duplicated check-cfg lint logic #14567
Fix elided lifetime due to nightly rustc changes #14487
Improved error reporting when a feature is not found in
activated_features . #14647
cargo-info: Use the shell.note to print the note #14554
ci: bump CI tools #14503 #14628
perf: zero-copy deserialization for compiler messages when possible
#14608
resolver: Add more SAT resolver tests #14583 #14614
test: Migrated more tests to snapbox #14576 #14577
Update dependencies. #14475 #14478 #14489 #14607 #14624 #14632

https://github.com/rust-lang/cargo/pull/14620
https://github.com/rust-lang/cargo/pull/14539
https://github.com/rust-lang/cargo/pull/14600
https://github.com/rust-lang/cargo/pull/14599
https://github.com/rust-lang/cargo/pull/14567
https://github.com/rust-lang/cargo/pull/14487
https://github.com/rust-lang/cargo/pull/14647
https://github.com/rust-lang/cargo/pull/14554
https://github.com/rust-lang/cargo/pull/14503
https://github.com/rust-lang/cargo/pull/14628
https://github.com/rust-lang/cargo/pull/14608
https://github.com/rust-lang/cargo/pull/14583
https://github.com/rust-lang/cargo/pull/14614
https://github.com/rust-lang/cargo/pull/14576
https://github.com/rust-lang/cargo/pull/14577
https://github.com/rust-lang/cargo/pull/14475
https://github.com/rust-lang/cargo/pull/14478
https://github.com/rust-lang/cargo/pull/14489
https://github.com/rust-lang/cargo/pull/14607
https://github.com/rust-lang/cargo/pull/14624
https://github.com/rust-lang/cargo/pull/14632

Cargo 1.82 (2024-10-17)
a2b58c3d...rust-1.82.0

Added

🎉 Added cargo info command for displaying information about a
package. docs #14141 #14418 #14430

Changed

❗ Doctest respects Cargo's color options by passing --color to
rustdoc invocations. #14425
Improved error message for missing both [package] and
[workspace] in Cargo.toml. #14261
Enumerate all possible values of profile.*.debug for the error
message. #14413

Fixed

Use longhand gitoxide path-spec patterns. Previously the
implementation used shorthand pathspecs, which could produce
invalid syntax, for example, if the path to the manifest file contained a
leading _ underscore #14380
cargo-package: fix failures on bare commit git repo. #14359
cargo-publish: Don't strip non-dev features for renamed dependencies
from the HTTP JSON body sent to the registry. The bug only affected
third-party registries. #14325 #14327
cargo-vendor: don't copy source files of excluded Cargo targets when
vendoring. #14367

Nightly only

🔥 lockfile-path : Added --lockfile-path flag that allows
specifying a path to the lockfile other than the default path

https://github.com/rust-lang/cargo/compare/a2b58c3d...rust-1.82.0
https://doc.rust-lang.org/nightly/cargo/commands/cargo-info.html
https://github.com/rust-lang/cargo/pull/14141
https://github.com/rust-lang/cargo/pull/14418
https://github.com/rust-lang/cargo/pull/14430
https://github.com/rust-lang/cargo/pull/14425
https://github.com/rust-lang/cargo/pull/14261
https://github.com/rust-lang/cargo/pull/14413
https://github.com/rust-lang/cargo/pull/14380
https://github.com/rust-lang/cargo/pull/14359
https://github.com/rust-lang/cargo/pull/14325
https://github.com/rust-lang/cargo/pull/14327
https://github.com/rust-lang/cargo/pull/14367

<workspace_root>/Cargo.lock . (docs) #14326 #14417 #14423
#14424
🔥 path-bases : Introduced a table of path "bases" in Cargo
configuration files that can be used to prefix the paths of path
dependencies and patch entries. (RFC 3529) (docs) #14360
🔥 -Zpackage-workspace : Enhanced the experience of cargo
package --workspace when there are dependencies between crates in
the workspace. Crates in a workspace are no longer required to publish
to actual registries. This is a step toward supporting cargo publish -
-workspace . #13947 #14408 #14340
cargo-update: Limit pre-release match semantics to use only on
OptVersionReq::Req #14412
edition2024 : Revert "fix: Ensure dep/feature activates the
dependency on 2024". #14295
update-breaking : Improved error message when update --
breaking has an invalid spec #14279
update-breaking : Don’t downgrade on prerelease VersionReq when
updating with --breaking #14250
-Zbuild-std : remove hack on creating virtual std workspace #14358
#14370
-Zmsrv-policy : Adjust MSRV resolve config field name / values.
The previous placeholder resolver.something-like-precedence is
now renamed to resolver.incompatible-rust-versions . #14296
-Zmsrv-policy : : Report when incompatible-rust-version packages
are selected #14401
-Ztarget-applies-to-host : Fixed passing of links-overrides with
target-applies-to-host and an implicit target #14205
-Ztarget-applies-to-host : -Cmetadata includes whether extra
rustflags is same as host #14432
-Ztrim-paths : rustdoc supports trim-paths for diagnostics #14389

Documentation

https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#lockfile-path
https://github.com/rust-lang/cargo/pull/14326
https://github.com/rust-lang/cargo/pull/14417
https://github.com/rust-lang/cargo/pull/14423
https://github.com/rust-lang/cargo/pull/14424
https://github.com/rust-lang/rfcs/blob/master/text/3529-cargo-path-bases.md
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#path-bases
https://github.com/rust-lang/cargo/pull/14360
https://github.com/rust-lang/cargo/pull/13947
https://github.com/rust-lang/cargo/pull/14408
https://github.com/rust-lang/cargo/pull/14340
https://github.com/rust-lang/cargo/pull/14412
https://github.com/rust-lang/cargo/pull/14295
https://github.com/rust-lang/cargo/pull/14279
https://github.com/rust-lang/cargo/pull/14250
https://github.com/rust-lang/cargo/pull/14358
https://github.com/rust-lang/cargo/pull/14370
https://github.com/rust-lang/cargo/pull/14296
https://github.com/rust-lang/cargo/pull/14401
https://github.com/rust-lang/cargo/pull/14205
https://github.com/rust-lang/cargo/pull/14432
https://github.com/rust-lang/cargo/pull/14389

Convert comments to doc comments for Workspace . #14397
Fix MSRV indicator for workspace.package and
workspace.dependencies . #14400
FAQ: remove outdated Cargo offline usage section. #14336

Internal

Enhanced cargo-test-support usability and documentation. #14266
#14268 #14269 #14270 #14272
Made summary sync by using Arc instead of Rc #14260
Used Rc instead of Arc for storing rustflags #14273
Removed rustc probe for --check-cfg support #14302
Renamed 'resolved' to 'normalized' for all manifest normalization
related items. #14342
cargo-util-schemas: Added TomlPackage::new , Default for
TomlWorkspace #14271
ci: Switch macos aarch64 to nightly #14382
mdman: Normalize newlines when rendering options #14428
perf: dont call wrap in a no-op source_id::with* #14318
test: Migrated more tests to snapbox #14242 #14244 #14293 #14297
#14319 #14402 #14410
test: don't rely on absence of RUST_BACKTRACE #14441
test: Use gmake on AIX #14323
Updated to gix 0.64.0 #14332
Updated to rusqlite 0.32.0 #14334
Updated to windows-sys 0.59 #14335
Update dependencies. #14299 #14303 #14324 #14329 #14331 #14391

https://github.com/rust-lang/cargo/pull/14397
https://github.com/rust-lang/cargo/pull/14400
https://github.com/rust-lang/cargo/pull/14336
https://github.com/rust-lang/cargo/pull/14266
https://github.com/rust-lang/cargo/pull/14268
https://github.com/rust-lang/cargo/pull/14269
https://github.com/rust-lang/cargo/pull/14270
https://github.com/rust-lang/cargo/pull/14272
https://github.com/rust-lang/cargo/pull/14260
https://github.com/rust-lang/cargo/pull/14273
https://github.com/rust-lang/cargo/pull/14302
https://github.com/rust-lang/cargo/pull/14342
https://github.com/rust-lang/cargo/pull/14271
https://github.com/rust-lang/cargo/pull/14382
https://github.com/rust-lang/cargo/pull/14428
https://github.com/rust-lang/cargo/pull/14318
https://github.com/rust-lang/cargo/pull/14242
https://github.com/rust-lang/cargo/pull/14244
https://github.com/rust-lang/cargo/pull/14293
https://github.com/rust-lang/cargo/pull/14297
https://github.com/rust-lang/cargo/pull/14319
https://github.com/rust-lang/cargo/pull/14402
https://github.com/rust-lang/cargo/pull/14410
https://github.com/rust-lang/cargo/pull/14441
https://github.com/rust-lang/cargo/pull/14323
https://github.com/rust-lang/cargo/pull/14332
https://github.com/rust-lang/cargo/pull/14334
https://github.com/rust-lang/cargo/pull/14335
https://github.com/rust-lang/cargo/pull/14299
https://github.com/rust-lang/cargo/pull/14303
https://github.com/rust-lang/cargo/pull/14324
https://github.com/rust-lang/cargo/pull/14329
https://github.com/rust-lang/cargo/pull/14331
https://github.com/rust-lang/cargo/pull/14391

Cargo 1.81 (2024-09-05)
34a6a87d...rust-1.81.0

Added
Changed

❗ cargo-package: Disallow package.license-file and
package.readme pointing to non-existent files during packaging.
#13921
❗ cargo-package: generated .cargo_vcs_info.json is always
included, even when --allow-dirty is passed. #13960
❗ Disallow passing --release / --debug flag along with the --
profile flag. #13971
❗ Remove lib.plugin key support in Cargo.toml. Rust plugin
support has been deprecated for four years and was removed in 1.75.0.
#13902 #14038
Make the calculation of -Cmetadata for rustc consistent across
platforms. #14107
Emit a warning when edition is unset, even when MSRV is unset.
#14110

Fixed

Fix a proc-macro example from a dependency affecting feature
resolution. #13892
Don't warn on duplicate packages from using '..'. #14234
Don't du on every git source load. #14252
Don't warn about unreferenced duplicate packages #14239
cargo-publish: Don't strip non-dev features for renamed dependencies
from the HTTP JSON body sent to the registry. The bug only affected
third-party registries. #14328
cargo-vendor: don't copy source files of excluded Cargo targets when
vendoring. #14368

https://github.com/rust-lang/cargo/compare/34a6a87d...rust-1.81.0
https://github.com/rust-lang/cargo/pull/13921
https://github.com/rust-lang/cargo/pull/13960
https://github.com/rust-lang/cargo/pull/13971
https://github.com/rust-lang/cargo/pull/13902
https://github.com/rust-lang/cargo/pull/14038
https://github.com/rust-lang/cargo/pull/14107
https://github.com/rust-lang/cargo/pull/14110
https://github.com/rust-lang/cargo/pull/13892
https://github.com/rust-lang/cargo/pull/14234
https://github.com/rust-lang/cargo/pull/14252
https://github.com/rust-lang/cargo/pull/14239
https://github.com/rust-lang/cargo/pull/14328
https://github.com/rust-lang/cargo/pull/14368

Nightly only

🔥 update-breaking : Add --breaking to cargo update , allowing
upgrading dependencies to breaking versions. docs #13979 #14047
#14049
--artifact-dir : Rename --out-dir to --artifact-dir . The --
out-dir flag is kept for compatibility and may be removed when the
feature gets stabilized. #13809
edition2024 : Ensure unused optional dependencies fire for shadowed
dependencies. #14028
edition2024 : Address problems with implicit -> explicit feature
migration #14018
-Zcargo-lints : Add unknown_lints to lints list. #14024
-Zcargo-lints : Add tooling to document lints. #14025
-Zcargo-lints : Keep lints updated and sorted. #14030
-Zconfig-include : Allow enabling config-include feature in
config. #14196
-Zpublic-dependency : remove some legacy public dependency code
from the resolver #14090
-Ztarget-applies-to-host : Pass rustflags to artifacts built with
implicit targets when using target-applies-to-host #13900 #14201
cargo-update: Track the behavior of --precise <prerelease> .
#14013

Documentation

Clarify CARGO_CFG_TARGET_FAMILY is multi-valued. #14165
Document CARGO_CFG_TARGET_ABI #14164
Document MSRV for each manifest field and build script invocations.
#14224
Remove duplicate strip section. #14146
Update summary of Cargo configuration to include missing keys.
#14145
Update index of Cargo documentation. #14228

https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#update-breaking
https://github.com/rust-lang/cargo/pull/13979
https://github.com/rust-lang/cargo/pull/14047
https://github.com/rust-lang/cargo/pull/14049
https://github.com/rust-lang/cargo/pull/13809
https://github.com/rust-lang/cargo/pull/14028
https://github.com/rust-lang/cargo/pull/14018
https://github.com/rust-lang/cargo/pull/14024
https://github.com/rust-lang/cargo/pull/14025
https://github.com/rust-lang/cargo/pull/14030
https://github.com/rust-lang/cargo/pull/14196
https://github.com/rust-lang/cargo/pull/14090
https://github.com/rust-lang/cargo/pull/13900
https://github.com/rust-lang/cargo/pull/14201
https://github.com/rust-lang/cargo/pull/14013
https://github.com/rust-lang/cargo/pull/14165
https://github.com/rust-lang/cargo/pull/14164
https://github.com/rust-lang/cargo/pull/14224
https://github.com/rust-lang/cargo/pull/14146
https://github.com/rust-lang/cargo/pull/14145
https://github.com/rust-lang/cargo/pull/14228

Don't mention non-existent workspace.badges field. #14042
contrib: Suggest atomic commits with separate test commits. #14014
contrib: Document how to write an RFC for Cargo. #14222
contrib: Improve triage instructions #14052

Internal

cargo-package: Change verification order during packaging. #14074
ci: Add workflow to publish Cargo automatically #14202
ci: bump CI tools #14062 #14257
registry: Add local registry overlays. #13926
registry: move get_source_id out of registry #14218
resolver: Simplify checking for dependency cycles #14089
rustfix: Add CodeFix::apply_solution and impl Clone #14092
source: Clean up after PathSource / RecursivePathSource split
#14169 #14231
Remove the temporary __CARGO_GITOXIDE_DISABLE_LIST_FILES
environment variable. #14036
Simplify checking feature syntax #14106
Dont make new constant InternedString in hot path #14211
Use std::fs::absolute instead of reimplementing it #14075
Remove unnecessary feature activations from cargo. #14122 #14160
Revert #13630 as rustc ignores -C strip on MSVC. #14061
test: Allow unexpected_builtin_cfgs lint in user_specific_cfgs
test #14153
test: Add cargo_test to test-support prelude #14243
test: migrate Cargo testsuite to snapbox . For the complete list of
migration pull requests, see #14039
Updated to gix 0.64.0 #14431
Update dependencies. #13995 #13998 #14037 #14063 #14067 #14174
#14186 #14254

https://github.com/rust-lang/cargo/pull/14042
https://github.com/rust-lang/cargo/pull/14014
https://github.com/rust-lang/cargo/pull/14222
https://github.com/rust-lang/cargo/pull/14052
https://github.com/rust-lang/cargo/pull/14074
https://github.com/rust-lang/cargo/pull/14202
https://github.com/rust-lang/cargo/pull/14062
https://github.com/rust-lang/cargo/pull/14257
https://github.com/rust-lang/cargo/pull/13926
https://github.com/rust-lang/cargo/pull/14218
https://github.com/rust-lang/cargo/pull/14089
https://github.com/rust-lang/cargo/pull/14092
https://github.com/rust-lang/cargo/pull/14169
https://github.com/rust-lang/cargo/pull/14231
https://github.com/rust-lang/cargo/pull/14036
https://github.com/rust-lang/cargo/pull/14106
https://github.com/rust-lang/cargo/pull/14211
https://github.com/rust-lang/cargo/pull/14075
https://github.com/rust-lang/cargo/pull/14122
https://github.com/rust-lang/cargo/pull/14160
https://github.com/rust-lang/cargo/pull/14061
https://github.com/rust-lang/cargo/pull/14153
https://github.com/rust-lang/cargo/pull/14243
https://github.com/rust-lang/cargo/issues/14039#issuecomment-2158974033
https://github.com/rust-lang/cargo/pull/14431
https://github.com/rust-lang/cargo/pull/13995
https://github.com/rust-lang/cargo/pull/13998
https://github.com/rust-lang/cargo/pull/14037
https://github.com/rust-lang/cargo/pull/14063
https://github.com/rust-lang/cargo/pull/14067
https://github.com/rust-lang/cargo/pull/14174
https://github.com/rust-lang/cargo/pull/14186
https://github.com/rust-lang/cargo/pull/14254

Cargo 1.80 (2024-07-25)
b60a1555...rust-1.80.0

Added

🎉 Stabilize -Zcheck-cfg ! This by default enables rustc's
checking of conditional compilation at compile time, which verifies
that the crate is correctly handling conditional compilation for different
target platforms or features. Internally, cargo will be passing a new
command line option --check-cfg to all rustc and rustdoc
invocations.

A new build script invocation cargo::rustc-check-
cfg=CHECK_CFG is added along with this stabilization, as a way to add
custom cfgs to the list of expected cfg names and values.

If a build script is not an option for your package, Cargo provides a
config [lints.rust.unexpected_cfgs.check-cfg] to add known
custom cfgs statically.

(RFC 3013) (docs) #13571 #13865 #13869 #13884 #13913 #13937
#13958
🎉 cargo-update: Allows --precise to specify a yanked version of

a package, and will update the lockfile accordingly. #13974

Changed

❗ manifest: Disallow [badges] to inherit from
[workspace.package.badges] . This was considered a bug. Keep in
mind that [badges] is effectively deprecated. #13788
build-script: Suggest old syntax based on MSRV. #13874
cargo-add: Avoid escaping double quotes by using string literals.
#14006
cargo-clean: Performance improvements for cleaning specific
packages via -p flag. #13818

https://github.com/rust-lang/cargo/compare/b60a1555...rust-1.80.0
https://doc.rust-lang.org/nightly/cargo/reference/build-scripts.html#rustc-check-cfg
https://doc.rust-lang.org/nightly/rustc/check-cfg/cargo-specifics.html#check-cfg-in-lintsrust-table
https://github.com/rust-lang/rfcs/blob/master/text/3013-conditional-compilation-checking.md
https://doc.rust-lang.org/nightly/rustc/check-cfg/cargo-specifics.html
https://github.com/rust-lang/cargo/pull/13571
https://github.com/rust-lang/cargo/pull/13865
https://github.com/rust-lang/cargo/pull/13869
https://github.com/rust-lang/cargo/pull/13884
https://github.com/rust-lang/cargo/pull/13913
https://github.com/rust-lang/cargo/pull/13937
https://github.com/rust-lang/cargo/pull/13958
https://github.com/rust-lang/cargo/pull/13974
https://github.com/rust-lang/cargo/pull/13788
https://github.com/rust-lang/cargo/pull/13874
https://github.com/rust-lang/cargo/pull/14006
https://github.com/rust-lang/cargo/pull/13818

cargo-new: Use i32 rather than usize as the "default integer" in
library template. #13939
cargo-package: Warn, rather than fail, if a Cargo target is excluded
during packaging. #13713
manifest: Warn, not error, on unsupported lint tool in the [lints]
table. #13833
perf: Avoid inferring when Cargo targets are known. #13849
Populate git information when building Cargo from Rust's source
tarball. #13832
Improve the error message when deserializing Cargo configuration
from partial environment variables. #13956

Fixed

resolver: Make path dependencies with the same name stay locked.
#13572
cargo-add: Preserve file permissions on Unix during write_atomic .
#13898
cargo-clean: Remove symlink directory on Windows. #13910
cargo-fix: Don't fix into the standard library. #13792
cargo-fix: Support IPv6-only networks. #13907
cargo-new: Don't say we're adding to a workspace when a regular
package is in the root. #13987
cargo-vendor: Silence the warning about forgetting the vendoring.
#13886
cargo-publish/cargo-vendor: Ensure targets in generated Cargo.toml
are in a deterministic order. #13989 #14004
cargo-credential-libsecret: Load libsecret by its SONAME ,
libsecret-1.so.0 . #13927
Don't panic when an alias doesn't include a subcommand. #13819
Workaround copying file returning EAGAIN on ZFS on macOS.
#13845
Fetch specific commits even if the GitHub fast path fails. #13946
#13969

https://github.com/rust-lang/cargo/pull/13939
https://github.com/rust-lang/cargo/pull/13713
https://github.com/rust-lang/cargo/pull/13833
https://github.com/rust-lang/cargo/pull/13849
https://github.com/rust-lang/cargo/pull/13832
https://github.com/rust-lang/cargo/pull/13956
https://github.com/rust-lang/cargo/pull/13572
https://github.com/rust-lang/cargo/pull/13898
https://github.com/rust-lang/cargo/pull/13910
https://github.com/rust-lang/cargo/pull/13792
https://github.com/rust-lang/cargo/pull/13907
https://github.com/rust-lang/cargo/pull/13987
https://github.com/rust-lang/cargo/pull/13886
https://github.com/rust-lang/cargo/pull/13989
https://github.com/rust-lang/cargo/pull/14004
https://github.com/rust-lang/cargo/pull/13927
https://github.com/rust-lang/cargo/pull/13819
https://github.com/rust-lang/cargo/pull/13845
https://github.com/rust-lang/cargo/pull/13946
https://github.com/rust-lang/cargo/pull/13969

Distinguish Cargo config from different environment variables that
share the same prefix. #14000

Nightly only

-Zcargo-lints : Don't always inherit workspace lints. #13812
-Zcargo-lints : Add a test to ensure cap-lints works. #13829
-Zcargo-lints : Error when unstable lints are specified but not
enabled. #13805
-Zcargo-lints : Add cargo-lints to unstable docs. #13881
-Zcargo-lints : Refactor cargo lint tests. #13880
-Zcargo-lints : Remove ability to specify - in lint name. #13837
-Zscript : Remove unstable rejected frontmatter syntax for cargo
script. The only allowed frontmatter syntax now is --- . #13861
#13893
-Zbindeps : Build only the specified artifact library when multiple
types are available. #13842
-Zmsrv-policy : Treat unset MSRV as compatible. #13791
-Zgit / -Zgitoxide : Default configuration to be obtained from both
environment variables and Cargo configuration. #13687
-Zpublic-dependency : Don't lose 'public' when inheriting a
dependency. #13836
edition2024 : Disallow ignored default-features when inheriting.
#13839
edition2024 : Validate crate-types/proc-macro for bin like other
Cargo targets. #13841

Documentation

cargo-package: Clarify no guarantee of VCS provenance. #13984
cargo-metadata: Clarify dash replacement rule in Cargo target names.
#13887
config: Fix wrong type of rustc-flags in build script overrides.
#13957

https://github.com/rust-lang/cargo/pull/14000
https://github.com/rust-lang/cargo/pull/13812
https://github.com/rust-lang/cargo/pull/13829
https://github.com/rust-lang/cargo/pull/13805
https://github.com/rust-lang/cargo/pull/13881
https://github.com/rust-lang/cargo/pull/13880
https://github.com/rust-lang/cargo/pull/13837
https://github.com/rust-lang/cargo/pull/13861
https://github.com/rust-lang/cargo/pull/13893
https://github.com/rust-lang/cargo/pull/13842
https://github.com/rust-lang/cargo/pull/13791
https://github.com/rust-lang/cargo/pull/13687
https://github.com/rust-lang/cargo/pull/13836
https://github.com/rust-lang/cargo/pull/13839
https://github.com/rust-lang/cargo/pull/13841
https://github.com/rust-lang/cargo/pull/13984
https://github.com/rust-lang/cargo/pull/13887
https://github.com/rust-lang/cargo/pull/13957

resolver: Add README for resolver-tests . #13977
contrib: Update UI example code in contributor guide. #13864
Fix libcurl proxy documentation link. #13990
Add missing CARGO_MAKEFLAGS env for plugins. #13872
Include CircleCI reference in the Continuous Integration chapter.
#13850

Internal

ci: Don't check cargo against beta channel. #13827
test: Set safe.directory for git repo in apache container. #13920
test: Silence warnings running embedded unittests. #13929
test: Update test formatting due to nightly rustc changes. #13890
#13901 #13964
test: Make git::use_the_cli test truly locale independent. #13935
cargo-test-support: Transition direct assertions from cargo-test-support
to snapbox. #13980
cargo-test-support: Auto-redact elapsed time. #13973
cargo-test-support: Clean up unnecessary uses of match_exact .
#13879
Split RecursivePathSource out of PathSource . #13993
Adjust custom errors from cert-check due to libgit2 1.8 change.
#13970
Move diagnostic printing to Shell. #13813
Update dependencies. #13834 #13840 #13948 #13963 #13976

https://github.com/rust-lang/cargo/pull/13977
https://github.com/rust-lang/cargo/pull/13864
https://github.com/rust-lang/cargo/pull/13990
https://github.com/rust-lang/cargo/pull/13872
https://github.com/rust-lang/cargo/pull/13850
https://github.com/rust-lang/cargo/pull/13827
https://github.com/rust-lang/cargo/pull/13920
https://github.com/rust-lang/cargo/pull/13929
https://github.com/rust-lang/cargo/pull/13890
https://github.com/rust-lang/cargo/pull/13901
https://github.com/rust-lang/cargo/pull/13964
https://github.com/rust-lang/cargo/pull/13935
https://github.com/rust-lang/cargo/pull/13980
https://github.com/rust-lang/cargo/pull/13973
https://github.com/rust-lang/cargo/pull/13879
https://github.com/rust-lang/cargo/pull/13993
https://github.com/rust-lang/cargo/pull/13970
https://github.com/rust-lang/cargo/pull/13813
https://github.com/rust-lang/cargo/pull/13834
https://github.com/rust-lang/cargo/pull/13840
https://github.com/rust-lang/cargo/pull/13948
https://github.com/rust-lang/cargo/pull/13963
https://github.com/rust-lang/cargo/pull/13976

Cargo 1.79 (2024-06-13)
2fe739fc...rust-1.79.0

Added

🎉 cargo add respects package.rust-version a.k.a. MSRV when
adding new dependencies. The behavior can be overridden by
specifying a version requirement, or passing the --ignore-rust-
version flag. (RFC 3537) #13608
A new Locking status message shows dependency changes on any
command. For cargo update , it also tells you if any dependency
version is outdated. #13561 #13647 #13651 #13657 #13759 #13764

Changed

❗ RUSTC_WRAPPER , RUSTC_WORKSPACE_WRAPPER , and variables from
the [env] table now also apply to the initial rustc -vV invocation
Cargo uses for probing rustc information. #13659
❗ Turns dependencies like foo = { optional = true } from
version="*" dependencies with a warning into errors. This behavior
has been considered a bug from the beginning. #13775
❗ Replace dashes with underscores also if lib.name is inferred from
package.name . This change aligns to the documented behavior. One
caveat is that JSON messages emitted by Cargo, like via cargo
metadata or --message-format=json , will start reporting underscore
lib names. #12783
Switch to gitoxide for listing files. This improves the performance of
build script and cargo doc for computing cache freshness, as well as
fixes some subtle bugs for cargo publish . #13592 #13696 #13704
#13777
Warn on -Zlints being passed and no longer necessary. #13632
Warn on unused workspace.dependencies keys on virtual
workspaces. #13664

https://github.com/rust-lang/cargo/compare/2fe739fc...rust-1.79.0
https://github.com/rust-lang/rfcs/blob/master/text/3537-msrv-resolver.md
https://github.com/rust-lang/cargo/pull/13608
https://github.com/rust-lang/cargo/pull/13561
https://github.com/rust-lang/cargo/pull/13647
https://github.com/rust-lang/cargo/pull/13651
https://github.com/rust-lang/cargo/pull/13657
https://github.com/rust-lang/cargo/pull/13759
https://github.com/rust-lang/cargo/pull/13764
https://github.com/rust-lang/cargo/pull/13659
https://github.com/rust-lang/cargo/pull/13775
https://github.com/rust-lang/cargo/pull/12783
https://github.com/rust-lang/cargo/pull/13592
https://github.com/rust-lang/cargo/pull/13696
https://github.com/rust-lang/cargo/pull/13704
https://github.com/rust-lang/cargo/pull/13777
https://github.com/rust-lang/cargo/pull/13632
https://github.com/rust-lang/cargo/pull/13664

Emit 1.77 build script syntax error only when msrv is incompatible.
#13808
Don't warn on lints.rust.unexpected_cfgs.check-cfg . #13925
cargo-init: don't assign target.name in Cargo.toml if the value can be
inferred. #13606
cargo-package: normalize paths in Cargo.toml , including replacing \
with / . #13729
cargo-test: recategorize cargo test's --doc flag under “Target
Selection”. #13756

Fixed

Ensure --config net.git-fetch-with-cli=true is respected.
#13992 #13997
Dont panic when resolving an empty alias. #13613
When using --target , the default debuginfo strip rule also applies.
Note that on Windows MSVC Cargo no longer strips by default.
#13618
Don't crash on Cargo.toml parse errors that point to multi-byte
character #13780
Don't emit deprecation warning if one of
.cargo/{config,config.toml} is a symlink to the other. #13793
Follow HTTP redirections when checking if a repo on GitHub is up-to-
date. #13718
Bash completion fallback in nounset mode. #13686
Rerun build script when rustflags changed and --target was passed.
#13560
Fix doc collision for lib/bin with a dash in the inferred name. #13640
cargo-add: Maintain sorting of dependency features. #13682
cargo-add: Preserve comments when updating simple deps #13655
cargo-fix: dont apply same suggestion twice. #13728
cargo-package: error when the package specified via --package
cannot be found #13735
credential-provider: trim newlines in tokens from stdin. #13770

https://github.com/rust-lang/cargo/pull/13808
https://github.com/rust-lang/cargo/pull/13925
https://github.com/rust-lang/cargo/pull/13606
https://github.com/rust-lang/cargo/pull/13729
https://github.com/rust-lang/cargo/pull/13756
https://github.com/rust-lang/cargo/pull/13992
https://github.com/rust-lang/cargo/pull/13997
https://github.com/rust-lang/cargo/pull/13613
https://github.com/rust-lang/cargo/pull/13618
https://github.com/rust-lang/cargo/pull/13780
https://github.com/rust-lang/cargo/pull/13793
https://github.com/rust-lang/cargo/pull/13718
https://github.com/rust-lang/cargo/pull/13686
https://github.com/rust-lang/cargo/pull/13560
https://github.com/rust-lang/cargo/pull/13640
https://github.com/rust-lang/cargo/pull/13682
https://github.com/rust-lang/cargo/pull/13655
https://github.com/rust-lang/cargo/pull/13728
https://github.com/rust-lang/cargo/pull/13735
https://github.com/rust-lang/cargo/pull/13770

Nightly only

🔥 cargo-update: allows --precise to specify a pre-release version of
a package (RFC 3493) (docs) #13626
RFC 3491: Unused dependencies cleanup #13778
-Zcargo-lints : Add a basic linting system for Cargo. This is still
under development and not available for general use. #13621 #13635
#13797 #13740 #13801 #13852 #13853
🔥 edition2024 : Add default Edition2024 to resolver v3 (MSRV-
aware resolver). #13785
edition2024 : Remove underscore field support in 2024. #13783
#13798 #13800 #13804
edition2024 : Error on [project] in Edition 2024 #13747
-Zmsrv-policy : Respect '--ignore-rust-version' #13738
-Zmsrv-policy : Add --ignore-rust-version to update/generate-
lockfile #13741 #13742
-Zmsrv-policy : Put MSRV-aware resolver behind a config #13769
-Zmsrv-policy : Error, rather than panic, on rust-version 'x' #13771
-Zmsrv-policy : Fallback to 'rustc -V' for MSRV resolving. #13743
-Zmsrv-policy : Add v3 resolver for MSRV-aware resolving #13776
-Zmsrv-policy : Don't respect MSRV for non-local installs #13790
-Zmsrv-policy : Track when MSRV is explicitly set, either way
#13732
test: don't compress test registry crates. #13744

Documentation

Clarify --locked ensuring that Cargo uses dependency versions in
lockfile #13665
Clarify the precedence of RUSTC_WORKSPACE_WRAPPER and
RUSTC_WRAPPER . #13648
Clarify only in the root Cargo.toml the [workspace] section is
allowed. #13753
Clarify the differences between virtual and real manifests. #13794

https://github.com/rust-lang/rfcs/blob/master/text/3493-precise-pre-release-cargo-update.md
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#precise-pre-release
https://github.com/rust-lang/cargo/pull/13626
https://github.com/rust-lang/cargo/pull/13778
https://github.com/rust-lang/cargo/pull/13621
https://github.com/rust-lang/cargo/pull/13635
https://github.com/rust-lang/cargo/pull/13797
https://github.com/rust-lang/cargo/pull/13740
https://github.com/rust-lang/cargo/pull/13801
https://github.com/rust-lang/cargo/pull/13852
https://github.com/rust-lang/cargo/pull/13853
https://github.com/rust-lang/cargo/pull/13785
https://github.com/rust-lang/cargo/pull/13783
https://github.com/rust-lang/cargo/pull/13798
https://github.com/rust-lang/cargo/pull/13800
https://github.com/rust-lang/cargo/pull/13804
https://github.com/rust-lang/cargo/pull/13747
https://github.com/rust-lang/cargo/pull/13738
https://github.com/rust-lang/cargo/pull/13741
https://github.com/rust-lang/cargo/pull/13742
https://github.com/rust-lang/cargo/pull/13769
https://github.com/rust-lang/cargo/pull/13771
https://github.com/rust-lang/cargo/pull/13743
https://github.com/rust-lang/cargo/pull/13776
https://github.com/rust-lang/cargo/pull/13790
https://github.com/rust-lang/cargo/pull/13732
https://github.com/rust-lang/cargo/pull/13744
https://github.com/rust-lang/cargo/pull/13665
https://github.com/rust-lang/cargo/pull/13648
https://github.com/rust-lang/cargo/pull/13753
https://github.com/rust-lang/cargo/pull/13794

Internal

🎉 New member crates cargo-test-support and cargo-test-
macro ! They are designed for testing Cargo itself, so no guarantee on
any stability across versions. The crates.io publish of this crate is the
same as other members crates. They follow Rust's 6-week release
process. #13418
Fix publish script due to crates.io CDN change #13614
Push diagnostic complexity on annotate-snippets #13619
cargo-package: Simplify getting of published Manifest #13666
ci: update macos images to macos-13 #13685
manifest: Split out an explicit step to resolve Cargo.toml #13693
manifest: Decouple target discovery from Target creation #13701
manifest: Expose surce/spans for VirtualManifests #13603
Update dependencies #13609 #13674 #13675 #13679 #13680 #13692
#13731 #13760 #13950

https://crates.io/crates/cargo-test-support
https://crates.io/crates/cargo-test-macro
https://doc.crates.io/contrib/process/release.html#cratesio-publishing
https://github.com/rust-lang/cargo/pull/13418
https://github.com/rust-lang/cargo/pull/13614
https://github.com/rust-lang/cargo/pull/13619
https://github.com/rust-lang/cargo/pull/13666
https://github.com/rust-lang/cargo/pull/13685
https://github.com/rust-lang/cargo/pull/13693
https://github.com/rust-lang/cargo/pull/13701
https://github.com/rust-lang/cargo/pull/13603
https://github.com/rust-lang/cargo/pull/13609
https://github.com/rust-lang/cargo/pull/13674
https://github.com/rust-lang/cargo/pull/13675
https://github.com/rust-lang/cargo/pull/13679
https://github.com/rust-lang/cargo/pull/13680
https://github.com/rust-lang/cargo/pull/13692
https://github.com/rust-lang/cargo/pull/13731
https://github.com/rust-lang/cargo/pull/13760
https://github.com/rust-lang/cargo/pull/13950

Cargo 1.78 (2024-05-02)
7bb7b539...rust-1.78.0

Added

Stabilize global cache data tracking. The -Zgc flag is still unstable.
This is only for Cargo to start data collection, so that when automatic
gc is stabilized, it's less likely to see cache misses. #13492 #13467
Stabilize lockfile format v4. Lockfile v3 is still the default version.
#12852
Auto-detecting whether output can be rendered using non-ASCII
Unicode characters. A configuration value term.unicode is added to
control the behavior manually. docs #13337
Support target.<triple>.rustdocflags in Cargo configuration.
docs #13197

Changed

cargo-add: Print a status when a dep feature is being created #13434
cargo-add: improve the error message when adding a package from a
replaced source. #13281
cargo-doc: Collapse down Generated statuses without --verbose .
#13557
cargo-new: Print a 'Creating', rather than 'Created' status #13367
cargo-new: Print a note, rather than a comment, for more information
#13371
cargo-new: Print a hint when adding members to workspace #13411
cargo-test: Suggest -- for libtest arguments #13448
cargo-update: Tell users when some dependencies are still behind
latest. #13372
Deprecate non-extension .cargo/config files. #13349
Don't print rustdoc command lines on failure by default #13387
Respect package.rust-version when generating new lockfiles.
#12861

https://github.com/rust-lang/cargo/compare/7bb7b539...rust-1.78.0
https://github.com/rust-lang/cargo/pull/13492
https://github.com/rust-lang/cargo/pull/13467
https://github.com/rust-lang/cargo/pull/12852
https://doc.rust-lang.org/nightly/cargo/reference/config.html#termunicode
https://github.com/rust-lang/cargo/pull/13337
https://doc.rust-lang.org/nightly/cargo/reference/config.html#targettriplerustdocflags
https://github.com/rust-lang/cargo/pull/13197
https://github.com/rust-lang/cargo/pull/13434
https://github.com/rust-lang/cargo/pull/13281
https://github.com/rust-lang/cargo/pull/13557
https://github.com/rust-lang/cargo/pull/13367
https://github.com/rust-lang/cargo/pull/13371
https://github.com/rust-lang/cargo/pull/13411
https://github.com/rust-lang/cargo/pull/13448
https://github.com/rust-lang/cargo/pull/13372
https://github.com/rust-lang/cargo/pull/13349
https://github.com/rust-lang/cargo/pull/13387
https://github.com/rust-lang/cargo/pull/12861

Send User-Agent: cargo/1.2.3 header when communicating with
remote registries. Previously it was cargo 1.2.3 , which didn't follow
the HTTP specifications. #13548
Emit a warning when package.edition field is missing in
Cargo.toml. #13499 #13504 #13505 #13533
Emit warnings from parsing virtual manifests. #13589
Mention the workspace root location in the error message when
collecting workspace members. #13480
Clarify the profile in use in Finished status message. #13422
Switched more notes/warnings to lowercase. #13410
Report all packages incompatible with package.rust-version. , not
just a random one. #13514

Fixed

cargo-add: don't add the new package to workspace.members if there
is no existing workspace in Cargo.toml. #13391
cargo-add: Fix markdown line break in cargo-add #13400
cargo-run: use Package ID Spec match packages #13335
cargo-doc: doctest searches native libs in build script outputs. #13490
cargo-publish: strip also features from dev-dependencies from
Cargo.toml to publish. #13518
Don't duplicate comments when editing TOML via cargo
add/rm/init/new . #13402
Fix confusing error messages for sparse index replaced source. #13433
Respect CARGO_TERM_COLOR in '--list' and '-Zhelp'. #13479
Control colors of errors and help texts from clap through
CARGO_TERM_COLOR . #13463
Don't panic on empty spans in Cargo.toml. #13375 #13376

Nightly only

🔥 cargo-update: allows --precise to specify a yanked version of a
package #13333

https://github.com/rust-lang/cargo/pull/13548
https://github.com/rust-lang/cargo/pull/13499
https://github.com/rust-lang/cargo/pull/13504
https://github.com/rust-lang/cargo/pull/13505
https://github.com/rust-lang/cargo/pull/13533
https://github.com/rust-lang/cargo/pull/13589
https://github.com/rust-lang/cargo/pull/13480
https://github.com/rust-lang/cargo/pull/13422
https://github.com/rust-lang/cargo/pull/13410
https://github.com/rust-lang/cargo/pull/13514
https://github.com/rust-lang/cargo/pull/13391
https://github.com/rust-lang/cargo/pull/13400
https://github.com/rust-lang/cargo/pull/13335
https://github.com/rust-lang/cargo/pull/13490
https://github.com/rust-lang/cargo/pull/13518
https://github.com/rust-lang/cargo/pull/13402
https://github.com/rust-lang/cargo/pull/13433
https://github.com/rust-lang/cargo/pull/13479
https://github.com/rust-lang/cargo/pull/13463
https://github.com/rust-lang/cargo/pull/13375
https://github.com/rust-lang/cargo/pull/13376
https://github.com/rust-lang/cargo/pull/13333

-Zcheck-cfg : Add docsrs cfg as a well known --check-cfg
#13383
-Zcheck-cfg : Silently ignore cargo::rustc-check-cfg to avoid
MSRV annoyance when stabilizing -Zcheck-cfg . #13438
-Zmsrv-policy : Fallback to rustc -v when no MSRV is set #13516
-Zscript : Improve errors related to cargo script #13346
-Zpanic-abort-tests : applies to doctests too #13388
-Zpublic-dependency : supports enabling via the -Zpublic-
dependency flag. #13340 #13556 #13547
-Zpublic-dependency : test for packaging a public dependency
#13536
-Zrustdoc-map : Add all unit's children recursively for doc.extern-
map option #13481 #13544
edition2024 : Enable edition migration for 2024. #13429
open-namespaces : basic support for open namespaces (RFC 3243)
(docs) #13591

Documentation

cargo-fetch: hide cargo-fetch recursive link in --offline man
page. #13364
cargo-install: --list option description starting with uppercase
#13344
cargo-vendor: clarify vendored sources as read-only and ways to
modify them #13512
build-script: clarification of build script metadata set via
cargo::metadata=KEY=VALUE . #13436
Clarify the version field in [package] is optional in Cargo.toml
#13390
Improve "Registry Authentication" docs #13351
Improve "Specifying Dependencies" docs #13341
Remove package.documentation from the “before publishing” list.
#13398

https://github.com/rust-lang/cargo/pull/13383
https://github.com/rust-lang/cargo/pull/13438
https://github.com/rust-lang/cargo/pull/13516
https://github.com/rust-lang/cargo/pull/13346
https://github.com/rust-lang/cargo/pull/13388
https://github.com/rust-lang/cargo/pull/13340
https://github.com/rust-lang/cargo/pull/13556
https://github.com/rust-lang/cargo/pull/13547
https://github.com/rust-lang/cargo/pull/13536
https://github.com/rust-lang/cargo/pull/13481
https://github.com/rust-lang/cargo/pull/13544
https://github.com/rust-lang/cargo/pull/13429
https://github.com/rust-lang/rfcs/blob/master/text/3243-packages-as-optional-namespaces.md
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#open-namespaces
https://github.com/rust-lang/cargo/pull/13591
https://github.com/rust-lang/cargo/pull/13364
https://github.com/rust-lang/cargo/pull/13344
https://github.com/rust-lang/cargo/pull/13512
https://github.com/rust-lang/cargo/pull/13436
https://github.com/rust-lang/cargo/pull/13390
https://github.com/rust-lang/cargo/pull/13351
https://github.com/rust-lang/cargo/pull/13341
https://github.com/rust-lang/cargo/pull/13398

Internal

🎉 Integrated tracing-chrome as a basic profiler for Cargo itself. docs
#13399 #13551
Updated to gix 0.58.0 #13380
Updated to git2 0.18.2 #13412
Updated to jobserver 0.1.28 #13419
Updated to supports-hyperlinks 3.0.0 #13511
Updated to rusqlite 0.31.0 #13510
bump-check: use symmetric difference when comparing source code
#13581
bump-check: include rustfix and cargo-util-schemas #13421
ci: enable m1 runner #13377
ci: Ensure lockfile is respected during MSRV testing via cargo-hack .
#13523
cargo-util-schemas: Consistently compare MSRVs via
RustVersion::is_compatible_with . #13537
console: Use new fancy anstyle API #13368 #13562
fingerprint: remove unnecessary Option in Freshness::Dirty #13361
fingerprint: abstract std::fs away from on-disk index cache #13515
mdman: Updated to pulldown-cmark 0.10.0 #13517
refactor: Renamed Config to GlobalContext #13409 #13486 #13506
refactor: Removed unused sysroot_host_libdir . #13468
refactor: Expose source/spans to Manifest for emitting lints #13593
refactor: Flatten manifest parsing #13589
refactor: Make lockfile diffing/printing more reusable #13564
test: Updated to snapbox 0.5.0 #13441
test: Verify terminal styling via snapbox's term-svg feature. #13461
#13465 #13520
test: Ensure nonzero_exit_code test isn't affected by developers
RUST_BACKTRACE setting #13385
test: Add tests for using worktrees. #13567
test: Fix old_cargos tests #13435

https://doc.crates.io/contrib/tests/profiling.html
https://github.com/rust-lang/cargo/pull/13399
https://github.com/rust-lang/cargo/pull/13551
https://github.com/rust-lang/cargo/pull/13380
https://github.com/rust-lang/cargo/pull/13412
https://github.com/rust-lang/cargo/pull/13419
https://github.com/rust-lang/cargo/pull/13511
https://github.com/rust-lang/cargo/pull/13510
https://github.com/rust-lang/cargo/pull/13581
https://github.com/rust-lang/cargo/pull/13421
https://github.com/rust-lang/cargo/pull/13377
https://github.com/rust-lang/cargo/pull/13523
https://github.com/rust-lang/cargo/pull/13537
https://github.com/rust-lang/cargo/pull/13368
https://github.com/rust-lang/cargo/pull/13562
https://github.com/rust-lang/cargo/pull/13361
https://github.com/rust-lang/cargo/pull/13515
https://github.com/rust-lang/cargo/pull/13517
https://github.com/rust-lang/cargo/pull/13409
https://github.com/rust-lang/cargo/pull/13486
https://github.com/rust-lang/cargo/pull/13506
https://github.com/rust-lang/cargo/pull/13468
https://github.com/rust-lang/cargo/pull/13593
https://github.com/rust-lang/cargo/pull/13589
https://github.com/rust-lang/cargo/pull/13564
https://github.com/rust-lang/cargo/pull/13441
https://github.com/rust-lang/cargo/pull/13461
https://github.com/rust-lang/cargo/pull/13465
https://github.com/rust-lang/cargo/pull/13520
https://github.com/rust-lang/cargo/pull/13385
https://github.com/rust-lang/cargo/pull/13567
https://github.com/rust-lang/cargo/pull/13435

test: Fixed tests due to changes in rust-lang/rust. #13362 #13382
#13415 #13424 #13444 #13455 #13464 #13466 #13469
test: disable lldb test as it requires privileges to run on macOS #13416

https://github.com/rust-lang/cargo/pull/13362
https://github.com/rust-lang/cargo/pull/13382
https://github.com/rust-lang/cargo/pull/13415
https://github.com/rust-lang/cargo/pull/13424
https://github.com/rust-lang/cargo/pull/13444
https://github.com/rust-lang/cargo/pull/13455
https://github.com/rust-lang/cargo/pull/13464
https://github.com/rust-lang/cargo/pull/13466
https://github.com/rust-lang/cargo/pull/13469
https://github.com/rust-lang/cargo/pull/13416

Cargo 1.77.1 (2024-03-28)
Fixed

Debuginfo is no longer stripped by default for Windows MSVC
targets. This caused an unexpected regression in 1.77.0 that broke
backtraces. #13654

https://github.com/rust-lang/cargo/pull/13654

Cargo 1.77 (2024-03-21)
1a2666dd...rust-1.77.0

Added

🎉 Stabilize the package identifier format as Package ID Spec. This
format can be used across most of the commands in Cargo, including
the --package / -p flag, cargo pkgid , cargo metadata , and JSON
messages from --message-format=json . #12914 #13202 #13311
#13298 #13322
Add colors to -Zhelp console output #13269
build script: Extend the build directive syntax with cargo:: . #12201
#13212

Changed

🎉 Disabling debuginfo now implies strip = "debuginfo" (when
strip is not set) to strip pre-existing debuginfo coming from the
standard library, reducing the default size of release binaries
considerably (from ~4.5 MiB down to ~450 KiB for helloworld on
Linux x64). #13257
Add rustc style errors for manifest parsing. #13172
Deprecate rustc plugin support in cargo #13248
cargo-vendor: Hold the mutate exclusive lock when vendoring. #12509
crates-io: Set Content-Type: application/json only for requests
with a body payload #13264

Fixed

jobserver: inherit jobserver from env for all kinds of runner #12776
build script: Set OUT_DIR for all units with build scripts #13204
cargo-add: find the correct package with given features from Git
repositories with multiple packages. #13213
cargo-fix: always inherit the jobserver #13225

https://github.com/rust-lang/cargo/compare/1a2666dd...rust-1.77.0
https://doc.rust-lang.org/nightly/cargo/reference/pkgid-spec.html
https://github.com/rust-lang/cargo/pull/12914
https://github.com/rust-lang/cargo/pull/13202
https://github.com/rust-lang/cargo/pull/13311
https://github.com/rust-lang/cargo/pull/13298
https://github.com/rust-lang/cargo/pull/13322
https://github.com/rust-lang/cargo/pull/13269
https://github.com/rust-lang/cargo/pull/12201
https://github.com/rust-lang/cargo/pull/13212
https://github.com/rust-lang/cargo/pull/13257
https://github.com/rust-lang/cargo/pull/13172
https://github.com/rust-lang/cargo/pull/13248
https://github.com/rust-lang/cargo/pull/12509
https://github.com/rust-lang/cargo/pull/13264
https://github.com/rust-lang/cargo/pull/12776
https://github.com/rust-lang/cargo/pull/13204
https://github.com/rust-lang/cargo/pull/13213
https://github.com/rust-lang/cargo/pull/13225

cargo-fix: Call rustc fewer times to improve the performance. #13243
cargo-new: only inherit workspace package table if the new package is
a member #13261
cargo-update: --precise accepts arbitrary git revisions #13250
manifest: Provide unused key warnings for lints table #13262
rustfix: Support inserting new lines. #13226

Nightly only

🔥 -Zgit : Implementation of shallow libgit2 fetches behind an
unstable flag docs #13252
🔥 Add unstable --output-format option to cargo rustdoc ,
providing tools with a way to lean on rustdoc’s experimental JSON
format. docs #12252 #13284 #13325
-Zcheck-cfg : Rework --check-cfg generation comment #13195
-Zcheck-cfg : Go back to passing an empty values() when no
features are declared #13316
-Zprecise-pre-release : the flag is added but not implemented yet.
#13296 #13320
-Zpublic-dependency : support publish package with a public field.
#13245
-Zpublic-dependency : help text of --public / --no-public flags for
cargo add #13272
-Zscript : Add prefix-char frontmatter syntax support #13247
-Zscript : Add multiple experimental manifest syntaxes #13241
-Ztrim-paths : remap common prefix only #13210

Documentation

Added guidance on setting homepage in manifest #13293
Clarified how custom subcommands are looked up. #13203
Clarified why du function uses mutex #13273
Highlighted "How to find features enabled on dependencies" #13305
Delete sentence about parentheses being unsupported in license
#13292

https://github.com/rust-lang/cargo/pull/13243
https://github.com/rust-lang/cargo/pull/13261
https://github.com/rust-lang/cargo/pull/13250
https://github.com/rust-lang/cargo/pull/13262
https://github.com/rust-lang/cargo/pull/13226
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#git
https://github.com/rust-lang/cargo/pull/13252
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#output-format-for-rustdoc
https://github.com/rust-lang/cargo/pull/12252
https://github.com/rust-lang/cargo/pull/13284
https://github.com/rust-lang/cargo/pull/13325
https://github.com/rust-lang/cargo/pull/13195
https://github.com/rust-lang/cargo/pull/13316
https://github.com/rust-lang/cargo/pull/13296
https://github.com/rust-lang/cargo/pull/13320
https://github.com/rust-lang/cargo/pull/13245
https://github.com/rust-lang/cargo/pull/13272
https://github.com/rust-lang/cargo/pull/13247
https://github.com/rust-lang/cargo/pull/13241
https://github.com/rust-lang/cargo/pull/13210
https://github.com/rust-lang/cargo/pull/13293
https://github.com/rust-lang/cargo/pull/13203
https://github.com/rust-lang/cargo/pull/13273
https://github.com/rust-lang/cargo/pull/13305
https://github.com/rust-lang/cargo/pull/13292

resolver: clarify how pre-release version is handled in dependency
resolution. #13286
cargo-test: clarify the target selection of the test options. #13236
cargo-install: clarify --path is the installation source not destination
#13205
contrib: Fix team HackMD links #13237
contrib: Highlight the non-blocking feature gating technique #13307

Internal

🎉 New member crate cargo-util-schemas ! This contains low-level
Cargo schema types, focusing on serde and FromStr for use in
reading files and parsing command-lines. Any logic for getting final
semantics from these will likely need other tools to process, like cargo
metadata . The crates.io publish of this crate is the same as other
members crates. It follows Rust's 6-week release process. #13178
#13185 #13186 #13209 #13267
Updated to gix 0.57.1. #13230
cargo-fix: Remove error-format special-case in cargo fix #13224
cargo-credential: bump to 0.4.3 #13221
mdman: updated to handlebars 5.0.0. #13168 #13249
rustfix: remove useless clippy rules and fix a typo #13182
ci: fix Dependabot's MSRV auto-update #13265 #13324 #13268
ci: Add dependency dashboard. #13255
ci: update alpine docker tag to v3.19 #13228
ci: Improve GitHub Actions CI config #13317
resolver: do not panic when sorting empty summaries #13287

https://github.com/rust-lang/cargo/pull/13286
https://github.com/rust-lang/cargo/pull/13236
https://github.com/rust-lang/cargo/pull/13205
https://github.com/rust-lang/cargo/pull/13237
https://github.com/rust-lang/cargo/pull/13307
https://crates.io/crates/cargo-util-schemas
https://doc.crates.io/contrib/process/release.html#cratesio-publishing
https://github.com/rust-lang/cargo/pull/13178
https://github.com/rust-lang/cargo/pull/13185
https://github.com/rust-lang/cargo/pull/13186
https://github.com/rust-lang/cargo/pull/13209
https://github.com/rust-lang/cargo/pull/13267
https://github.com/rust-lang/cargo/pull/13230
https://github.com/rust-lang/cargo/pull/13224
https://github.com/rust-lang/cargo/pull/13221
https://github.com/rust-lang/cargo/pull/13168
https://github.com/rust-lang/cargo/pull/13249
https://github.com/rust-lang/cargo/pull/13182
https://github.com/rust-lang/cargo/pull/13265
https://github.com/rust-lang/cargo/pull/13324
https://github.com/rust-lang/cargo/pull/13268
https://github.com/rust-lang/cargo/issues/13256
https://github.com/rust-lang/cargo/pull/13255
https://github.com/rust-lang/cargo/pull/13228
https://github.com/rust-lang/cargo/pull/13317
https://github.com/rust-lang/cargo/pull/13287

Cargo 1.76 (2024-02-08)
6790a512...rust-1.76.0

Added

Added a Windows application manifest file to the built cargo.exe for
windows msvc. #13131
Notable changes:

States the compatibility with Windows versions 7, 8, 8.1, 10 and
11.
Sets the code page to UTF-8.
Enables long path awareness.

Added color output for cargo --list . #12992
cargo-add: --optional <dep> would create a <dep> = "dep:<dep>"
feature. #13071
Extends Package ID spec for unambiguous specs. docs #12933
Specifically,

Supports git+ and path+ schemes.
Supports Git ref query strings, such as ?branch=dev or ?
tag=1.69.0 .

Changed

❗ Disallow [lints] in virtual workspaces as they are ignored and
users likely meant [workspace.lints] . This was an oversight in the
initial implementation (e.g. a [dependencies] produces the same
error). #13155
Disallow empty name in several places like package ID spec and
cargo new . #13152
Respect rust-lang/rust 's omit-git-hash option. #12968
Displays error count with a number, even when there is only one error.
#12484

https://github.com/rust-lang/cargo/compare/6790a512...rust-1.76.0
https://github.com/rust-lang/cargo/pull/13131
https://github.com/rust-lang/cargo/pull/12992
https://github.com/rust-lang/cargo/pull/13071
https://doc.rust-lang.org/nightly/cargo/reference/pkgid-spec.html
https://github.com/rust-lang/cargo/pull/12933
https://github.com/rust-lang/cargo/pull/13155
https://github.com/rust-lang/cargo/pull/13152
https://github.com/rust-lang/cargo/pull/12968
https://github.com/rust-lang/cargo/pull/12484

all-static feature now includes vendored-libgit2 . #13134
crates-io: Add support for other 2xx HTTP status codes when
interacting with registries. #13158 #13160
home: Replace SHGetFolderPathW with SHGetKnownFolderPath.
#13173

Fixed

Print rustc messages colored on wincon. #13140
Fixed bash completion in directory with spaces. #13126
Fixed uninstall a running binary failed on Windows. #13053 #13099
Fixed the error message for duplicate links. #12973
Fixed --quiet being used with nested subcommands. #12959
Fixed panic when there is a cycle in dev-dependencies. #12977
Don't panic when failed to parse rustc commit-hash. #12963 #12965
Don't do git fetches when updating workspace members. #12975
Avoid writing CACHEDIR.TAG if it already exists. #13132
Accept ? in the --package flag if it's a valid pkgid spec. #13315
#13318
cargo-package: Only filter out target directory if it's in the package
root. #12944
cargo-package: errors out when a build script doesn't exist or is outside
the package root. #12995
cargo-credential-1password: Add missing --account argument to op
signin command. #12985 #12986

Nightly only

🔥 The -Zgc flag enables garbage collection for deleting old, unused
files in cargo's cache. That is, downloaded source files and registry
index under the CARGO_HOME directory. docs #12634 #12958 #12981
#13055
🔥 Added a new environment variable CARGO_RUSTC_CURRENT_DIR .
This is a path that rustc is invoked from. docs #12996

https://github.com/rust-lang/cargo/pull/13134
https://github.com/rust-lang/cargo/pull/13158
https://github.com/rust-lang/cargo/pull/13160
https://github.com/rust-lang/cargo/pull/13173
https://github.com/rust-lang/cargo/pull/13140
https://github.com/rust-lang/cargo/pull/13126
https://github.com/rust-lang/cargo/pull/13053
https://github.com/rust-lang/cargo/pull/13099
https://github.com/rust-lang/cargo/pull/12973
https://github.com/rust-lang/cargo/pull/12959
https://github.com/rust-lang/cargo/pull/12977
https://github.com/rust-lang/cargo/pull/12963
https://github.com/rust-lang/cargo/pull/12965
https://github.com/rust-lang/cargo/pull/12975
https://github.com/rust-lang/cargo/pull/13132
https://github.com/rust-lang/cargo/pull/13315
https://github.com/rust-lang/cargo/pull/13318
https://github.com/rust-lang/cargo/pull/12944
https://github.com/rust-lang/cargo/pull/12995
https://github.com/rust-lang/cargo/pull/12985
https://github.com/rust-lang/cargo/pull/12986
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#gc
https://github.com/rust-lang/cargo/pull/12634
https://github.com/rust-lang/cargo/pull/12958
https://github.com/rust-lang/cargo/pull/12981
https://github.com/rust-lang/cargo/pull/13055
https://doc.rust-lang.org/nightly/cargo/reference/environment-variables.html?highlight=CARGO_RUSTC_CURRENT_DIR#environment-variables-cargo-sets-for-crates
https://github.com/rust-lang/cargo/pull/12996

-Zcheck-cfg : Include declared list of features in fingerprint for -
Zcheck-cfg . #13012
-Zcheck-cfg : Fix --check-cfg invocations with zero features.
#13011
-Ztrim-paths : reorder --remap-path-prefix flags for -Zbuild-
std . #13065
-Ztrim-paths : explicitly remap current dir by using . . #13114
-Ztrim-paths : exercise with real world debugger. #13091 #13118
-Zpublic-dependency : Limit exported-private-dependencies
lints to libraries. #13135
-Zpublic-dependency : Disallow workspace-inheriting of dependency
public status. #13125
-Zpublic-dependency : Add --public for cargo add . #13046
-Zpublic-dependency : Remove unused public-deps error handling
#13036
-Zmsrv-policy : Prefer MSRV, rather than ignore incompatible.
#12950
-Zmsrv-policy : De-prioritize no-rust-version in MSRV resolver.
#13066
-Zrustdoc-scrape-examples : Don't filter on workspace members
when scraping doc examples. #13077

Documentation

Recommends a wider selection of libsecret-compatible password
managers. #12993
Clarified different targets has different sets of CARGO_CFG_* values.
#13069
Clarified [lints] table only affects local development of the current
package. #12976
Clarified cargo search can search in alternative registries. #12962
Added common CI practices for verifying rust-version (MSRV)
field. #13056
Added a link to rustc lint levels doc. #12990

https://github.com/rust-lang/cargo/pull/13012
https://github.com/rust-lang/cargo/pull/13011
https://github.com/rust-lang/cargo/pull/13065
https://github.com/rust-lang/cargo/pull/13114
https://github.com/rust-lang/cargo/pull/13091
https://github.com/rust-lang/cargo/pull/13118
https://github.com/rust-lang/cargo/pull/13135
https://github.com/rust-lang/cargo/pull/13125
https://github.com/rust-lang/cargo/pull/13046
https://github.com/rust-lang/cargo/pull/13036
https://github.com/rust-lang/cargo/pull/12950
https://github.com/rust-lang/cargo/pull/13066
https://github.com/rust-lang/cargo/pull/13077
https://github.com/rust-lang/cargo/pull/12993
https://github.com/rust-lang/cargo/pull/13069
https://github.com/rust-lang/cargo/pull/12976
https://github.com/rust-lang/cargo/pull/12962
https://github.com/rust-lang/cargo/pull/13056
https://github.com/rust-lang/cargo/pull/12990

Added a link to the packages lint table from the related workspace
table #13057
contrib: Add more resources to the contrib docs. #13008
contrib: Update how that credential crates are published. #13006
contrib: remove review capacity notice. #13070

Internal

🎉 Migrate rustfix crate to the rust-lang/cargo repository.
#13005 #13042 #13047 #13048 #13050
Updated to curl-sys 0.4.70, which corresponds to curl 8.4.0. #13147
Updated to gix-index 0.27.1. #13148
Updated to itertools 0.12.0. #13086
Updated to rusqlite 0.30.0. #13087
Updated to toml_edit 0.21.0. #13088
Updated to windows-sys 0.52.0. #13089
Updated to tracing 0.1.37 for being be compatible with rustc_log.
#13239 #13242
Re-enable flaky gitoxide auth tests thanks to update to gix-config .
#13117 #13129 #13130
Dogfood Cargo -Zlints table feature. #12178
Refactored Cargo.toml parsing code in preparation of extracting an
official schema API. #12954 #12960 #12961 #12971 #13000 #13021
#13080 #13097 #13123 #13128 #13154 #13166
Use IndexSummary in query{_vec} functions. #12970
ci: migrate renovate config #13106
ci: Always update gix packages together #13093
ci: Catch naive use of AtomicU64 early #12988
xtask-bump-check: dont check home against beta/stable branches
#13167
cargo-test-support: Handle $message_type in JSON diagnostics
#13016
cargo-test-support: Add more options to registry test support. #13085
cargo-test-support: Add features to the default Cargo.toml file #12997

https://github.com/rust-lang/cargo/pull/13057
https://github.com/rust-lang/cargo/pull/13008
https://github.com/rust-lang/cargo/pull/13006
https://github.com/rust-lang/cargo/pull/13070
https://github.com/rust-lang/cargo/pull/13005
https://github.com/rust-lang/cargo/pull/13042
https://github.com/rust-lang/cargo/pull/13047
https://github.com/rust-lang/cargo/pull/13048
https://github.com/rust-lang/cargo/pull/13050
https://github.com/rust-lang/cargo/pull/13147
https://github.com/rust-lang/cargo/pull/13148
https://github.com/rust-lang/cargo/pull/13086
https://github.com/rust-lang/cargo/pull/13087
https://github.com/rust-lang/cargo/pull/13088
https://github.com/rust-lang/cargo/pull/13089
https://github.com/rust-lang/cargo/pull/13239
https://github.com/rust-lang/cargo/pull/13242
https://github.com/rust-lang/cargo/pull/13117
https://github.com/rust-lang/cargo/pull/13129
https://github.com/rust-lang/cargo/pull/13130
https://github.com/rust-lang/cargo/pull/12178
https://github.com/rust-lang/cargo/pull/12954
https://github.com/rust-lang/cargo/pull/12960
https://github.com/rust-lang/cargo/pull/12961
https://github.com/rust-lang/cargo/pull/12971
https://github.com/rust-lang/cargo/pull/13000
https://github.com/rust-lang/cargo/pull/13021
https://github.com/rust-lang/cargo/pull/13080
https://github.com/rust-lang/cargo/pull/13097
https://github.com/rust-lang/cargo/pull/13123
https://github.com/rust-lang/cargo/pull/13128
https://github.com/rust-lang/cargo/pull/13154
https://github.com/rust-lang/cargo/pull/13166
https://github.com/rust-lang/cargo/pull/12970
https://github.com/rust-lang/cargo/pull/13106
https://github.com/rust-lang/cargo/pull/13093
https://github.com/rust-lang/cargo/pull/12988
https://github.com/rust-lang/cargo/pull/13167
https://github.com/rust-lang/cargo/pull/13016
https://github.com/rust-lang/cargo/pull/13085
https://github.com/rust-lang/cargo/pull/12997

cargo-test-support: Fix clippy-wrapper test race condition. #12999
test: Don't rely on mtime to test changes #13143
test: remove unnecessary packages and versions for optionals tests
#13108
test: Remove the deleted feature test_2018_feature from the test.
#13156
test: remove jobserver env var in some tests. #13072
test: Fix a rustflags test using a wrong buildfile name #12987
test: Fix some test output validation. #12982
test: Ignore changing_spec_relearns_crate_types on windows-gnu
#12972

https://github.com/rust-lang/cargo/pull/12999
https://github.com/rust-lang/cargo/pull/13143
https://github.com/rust-lang/cargo/pull/13108
https://github.com/rust-lang/cargo/pull/13156
https://github.com/rust-lang/cargo/pull/13072
https://github.com/rust-lang/cargo/pull/12987
https://github.com/rust-lang/cargo/pull/12982
https://github.com/rust-lang/cargo/pull/12972

Cargo 1.75 (2023-12-28)
59596f0f...rust-1.75.0

Added

package.version field in Cargo.toml is now optional and defaults
to 0.0.0 . Packages without the package.version field cannot be
published. #12786
Links in --timings and cargo doc outputs are clickable on
supported terminals, controllable through term.hyperlinks config
value. #12889
Print environment variables for build script executions with -vv .
#12829
cargo-new: add new packages to [workspace.members] automatically.
#12779
cargo-doc: print a new Generated status displaying the full path.
#12859

Changed

cargo-new: warn if crate name doesn't follow snake_case or kebab-
case. #12766
cargo-install: clarify the arg <crate> to install is positional. #12841
cargo-install: Suggest an alternative version on MSRV failure. #12798
cargo-install: reports more detailed SemVer errors. #12924
cargo-install: install only once if there are crates duplicated. #12868
cargo-remove: Clarify flag behavior of different dependency kinds.
#12823
cargo-remove: suggest the dependency to remove exists only in the
other section. #12865
cargo-update: Do not call it "Downgrading" when difference is only
build metadata. #12796
Enhanced help text to clarify --test flag is for Cargo targets, not test
functions. #12915

https://github.com/rust-lang/cargo/compare/59596f0f...rust-1.75.0
https://github.com/rust-lang/cargo/pull/12786
https://github.com/rust-lang/cargo/pull/12889
https://github.com/rust-lang/cargo/pull/12829
https://github.com/rust-lang/cargo/pull/12779
https://github.com/rust-lang/cargo/pull/12859
https://github.com/rust-lang/cargo/pull/12766
https://github.com/rust-lang/cargo/pull/12841
https://github.com/rust-lang/cargo/pull/12798
https://github.com/rust-lang/cargo/pull/12924
https://github.com/rust-lang/cargo/pull/12868
https://github.com/rust-lang/cargo/pull/12823
https://github.com/rust-lang/cargo/pull/12865
https://github.com/rust-lang/cargo/pull/12796
https://github.com/rust-lang/cargo/pull/12915

Included package name/version in build script warnings. #12799
Provide next steps for bad -Z flag. #12857
Suggest cargo search when cargo-<command> cannot be found.
#12840
Do not allow empty feature name. #12928
Added unsupported short flag suggestion for --target and --
exclude flags. #12805
Added unsupported short flag suggestion for --out-dir flag. #12755
Added unsupported lowercase -z flag suggestion for -Z flag. #12788
Added better suggestion for unsupported --path flag. #12811
Added detailed message when target directory path is invalid. #12820

Fixed

Fixed corruption when cargo was killed while writing to files. #12744
cargo-add: Preserve more comments #12838
cargo-fix: preserve jobserver file descriptors on rustc invocation.
#12951
cargo-remove: Preserve feature comments #12837
Removed unnecessary backslash in timings HTML report when error
happens. #12934
Fixed error message that invalid a feature name can contain - . #12939
When there's a version of a dependency in the lockfile, Cargo would
use that "exact" version, including the build metadata. #12772

Nightly only

Added Edition2024 unstable feature. docs #12771
🔥 The -Ztrim-paths feature adds a new profile setting to control
how paths are sanitized in the resulting binary. (RFC 3127) (docs)
#12625 #12900 #12908
-Zcheck-cfg : Adjusted for new rustc syntax and behavior. #12845
-Zcheck-cfg : Remove outdated option to -Zcheck-cfg warnings.
#12884

https://github.com/rust-lang/cargo/pull/12799
https://github.com/rust-lang/cargo/pull/12857
https://github.com/rust-lang/cargo/pull/12840
https://github.com/rust-lang/cargo/pull/12928
https://github.com/rust-lang/cargo/pull/12805
https://github.com/rust-lang/cargo/pull/12755
https://github.com/rust-lang/cargo/pull/12788
https://github.com/rust-lang/cargo/pull/12811
https://github.com/rust-lang/cargo/pull/12820
https://github.com/rust-lang/cargo/pull/12744
https://github.com/rust-lang/cargo/pull/12838
https://github.com/rust-lang/cargo/pull/12951
https://github.com/rust-lang/cargo/pull/12837
https://github.com/rust-lang/cargo/pull/12934
https://github.com/rust-lang/cargo/pull/12939
https://github.com/rust-lang/cargo/pull/12772
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#edition-2024
https://github.com/rust-lang/cargo/pull/12771
https://github.com/rust-lang/rfcs/blob/master/text/3127-trim-paths.md
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#profile-trim-paths-option
https://github.com/rust-lang/cargo/pull/12625
https://github.com/rust-lang/cargo/pull/12900
https://github.com/rust-lang/cargo/pull/12908
https://github.com/rust-lang/cargo/pull/12845
https://github.com/rust-lang/cargo/pull/12884

public-dependency : Support public dependency configuration with
workspace deps. #12817

Documentation

profile: add missing strip info. #12754
features: a note about the new limit on number of features. #12913
crates-io: Add doc comment for NewCrate struct. #12782
resolver: Highlight commands to answer dep resolution questions.
#12903
cargo-bench: --bench is passed in unconditionally to bench harnesses.
#12850
cargo-login: mention args after -- in manpage. #12832
cargo-vendor: clarify config to use vendored source is printed to stdout
#12893
manifest: update to SPDX 2.3 license expression and 3.20 license list.
#12827
contrib: Policy on manifest editing #12836
contrib: use AND search terms in mdbook search and fixed broken
links. #12812 #12813 #12814
contrib: Describe how to add a new package #12878
contrib: Removed review capacity notice. #12842

Internal

Updated to itertools 0.11.0. #12759
Updated to cargo_metadata 0.18.0. #12758
Updated to curl-sys 0.4.68, which corresponds to curl 8.4.0. #12808
Updated to toml 0.8.2. #12760
Updated to toml_edit 0.20.2. #12761
Updated to gix to 0.55.2 #12906
Disabled the custom_target::custom_bin_target test on windows-
gnu. #12763
Refactored Cargo.toml parsing code in preparation of extracting an
official schema API. #12768 #12881 #12902 #12911 #12948

https://github.com/rust-lang/cargo/pull/12817
https://github.com/rust-lang/cargo/pull/12754
https://github.com/rust-lang/cargo/pull/12913
https://github.com/rust-lang/cargo/pull/12782
https://github.com/rust-lang/cargo/pull/12903
https://github.com/rust-lang/cargo/pull/12850
https://github.com/rust-lang/cargo/pull/12832
https://github.com/rust-lang/cargo/pull/12893
https://github.com/rust-lang/cargo/pull/12827
https://github.com/rust-lang/cargo/pull/12836
https://github.com/rust-lang/cargo/pull/12812
https://github.com/rust-lang/cargo/pull/12813
https://github.com/rust-lang/cargo/pull/12814
https://github.com/rust-lang/cargo/pull/12878
https://github.com/rust-lang/cargo/pull/12842
https://github.com/rust-lang/cargo/pull/12759
https://github.com/rust-lang/cargo/pull/12758
https://github.com/rust-lang/cargo/pull/12808
https://github.com/rust-lang/cargo/pull/12760
https://github.com/rust-lang/cargo/pull/12761
https://github.com/rust-lang/cargo/pull/12906
https://github.com/rust-lang/cargo/pull/12763
https://github.com/rust-lang/cargo/pull/12768
https://github.com/rust-lang/cargo/pull/12881
https://github.com/rust-lang/cargo/pull/12902
https://github.com/rust-lang/cargo/pull/12911
https://github.com/rust-lang/cargo/pull/12948

Split out SemVer logic to its own module. #12926 #12940
source: Prepare for new PackageIDSpec syntax #12938
resolver: Consolidate logic in VersionPreferences #12930
Make the SourceId::precise field an Enum. #12849
shell: Write at once rather than in fragments. #12880
Move up looking at index summary enum #12749 #12923
Generate redirection HTML pages in CI for Cargo Contributor Guide.
#12846
Add new package cache lock modes. #12706
Add regression test for issue 6915: features and transitive dev deps.
#12907
Auto-labeling when PR review state changes. #12856
credential: include license files in all published crates. #12953
credential: Filter cargo-credential-* dependencies by OS. #12949
ci: bump cargo-semver-checks to 0.24.0 #12795
ci: set and verify all MSRVs for Cargo's crates automatically. #12767
#12654
ci: use separate concurrency group for publishing Cargo Contributor
Book. #12834 #12835
ci: update actions/checkout action to v4 #12762
cargo-search: improved the margin calculation for the output. #12890

https://github.com/rust-lang/cargo/pull/12926
https://github.com/rust-lang/cargo/pull/12940
https://github.com/rust-lang/cargo/pull/12938
https://github.com/rust-lang/cargo/pull/12930
https://github.com/rust-lang/cargo/pull/12849
https://github.com/rust-lang/cargo/pull/12880
https://github.com/rust-lang/cargo/pull/12749
https://github.com/rust-lang/cargo/pull/12923
https://github.com/rust-lang/cargo/pull/12846
https://github.com/rust-lang/cargo/pull/12706
https://github.com/rust-lang/cargo/pull/12907
https://github.com/rust-lang/cargo/pull/12856
https://github.com/rust-lang/cargo/pull/12953
https://github.com/rust-lang/cargo/pull/12949
https://github.com/rust-lang/cargo/pull/12795
https://github.com/rust-lang/cargo/pull/12767
https://github.com/rust-lang/cargo/pull/12654
https://github.com/rust-lang/cargo/pull/12834
https://github.com/rust-lang/cargo/pull/12835
https://github.com/rust-lang/cargo/pull/12762
https://github.com/rust-lang/cargo/pull/12890

Cargo 1.74 (2023-11-16)
80eca0e5...rust-1.74.0

Added

🎉 The [lints] table has been stabilized, allowing you to configure
reporting levels for rustc and other tool lints in Cargo.toml . (RFC
3389) (docs) #12584 #12648
🎉 The unstable features credential-process and registry-auth
have been stabilized. These features consolidate the way to
authenticate with private registries. (RFC 2730) (RFC 3139) (docs)
#12590 #12622 #12623 #12626 #12641 #12644 #12649 #12671
#12709
Notable changes:

Introducing a new protocol for both external and built-in
providers to store and retrieve credentials for registry
authentication.
Adding the auth-required field in the registry index's
config.json , enabling authenticated sparse index, crate
downloads, and search API.
For using alternative registries with authentication, a credential
provider must be configured to avoid unknowingly storing
unencrypted credentials on disk.
These settings can be configured in [registry] and
[registries] tables.

🎉 --keep-going flag has been stabilized and is now available in
each build command (except bench and test , which have --no-
fail-fast instead). (docs) #12568
Added --dry-run flag and summary line at the end for cargo clean .
#12638
Added a short alias -n for cli option --dry-run . #12660
Added support for target.'cfg(..)'.linker . #12535

https://github.com/rust-lang/cargo/compare/80eca0e5...rust-1.74.0
https://github.com/rust-lang/rfcs/blob/master/text/3389-manifest-lint.md
https://doc.rust-lang.org/nightly/cargo/reference/manifest.html#the-lints-section
https://github.com/rust-lang/cargo/pull/12584
https://github.com/rust-lang/cargo/pull/12648
https://github.com/rust-lang/rfcs/blob/master/text/2730-cargo-token-from-process.md
https://github.com/rust-lang/rfcs/blob/master/text/3139-cargo-alternative-registry-auth.md
https://doc.rust-lang.org/nightly/cargo/reference/registry-authentication.html
https://github.com/rust-lang/cargo/pull/12590
https://github.com/rust-lang/cargo/pull/12622
https://github.com/rust-lang/cargo/pull/12623
https://github.com/rust-lang/cargo/pull/12626
https://github.com/rust-lang/cargo/pull/12641
https://github.com/rust-lang/cargo/pull/12644
https://github.com/rust-lang/cargo/pull/12649
https://github.com/rust-lang/cargo/pull/12671
https://github.com/rust-lang/cargo/pull/12709
https://doc.rust-lang.org/cargo/commands/cargo-build.html#option-cargo-build---keep-going
https://github.com/rust-lang/cargo/pull/12568
https://github.com/rust-lang/cargo/pull/12638
https://github.com/rust-lang/cargo/pull/12660
https://github.com/rust-lang/cargo/pull/12535

Allowed incomplete versions when they are unambiguous for flags
like --package . #12591 #12614 #12806

Changed

❗ Changed how arrays in configuration are merged. The order was
unspecified and now follows how other configuration types work for
consistency. summary #12515
❗ cargo-clean: error out if --doc is mixed with -p . #12637
❗ cargo-new / cargo-init no longer exclude Cargo.lock in VCS
ignore files for libraries. #12382
cargo-update: silently deprecate --aggressive in favor of the new --
recursive . #12544
cargo-update: -p/--package can be used as a positional argument.
#12545 #12586
cargo-install: suggest --git when the package name looks like a
URL. #12575
cargo-add: summarize the feature list when it's too long. #12662
#12702
Shell completion for --target uses rustup but falls back to rustc.
#12606
Help users know possible --target values. #12607
Enhanced "registry index not found" error message. #12732
Enhanced CLI help message of --explain . #12592
Enhanced deserialization errors of untagged enums with serde-
untagged . #12574 #12581
Enhanced the error when mismatching prerelease version candidates.
#12659
Enhanced the suggestion on ambiguous Package ID spec. #12685
Enhanced TOML parse errors to show the context. #12556
Enhanced filesystem error by adding wrappers around
std::fs::metadata . #12636
Enhanced resolver version mismatch warning. #12573

https://github.com/rust-lang/cargo/pull/12591
https://github.com/rust-lang/cargo/pull/12614
https://github.com/rust-lang/cargo/pull/12806
https://blog.rust-lang.org/inside-rust/2023/08/24/cargo-config-merging.html
https://github.com/rust-lang/cargo/pull/12515
https://github.com/rust-lang/cargo/pull/12637
https://github.com/rust-lang/cargo/pull/12382
https://github.com/rust-lang/cargo/pull/12544
https://github.com/rust-lang/cargo/pull/12545
https://github.com/rust-lang/cargo/pull/12586
https://github.com/rust-lang/cargo/pull/12575
https://github.com/rust-lang/cargo/pull/12662
https://github.com/rust-lang/cargo/pull/12702
https://github.com/rust-lang/cargo/pull/12606
https://github.com/rust-lang/cargo/pull/12607
https://github.com/rust-lang/cargo/pull/12732
https://github.com/rust-lang/cargo/pull/12592
https://github.com/rust-lang/cargo/pull/12574
https://github.com/rust-lang/cargo/pull/12581
https://github.com/rust-lang/cargo/pull/12659
https://github.com/rust-lang/cargo/pull/12685
https://github.com/rust-lang/cargo/pull/12556
https://github.com/rust-lang/cargo/pull/12636
https://github.com/rust-lang/cargo/pull/12573

Use clap to suggest alternative argument for unsupported arguments.
#12529 #12693 #12723
Removed redundant information from cargo new/init --help output.
#12594
Console output and styling tweaks. #12578 #12655 #12593

Fixed

Use full target spec for cargo rustc --print --target . #12743
Copy PDBs also for EFI targets. #12688
Fixed resolver behavior being independent of package order. #12602
Fixed unnecessary clean up of profile.release.package."*" for
cargo remove . #12624

Nightly only

-Zasymmetric-token : Created dedicated unstable flag for
asymmetric-token support. #12551
-Zasymmetric-token : Improved logout message for asymmetric
tokens. #12587
-Zmsrv-policy : Very preliminary MSRV resolver support. #12560
-Zscript : Hack in code fence support. #12681
-Zbindeps : Support dependencies from registries. #12421

Documentation

❗ Policy change: Checking Cargo.lock into version control is now
the default choice, even for libraries. Lockfile and CI integration
documentations are also expanded. Policy docs, Lockfile docs, CI
docs, #12382 #12630
SemVer: Update documentation about removing optional
dependencies. #12687
Contrib: Add process for security responses. #12487
cargo-publish: warn about upload timeout. #12733
mdbook: use AND search when having multiple terms. #12548
Established publish best practices #12745

https://github.com/rust-lang/cargo/pull/12529
https://github.com/rust-lang/cargo/pull/12693
https://github.com/rust-lang/cargo/pull/12723
https://github.com/rust-lang/cargo/pull/12594
https://github.com/rust-lang/cargo/pull/12578
https://github.com/rust-lang/cargo/pull/12655
https://github.com/rust-lang/cargo/pull/12593
https://github.com/rust-lang/cargo/pull/12743
https://github.com/rust-lang/cargo/pull/12688
https://github.com/rust-lang/cargo/pull/12602
https://github.com/rust-lang/cargo/pull/12624
https://github.com/rust-lang/cargo/pull/12551
https://github.com/rust-lang/cargo/pull/12587
https://github.com/rust-lang/cargo/pull/12560
https://github.com/rust-lang/cargo/pull/12681
https://github.com/rust-lang/cargo/pull/12421
https://doc.rust-lang.org/nightly/cargo/faq.html#why-have-cargolock-in-version-control
https://doc.rust-lang.org/nightly/cargo/guide/cargo-toml-vs-cargo-lock.html
https://doc.rust-lang.org/nightly/cargo/guide/continuous-integration.html
https://github.com/rust-lang/cargo/pull/12382
https://github.com/rust-lang/cargo/pull/12630
https://github.com/rust-lang/cargo/pull/12687
https://github.com/rust-lang/cargo/pull/12487
https://github.com/rust-lang/cargo/pull/12733
https://github.com/rust-lang/cargo/pull/12548
https://github.com/rust-lang/cargo/pull/12745

Clarify caret requirements. #12679
Clarify how version works for git dependencies. #12270
Clarify and differentiate defaults for split-debuginfo. #12680
Added missing strip entries in dev and release profiles. #12748

Internal

Updated to curl-sys 0.4.66, which corresponds to curl 8.3.0. #12718
Updated to gitoxide 0.54.1. #12731
Updated to git2 0.18.0, which corresponds to libgit2 1.7.1. #12580
Updated to cargo_metadata 0.17.0. #12758
Updated target-arch-aware crates to support mips r6 targets #12720
publish.py: Remove obsolete sleep() calls. #12686
Define {{command}} for use in src/doc/man/includes #12570
Set tracing target network for networking messages. #12582
cargo-test-support: Add with_stdout_unordered . #12635
dep: Switch from termcolor to anstream . #12751
Put Source trait under cargo::sources . #12527
SourceId: merge name and alt_registry_key into one enum. #12675
TomlManifest: fail when package_root is not a directory. #12722
util: enhanced doc of network::retry doc. #12583
refactor: Pull out cargo-add MSRV code for reuse #12553
refactor(install): Move value parsing to clap #12547
Fixed spurious errors with networking tests. #12726
Use a more compact relative-time format for CARGO_LOG internal
logging. #12542
Use newer std API for cleaner code. #12559 #12604 #12615 #12631
Buffer console status messages. #12727
Use enum to describe index summaries to provide a richer information
when summaries are not available for resolution. #12643
Use shortest path for resolving the path from the given dependency up
to the root. #12678
Read/write the encoded cargo update --precise in the same place
#12629

https://github.com/rust-lang/cargo/pull/12679
https://github.com/rust-lang/cargo/pull/12270
https://github.com/rust-lang/cargo/pull/12680
https://github.com/rust-lang/cargo/pull/12748
https://github.com/rust-lang/cargo/pull/12718
https://github.com/rust-lang/cargo/pull/12731
https://github.com/rust-lang/cargo/pull/12580
https://github.com/rust-lang/cargo/pull/12610
https://github.com/rust-lang/cargo/pull/12720
https://github.com/rust-lang/cargo/pull/12686
https://github.com/rust-lang/cargo/pull/12570
https://github.com/rust-lang/cargo/pull/12582
https://github.com/rust-lang/cargo/pull/12635
https://github.com/rust-lang/cargo/pull/12751
https://github.com/rust-lang/cargo/pull/12527
https://github.com/rust-lang/cargo/pull/12675
https://github.com/rust-lang/cargo/pull/12722
https://github.com/rust-lang/cargo/pull/12583
https://github.com/rust-lang/cargo/pull/12553
https://github.com/rust-lang/cargo/pull/12547
https://github.com/rust-lang/cargo/pull/12726
https://github.com/rust-lang/cargo/pull/12542
https://github.com/rust-lang/cargo/pull/12559
https://github.com/rust-lang/cargo/pull/12604
https://github.com/rust-lang/cargo/pull/12615
https://github.com/rust-lang/cargo/pull/12631
https://github.com/rust-lang/cargo/pull/12727
https://github.com/rust-lang/cargo/pull/12643
https://github.com/rust-lang/cargo/pull/12678
https://github.com/rust-lang/cargo/pull/12629

Set MSRV for internal packages. #12381
ci: Update Renovate schema #12741
ci: Ignore patch version in MSRV #12716

https://github.com/rust-lang/cargo/pull/12381
https://github.com/rust-lang/cargo/pull/12741
https://github.com/rust-lang/cargo/pull/12716

Cargo 1.73 (2023-10-05)
45782b6b...rust-1.73.0

Added

Print environment variables for cargo run/bench/test in extra
verbose mode -vv . #12498
Display package versions on Cargo timings graph. #12420

Changed

❗ Cargo now bails out when using cargo:: in custom build scripts.
This is a preparation for an upcoming change in build script
invocations. #12332
❗ cargo login no longer accept any token after the -- syntax.
Arguments after -- are now reserved in the preparation of the new
credential provider feature. This introduces a regression that overlooks
the cargo login -- <token> support in previous versions. #12499
Make Cargo --help easier to browse. #11905
Prompt the use of --nocapture flag if cargo test process is
terminated via a signal. #12463
Preserve jobserver file descriptors on the rustc invocation for getting
target information. #12447
Clarify in --help that cargo test --all-targets excludes
doctests. #12422
Normalize cargo.toml to Cargo.toml on publish, and warn on other
cases of Cargo.toml . #12399

Fixed

Only skip mtime check on ~/.cargo/{git,registry} . #12369
Fixed cargo doc --open crash on WSL2. #12373
Fixed panic when enabling http.debug for certain strings. #12468
Fixed cargo remove incorrectly removing used patches. #12454

https://github.com/rust-lang/cargo/compare/45782b6b...rust-1.73.0
https://github.com/rust-lang/cargo/pull/12498
https://github.com/rust-lang/cargo/pull/12420
https://github.com/rust-lang/cargo/pull/12332
https://github.com/rust-lang/cargo/pull/12499
https://github.com/rust-lang/cargo/pull/11905
https://github.com/rust-lang/cargo/pull/12463
https://github.com/rust-lang/cargo/pull/12447
https://github.com/rust-lang/cargo/pull/12422
https://github.com/rust-lang/cargo/pull/12399
https://github.com/rust-lang/cargo/pull/12369
https://github.com/rust-lang/cargo/pull/12373
https://github.com/rust-lang/cargo/pull/12468
https://github.com/rust-lang/cargo/pull/12454

Fixed crate checksum lookup query should match on semver build
metadata. #11447
Fixed printing multiple warning messages for unused fields in
[registries] table. #12439

Nightly only

🔥 The -Zcredential-process has been reimplemented with a
clearer way to communicate with different credential providers.
Several built-in providers are also added to Cargo. docs #12334
#12396 #12424 #12440 #12461 #12469 #12483 #12499 #12507
#12512 #12518 #12521 #12526
Some notable changes:

Renamed credential-process to credential-provider in
Cargo configurations.
New JSON protocol for communicating with external credential
providers via stdin/stdout.
The GNOME Secert provider now dynamically loads libsecert .
The 1password provider is no longer built-in.
Changed the unstable key for asymmetric tokens from registry-
auth to credential-process .

❗ Removed --keep-going flag support from cargo test and
cargo bench . #12478 #12492
Fixed invalid package names generated by -Zscript . #12349
-Zscript now errors out on unsupported commands — publish and
package . #12350
Encode URL params correctly for source ID in Cargo.lock. #12280
Replaced invalid panic_unwind std feature with panic-unwind .
#12364
-Zlints : doctest extraction should respect [lints] . #12501

Documentation

https://github.com/rust-lang/cargo/pull/11447
https://github.com/rust-lang/cargo/pull/12439
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#credential-process
https://github.com/rust-lang/cargo/pull/12334
https://github.com/rust-lang/cargo/pull/12396
https://github.com/rust-lang/cargo/pull/12424
https://github.com/rust-lang/cargo/pull/12440
https://github.com/rust-lang/cargo/pull/12461
https://github.com/rust-lang/cargo/pull/12469
https://github.com/rust-lang/cargo/pull/12483
https://github.com/rust-lang/cargo/pull/12499
https://github.com/rust-lang/cargo/pull/12507
https://github.com/rust-lang/cargo/pull/12512
https://github.com/rust-lang/cargo/pull/12518
https://github.com/rust-lang/cargo/pull/12521
https://github.com/rust-lang/cargo/pull/12526
https://github.com/rust-lang/cargo/pull/12478
https://github.com/rust-lang/cargo/pull/12492
https://github.com/rust-lang/cargo/pull/12349
https://github.com/rust-lang/cargo/pull/12350
https://github.com/rust-lang/cargo/pull/12280
https://github.com/rust-lang/cargo/pull/12364
https://github.com/rust-lang/cargo/pull/12501

SemVer: Adding a section for changing the alignment, layout, or size
of a well-defined type. #12169
Use heading attributes to control the fragment. #12339
Use "number" instead of "digit" when explaining Cargo's use of
semver. #12340
contrib: Add some more detail about how publishing works. #12344
Clarify "Package ID" and "Source ID" in cargo metadata are opaque
strings. #12313
Clarify that rerun-if-env-changed doesn't monitor the environment
variables it set for crates and build script. #12482
Clarify that multiple versions that differ only in the metadata tag are
disallowed on crates.io. #12335
Clarify lto setting passing -Clinker-plugin-lto . #12407
Added profile.strip to configuration and environment variable
docs. #12337 #12408
Added docs for artifact JSON debuginfo levels. #12376
Added a notice for the backward compatible .cargo/credential file
existence. #12479
Raised the awareness of resolver = 2 used inside workspaces.
#12388
Replaced master branch by default branch in documentation. #12435

Internal

Updated to criterion 0.5.1. #12338
Updated to curl-sys 0.4.65, which corresponds to curl 8.2.1. #12406
Updated to indexmap v2. #12368
Updated to miow 0.6.0, which drops old versions of windows-sys .
#12453
ci: automatically test new packages by using --workspace . #12342
ci: automatically update dependencies monthly with Renovate. #12341
#12466
ci: rewrote xtask-bump-check for respecting semver by adopting
cargo-semver-checks . #12395 #12513 #12508

https://github.com/rust-lang/cargo/pull/12169
https://github.com/rust-lang/cargo/pull/12339
https://github.com/rust-lang/cargo/pull/12340
https://github.com/rust-lang/cargo/pull/12344
https://github.com/rust-lang/cargo/pull/12313
https://github.com/rust-lang/cargo/pull/12482
https://github.com/rust-lang/cargo/pull/12335
https://github.com/rust-lang/cargo/pull/12407
https://github.com/rust-lang/cargo/pull/12337
https://github.com/rust-lang/cargo/pull/12408
https://github.com/rust-lang/cargo/pull/12376
https://github.com/rust-lang/cargo/pull/12479
https://github.com/rust-lang/cargo/pull/12388
https://github.com/rust-lang/cargo/pull/12435
https://github.com/rust-lang/cargo/pull/12338
https://github.com/rust-lang/cargo/pull/12406
https://github.com/rust-lang/cargo/pull/12368
https://github.com/rust-lang/cargo/pull/12453
https://github.com/rust-lang/cargo/pull/12342
https://github.com/rust-lang/cargo/pull/12341
https://github.com/rust-lang/cargo/pull/12466
https://github.com/rust-lang/cargo/pull/12395
https://github.com/rust-lang/cargo/pull/12513
https://github.com/rust-lang/cargo/pull/12508

Rearranged and renamed test directories #12397 #12398
Migrated from log to tracing . #12458 #12488
Track --help output in tests. #11912
Cleaned up and shared package metadata within workspace. #12352
crates-io : expose HTTP headers and Error type. #12310
For cargo update , caught CLI flags conflict between --aggressive
and --precise in clap. #12428
Several fixes for either making Cargo testsuite pass on nightly or in
rust-lang/rust . #12413 #12416 #12429 #12450 #12491 #12500

https://github.com/rust-lang/cargo/pull/12397
https://github.com/rust-lang/cargo/pull/12398
https://github.com/rust-lang/cargo/pull/12458
https://github.com/rust-lang/cargo/pull/12488
https://github.com/rust-lang/cargo/pull/11912
https://github.com/rust-lang/cargo/pull/12352
https://github.com/rust-lang/cargo/pull/12310
https://github.com/rust-lang/cargo/pull/12428
https://github.com/rust-lang/cargo/pull/12413
https://github.com/rust-lang/cargo/pull/12416
https://github.com/rust-lang/cargo/pull/12429
https://github.com/rust-lang/cargo/pull/12450
https://github.com/rust-lang/cargo/pull/12491
https://github.com/rust-lang/cargo/pull/12500

Cargo 1.72 (2023-08-24)
64fb38c9...rust-1.72.0

Added

❗ Enable -Zdoctest-in-workspace by default. When running each
documentation test, the working directory is set to the root directory of
the package the test belongs to. docs #12221 #12288
Add support of the "default" keyword to reset previously set
build.jobs parallelism back to the default. #12222

Changed

🚨 CVE-2023-40030: Malicious dependencies can inject arbitrary
JavaScript into cargo-generated timing reports. To mitigate this,
feature name validation check is now turned into a hard error. The
warning was added in Rust 1.49. These extended characters aren't
allowed on crates.io, so this should only impact users of other
registries, or people who don't publish to a registry. #12291
Cargo now warns when an edition 2021 package is in a virtual
workspace and workspace.resolver is not set. It is recommended to
set the resolver version for workspaces explicitly. #10910
Set IBM AIX shared libraries search path to LIBPATH . #11968
Don't pass -C debuginfo=0 to rustc as it is the default value. #12022
#12205
Added a message on reusing previous temporary path on cargo
install failures. #12231
Added a message when rustup override shorthand is put in a wrong
position. #12226
Respect scp-like URL as much as possible when fetching nested
submodules. #12359 #12411

Fixed

https://github.com/rust-lang/cargo/compare/64fb38c9...rust-1.72.0
https://doc.rust-lang.org/nightly/cargo/commands/cargo-test.html#working-directory-of-tests
https://github.com/rust-lang/cargo/pull/12221
https://github.com/rust-lang/cargo/pull/12288
https://github.com/rust-lang/cargo/pull/12222
https://github.com/rust-lang/cargo/security/advisories/GHSA-wrrj-h57r-vx9p
https://github.com/rust-lang/cargo/pull/12291
https://github.com/rust-lang/cargo/pull/10910
https://github.com/rust-lang/cargo/pull/11968
https://github.com/rust-lang/cargo/pull/12022
https://github.com/rust-lang/cargo/pull/12205
https://github.com/rust-lang/cargo/pull/12231
https://github.com/rust-lang/cargo/pull/12226
https://github.com/rust-lang/cargo/pull/12359
https://github.com/rust-lang/cargo/pull/12411

cargo clean uses remove_dir_all as a fallback to resolve race
conditions. #11442
Reduced the chance Cargo re-formats the user's [features] table.
#12191
Fixed nested Git submodules not able to fetch. #12244

Nightly only

🔥 The -Zscript is an experimental feature to add unstable support
for single-file packages in Cargo, so we can explore the design and
resolve questions with an implementation to collect feedback on.
(eRFC 3424) docs #12245 #12255 #12258 #12262 #12268 #12269
#12281 #12282 #12283 #12284 #12287 #12289 #12303 #12305
#12308
Automatically inherit workspace lints when running cargo
new / cargo init . #12174
Removed -Zjobserver-per-rustc again. #12285
Added .toml file extension restriction for -Zconfig-include .
#12298
Added -Znext-lockfile-bump to prepare for the next lockfile bump.
#12279 #12302

Documentation

Added a description of Cargo.lock conflicts in the Cargo FAQ.
#12185
Added a small note about indexes ignoring SemVer build metadata.
#12206
Added doc comments for types and friends in cargo::sources
module. #12192 #12239 #12247
Added more documentation for Source download functions. #12319
Added READMEs for the credential helpers. #12322
Fixed version requirement example in Dependency Resolution.
#12267
Clarify the default behavior of cargo-install. #12276

https://github.com/rust-lang/cargo/pull/11442
https://github.com/rust-lang/cargo/pull/12191
https://github.com/rust-lang/cargo/pull/12244
https://github.com/rust-lang/rfcs/blob/master/text/3424-cargo-script.md
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#script
https://github.com/rust-lang/cargo/pull/12245
https://github.com/rust-lang/cargo/pull/12255
https://github.com/rust-lang/cargo/pull/12258
https://github.com/rust-lang/cargo/pull/12262
https://github.com/rust-lang/cargo/pull/12268
https://github.com/rust-lang/cargo/pull/12269
https://github.com/rust-lang/cargo/pull/12281
https://github.com/rust-lang/cargo/pull/12282
https://github.com/rust-lang/cargo/pull/12283
https://github.com/rust-lang/cargo/pull/12284
https://github.com/rust-lang/cargo/pull/12287
https://github.com/rust-lang/cargo/pull/12289
https://github.com/rust-lang/cargo/pull/12303
https://github.com/rust-lang/cargo/pull/12305
https://github.com/rust-lang/cargo/pull/12308
https://github.com/rust-lang/cargo/pull/12174
https://github.com/rust-lang/cargo/pull/12285
https://github.com/rust-lang/cargo/pull/12298
https://github.com/rust-lang/cargo/pull/12279
https://github.com/rust-lang/cargo/pull/12302
https://github.com/rust-lang/cargo/pull/12185
https://github.com/rust-lang/cargo/pull/12206
https://github.com/rust-lang/cargo/pull/12192
https://github.com/rust-lang/cargo/pull/12239
https://github.com/rust-lang/cargo/pull/12247
https://github.com/rust-lang/cargo/pull/12319
https://github.com/rust-lang/cargo/pull/12322
https://github.com/rust-lang/cargo/pull/12267
https://github.com/rust-lang/cargo/pull/12276

Clarify the use of "default" branch instead of main by default. #12251
Provide guidance on version requirements. #12323

Internal

Updated to gix 0.45 for multi-round pack negotiations. #12236
Updated to curl-sys 0.4.63, which corresponds to curl 8.1.2. #12218
Updated to openssl 0.10.55. #12300
Updated several dependencies. #12261
Removed unused features from windows-sys dependency. #12176
Refactored compiler invocations. #12211
Refactored git and registry sources, and registry data. #12203 #12197
#12240 #12248
Lexicographically order -Z flags. #12182 #12223 #12224
Several Cargo's own test infra improvements and speed-ups. #12184
#12188 #12189 #12194 #12199
Migrated print-ban from test to clippy #12246
Switched to OnceLock for interning uses. #12217
Removed a unnecessary .clone . #12213
Don't try to compile cargo-credential-gnome-secret on non-Linux
platforms. #12321
Use macro to remove duplication of workspace inheritable fields
getters. #12317
Extracted and rearranged registry API items to their own modules.
#12290
Show a better error when container tests fail. #12264

https://github.com/rust-lang/cargo/pull/12251
https://github.com/rust-lang/cargo/pull/12323
https://github.com/rust-lang/cargo/pull/12236
https://github.com/rust-lang/cargo/pull/12218
https://github.com/rust-lang/cargo/pull/12300
https://github.com/rust-lang/cargo/pull/12261
https://github.com/rust-lang/cargo/pull/12176
https://github.com/rust-lang/cargo/pull/12211
https://github.com/rust-lang/cargo/pull/12203
https://github.com/rust-lang/cargo/pull/12197
https://github.com/rust-lang/cargo/pull/12240
https://github.com/rust-lang/cargo/pull/12248
https://github.com/rust-lang/cargo/pull/12182
https://github.com/rust-lang/cargo/pull/12223
https://github.com/rust-lang/cargo/pull/12224
https://github.com/rust-lang/cargo/pull/12184
https://github.com/rust-lang/cargo/pull/12188
https://github.com/rust-lang/cargo/pull/12189
https://github.com/rust-lang/cargo/pull/12194
https://github.com/rust-lang/cargo/pull/12199
https://github.com/rust-lang/cargo/pull/12246
https://github.com/rust-lang/cargo/pull/12217
https://github.com/rust-lang/cargo/pull/12213
https://github.com/rust-lang/cargo/pull/12321
https://github.com/rust-lang/cargo/pull/12317
https://github.com/rust-lang/cargo/pull/12290
https://github.com/rust-lang/cargo/pull/12264

Cargo 1.71.1 (2023-08-03)
Fixed

🚨 CVE-2023-38497: Cargo 1.71.1 or later respects umask when
extracting crate archives. It also purges the caches it tries to access if
they were generated by older Cargo versions.

https://github.com/rust-lang/cargo/security/advisories/GHSA-j3xp-wfr4-hx87

Cargo 1.71 (2023-07-13)
84b7041f...rust-1.71.0

Added

Allowed named debuginfo options in Cargo.toml. docs #11958
Added workspace_default_members to the output of cargo
metadata . #11978
Automatically inherit workspace fields when running cargo
new / cargo init . #12069

Changed

❗ Optimized the usage under rustup . When Cargo detects it will run
rustc pointing a rustup proxy, it'll try bypassing the proxy and use the
underlying binary directly. There are assumptions around the
interaction with rustup and RUSTUP_TOOLCHAIN . However, it's not
expected to affect normal users. #11917
❗ When querying a package, Cargo tries only the original name, all
hyphens, and all underscores to handle misspellings. Previously, Cargo
tried each combination of hyphens and underscores, causing excessive
requests to crates.io. #12083
❗ Disallow RUSTUP_HOME and RUSTUP_TOOLCHAIN in the [env]
configuration table. This is considered to be not a use case Cargo
would like to support, since it will likely cause problems or lead to
confusion. #12101 #12107
Better error message when getting an empty dependency table in
Cargo.toml. #11997
Better error message when empty dependency was specified in
Cargo.toml. #12001
--help text is now wrapping for readability on narrow screens.
#12013
Tweaked the order of arguments in --help text to clarify role of --
bin . #12157

https://github.com/rust-lang/cargo/compare/84b7041f...rust-1.71.0
https://doc.rust-lang.org/nightly/cargo/reference/profiles.html#debug
https://github.com/rust-lang/cargo/pull/11958
https://github.com/rust-lang/cargo/pull/11978
https://github.com/rust-lang/cargo/pull/12069
https://github.com/rust-lang/cargo/pull/11917
https://github.com/rust-lang/cargo/pull/12083
https://github.com/rust-lang/cargo/pull/12101
https://github.com/rust-lang/cargo/pull/12107
https://github.com/rust-lang/cargo/pull/11997
https://github.com/rust-lang/cargo/pull/12001
https://github.com/rust-lang/cargo/pull/12013
https://github.com/rust-lang/cargo/pull/12157

rust-version is included in cargo publish requests to registries.
#12041

Fixed

Corrected the bug report URL for cargo clippy --fix . #11882
Cargo now applies [env] to rust invocations for target info discovery.
#12029
Fixed tokens not redacted in http debug when using HTTP/2. #12095
Fixed -C debuginfo not passed in some situation, leading to build
cache miss. #12165
Fixed the ambiguity when cargo install found packages with the
same name. The ambiguity happened in a situation like a package
depending on old versions of itself. #12015
Fixed a false positive that cargo package checks for conflict files.
#12135
Fixed dep/feat syntax not working when co-exist with dep: syntax,
and trying to enable features of an optional dependency. #12130
Fixed cargo tree not handling the output with -e no-proc-macro
correctly. #12044
Warn instead of error in cargo package on empty readme or
license-file in Cargo.toml. #12036
Fixed when an HTTP proxy is in use and the Cargo executable links to
a certain version of system libcurl, CURL connections might fail.
Affected libcurl versions: 7.87.0, 7.88.0, 7.88.1. #12234 #12242

Nightly only

🔥 The -Zgitoxide feature now supports shallow clones and fetches
for dependencies and registry indexes. docs #11840
🔥 The -Zlints feature enables configuring lints rules in Cargo.toml
docs #12148 #12168
The -Zbuild-std breakage of missing features in nightly-2023-05-
04 has been fixed in nightly-2023-05-05 . #12088
Recompile on profile rustflags changes. #11981

https://github.com/rust-lang/cargo/pull/12041
https://github.com/rust-lang/cargo/pull/11882
https://github.com/rust-lang/cargo/pull/12029
https://github.com/rust-lang/cargo/pull/12095
https://github.com/rust-lang/cargo/pull/12165
https://github.com/rust-lang/cargo/pull/12015
https://github.com/rust-lang/cargo/pull/12135
https://github.com/rust-lang/cargo/pull/12130
https://github.com/rust-lang/cargo/pull/12044
https://github.com/rust-lang/cargo/pull/12036
https://github.com/rust-lang/cargo/pull/12234
https://github.com/rust-lang/cargo/pull/12242
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#gitoxide
https://github.com/rust-lang/cargo/pull/11840
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#lints
https://github.com/rust-lang/cargo/pull/12148
https://github.com/rust-lang/cargo/pull/12168
https://github.com/rust-lang/cargo/pull/12088
https://github.com/rust-lang/cargo/pull/11981

Added -Zmsrv-policy feature flag placeholder. #12043
cargo add now considers rust-version when selecting packages
with -Zmsrv-policy . #12078

Documentation

Added Cargo team charter. docs #12010
SemVer: Adding #[non_exhaustive] on existing items is a breaking
change. #10877
SemVer: It is not a breaking change to make an unsafe function safe.
#12116
SemVer: changing MSRV is generally a minor change. #12122
Clarify when and how to cargo yank . #11862
Clarify that crates.io doesn't link to docs.rs right away. #12146
Clarify documentation around test target setting. #12032
Specify rust_version in Index format. #12040
Specify msg in owner-remove registry API response. #12068
Added more documentation for artifact-dependencies. #12110
Added doc comments for Source and build script for cargo-the-
library. #12133 #12153 #12159
Several typo and broken link fixes. #12018 #12020 #12049 #12067
#12073 #12143
home: clarify the behavior on each platform #12047

Internal

Updated to linux-raw-sys 0.3.2 #11998
Updated to git2 0.17.1, which corresponds to libgit2 1.6.4. #12096
Updated to windows-sys 0.48.0 #12021
Updated to libc 0.2.144 #12014 #12098
Updated to openssl-src 111.25.3+1.1.1t #12005
Updated to home 0.5.5 #12037
Enabled feature Win32_System_Console feature since it is used.
#12016

https://github.com/rust-lang/cargo/pull/12043
https://github.com/rust-lang/cargo/pull/12078
https://doc.crates.io/contrib/team.html
https://github.com/rust-lang/cargo/pull/12010
https://github.com/rust-lang/cargo/pull/10877
https://github.com/rust-lang/cargo/pull/12116
https://github.com/rust-lang/cargo/pull/12122
https://github.com/rust-lang/cargo/pull/11862
https://github.com/rust-lang/cargo/pull/12146
https://github.com/rust-lang/cargo/pull/12032
https://github.com/rust-lang/cargo/pull/12040
https://github.com/rust-lang/cargo/pull/12068
https://github.com/rust-lang/cargo/pull/12110
https://github.com/rust-lang/cargo/pull/12133
https://github.com/rust-lang/cargo/pull/12153
https://github.com/rust-lang/cargo/pull/12159
https://github.com/rust-lang/cargo/pull/12018
https://github.com/rust-lang/cargo/pull/12020
https://github.com/rust-lang/cargo/pull/12049
https://github.com/rust-lang/cargo/pull/12067
https://github.com/rust-lang/cargo/pull/12073
https://github.com/rust-lang/cargo/pull/12143
https://github.com/rust-lang/cargo/pull/12047
https://github.com/rust-lang/cargo/pull/11998
https://github.com/rust-lang/cargo/pull/12096
https://github.com/rust-lang/cargo/pull/12021
https://github.com/rust-lang/cargo/pull/12014
https://github.com/rust-lang/cargo/pull/12098
https://github.com/rust-lang/cargo/pull/12005
https://github.com/rust-lang/cargo/pull/12037
https://github.com/rust-lang/cargo/pull/12016

Cargo is now a Cargo workspace. We dogfood ourselves finally!
#11851 #11994 #11996 #12024 #12025 #12057
🔥 A new, straightforward issue labels system for Cargo contributors.
docs #11995 #12002 #12003
Allow win/mac credential managers to build on all platforms. #11993
#12027
Use openssl only on non-Windows platforms. #11979
Use restricted Damerau-Levenshtein algorithm to provide typo
suggestions. #11963
Added a new xtask cargo build-man . #12048
Added a new xtask cargo stale-label . #12051
Added a new xtask cargo unpublished . #12039 #12045 #12085
CI: check if any version bump needed for member crates. #12126
Fixed some test infra issues. #11976 #12026 #12055 #12117

https://github.com/rust-lang/cargo/pull/11851
https://github.com/rust-lang/cargo/pull/11994
https://github.com/rust-lang/cargo/pull/11996
https://github.com/rust-lang/cargo/pull/12024
https://github.com/rust-lang/cargo/pull/12025
https://github.com/rust-lang/cargo/pull/12057
https://doc.crates.io/contrib/issues.html
https://github.com/rust-lang/cargo/pull/11995
https://github.com/rust-lang/cargo/pull/12002
https://github.com/rust-lang/cargo/pull/12003
https://github.com/rust-lang/cargo/pull/11993
https://github.com/rust-lang/cargo/pull/12027
https://github.com/rust-lang/cargo/pull/11979
https://github.com/rust-lang/cargo/pull/11963
https://github.com/rust-lang/cargo/pull/12048
https://github.com/rust-lang/cargo/pull/12051
https://github.com/rust-lang/cargo/pull/12039
https://github.com/rust-lang/cargo/pull/12045
https://github.com/rust-lang/cargo/pull/12085
https://github.com/rust-lang/cargo/pull/12126
https://github.com/rust-lang/cargo/pull/11976
https://github.com/rust-lang/cargo/pull/12026
https://github.com/rust-lang/cargo/pull/12055
https://github.com/rust-lang/cargo/pull/12117

Cargo 1.70 (2023-06-01)
9880b408...rust-1.70.0

Added

🎉 Added cargo logout command for removing an API token from
the registry locally. docs #11919 #11950
Added --ignore-rust-version flag to cargo install . #11859
The CARGO_PKG_README environment variable is now set to the path to
the README file when compiling a crate. #11645
Cargo now displays richer information of Cargo target failed to
compile. #11636

Changed

🎉 The sparse protocol is now the default protocol for crates.io!
(RFC 2789) (docs) #11791 #11783
❗ cargo login and cargo logout now uses the registry specified
in registry.default . This was an unintentional regression. #11949
cargo update accurately shows Downgrading status when
downgrading dependencies. #11839
Added more information to HTTP errors to help with debugging.
#11878
Added delays to network retries in Cargo. #11881
Refined cargo publish message when waiting for a publish
complete. #11713
Better error message when cargo install from a git repository but
found multiple packages. #11835

Fixed

Removed duplicates of possible values in --charset option of cargo
tree . #11785

https://github.com/rust-lang/cargo/compare/9880b408...rust-1.70.0
https://doc.rust-lang.org/nightly/cargo/commands/cargo-logout.html
https://github.com/rust-lang/cargo/pull/11919
https://github.com/rust-lang/cargo/pull/11950
https://github.com/rust-lang/cargo/pull/11859
https://github.com/rust-lang/cargo/pull/11645
https://github.com/rust-lang/cargo/pull/11636
https://github.com/rust-lang/rfcs/blob/master/text/2789-sparse-index.md
https://doc.rust-lang.org/nightly/cargo/reference/registries.html#registry-protocols
https://github.com/rust-lang/cargo/pull/11791
https://github.com/rust-lang/cargo/pull/11783
https://github.com/rust-lang/cargo/pull/11949
https://github.com/rust-lang/cargo/pull/11839
https://github.com/rust-lang/cargo/pull/11878
https://github.com/rust-lang/cargo/pull/11881
https://github.com/rust-lang/cargo/pull/11713
https://github.com/rust-lang/cargo/pull/11835
https://github.com/rust-lang/cargo/pull/11785

Fixed CARGO_CFG_ vars for configs defined both with and without
value. #11790
Broke endless loop on cyclic features in added dependency in cargo
add . #11805
Don't panic when [patch] involved in dependency resolution results
in a conflict. #11770
Fixed credential token format validation. #11951
Added the missing token format validation on publish. #11952
Fixed case mismatches when looking up env vars in the Config
snapshot. #11824
cargo new generates the correct .hgignore aligning semantics with
other VCS ignore files. #11855
Stopped doing unnecessary fuzzy registry index queries. This
significantly reduces the amount of HTTP requests to remote registries
for crates containing - or _ in their names. #11936 #11937

Nightly only

Added -Zdirect-minimal-versions . This behaves like -Zminimal-
versions but only for direct dependencies. (docs) #11688
Added -Zgitoxide which switches all git fetch operation in Cargo
to use gitoxide crate. This is still an MVP but could improve the
performance up to 2 times. (docs) #11448 #11800 #11822 #11830
Removed -Zjobserver-per-rustc . Its rustc counterpart never got
landed. #11764

Documentation

Cleaned-up unstable documentation. #11793
Enhanced the documentation of timing report with graphs. #11798
Clarified requirements about the state of the registry index after
publish. #11926
Clarified docs on -C that it appears before the command. #11947
Clarified working directory behaviour for cargo test , cargo bench
and cargo run . #11901

https://github.com/rust-lang/cargo/pull/11790
https://github.com/rust-lang/cargo/pull/11805
https://github.com/rust-lang/cargo/pull/11770
https://github.com/rust-lang/cargo/pull/11951
https://github.com/rust-lang/cargo/pull/11952
https://github.com/rust-lang/cargo/pull/11824
https://github.com/rust-lang/cargo/pull/11855
https://github.com/rust-lang/cargo/pull/11936
https://github.com/rust-lang/cargo/pull/11937
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#direct-minimal-versions
https://github.com/rust-lang/cargo/pull/11688
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html##gitoxide
https://github.com/rust-lang/cargo/pull/11448
https://github.com/rust-lang/cargo/pull/11800
https://github.com/rust-lang/cargo/pull/11822
https://github.com/rust-lang/cargo/pull/11830
https://github.com/rust-lang/cargo/pull/11764
https://github.com/rust-lang/cargo/pull/11793
https://github.com/rust-lang/cargo/pull/11798
https://github.com/rust-lang/cargo/pull/11926
https://github.com/rust-lang/cargo/pull/11947
https://github.com/rust-lang/cargo/pull/11901

Fixed the doc of registries.name.index configuration. #11880
Notice for potential unexpected shell expansions in help text of
cargo-add . #11826
Updated external-tools JSON docs. #11918
Call out the differences between the index JSON and the API or
metadata. #11927
Consistently use @ when mentioning pkgid format. #11956
Enhanced Cargo Contributor Guide. #11825 #11842 #11869 #11876
Moved a part of Cargo Contributor Guide to Cargo API
documentation. docs #11809 #11841 #11850 #11870
Cargo team now arranges office hours! #11903

Internal

Switched to sha2 crate for SHA256 calculation. #11795 #11807
Switched benchsuite to the index archive. #11933
Updated to base64 0.21.0. #11796
Updated to curl-sys 0.4.61, which corresponds to curl 8.0.1. #11871
Updated to proptest 1.1.0. #11886
Updated to git2 0.17.0, which corresponds to libgit2 1.6.3. #11928
Updated to clap 4.2. #11904
Integrated cargo-deny in Cargo its own CI pipeline. #11761
Made non-blocking IO calls more robust. #11624
Dropped derive feature from serde in cargo-platform . #11915
Replaced std::fs::canonicalize with a more robust
try_canonicalize . #11866
Enabled clippy warning on disallowed_methods for std::env::var
and friends. #11828

https://github.com/rust-lang/cargo/pull/11880
https://github.com/rust-lang/cargo/pull/11826
https://github.com/rust-lang/cargo/pull/11918
https://github.com/rust-lang/cargo/pull/11927
https://github.com/rust-lang/cargo/pull/11956
https://github.com/rust-lang/cargo/pull/11825
https://github.com/rust-lang/cargo/pull/11842
https://github.com/rust-lang/cargo/pull/11869
https://github.com/rust-lang/cargo/pull/11876
https://doc.rust-lang.org/nightly/nightly-rustc/cargo
https://github.com/rust-lang/cargo/pull/11809
https://github.com/rust-lang/cargo/pull/11841
https://github.com/rust-lang/cargo/pull/11850
https://github.com/rust-lang/cargo/pull/11870
https://github.com/rust-lang/cargo/wiki/Office-Hours
https://github.com/rust-lang/cargo/pull/11903
https://github.com/rust-lang/cargo/pull/11795
https://github.com/rust-lang/cargo/pull/11807
https://github.com/rust-lang/cargo/pull/11933
https://github.com/rust-lang/cargo/pull/11796
https://github.com/rust-lang/cargo/pull/11871
https://github.com/rust-lang/cargo/pull/11886
https://github.com/rust-lang/cargo/pull/11928
https://github.com/rust-lang/cargo/pull/11904
https://github.com/rust-lang/cargo/pull/11761
https://github.com/rust-lang/cargo/pull/11624
https://github.com/rust-lang/cargo/pull/11915
https://github.com/rust-lang/cargo/pull/11866
https://github.com/rust-lang/cargo/pull/11828

Cargo 1.69 (2023-04-20)
985d561f...rust-1.69.0

Added

Cargo now suggests cargo fix or cargo clippy --fix when
compilation warnings are auto-fixable. #11558
Cargo now suggests cargo add if you try to install a library crate.
#11410
Cargo now sets the CARGO_BIN_NAME environment variable also for
binary examples. #11705

Changed

❗ When default-features is set to false of a workspace
dependency, and an inherited dependency of a member has default-
features = true , Cargo will enable default features of that
dependency. #11409
❗ Deny CARGO_HOME in [env] configuration table. Cargo itself
doesn't pick up this value, but recursive calls to cargo would, which
was not intended. #11644
❗ Debuginfo for build dependencies is now off if not explicitly set.
This is expected to improve the overall build time. #11252
Cargo now emits errors on invalid alphanumeric characters in a
registry token. #11600
cargo add now checks only the order of [dependencies] without
considering [dependencies.*] . #11612
Cargo now respects the new jobserver IPC style in GNU Make 4.4, by
updating its dependency jobserver . #11767
cargo install now reports required features when no binary meets
its requirements. #11647

Fixed

https://github.com/rust-lang/cargo/compare/985d561f...rust-1.69.0
https://github.com/rust-lang/cargo/pull/11558
https://github.com/rust-lang/cargo/pull/11410
https://github.com/rust-lang/cargo/pull/11705
https://github.com/rust-lang/cargo/pull/11409
https://github.com/rust-lang/cargo/pull/11644
https://github.com/rust-lang/cargo/pull/11252
https://github.com/rust-lang/cargo/pull/11600
https://github.com/rust-lang/cargo/pull/11612
https://github.com/rust-lang/cargo/pull/11767
https://github.com/rust-lang/cargo/pull/11647

Uplifted .dwp DWARF package file next to the executable for
debuggers to locate them. #11572
Fixed build scripts triggering recompiles when a rerun-if-changed
points to a directory whose mtime is not preserved by the filesystem.
#11613
Fixed panics when using dependencies from
[workspace.dependencies] for [patch] . This usage is not supposed
to be supported. #11565 #11630
Fixed cargo report saving the same future-incompat reports
multiple times. #11648
Fixed the incorrect inference of a directory ending with .rs as a file.
#11678
Fixed .cargo-ok file being truncated wrongly, preventing from using
a dependency. #11665 #11724

Nightly only

-Zrustdoc-scrape-example must fail with bad build script. #11694
Updated 1password credential manager integration to the version 2
CLI. #11692
Emit an error message for transitive artifact dependencies with targets
the package doesn't directly interact with. #11643
Added -C flag for changing current dir before build starts. #10952

Documentation

Clarified the difference between CARGO_CRATE_NAME and
CARGO_PKG_NAME . #11576
Added links to the Target section of the glossary for occurrences of
target triple. #11603
Described how the current resolver sometimes duplicates
dependencies. #11604
Added a note about verifying your email address on crates.io. #11620
Mention current default value in publish.timeout docs. #11652

https://github.com/rust-lang/cargo/pull/11572
https://github.com/rust-lang/cargo/pull/11613
https://github.com/rust-lang/cargo/pull/11565
https://github.com/rust-lang/cargo/pull/11630
https://github.com/rust-lang/cargo/pull/11648
https://github.com/rust-lang/cargo/pull/11678
https://github.com/rust-lang/cargo/pull/11665
https://github.com/rust-lang/cargo/pull/11724
https://github.com/rust-lang/cargo/pull/11694
https://github.com/rust-lang/cargo/pull/11692
https://github.com/rust-lang/cargo/pull/11643
https://github.com/rust-lang/cargo/pull/10952
https://github.com/rust-lang/cargo/pull/11576
https://github.com/rust-lang/cargo/pull/11603
https://github.com/rust-lang/cargo/pull/11604
https://github.com/rust-lang/cargo/pull/11620
https://github.com/rust-lang/cargo/pull/11652

More doc comments for cargo::core::compiler modules. #11669
#11703 #11711 #11758
Added more guidance on how to implement unstable features. #11675
Fixed unstable chapter layout for codegen-backend . #11676
Add a link to LTO doc. #11701
Added documentation for the configuration discovery of cargo
install to the man pages #11763
Documented -F flag as an alias for --features in cargo add .
#11774

Internal

Disable network SSH tests on Windows. #11610
Made some blocking tests non-blocking. #11650
Deny warnings in CI, not locally. #11699
Re-export cargo_new::NewProjectKind as public. #11700
Made dependencies in alphabetical order. #11719
Switched some tests from build to check . #11725
Consolidated how Cargo reads environments variables internally.
#11727 #11754
Fixed tests with nondeterministic ordering #11766
Added a test to verify the intermediate artifacts persist in the temp
directory. #11771
Updated cross test instructions for aarch64-apple-darwin. #11663
Updated to toml v0.6 and toml_edit v0.18 for TOML
manipulations. #11618
Updated to clap v4.1.3. #11619
Replaced winapi with windows-sys crate for Windows bindings.
#11656
Reused url crate for percent encoding instead of percent-encoding .
#11750
Cargo contributors can benefit from smart punctuations when writing
documentations, e.g., --- is auto-converted into an em dash. (docs)
#11646 #11715

https://github.com/rust-lang/cargo/pull/11669
https://github.com/rust-lang/cargo/pull/11703
https://github.com/rust-lang/cargo/pull/11711
https://github.com/rust-lang/cargo/pull/11758
https://github.com/rust-lang/cargo/pull/11675
https://github.com/rust-lang/cargo/pull/11676
https://github.com/rust-lang/cargo/pull/11701
https://github.com/rust-lang/cargo/pull/11763
https://github.com/rust-lang/cargo/pull/11774
https://github.com/rust-lang/cargo/pull/11610
https://github.com/rust-lang/cargo/pull/11650
https://github.com/rust-lang/cargo/pull/11699
https://github.com/rust-lang/cargo/pull/11700
https://github.com/rust-lang/cargo/pull/11719
https://github.com/rust-lang/cargo/pull/11725
https://github.com/rust-lang/cargo/pull/11727
https://github.com/rust-lang/cargo/pull/11754
https://github.com/rust-lang/cargo/pull/11766
https://github.com/rust-lang/cargo/pull/11771
https://github.com/rust-lang/cargo/pull/11663
https://github.com/rust-lang/cargo/pull/11618
https://github.com/rust-lang/cargo/pull/11619
https://github.com/rust-lang/cargo/pull/11656
https://github.com/rust-lang/cargo/pull/11750
https://rust-lang.github.io/mdBook/format/markdown.html#smart-punctuation
https://github.com/rust-lang/cargo/pull/11646
https://github.com/rust-lang/cargo/pull/11715

Cargo's CI pipeline now covers macOS on nightly. #11712
Re-enabled some clippy lints in Cargo itself. #11722
Enabled sparse protocol in Cargo's CI. #11632
Pull requests in Cargo now get autolabelled for label A-* and
Command-* . #11664 #11679

https://github.com/rust-lang/cargo/pull/11712
https://github.com/rust-lang/cargo/pull/11722
https://github.com/rust-lang/cargo/pull/11632
https://github.com/rust-lang/cargo/pull/11664
https://github.com/rust-lang/cargo/pull/11679

Cargo 1.68.2 (2023-03-28)
115f3455...rust-1.68.0

Updated the GitHub RSA SSH host key bundled within cargo. The key
was rotated by GitHub on 2023-03-24 after the old one leaked. #11883
Added support for SSH known hosts marker @revoked . #11635
Marked the old GitHub RSA host key as revoked. This will prevent
Cargo from accepting the leaked key even when trusted by the system.
#11889

https://github.com/rust-lang/cargo/compare/115f3455...rust-1.68.0
https://github.blog/2023-03-23-we-updated-our-rsa-ssh-host-key/
https://github.com/rust-lang/cargo/pull/11883
https://github.com/rust-lang/cargo/pull/11635
https://github.com/rust-lang/cargo/pull/11889

Cargo 1.68 (2023-03-09)
f6e737b1...rust-1.68.0

Added

🎉 The new "sparse" protocol has been stabilized. It should provide a
significant performance improvement when accessing crates.io. (RFC
2789) (docs) #11224 #11480 #11733 #11756
🎉 home crate is now a subcrate in rust-lang/cargo repository.
Welcome! #11359 #11481
Long diagnostic messages now can be truncated to be more readable.
#11494
Shows the progress of crates.io index update even when net.git-
fetch-with-cli enabled. #11579
cargo build --verbose tells you more about why it recompiles.
#11407
Cargo's file locking mechanism now supports Solaris by using fcntl .
#11439 #11474
Added a new SemVer compatibility rule explaining the expectations
around diagnostic lints #11596
cargo vendor generates a different source replacement entry for each
revision from the same git repository. #10690
Cargo contributors can relabel issues via triagebot. doc #11498
Cargo contributors can write tests in containers. #11583

Changed

Cargo now by default saves credentials to
.cargo/credentials.toml . If .cargo/credentials exists, writes to
it for backward compatibility reasons. #11533
To prevent sensitive data from being logged, Cargo introduces a new
wrapper type internally. #11545
Several documentation improvements. #11475 #11504 #11516 #11517
#11568 #11586 #11592

https://github.com/rust-lang/cargo/compare/f6e737b1...rust-1.68.0
https://github.com/rust-lang/rfcs/blob/master/text/2789-sparse-index.md
https://doc.rust-lang.org/nightly/cargo/reference/registries.html#registry-protocols
https://github.com/rust-lang/cargo/pull/11224
https://github.com/rust-lang/cargo/pull/11480
https://github.com/rust-lang/cargo/pull/11733
https://github.com/rust-lang/cargo/pull/11756
https://github.com/rust-lang/cargo/pull/11359
https://github.com/rust-lang/cargo/pull/11481
https://github.com/rust-lang/cargo/pull/11494
https://github.com/rust-lang/cargo/pull/11579
https://github.com/rust-lang/cargo/pull/11407
https://github.com/rust-lang/cargo/pull/11439
https://github.com/rust-lang/cargo/pull/11474
https://github.com/rust-lang/cargo/pull/11596
https://github.com/rust-lang/cargo/pull/1090
https://forge.rust-lang.org/triagebot/labeling.html
https://github.com/rust-lang/cargo/pull/11498
https://github.com/rust-lang/cargo/pull/11583
https://github.com/rust-lang/cargo/pull/11533
https://github.com/rust-lang/cargo/pull/11545
https://github.com/rust-lang/cargo/pull/11475
https://github.com/rust-lang/cargo/pull/11504
https://github.com/rust-lang/cargo/pull/11516
https://github.com/rust-lang/cargo/pull/11517
https://github.com/rust-lang/cargo/pull/11568
https://github.com/rust-lang/cargo/pull/11586
https://github.com/rust-lang/cargo/pull/11592

Fixed

❗ cargo package and cargo publish now respects workspace's
Cargo.lock . This is an expected behavior but previously got
overlooked. #11477
Fixed cargo vendor failing on resolving git dependencies inherited
from a workspace. #11414
cargo install can now correctly install root package when
workspace.default-members is specified. #11067
Fixed panic on target specific dependency errors. #11541
Shows --help if there is no man page for a subcommand. #11473
Setting target.cfg(…).rustflags shouldn't erase
build.rustdocflags . #11323
Unsupported profile.split-debuginfo options are now ignored,
which previously made Cargo fail to compile on certain platforms.
#11347 #11633
Don't panic in Windows headless session with really long file names.
#11759

Nightly only

Implemented initial support of asymmetric token authentication for
registries. (RFC 3231) (docs) #10771
Do not error for auth-required: true without -Z sparse-
registry #11661
Supports codegen-backend and rustflags in profiles in config file.
#11562
Suggests cargo clippy --fix when warnings/errors could be fixed
with clippy. #11399
Fixed artifact deps not working when target field specified coexists
with optional = true . #11434
Make Cargo distinguish Unit s with and without artifact targets.
#11478
cargo metadata supports artifact dependencies. #11550

https://github.com/rust-lang/cargo/pull/11477
https://github.com/rust-lang/cargo/pull/11414
https://github.com/rust-lang/cargo/pull/11067
https://github.com/rust-lang/cargo/pull/11541
https://github.com/rust-lang/cargo/pull/11473
https://github.com/rust-lang/cargo/pull/11323
https://github.com/rust-lang/cargo/pull/11347
https://github.com/rust-lang/cargo/pull/11633
https://github.com/rust-lang/cargo/pull/11759
https://github.com/rust-lang/rfcs/blob/master/text/3231-cargo-asymmetric-tokens.md
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#registry-auth
https://github.com/rust-lang/cargo/pull/10771
https://github.com/rust-lang/cargo/pull/11661
https://github.com/rust-lang/cargo/pull/11562
https://github.com/rust-lang/cargo/pull/11399
https://github.com/rust-lang/cargo/pull/11434
https://github.com/rust-lang/cargo/pull/11478
https://github.com/rust-lang/cargo/pull/11550

Allows builds of some crate to fail during optional doc-scraping.
#11450
Add warning if potentially-scrapable examples are skipped due to dev-
dependencies. #11503
Don't scrape examples from library targets by default. #11499
Fixed examples of proc-macro crates being scraped for examples.
#11497

https://github.com/rust-lang/cargo/pull/11450
https://github.com/rust-lang/cargo/pull/11503
https://github.com/rust-lang/cargo/pull/11499
https://github.com/rust-lang/cargo/pull/11497

Cargo 1.67 (2023-01-26)
7e484fc1...rust-1.67.0

Added

cargo remove now cleans up the referenced dependency of the root
workspace manifest, profile , patch , and replace sections after a
successful removal of a dependency. #11194 #11242 #11351
cargo package and cargo publish now report total and compressed
crate size after packaging. #11270

Changed

❗ Cargo now reuses the value of $CARGO if it's already set in the
environment, and forwards the value when executing external
subcommands and build scripts. #11285
❗ Cargo now emits an error when running cargo update --
precise without a -p flag. #11349
❗ Cargo now emits an error if there are multiple registries in the
configuration with the same index URL. #10592
Cargo now is aware of compression ratio when extracting crate files.
This relaxes the hard size limit introduced in 1.64.0 to mitigate zip
bomb attack. #11337
Cargo now errors out when cargo fix on a git repo with
uncommitted changes. #11400
Cargo now warns when cargo tree -i <spec> cannot find any
package. #11377
Cargo now warns when running cargo new/init and PATH env
separator is in the project path. #11318
Better error messages when multiple packages were found and cargo
add/remove gets confused. #11186 #11375
A better error message when cargo init but existing ignore files
aren't UTF-8. #11321
A better error message for cargo install . . #11401

https://github.com/rust-lang/cargo/compare/7e484fc1...rust-1.67.0
https://github.com/rust-lang/cargo/pull/11194
https://github.com/rust-lang/cargo/pull/11242
https://github.com/rust-lang/cargo/pull/11351
https://github.com/rust-lang/cargo/pull/11270
https://github.com/rust-lang/cargo/pull/11285
https://github.com/rust-lang/cargo/pull/11349
https://github.com/rust-lang/cargo/pull/10592
https://github.com/rust-lang/cargo/pull/11337
https://github.com/rust-lang/cargo/pull/11400
https://github.com/rust-lang/cargo/pull/11377
https://github.com/rust-lang/cargo/pull/11318
https://github.com/rust-lang/cargo/pull/11186
https://github.com/rust-lang/cargo/pull/11375
https://github.com/rust-lang/cargo/pull/11321
https://github.com/rust-lang/cargo/pull/11401

A better warning when the same file path found in multiple build
targets. #11299
Updated the internal HTTP library libcurl with various fixes and
updates. #11307 #11326

Fixed

Fixed cargo clean for removing fingerprints and build script artifacts
of only the requested package #10621
Fixed cargo install --index not working when config
registry.default is set. #11302
Fixed git2 safe-directory accidentally disabled when no network
configuration was found. #11366
Migrate from crate atty to resolve potential soundness issue. #11420
Cleans stale git temp files left when libgit2 indexing is interrupted.
#11308

Nightly only

Suggests cargo fix when some compilation warnings/errors can be
auto-fixed. #10989 #11368
Changed rustdoc-scrape-examples to be a target-level
configuration. #10343 #11425 #11430 #11445
Propagates change of artifact bin dependency to its parent fingerprint.
#11353
Fixed wait-for-publish to work with sparse registry. #11356
#11327 #11388
Stores the sparse+ prefix in the SourceId for sparse registries
#11387 #11403
Implemented alternative registry authentication support. (RFC 3139)
(docs) #10592
Added documentation of config option registries.crates-
io.protocol . #11350

https://github.com/rust-lang/cargo/pull/11299
https://github.com/rust-lang/cargo/pull/11307
https://github.com/rust-lang/cargo/pull/11326
https://github.com/rust-lang/cargo/pull/10621
https://github.com/rust-lang/cargo/pull/11302
https://github.com/rust-lang/cargo/pull/11366
https://github.com/rust-lang/cargo/pull/11420
https://github.com/rust-lang/cargo/pull/11308
https://github.com/rust-lang/cargo/pull/10989
https://github.com/rust-lang/cargo/pull/11368
https://github.com/rust-lang/cargo/pull/10343
https://github.com/rust-lang/cargo/pull/11425
https://github.com/rust-lang/cargo/pull/11430
https://github.com/rust-lang/cargo/pull/11445
https://github.com/rust-lang/cargo/pull/11353
https://github.com/rust-lang/cargo/pull/11356
https://github.com/rust-lang/cargo/pull/11327
https://github.com/rust-lang/cargo/pull/11388
https://github.com/rust-lang/cargo/pull/11387
https://github.com/rust-lang/cargo/pull/11403
https://github.com/rust-lang/rfcs/blob/master/text/3139-cargo-alternative-registry-auth.md
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#registry-auth
https://github.com/rust-lang/cargo/pull/10592
https://github.com/rust-lang/cargo/pull/11350

Cargo 1.66.1 (2023-01-10)
Fixed

🚨 CVE-2022-46176: Added validation of SSH host keys for git
URLs. See the docs for more information on how to configure the
known host keys.

https://github.com/rust-lang/cargo/security/advisories/GHSA-r5w3-xm58-jv6j
https://doc.rust-lang.org/cargo/appendix/git-authentication.html#ssh-known-hosts

Cargo 1.66 (2022-12-15)
08250398...rust-1.66.0

Added

🎉 Added cargo remove command for removing dependencies from
Cargo.toml . docs #11059 #11099 #11193 #11204 #11227
Added support for git dependencies having git submodules with
relative paths. #11106
Cargo now sends requests with an Accept-Encoding header to
registries. #11292
Cargo now forwards non-UTF8 arguments to external subcommands.
#11118

Changed

❗ Disambiguate source replacements from various angles. RFC-3289
#10907

When the crates-io source is replaced, the user is required to
specify which registry to use with --registry <NAME> when
performing an API operation.
Publishing to source-replaced crates.io is no longer permitted
using the crates.io token (registry.token).
In source replacement, the replace-with key can reference the
name of an alternative registry in the [registries] table.

❗ cargo publish now blocks until it sees the published package in
the index. #11062 #11210 #11216 #11255
Cargo now uses the clap v4 library for command-line argument
parsing. #11116 #11119 #11159 #11190 #11239 #11280
Cargo now only warns on a user-defined alias shadowing an external
command. #11170
Several documentation improvements. #10770 #10938 #11082 #11093
#11157 #11185 #11207 #11219 #11240 #11241 #11282

https://github.com/rust-lang/cargo/compare/08250398...rust-1.66.0
https://doc.rust-lang.org/nightly/cargo/commands/cargo-remove.html
https://github.com/rust-lang/cargo/pull/11059
https://github.com/rust-lang/cargo/pull/11099
https://github.com/rust-lang/cargo/pull/11193
https://github.com/rust-lang/cargo/pull/11204
https://github.com/rust-lang/cargo/pull/11227
https://github.com/rust-lang/cargo/pull/11106
https://github.com/rust-lang/cargo/pull/11292
https://github.com/rust-lang/cargo/pull/11118
https://github.com/rust-lang/rfcs/blob/master/text/3289-source_replacement_ambiguity.md
https://github.com/rust-lang/cargo/pull/10907
https://github.com/rust-lang/cargo/pull/11062
https://github.com/rust-lang/cargo/pull/11210
https://github.com/rust-lang/cargo/pull/11216
https://github.com/rust-lang/cargo/pull/11255
https://github.com/rust-lang/cargo/pull/11116
https://github.com/rust-lang/cargo/pull/11119
https://github.com/rust-lang/cargo/pull/11159
https://github.com/rust-lang/cargo/pull/11190
https://github.com/rust-lang/cargo/pull/11239
https://github.com/rust-lang/cargo/pull/11280
https://github.com/rust-lang/cargo/pull/11170
https://github.com/rust-lang/cargo/pull/10770
https://github.com/rust-lang/cargo/pull/10938
https://github.com/rust-lang/cargo/pull/11082
https://github.com/rust-lang/cargo/pull/11093
https://github.com/rust-lang/cargo/pull/11157
https://github.com/rust-lang/cargo/pull/11185
https://github.com/rust-lang/cargo/pull/11207
https://github.com/rust-lang/cargo/pull/11219
https://github.com/rust-lang/cargo/pull/11240
https://github.com/rust-lang/cargo/pull/11241
https://github.com/rust-lang/cargo/pull/11282

Fixed

❗ Config file loaded via cargo --config <file> now takes priority
over environment variables. This is a documented behaviour but the
old implementation accidentally got it wrong. #11077
❗ Cargo collects rustflags in target.cfg(…).rustflags more
correctly and warns if that's not enough for convergence. #11114
Final artifacts not removed by linker should be removed before a
compilation gets started. #11122
cargo add now reports unknown features in a more discoverable
manner. #11098
Cargo now reports command aliasing failure with more error contexts.
#11087
A better error message when cargo login prompt receives empty
input. #11145
A better error message for fields with wrong types where workspace
inheritance is supported. #11113
A better error message when mixing feature syntax dep: with / .
#11172
A better error message when publishing but package.publish is
false in the manifest. #11280

Nightly only

Added new config option publish.timeout behind -Zpublish-
timeout . docs #11230
Added retry support to sparse registries. #11069
Fixed sparse registry lockfile urls containing registry+sparse+ .
#11177
Add new config option registries.crates-io.protocol for
controlling crates.io protocol. #11215
Removed sparse+ prefix for index.crates.io. #11247
Fixed publishing with a dependency on a sparse registry. #11268

https://github.com/rust-lang/cargo/pull/11077
https://github.com/rust-lang/cargo/pull/11114
https://github.com/rust-lang/cargo/pull/11122
https://github.com/rust-lang/cargo/pull/11098
https://github.com/rust-lang/cargo/pull/11087
https://github.com/rust-lang/cargo/pull/11145
https://github.com/rust-lang/cargo/pull/11113
https://github.com/rust-lang/cargo/pull/11172
https://github.com/rust-lang/cargo/pull/11280
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#publish-timeout
https://github.com/rust-lang/cargo/pull/11230
https://github.com/rust-lang/cargo/pull/11069
https://github.com/rust-lang/cargo/pull/11177
https://github.com/rust-lang/cargo/pull/11215
https://github.com/rust-lang/cargo/pull/11247
https://github.com/rust-lang/cargo/pull/11268

Fixed confusing error messages when using -Zsparse-registry .
#11283
Fixed 410 gone response handling for sparse registries. #11286

https://github.com/rust-lang/cargo/pull/11283
https://github.com/rust-lang/cargo/pull/11286

Cargo 1.65 (2022-11-03)
4fd148c4...rust-1.65.0

Added

External subcommands can now inherit jobserver file descriptors from
Cargo. #10511
Added an API documentation for private items in cargo-the-library.
See https://doc.rust-lang.org/nightly/nightly-rustc/cargo. #11019

Changed

Cargo now stops adding its bin path to PATH if it's already there.
#11023
Improved the performance of Cargo build scheduling by sorting the
queue of pending jobs. #11032
Improved the performance fetching git dependencies from GitHub
even when using a partial hash in the rev field. #10807
Cargo now uses git2 v0.15 and libgit2-sys v0.14, which bring several
compatibility fixes with git's new behaviors. #11004
Registry index files are cached in a more granular way based on
content hash. #11044
Cargo now uses the standard library's std::thread::scope instead of
the crossbeam crate for spawning scoped threads. #10977
Cargo now uses the standard library's available_parallelism
instead of the num_cpus crate for determining the default parallelism.
#10969
Cargo now guides you how to solve it when seeing an error message of
rust-version requirement not satisfied. #10891
Cargo now tells you more about possible causes and how to fix it when
a subcommand cannot be found. #10924
Cargo now lists available target names when a given Cargo target
cannot be found. #10999

https://github.com/rust-lang/cargo/compare/4fd148c4...rust-1.65.0
https://github.com/rust-lang/cargo/pull/10511
https://doc.rust-lang.org/nightly/nightly-rustc/cargo
https://github.com/rust-lang/cargo/pull/11019
https://github.com/rust-lang/cargo/pull/11023
https://github.com/rust-lang/cargo/pull/11032
https://github.com/rust-lang/cargo/pull/10807
https://github.com/rust-lang/cargo/pull/11004
https://github.com/rust-lang/cargo/pull/11044
https://github.com/rust-lang/cargo/pull/10977
https://github.com/rust-lang/cargo/pull/10969
https://github.com/rust-lang/cargo/pull/10891
https://github.com/rust-lang/cargo/pull/10924
https://github.com/rust-lang/cargo/pull/10999

cargo update now warns if --precise is given without --package
flag. This will become a hard error after a transition period. #10988
#11011
cargo bench and cargo test now report a more precise test
execution error right after a test fails. #11028
cargo add now tells you for which version the features are added.
#11075
Call out that non-ASCII crate names are not supported by Rust
anymore. #11017
Enhanced the error message when in the manifest a field is expected to
be an array but a string is used. #10944

Fixed

Removed the restriction on file locking supports on platforms other
than Linux. #10975
Fixed incorrect OS detection by bumping os_info to 3.5.0. #10943
Scanning the package directory now ignores errors from broken but
excluded symlink files. #11008
Fixed deadlock when build scripts are waiting for input on stdin.
#11257

Nightly

Progress indicator for sparse registries becomes more straightforward.
#11068

https://github.com/rust-lang/cargo/pull/10988
https://github.com/rust-lang/cargo/pull/11011
https://github.com/rust-lang/cargo/pull/11028
https://github.com/rust-lang/cargo/pull/11075
https://github.com/rust-lang/cargo/pull/11017
https://github.com/rust-lang/cargo/pull/10944
https://github.com/rust-lang/cargo/pull/10975
https://github.com/rust-lang/cargo/pull/10943
https://github.com/rust-lang/cargo/pull/11008
https://github.com/rust-lang/cargo/pull/11257
https://github.com/rust-lang/cargo/pull/11068

Cargo 1.64 (2022-09-22)
a5e08c47...rust-1.64.0

Added

🎉 Packages can now inherit settings from the workspace so that the
settings can be centralized in one place. See workspace.package and
workspace.dependencies for more details on how to define these
common settings. #10859
Added the --crate-type flag to cargo rustc to override the crate
type. #10838
Cargo commands can now accept multiple --target flags to build for
multiple targets at once, and the build.target config option may
now take an array of multiple targets. #10766
The --jobs argument can now take a negative number to count
backwards from the max CPUs. #10844

Changed

Bash completion of cargo install --path now supports path
completion. #10798
Significantly improved the performance fetching git dependencies
from GitHub when using a hash in the rev field. #10079
Published packages will now include the resolver setting from the
workspace to ensure that they use the same resolver when used in
isolation. #10911 #10961 #10970
cargo add will now update Cargo.lock . #10902
The path in the config output of cargo vendor now translates
backslashes to forward slashes so that the settings should work across
platforms. #10668
The workspace.default-members setting now allows a value of "."
in a non-virtual workspace to refer to the root package. #10784

Fixed

https://github.com/rust-lang/cargo/compare/a5e08c47...rust-1.64.0
https://doc.rust-lang.org/nightly/cargo/reference/workspaces.html#the-package-table
https://doc.rust-lang.org/nightly/cargo/reference/workspaces.html#the-dependencies-table
https://github.com/rust-lang/cargo/pull/10859
https://doc.rust-lang.org/nightly/cargo/commands/cargo-rustc.html#option-cargo-rustc---crate-type
https://github.com/rust-lang/cargo/pull/10838
https://doc.rust-lang.org/nightly/cargo/reference/config.html#buildtarget
https://github.com/rust-lang/cargo/pull/10766
https://github.com/rust-lang/cargo/pull/10844
https://github.com/rust-lang/cargo/pull/10798
https://github.com/rust-lang/cargo/pull/10079
https://github.com/rust-lang/cargo/pull/10911
https://github.com/rust-lang/cargo/pull/10961
https://github.com/rust-lang/cargo/pull/10970
https://github.com/rust-lang/cargo/pull/10902
https://github.com/rust-lang/cargo/pull/10668
https://doc.rust-lang.org/nightly/cargo/reference/workspaces.html#package-selection
https://github.com/rust-lang/cargo/pull/10784

🚨 CVE-2022-36113: Extracting malicious crates can corrupt arbitrary
files. #11089 #11088
🚨 CVE-2022-36114: Extracting malicious crates can fill the file
system. #11089 #11088
The os output in cargo --version --verbose now supports more
platforms. #10802
Cached git checkouts will now be rebuilt if they are corrupted. This
may happen when using net.git-fetch-with-cli and interrupting
the clone process. #10829
Fixed panic in cargo add --offline . #10817

Nightly only

Fixed deserialization of unstable check-cfg in config.toml . #10799

https://github.com/rust-lang/cargo/security/advisories/GHSA-rfj2-q3h3-hm5j
https://github.com/rust-lang/cargo/pull/11089
https://github.com/rust-lang/cargo/pull/11088
https://github.com/rust-lang/cargo/security/advisories/GHSA-2hvr-h6gw-qrxp
https://github.com/rust-lang/cargo/pull/11089
https://github.com/rust-lang/cargo/pull/11088
https://github.com/rust-lang/cargo/pull/10802
https://github.com/rust-lang/cargo/pull/10829
https://github.com/rust-lang/cargo/pull/10817
https://github.com/rust-lang/cargo/pull/10799

Cargo 1.63 (2022-08-11)
3f052d8e...rust-1.63.0

Added

🎉 Added the --config CLI option to pass config options directly on
the CLI. #10755
The CARGO_PKG_RUST_VERSION environment variable is now set when
compiling a crate if the manifest has the rust-version field set.
#10713

Changed

A warning is emitted when encountering multiple packages with the
same name in a git dependency. This will ignore packages with
publish=false . #10701 #10767
Change tracking now uses the contents of a .json target spec file
instead of its path. This should help avoid rebuilds if the path changes.
#10746
Git dependencies with a submodule configured with the update=none
strategy in .gitmodules is now honored, and the submodule will not
be fetched. #10717
Crate files now use a more recent date (Jul 23, 2006 instead of Nov 29,
1973) for deterministic behavior. #10720
The initial template used for cargo new now includes a slightly more
realistic test structure that has use super::*; in the test module.
#10706
Updated the internal HTTP library libcurl with various small fixes and
updates. #10696

Fixed

Fix zsh completions for cargo add and cargo locate-project
#10810 #10811

https://github.com/rust-lang/cargo/compare/3f052d8e...rust-1.63.0
https://github.com/rust-lang/cargo/pull/10755
https://github.com/rust-lang/cargo/pull/10713
https://github.com/rust-lang/cargo/pull/10701
https://github.com/rust-lang/cargo/pull/10767
https://github.com/rust-lang/cargo/pull/10746
https://github.com/rust-lang/cargo/pull/10717
https://github.com/rust-lang/cargo/pull/10720
https://github.com/rust-lang/cargo/pull/10706
https://github.com/rust-lang/cargo/pull/10696
https://github.com/rust-lang/cargo/pull/10810
https://github.com/rust-lang/cargo/pull/10811

Fixed -p being ignored with cargo publish in the root of a virtual
workspace. Some additional checks were also added to generate an
error if multiple packages were selected (previously it would pick the
first one). #10677
The human-readable executable name is no longer displayed for cargo
test when using JSON output. #10691

Nightly only

Added -Zcheck-cfg=output to support build-scripts declaring their
supported set of cfg values with cargo:rustc-check-cfg . #10539
-Z sparse-registry now uses https://index.crates.io/ when
accessing crates-io. #10725
Fixed formatting of .workspace key in cargo add for workspace
inheritance. #10705
Sparse HTTP registry URLs must now end with a / . #10698
Fixed issue with cargo add and workspace inheritance of the
default-features key. #10685

https://github.com/rust-lang/cargo/pull/10677
https://github.com/rust-lang/cargo/pull/10691
https://github.com/rust-lang/cargo/pull/10539
https://github.com/rust-lang/cargo/pull/10725
https://github.com/rust-lang/cargo/pull/10705
https://github.com/rust-lang/cargo/pull/10698
https://github.com/rust-lang/cargo/pull/10685

Cargo 1.62 (2022-06-30)
1ef1e0a1...rust-1.62.0

Added

🎉 Added the cargo add command for adding dependencies to
Cargo.toml from the command-line. docs #10472 #10577 #10578
Package ID specs now support name@version syntax in addition to the
previous name:version to align with the behavior in cargo add and
other tools. cargo install and cargo yank also now support this
syntax so the version does not need to passed as a separate flag.
#10582 #10650 #10597
Added the CLI option -F as an alias of --features . #10576
The git and registry directories in Cargo's home directory (usually
~/.cargo) are now marked as cache directories so that they are not
included in backups or content indexing (on Windows). #10553
Added the --version flag to cargo yank to replace the --vers flag
to be consistent with cargo install . #10575
Added automatic @ argfile support, which will use "response files" if
the command-line to rustc exceeds the operating system's limit.
#10546
cargo clean now has a progress bar (if it takes longer than half a
second). #10236

Changed

cargo install no longer generates an error if no binaries were found
to install (such as missing required features). #10508
cargo test now passes --target to rustdoc if the specified target
is the same as the host target. #10594
cargo doc now automatically passes -Arustdoc::private-intra-
doc-links when documenting a binary (which automatically includes
--document-private-items). The private-intra-doc-links lint is

https://github.com/rust-lang/cargo/compare/1ef1e0a1...rust-1.62.0
https://doc.rust-lang.org/nightly/cargo/commands/cargo-add.html
https://github.com/rust-lang/cargo/pull/10472
https://github.com/rust-lang/cargo/pull/10577
https://github.com/rust-lang/cargo/pull/10578
https://github.com/rust-lang/cargo/pull/10582
https://github.com/rust-lang/cargo/pull/10650
https://github.com/rust-lang/cargo/pull/10597
https://github.com/rust-lang/cargo/pull/10576
https://github.com/rust-lang/cargo/pull/10553
https://github.com/rust-lang/cargo/pull/10575
https://github.com/rust-lang/cargo/pull/10546
https://github.com/rust-lang/cargo/pull/10236
https://github.com/rust-lang/cargo/pull/10508
https://github.com/rust-lang/cargo/pull/10594
https://doc.rust-lang.org/rustdoc/lints.html#private_intra_doc_links

only relevant when not documenting private items, which doesn't
apply to binaries. #10142
The length of the short git hash in the cargo --version output is now
fixed to 9 characters. Previously the length was inconsistent between
different platforms. #10579
Attempting to publish a package with a Cargo.toml.orig file will
now result in an error. The filename would otherwise conflict with the
automatically-generated file. #10551

Fixed

The build.dep-info-basedir configuration setting now properly
supports the use of .. in the path to refer to a parent directory. #10281
Fixed regression in automatic detection of the default number of CPUs
to use on systems using cgroups v1. #10737 #10739

Nightly only

cargo fetch now works with -Zbuild-std to fetch the standard
library's dependencies. #10129
Added support for workspace inheritance. docs #10584 #10568
#10565 #10564 #10563 #10606 #10548 #10538
Added -Zcheck-cfg which adds various forms of validating cfg
expressions for unknown names and values. docs #10486 #10566
The --config CLI option no longer allows setting a registry token.
#10580
Fixed issues with proc-macros and -Z rustdoc-scrape-examples .
#10549 #10533

https://github.com/rust-lang/cargo/pull/10142
https://github.com/rust-lang/cargo/pull/10579
https://github.com/rust-lang/cargo/pull/10551
https://github.com/rust-lang/cargo/pull/10281
https://github.com/rust-lang/cargo/pull/10737
https://github.com/rust-lang/cargo/pull/10739
https://github.com/rust-lang/cargo/pull/10129
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#workspace-inheritance
https://github.com/rust-lang/cargo/pull/10584
https://github.com/rust-lang/cargo/pull/10568
https://github.com/rust-lang/cargo/pull/10565
https://github.com/rust-lang/cargo/pull/10564
https://github.com/rust-lang/cargo/pull/10563
https://github.com/rust-lang/cargo/pull/10606
https://github.com/rust-lang/cargo/pull/10548
https://github.com/rust-lang/cargo/pull/10538
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#check-cfg
https://github.com/rust-lang/cargo/pull/10486
https://github.com/rust-lang/cargo/pull/10566
https://github.com/rust-lang/cargo/pull/10580
https://github.com/rust-lang/cargo/pull/10549
https://github.com/rust-lang/cargo/pull/10533

Cargo 1.61 (2022-05-19)
ea2a21c9...rust-1.61.0

Added
Changed

cargo test --no-run will now display the path to the test
executables. #10346
cargo tree --duplicates no longer reports dependencies that are
shared between the host and the target as duplicates. #10466
Updated to the 1.4.2 release of libgit2 which brings in several fixes
#10442 #10479
cargo vendor no longer allows multiple values for --sync , you must
pass multiple --sync flags instead. #10448
Warnings are now issued for manifest keys that have mixed both
underscore and dash variants (such as specifying both proc_macro
and proc-macro) #10316
Cargo now uses the standard library's available_parallelism
instead of the num_cpus crate for determining the default parallelism.
#10427
cargo search terms are now highlighted. #10425

Fixed

Paths passed to VCS tools like hg are now added after -- to avoid
conflict with VCS flags. #10483
Fixed the http.timeout configuration value to actually work. #10456
Fixed issues with cargo rustc --crate-type not working in some
situations. #10388

Nightly only

https://github.com/rust-lang/cargo/compare/ea2a21c9...rust-1.61.0
https://github.com/rust-lang/cargo/pull/10346
https://github.com/rust-lang/cargo/pull/10466
https://github.com/rust-lang/cargo/pull/10442
https://github.com/rust-lang/cargo/pull/10479
https://github.com/rust-lang/cargo/pull/10448
https://github.com/rust-lang/cargo/pull/10316
https://github.com/rust-lang/cargo/pull/10427
https://github.com/rust-lang/cargo/pull/10425
https://github.com/rust-lang/cargo/pull/10483
https://github.com/rust-lang/cargo/pull/10456
https://github.com/rust-lang/cargo/pull/10388

Added -Z check-cfg-features to enable compile-time checking of
features #10408
Added -Z bindeps to support binary artifact dependencies (RFC-
3028) #9992
-Z multitarget is now supported in the build.target config value
with an array. #10473
Added --keep-going flag which will continue compilation even if
one crate fails to compile. #10383
Start work on inheriting manifest values in a workspace. #10497
#10517
Added support for sparse HTTP registries. #10470 #10064
Fixed panic when artifact target is used for
[target.'cfg(<target>)'.dependencies] #10433
Fixed host flags to pass to build scripts (-Z target-applies-to-
host) #10395
Added -Z check-cfg-features support for rustdoc #10428

https://github.com/rust-lang/cargo/pull/10408
https://github.com/rust-lang/cargo/pull/9992
https://github.com/rust-lang/cargo/pull/10473
https://github.com/rust-lang/cargo/pull/10383
https://github.com/rust-lang/cargo/pull/10497
https://github.com/rust-lang/cargo/pull/10517
https://github.com/rust-lang/cargo/pull/10470
https://github.com/rust-lang/cargo/pull/10064
https://github.com/rust-lang/cargo/pull/10433
https://github.com/rust-lang/cargo/pull/10395
https://github.com/rust-lang/cargo/pull/10428

Cargo 1.60 (2022-04-07)
358e79fe...rust-1.60.0

Added

🎉 Added the dep: prefix in the [features] table to refer to an
optional dependency. This allows creating feature names with the same
name as a dependency, and allows for "hiding" optional dependencies
so that they do not implicitly expose a feature name. docs #10269
🎉 Added the dep-name?/feature-name syntax to the [features]
table to only enable the feature feature-name if the optional
dependency dep-name is already enabled by some other feature. docs
#10269
🎉 Added --timings option to generate an HTML report about build
timing, concurrency, and CPU use. docs #10245
Added the "v" and "features2" fields to the registry index. The "v"
field provides a method for compatibility with future changes to the
index. docs #10269
Added bash completion for cargo clippy #10347
Added bash completion for cargo report #10295
Added support to build scripts for rustc-link-arg-tests , rustc-
link-arg-examples , and rustc-link-arg-benches . docs #10274

Changed

Cargo now uses the clap 3 library for command-line argument parsing.
#10265
The build.pipelining config option is now deprecated, pipelining
will now always be enabled. #10258
cargo new will now generate a .gitignore which only ignores
Cargo.lock in the root of the repo, instead of any directory. #10379
Improved startup time of bash completion. #10365

https://github.com/rust-lang/cargo/compare/358e79fe...rust-1.60.0
https://doc.rust-lang.org/nightly/cargo/reference/features.html#optional-dependencies
https://github.com/rust-lang/cargo/pull/10269
https://doc.rust-lang.org/nightly/cargo/reference/features.html#dependency-features
https://github.com/rust-lang/cargo/pull/10269
https://doc.rust-lang.org/nightly/cargo/reference/timings.html
https://github.com/rust-lang/cargo/pull/10245
https://doc.rust-lang.org/nightly/cargo/reference/registries.html#index-format
https://github.com/rust-lang/cargo/pull/10269
https://github.com/rust-lang/cargo/pull/10347
https://github.com/rust-lang/cargo/pull/10295
https://doc.rust-lang.org/nightly/cargo/reference/build-scripts.html#outputs-of-the-build-script
https://github.com/rust-lang/cargo/pull/10274
https://github.com/rust-lang/cargo/pull/10265
https://github.com/rust-lang/cargo/pull/10258
https://github.com/rust-lang/cargo/pull/10379
https://github.com/rust-lang/cargo/pull/10365

The --features flag is now honored when used with the --all-
features flag, which allows enabling features from other packages.
#10337
Cargo now uses a different TOML parser. This should not introduce
any user-visible changes. This paves the way to support format-
preserving programmatic modification of TOML files for supporting
cargo add and other future enhancements. #10086
Setting a library to emit both a dylib and cdylib is now an error, as
this combination is not supported. #10243
cargo --list now includes the help command. #10300

Fixed

Fixed running cargo doc on examples with dev-dependencies.
#10341
Fixed cargo install --path for a path that is relative to a directory
outside of the workspace in the current directory. #10335
cargo test TEST_FILTER should no longer build binaries that are
explicitly disabled with test = false . #10305
Fixed regression with term.verbose without term.quiet , and vice
versa. #10429 #10436

Nightly only

Added rustflags option to a profile definition. #10217
Changed --config to only support dotted keys. #10176
Fixed profile rustflags not being gated in profile overrides. #10411
#10413

https://github.com/rust-lang/cargo/pull/10337
https://github.com/rust-lang/cargo/pull/10086
https://github.com/rust-lang/cargo/pull/10243
https://github.com/rust-lang/cargo/pull/10300
https://github.com/rust-lang/cargo/pull/10341
https://github.com/rust-lang/cargo/pull/10335
https://github.com/rust-lang/cargo/pull/10305
https://github.com/rust-lang/cargo/pull/10429
https://github.com/rust-lang/cargo/pull/10436
https://github.com/rust-lang/cargo/pull/10217
https://github.com/rust-lang/cargo/pull/10176
https://github.com/rust-lang/cargo/pull/10411
https://github.com/rust-lang/cargo/pull/10413

Cargo 1.59 (2022-02-24)
7f08ace4...rust-1.59.0

Added

🎉 The strip option can now be specified in a profile to specify the
behavior for removing symbols and debug information from binaries.
docs #10088 #10376
🎉 Added future incompatible reporting. This provides reporting for
when a future change in rustc may cause a package or any of its
dependencies to stop building. docs #10165
SSH authentication on Windows now supports ssh-agent. docs #10248
Added term.quiet configuration option to enable the --quiet
behavior from a config file. docs #10152
Added -r CLI option as an alias for --release . #10133

Changed

Scanning the package directory should now be resilient to errors, such
as filesystem loops or access issues. #10188 #10214 #10286
cargo help <alias> will now show the target of the alias. #10193
Removed the deprecated --host CLI option. #10145 #10327
Cargo should now report its version to always be in sync with rustc .
#10178
Added EOPNOTSUPP to ignored file locking errors, which is relevant
to BSD operating systems. #10157

Fixed

macOS: Fixed an issue where running an executable would
sporadically be killed by the kernel (likely starting in macOS 12).
#10196
Fixed so that the doc=false setting is honored in the [lib] definition
of a dependency. #10201 #10324

https://github.com/rust-lang/cargo/compare/7f08ace4...rust-1.59.0
https://doc.rust-lang.org/nightly/cargo/reference/profiles.html#strip
https://github.com/rust-lang/cargo/pull/10088
https://github.com/rust-lang/cargo/pull/10376
https://doc.rust-lang.org/nightly/cargo/reference/future-incompat-report.html
https://github.com/rust-lang/cargo/pull/10165
https://doc.rust-lang.org/nightly/cargo/appendix/git-authentication.html#ssh-authentication
https://github.com/rust-lang/cargo/pull/10248
https://doc.rust-lang.org/nightly/cargo/reference/config.html#termquiet
https://github.com/rust-lang/cargo/pull/10152
https://github.com/rust-lang/cargo/pull/10133
https://github.com/rust-lang/cargo/pull/10188
https://github.com/rust-lang/cargo/pull/10214
https://github.com/rust-lang/cargo/pull/10286
https://github.com/rust-lang/cargo/pull/10193
https://github.com/rust-lang/cargo/pull/10145
https://github.com/rust-lang/cargo/pull/10327
https://github.com/rust-lang/cargo/pull/10178
https://github.com/rust-lang/cargo/pull/10157
https://github.com/rust-lang/cargo/pull/10196
https://github.com/rust-lang/cargo/pull/10201
https://github.com/rust-lang/cargo/pull/10324

The "executable" field in the JSON option was incorrectly including
the path to index.html when documenting a binary. It is now null.
#10171
Documenting a binary now waits for the package library to finish
documenting before starting. This fixes some race conditions if the
binary has intra-doc links to the library. #10172
Fixed panic when displaying help text to a closed pipe. #10164

Nightly only

Added the --crate-type flag to cargo rustc . #10093

https://github.com/rust-lang/cargo/pull/10171
https://github.com/rust-lang/cargo/pull/10172
https://github.com/rust-lang/cargo/pull/10164
https://github.com/rust-lang/cargo/pull/10093

Cargo 1.58 (2022-01-13)
b2e52d7c...rust-1.58.0

Added

Added rust_version field to package data in cargo metadata .
#9967
Added --message-format option to cargo install . #10107

Changed

A warning is now shown when an alias shadows an external command.
#10082
Updated curl to 7.80.0. #10040 #10106

Fixed

Doctests now include rustc-link-args from build scripts. #9916
Fixed cargo tree entering an infinite loop with cyclical dev-
dependencies. Fixed an edge case where the resolver would fail to
handle a cyclical dev-dependency with a feature. #10103
Fixed cargo clean -p when the directory path contains glob
characters. #10072
Fixed debug builds of cargo which could panic when downloading a
crate when the server has a redirect with a non-empty body. #10048

Nightly only

Make future-incompat-report output more user-friendly. #9953
Added support to scrape code examples from the examples directory
to be included in the documentation. docs #9525 #10037 #10017
Fixed cargo report future-incompatibilities to check stdout if
it supports color. #10024

https://github.com/rust-lang/cargo/compare/b2e52d7c...rust-1.58.0
https://github.com/rust-lang/cargo/pull/9967
https://github.com/rust-lang/cargo/pull/10107
https://github.com/rust-lang/cargo/pull/10082
https://github.com/rust-lang/cargo/pull/10040
https://github.com/rust-lang/cargo/pull/10106
https://github.com/rust-lang/cargo/pull/9916
https://github.com/rust-lang/cargo/pull/10103
https://github.com/rust-lang/cargo/pull/10072
https://github.com/rust-lang/cargo/pull/10048
https://github.com/rust-lang/cargo/pull/9953
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#scrape-examples
https://github.com/rust-lang/cargo/pull/9525
https://github.com/rust-lang/cargo/pull/10037
https://github.com/rust-lang/cargo/pull/10017
https://github.com/rust-lang/cargo/pull/10024

Cargo 1.57 (2021-12-02)
18751dd3...rust-1.57.0

Added

🎉 Added custom named profiles. This also changes the test and
bench profiles to inherit their settings from dev and release , and
Cargo will now only use a single profile during a given command
instead of using different profiles for dependencies and cargo-targets.
docs #9943
The rev option for a git dependency now supports git references that
start with refs/ . An example where this can be used is to depend on a
pull request from a service like GitHub before it is merged. #9859
Added path_in_vcs field to the .cargo_vcs_info.json file. docs
#9866

Changed

❗ RUSTFLAGS is no longer set for build scripts. This change was
made in 1.55, but the release notes did not highlight this change. Build
scripts should use CARGO_ENCODED_RUSTFLAGS instead. See the
documentation for more details.
The cargo version command now includes some extra information.
#9968
Updated libgit2 to 1.3 which brings in a number of fixes and changes
to git handling. #9963 #9988
Shell completions now include shorthand b/r/c/d subcommands. #9951
cargo update --precise now allows specifying a version without
semver metadata (stuff after + in the version number). #9945
zsh completions now complete --example names. #9939
The progress bar now differentiates when building unittests. #9934
Some backwards-compatibility support for invalid TOML syntax has
been removed. #9932

https://github.com/rust-lang/cargo/compare/18751dd3...rust-1.57.0
https://doc.rust-lang.org/nightly/cargo/reference/profiles.html#custom-profiles
https://github.com/rust-lang/cargo/pull/9943
https://github.com/rust-lang/cargo/pull/9859
https://doc.rust-lang.org/nightly/cargo/commands/cargo-package.html#cargo_vcs_infojson-format
https://github.com/rust-lang/cargo/pull/9866
https://doc.rust-lang.org/nightly/cargo/reference/environment-variables.html#environment-variables-cargo-sets-for-build-scripts
https://github.com/rust-lang/cargo/pull/9968
https://github.com/rust-lang/cargo/pull/9963
https://github.com/rust-lang/cargo/pull/9988
https://github.com/rust-lang/cargo/pull/9951
https://github.com/rust-lang/cargo/pull/9945
https://github.com/rust-lang/cargo/pull/9939
https://github.com/rust-lang/cargo/pull/9934
https://github.com/rust-lang/cargo/pull/9932

Reverted the change from 1.55 that triggered an error for dependency
specifications that did not include any fields. #9911

Fixed

Removed a log message (from CARGO_LOG) that may leak tokens.
#9873
cargo fix will now avoid writing fixes to the global registry cache.
#9938
Fixed -Z help CLI option when used with a shorthand alias (b/c/r/d).
#9933

Nightly only

https://github.com/rust-lang/cargo/pull/9911
https://github.com/rust-lang/cargo/pull/9873
https://github.com/rust-lang/cargo/pull/9938
https://github.com/rust-lang/cargo/pull/9933

Cargo 1.56 (2021-10-21)
cebef295...rust-1.56.0

Added

🎉 Cargo now supports the 2021 edition. More information may be
found in the edition guide. #9800
🎉 Added the rust-version field to Cargo.toml to specify the
minimum supported Rust version, and the --ignore-rust-version
command line option to override it. #9732
Added the [env] table to config files to specify environment variables
to set. docs #9411
[patch] tables may now be specified in config files. docs #9839
cargo doc now supports the --example and --examples flags.
#9808
🎉 Build scripts can now pass additional linker arguments for binaries
or all linkable targets. docs #9557
Added support for the -p flag for cargo publish to publish a
specific package in a workspace. cargo package also now supports -
p and --workspace . #9559
Added documentation about third-party registries. #9830
Added the {sha256-checksum} placeholder for URLs in a registry
config.json . docs #9801
Added a warning when a dependency does not have a library. #9771

Changed

Doc tests now support the -q flag to show terse test output. #9730
features used in a [replace] table now issues a warning, as they
are ignored. #9681
Changed so that only wasm32-unknown-emscripten executables are
built without a hash in the filename. Previously it was all wasm32
targets. Additionally, all apple binaries are now built with a hash in

https://github.com/rust-lang/cargo/compare/cebef295...rust-1.56.0
https://doc.rust-lang.org/nightly/edition-guide/rust-2021/index.html
https://github.com/rust-lang/cargo/pull/9800
https://doc.rust-lang.org/nightly/cargo/reference/manifest.html#the-rust-version-field
https://github.com/rust-lang/cargo/pull/9732
https://doc.rust-lang.org/nightly/cargo/reference/config.html#env
https://github.com/rust-lang/cargo/pull/9411
https://doc.rust-lang.org/nightly/cargo/reference/config.html#patch
https://github.com/rust-lang/cargo/pull/9839
https://github.com/rust-lang/cargo/pull/9808
https://doc.rust-lang.org/nightly/cargo/reference/build-scripts.html#outputs-of-the-build-script
https://github.com/rust-lang/cargo/pull/9557
https://github.com/rust-lang/cargo/pull/9559
https://github.com/rust-lang/cargo/pull/9830
https://doc.rust-lang.org/nightly/cargo/reference/registries.html#index-format
https://github.com/rust-lang/cargo/pull/9801
https://github.com/rust-lang/cargo/pull/9771
https://github.com/rust-lang/cargo/pull/9730
https://github.com/rust-lang/cargo/pull/9681

the filename. This allows multiple copies to be cached at once, and
matches the behavior on other platforms (except msvc). #9653
cargo new now generates an example that doesn't generate a warning
with clippy. #9796
cargo fix --edition now only applies edition-specific lints. #9846
Improve resolver message to include dependency requirements. #9827
cargo fix now has more debug logging available with the
CARGO_LOG environment variable. #9831
Changed cargo fix --edition to emit a warning when on the latest
stable edition when running on stable instead of generating an error.
#9792
cargo install will now determine all of the packages to install
before starting the installation, which should help with reporting errors
without partially installing. #9793
The resolver report for cargo fix --edition now includes
differences for dev-dependencies. #9803
cargo fix will now show better diagnostics for abnormal errors from
rustc . #9799
Entries in cargo --list are now deduplicated. #9773
Aliases are now included in cargo --list . #9764

Fixed

Fixed panic with build-std of a proc-macro. #9834
Fixed running cargo recursively from proc-macros while running
cargo fix . #9818
Return an error instead of a stack overflow for command alias loops.
#9791
Updated to curl 7.79.1, which will hopefully fix intermittent http2
errors. #9937

Nightly only

Added [future-incompat-report] config section. #9774

https://github.com/rust-lang/cargo/pull/9653
https://github.com/rust-lang/cargo/pull/9796
https://github.com/rust-lang/cargo/pull/9846
https://github.com/rust-lang/cargo/pull/9827
https://github.com/rust-lang/cargo/pull/9831
https://github.com/rust-lang/cargo/pull/9792
https://github.com/rust-lang/cargo/pull/9793
https://github.com/rust-lang/cargo/pull/9803
https://github.com/rust-lang/cargo/pull/9799
https://github.com/rust-lang/cargo/pull/9773
https://github.com/rust-lang/cargo/pull/9764
https://github.com/rust-lang/cargo/pull/9834
https://github.com/rust-lang/cargo/pull/9818
https://github.com/rust-lang/cargo/pull/9791
https://github.com/rust-lang/cargo/pull/9937
https://github.com/rust-lang/cargo/pull/9774

Fixed value-after-table error with custom named profiles. #9789
Added the different-binary-name feature to support specifying a
non-rust-identifier for a binary name. docs #9627
Added a profile option to select the codegen backend. docs #9118

https://github.com/rust-lang/cargo/pull/9789
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#different-binary-name
https://github.com/rust-lang/cargo/pull/9627
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#codegen-backend
https://github.com/rust-lang/cargo/pull/9118

Cargo 1.55 (2021-09-09)
aa8b0929...rust-1.55.0

Added

The package definition in cargo metadata now includes the
"default_run" field from the manifest. #9550
❗ Build scripts now have access to the following environment
variables: RUSTC_WRAPPER , RUSTC_WORKSPACE_WRAPPER ,
CARGO_ENCODED_RUSTFLAGS . RUSTFLAGS is no longer set for build
scripts; they should use CARGO_ENCODED_RUSTFLAGS instead. docs
#9601
Added cargo d as an alias for cargo doc . #9680
Added {lib} to the cargo tree --format option to display the
library name of a package. #9663
Added members_mut method to the Workspace API. #9547

Changed

If a build command does not match any targets when using the --all-
targets , --bins , --tests , --examples , or --benches flags, a
warning is now displayed to inform you that there were no matching
targets. #9549
The way cargo init detects whether or not existing source files
represent a binary or library has been changed to respect the
command-line flags instead of trying to guess which type it is. #9522
Registry names are now displayed instead of registry URLs when
possible. #9632
Duplicate compiler diagnostics are no longer shown. This can often
happen with cargo test which builds multiple copies of the same
code in parallel. This also updates the warning summary to provide
more context. #9675
The output for warnings or errors is now improved to be leaner,
cleaner, and show more context. #9655

https://github.com/rust-lang/cargo/compare/aa8b0929...rust-1.55.0
https://github.com/rust-lang/cargo/pull/9550
https://doc.rust-lang.org/nightly/cargo/reference/environment-variables.html#environment-variables-cargo-sets-for-build-scripts
https://github.com/rust-lang/cargo/pull/9601
https://github.com/rust-lang/cargo/pull/9680
https://github.com/rust-lang/cargo/pull/9663
https://github.com/rust-lang/cargo/pull/9547
https://github.com/rust-lang/cargo/pull/9549
https://github.com/rust-lang/cargo/pull/9522
https://github.com/rust-lang/cargo/pull/9632
https://github.com/rust-lang/cargo/pull/9675
https://github.com/rust-lang/cargo/pull/9655

Network send errors are now treated as "spurious" which means they
will be retried. #9695
Git keys (branch , tag , rev) on a non-git dependency are now an
error. Additionally, specifying both git and path is now an error.
#9689
Specifying a dependency without any keys is now an error. #9686
The resolver now prefers to use [patch] table entries of dependencies
when possible. #9639
Package name typo errors in dependencies are now displayed aligned
with the original to help make it easier to see the difference. #9665
Windows platforms may now warn on environment variables that have
the wrong case. #9654
features used in a [patch] table now issues a warning, as they are
ignored. #9666
The target directory is now excluded from content indexing on
Windows. #9635
When Cargo.toml is not found, the error message now detects if it
was misnamed with a lowercase c to suggest the correct form. #9607
Building diesel with the new resolver displays a compatibility
notice. #9602
Updated the opener dependency, which handles opening a web
browser, which includes several changes, such as new behavior when
run on WSL, and using the system xdg-open on Linux. #9583
Updated to libcurl 7.78. #9809 #9810

Fixed

Fixed dep-info files including non-local build script paths. #9596
Handle "jobs = 0" case in cargo config files #9584
Implement warning for ignored trailing arguments after -- #9561
Fixed rustc/rustdoc config values to be config-relative. #9566
cargo fix now supports rustc's suggestions with multiple spans.
#9567

https://github.com/rust-lang/cargo/pull/9695
https://github.com/rust-lang/cargo/pull/9689
https://github.com/rust-lang/cargo/pull/9686
https://github.com/rust-lang/cargo/pull/9639
https://github.com/rust-lang/cargo/pull/9665
https://github.com/rust-lang/cargo/pull/9654
https://github.com/rust-lang/cargo/pull/9666
https://github.com/rust-lang/cargo/pull/9635
https://github.com/rust-lang/cargo/pull/9607
https://github.com/rust-lang/cargo/pull/9602
https://github.com/rust-lang/cargo/pull/9583
https://github.com/rust-lang/cargo/pull/9809
https://github.com/rust-lang/cargo/pull/9810
https://github.com/rust-lang/cargo/pull/9596
https://github.com/rust-lang/cargo/pull/9584
https://github.com/rust-lang/cargo/pull/9561
https://github.com/rust-lang/cargo/pull/9566
https://github.com/rust-lang/cargo/pull/9567

cargo fix now fixes each target serially instead of in parallel to avoid
problems with fixing the same file concurrently. #9677
Changes to the target linker config value now trigger a rebuild.
#9647
Git unstaged deleted files are now ignored when using the --allow-
dirty flag with cargo publish or cargo package . #9645

Nightly only

Enabled support for cargo fix --edition for 2021. #9588
Several changes to named profiles. #9685
Extended instructions on what to do when running cargo fix --
edition on the 2021 edition. #9694
Multiple updates to error messages using nightly features to help better
explain the situation. #9657
Adjusted the edition 2021 resolver diff report. #9649
Fixed error using cargo doc --open with doc.extern-map . #9531
Unified weak and namespaced features. #9574
Various updates to future-incompatible reporting. #9606
[env] environment variables are not allowed to set vars set by Cargo.
#9579

https://github.com/rust-lang/cargo/pull/9677
https://github.com/rust-lang/cargo/pull/9647
https://github.com/rust-lang/cargo/pull/9645
https://github.com/rust-lang/cargo/pull/9588
https://github.com/rust-lang/cargo/pull/9685
https://github.com/rust-lang/cargo/pull/9694
https://github.com/rust-lang/cargo/pull/9657
https://github.com/rust-lang/cargo/pull/9649
https://github.com/rust-lang/cargo/pull/9531
https://github.com/rust-lang/cargo/pull/9574
https://github.com/rust-lang/cargo/pull/9606
https://github.com/rust-lang/cargo/pull/9579

Cargo 1.54 (2021-07-29)
4369396c...rust-1.54.0

Added

Fetching from a git repository (such as the crates.io index) now
displays the network transfer rate. #9395
Added --prune option for cargo tree to limit what is displayed.
#9520
Added --depth option for cargo tree to limit what is displayed.
#9499
Added cargo tree -e no-proc-macro to hide procedural macro
dependencies. #9488
Added doc.browser config option to set which browser to open with
cargo doc --open . #9473
Added CARGO_TARGET_TMPDIR environment variable set for integration
tests & benches. This provides a temporary or "scratch" directory in
the target directory for tests and benches to use. #9375

Changed

--features CLI flags now provide typo suggestions with the new
feature resolver. #9420
Cargo now uses a new parser for SemVer versions. This should behave
mostly the same as before with some minor exceptions where invalid
syntax for version requirements is now rejected. #9508
Mtime handling of .crate published packages has changed slightly to
avoid mtime values of 0. This was causing problems with lldb which
refused to read those files. #9517
Improved performance of git status check in cargo package . #9478
cargo new with fossil now places the ignore settings in the new
repository instead of using fossil settings to set them globally.
This also includes several other cleanups to make it more consistent
with other VCS configurations. #9469

https://github.com/rust-lang/cargo/compare/4369396c...rust-1.54.0
https://github.com/rust-lang/cargo/pull/9395
https://github.com/rust-lang/cargo/pull/9520
https://github.com/rust-lang/cargo/pull/9499
https://github.com/rust-lang/cargo/pull/9488
https://github.com/rust-lang/cargo/pull/9473
https://github.com/rust-lang/cargo/pull/9375
https://github.com/rust-lang/cargo/pull/9420
https://github.com/rust-lang/cargo/pull/9508
https://github.com/rust-lang/cargo/pull/9517
https://github.com/rust-lang/cargo/pull/9478
https://github.com/rust-lang/cargo/pull/9469

rustc-cdylib-link-arg applying transitively displays a warning that
this was not intended, and may be an error in the future. #9563

Fixed

Fixed package.exclude in Cargo.toml using inverted exclusions
(!somefile) when not in a git repository or when vendoring a
dependency. #9186
Dep-info files now adjust build script rerun-if-changed paths to be
absolute paths. #9421
Fixed a bug when with resolver = "1" non-virtual package was
allowing unknown features. #9437
Fixed an issue with the index cache mishandling versions that only
differed in build metadata (such as 110.0.0 and 110.0.0+1.1.0f).
#9476
Fixed cargo install with a semver metadata version. #9467

Nightly only

Added report subcommand, and changed cargo describe-future-
incompatibilitie to cargo report future-incompatibilities .
#9438
Added a [host] table to the config files to be able to set build flags
for host target. Also added target-applies-to-host to control how
the [target] tables behave. #9322
Added some validation to build script rustc-link-arg-* instructions
to return an error if the target doesn't exist. #9523
Added cargo:rustc-link-arg-bin instruction for build scripts.
#9486

https://github.com/rust-lang/cargo/pull/9563
https://github.com/rust-lang/cargo/pull/9186
https://github.com/rust-lang/cargo/pull/9421
https://github.com/rust-lang/cargo/pull/9437
https://github.com/rust-lang/cargo/pull/9476
https://github.com/rust-lang/cargo/pull/9467
https://github.com/rust-lang/cargo/pull/9438
https://github.com/rust-lang/cargo/pull/9322
https://github.com/rust-lang/cargo/pull/9523
https://github.com/rust-lang/cargo/pull/9486

Cargo 1.53 (2021-06-17)
90691f2b...rust-1.53.0

Added
Changed

🔥 Cargo now supports git repositories where the default HEAD branch
is not "master". This also includes a switch to the version 3
Cargo.lock format which can handle default branches correctly.
#9133 #9397 #9384 #9392
🔥 macOS targets now default to unpacked split-debuginfo. #9298
❗ The authors field is no longer included in Cargo.toml for new
projects. #9282
cargo update may now work with the --offline flag. #9279
cargo doc will now erase the doc directory when switching between
different toolchain versions. There are shared, unversioned files (such
as the search index) that can become broken when using different
versions. #8640 #9404
Improved error messages when path dependency/workspace member is
missing. #9368

Fixed

Fixed cargo doc detecting if the documentation needs to be rebuilt
when changing some settings such as features. #9419
cargo doc now deletes the output directory for the package before
running rustdoc to clear out any stale files. #9419
Fixed the -C metadata value to always include all information for all
builds. Previously, in some situations, the hash only included the
package name and version. This fixes some issues, such as incremental
builds with split-debuginfo on macOS corrupting the incremental
cache in some cases. #9418
Fixed man pages not working on Windows if man is in PATH . #9378

https://github.com/rust-lang/cargo/compare/90691f2b...rust-1.53.0
https://github.com/rust-lang/cargo/pull/9133
https://github.com/rust-lang/cargo/pull/9397
https://github.com/rust-lang/cargo/pull/9384
https://github.com/rust-lang/cargo/pull/9392
https://github.com/rust-lang/cargo/pull/9298
https://github.com/rust-lang/cargo/pull/9282
https://github.com/rust-lang/cargo/pull/9279
https://github.com/rust-lang/cargo/pull/8640
https://github.com/rust-lang/cargo/pull/9404
https://github.com/rust-lang/cargo/pull/9368
https://github.com/rust-lang/cargo/pull/9419
https://github.com/rust-lang/cargo/pull/9419
https://github.com/rust-lang/cargo/pull/9418
https://github.com/rust-lang/cargo/pull/9378

The rustc cache is now aware of RUSTC_WRAPPER and
RUSTC_WORKSPACE_WRAPPER . #9348
Track the CARGO environment variable in the rebuild fingerprint if the
code uses env!("CARGO") . #9363

Nightly only

Fixed config includes not working. #9299
Emit note when --future-incompat-report had nothing to report.
#9263
Error messages for nightly features flags (like -Z and cargo-
features) now provides more information. #9290
Added the ability to set the target for an individual package in
Cargo.toml . docs #9030
Fixed build-std updating the index on every build. #9393
-Z help now displays all the -Z options. #9369
Added -Zallow-features to specify which nightly features are
allowed to be used. #9283
Added cargo config subcommand. #9302

https://github.com/rust-lang/cargo/pull/9348
https://github.com/rust-lang/cargo/pull/9363
https://github.com/rust-lang/cargo/pull/9299
https://github.com/rust-lang/cargo/pull/9263
https://github.com/rust-lang/cargo/pull/9290
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#per-package-target
https://github.com/rust-lang/cargo/pull/9030
https://github.com/rust-lang/cargo/pull/9393
https://github.com/rust-lang/cargo/pull/9369
https://github.com/rust-lang/cargo/pull/9283
https://github.com/rust-lang/cargo/pull/9302

Cargo 1.52 (2021-05-06)
34170fcd...rust-1.52.0

Added

Added the "manifest_path" field to JSON messages for a package.
#9022 #9247

Changed

Build scripts are now forbidden from setting RUSTC_BOOTSTRAP on
stable. #9181 #9385
crates.io now supports SPDX 3.11 licenses. #9209
An error is now reported if CARGO_TARGET_DIR is an empty string.
#8939
Doc tests now pass the --message-format flag into the test so that the
"short" format can now be used for doc tests. #9128
cargo test now prints a clearer indicator of which target is currently
running. #9195
The CARGO_TARGET_<TRIPLE> environment variable will now issue a
warning if it is using lowercase letters. #9169

Fixed

Fixed publication of packages with metadata and resolver fields in
Cargo.toml . #9300 #9304
Fixed logic for determining prefer-dynamic for a dylib which differed
in a workspace vs a single package. #9252
Fixed an issue where exclusive target-specific dependencies that
overlapped across dependency kinds (like regular and build-
dependencies) would incorrectly include the dependencies in both.
#9255
Fixed panic with certain styles of Package IDs when passed to the -p
flag. #9188

https://github.com/rust-lang/cargo/compare/34170fcd...rust-1.52.0
https://github.com/rust-lang/cargo/pull/9022
https://github.com/rust-lang/cargo/pull/9247
https://github.com/rust-lang/cargo/pull/9181
https://github.com/rust-lang/cargo/pull/9385
https://github.com/rust-lang/cargo/pull/9209
https://github.com/rust-lang/cargo/pull/8939
https://github.com/rust-lang/cargo/pull/9128
https://github.com/rust-lang/cargo/pull/9195
https://github.com/rust-lang/cargo/pull/9169
https://github.com/rust-lang/cargo/pull/9300
https://github.com/rust-lang/cargo/pull/9304
https://github.com/rust-lang/cargo/pull/9252
https://github.com/rust-lang/cargo/pull/9255
https://github.com/rust-lang/cargo/pull/9188

When running cargo with output not going to a TTY, and with the
progress bar and color force-enabled, the output will now correctly
clear the progress line. #9231
Error instead of panic when JSON may contain non-utf8 paths. #9226
Fixed a hang that can happen on broken stderr. #9201
Fixed thin-local LTO not being disabled correctly when lto=off is
set. #9182

Nightly only

The strip profile option now supports true and false values.
#9153
cargo fix --edition now displays a report when switching to 2021
if the new resolver changes features. #9268
Added [patch] table support in .cargo/config files. #9204
Added cargo describe-future-incompatibilities for generating
a report on dependencies that contain future-incompatible warnings.
#8825
Added easier support for testing the 2021 edition. #9184
Switch the default resolver to "2" in the 2021 edition. #9184
cargo fix --edition now supports 2021. #9184
Added --print flag to cargo rustc to pass along to rustc to
display information from rustc. #9002
Added -Zdoctest-in-workspace for changing the directory where
doctests are run versus where they are compiled. #9105
Added support for an [env] section in .cargo/config.toml to set
environment variables when running cargo. #9175
Added a schema field and features2 field to the index. #9161
Changes to JSON spec targets will now trigger a rebuild. #9223

https://github.com/rust-lang/cargo/pull/9231
https://github.com/rust-lang/cargo/pull/9226
https://github.com/rust-lang/cargo/pull/9201
https://github.com/rust-lang/cargo/pull/9182
https://github.com/rust-lang/cargo/pull/9153
https://github.com/rust-lang/cargo/pull/9268
https://github.com/rust-lang/cargo/pull/9204
https://github.com/rust-lang/cargo/pull/8825
https://github.com/rust-lang/cargo/pull/9184
https://github.com/rust-lang/cargo/pull/9184
https://github.com/rust-lang/cargo/pull/9184
https://github.com/rust-lang/cargo/pull/9002
https://github.com/rust-lang/cargo/pull/9105
https://github.com/rust-lang/cargo/pull/9175
https://github.com/rust-lang/cargo/pull/9161
https://github.com/rust-lang/cargo/pull/9223

Cargo 1.51 (2021-03-25)
75d5d8cf...rust-1.51.0

Added

🔥 Added the split-debuginfo profile option. docs #9112
Added the path field to cargo metadata for the package
dependencies list to show the path for "path" dependencies. #8994
🔥 Added a new feature resolver, and new CLI feature flag behavior.
See the new features and resolver documentation for the resolver =
"2" option. See the CLI and resolver 2 CLI options for the new CLI
behavior. And, finally, see RFC 2957 for a detailed look at what has
changed. #8997

Changed

cargo install --locked now emits a warning if Cargo.lock is not
found. #9108
Unknown or ambiguous package IDs passed on the command-line now
display suggestions for the correct package ID. #9095
Slightly optimize cargo vendor #8937 #9131 #9132

Fixed

Fixed environment variables and cfg settings emitted by a build script
that are set for cargo test and cargo run when the build script runs
multiple times during the same build session. #9122
Fixed a panic with cargo doc and the new feature resolver. This also
introduces some heuristics to try to avoid path collisions with rustdoc
by only documenting one variant of a package if there are multiple
(such as multiple versions, or the same package shared for host and
target platforms). #9077
Fixed a bug in Cargo's cyclic dep graph detection that caused a stack
overflow. #9075

https://github.com/rust-lang/cargo/compare/75d5d8cf...rust-1.51.0
https://doc.rust-lang.org/nightly/cargo/reference/profiles.html#split-debuginfo
https://github.com/rust-lang/cargo/pull/9112
https://github.com/rust-lang/cargo/pull/8994
https://doc.rust-lang.org/nightly/cargo/reference/features.html#feature-resolver-version-2
https://doc.rust-lang.org/nightly/cargo/reference/resolver.html#feature-resolver-version-2
https://doc.rust-lang.org/nightly/cargo/reference/features.html#command-line-feature-options
https://doc.rust-lang.org/nightly/cargo/reference/features.html#resolver-version-2-command-line-flags
https://github.com/rust-lang/rfcs/blob/master/text/2957-cargo-features2.md
https://github.com/rust-lang/cargo/pull/8997
https://github.com/rust-lang/cargo/pull/9108
https://github.com/rust-lang/cargo/pull/9095
https://github.com/rust-lang/cargo/pull/8937
https://github.com/rust-lang/cargo/pull/9131
https://github.com/rust-lang/cargo/pull/9132
https://github.com/rust-lang/cargo/pull/9122
https://github.com/rust-lang/cargo/pull/9077
https://github.com/rust-lang/cargo/pull/9075

Fixed build script links environment variables (DEP_*) not showing
up for testing packages in some cases. #9065
Fixed features being selected in a nondeterministic way for a specific
scenario when building an entire workspace with all targets with a
proc-macro in the workspace with resolver="2" . #9059
Fixed to use http.proxy setting in ~/.gitconfig . #8986
Fixed --feature pkg/feat for V1 resolver for non-member. #9275 #9277
Fixed panic in cargo doc when there are colliding output filenames in
a workspace. #9276 #9277
Fixed cargo install from exiting with success if one of several
packages did not install successfully. #9185 #9196
Fix panic with doc collision orphan. #9142 #9196

Nightly only

Removed the publish-lockfile unstable feature, it was stabilized
without the need for an explicit flag 1.5 years ago. #9092
Added better diagnostics, help messages, and documentation for
nightly features (such as those passed with the -Z flag, or specified
with cargo-features in Cargo.toml). #9092
Added support for Rust edition 2021. #8922
Added support for the rust-version field in project metadata. #8037
Added a schema field to the index. #9161 #9196

https://github.com/rust-lang/cargo/pull/9065
https://github.com/rust-lang/cargo/pull/9059
https://github.com/rust-lang/cargo/pull/8986
https://github.com/rust-lang/cargo/pull/9275
https://github.com/rust-lang/cargo/pull/9277
https://github.com/rust-lang/cargo/pull/9276
https://github.com/rust-lang/cargo/pull/9277
https://github.com/rust-lang/cargo/pull/9185
https://github.com/rust-lang/cargo/pull/9196
https://github.com/rust-lang/cargo/pull/9142
https://github.com/rust-lang/cargo/pull/9196
https://github.com/rust-lang/cargo/pull/9092
https://github.com/rust-lang/cargo/pull/9092
https://github.com/rust-lang/cargo/pull/8922
https://github.com/rust-lang/cargo/pull/8037
https://github.com/rust-lang/cargo/pull/9161
https://github.com/rust-lang/cargo/pull/9196

Cargo 1.50 (2021-02-11)
8662ab42...rust-1.50.0

Added

Added the doc field to cargo metadata , which indicates if a target is
documented. #8869
Added RUSTC_WORKSPACE_WRAPPER , an alternate RUSTC wrapper that
only runs for the local workspace packages, and caches its artifacts
independently of non-wrapped builds. #8976
Added --workspace to cargo update to update only the workspace
members, and not their dependencies. This is particularly useful if you
update the version in Cargo.toml and want to update Cargo.lock
without running any other commands. #8725

Changed

.crate files uploaded to a registry are now built with reproducible
settings, so that the same .crate file created on different machines
should be identical. #8864
Git dependencies that specify more than one of branch , tag , or rev
are now rejected. #8984
The rerun-if-changed build script directive can now point to a
directory, in which case Cargo will check if any file in that directory
changes. #8973
If Cargo cannot determine the username or email address, cargo new
will no longer fail, and instead create an empty authors list. #8912
The progress bar width has been reduced to provide more room to
display the crates currently being built. #8892
cargo new will now support includeIf directives in .gitconfig to
match the correct directory when determining the username and email
address. #8886

Fixed

https://github.com/rust-lang/cargo/compare/8662ab42...rust-1.50.0
https://github.com/rust-lang/cargo/pull/8869
https://github.com/rust-lang/cargo/pull/8976
https://github.com/rust-lang/cargo/pull/8725
https://github.com/rust-lang/cargo/pull/8864
https://github.com/rust-lang/cargo/pull/8984
https://github.com/rust-lang/cargo/pull/8973
https://github.com/rust-lang/cargo/pull/8912
https://github.com/rust-lang/cargo/pull/8892
https://github.com/rust-lang/cargo/pull/8886

Fixed cargo metadata and cargo tree to only download packages
for the requested target. #8987
Updated libgit2, which brings in many fixes, particularly fixing a zlib
error that occasionally appeared on 32-bit systems. #8998
Fixed stack overflow with a circular dev-dependency that uses the
links field. #8969
Fixed cargo publish failing on some filesystems, particularly 9p on
WSL2. #8950

Nightly only

Allow resolver="1" to specify the original feature resolution
behavior. #8857
Added -Z extra-link-arg which adds the cargo:rustc-link-arg-
bins and cargo:rustc-link-arg build script options. docs #8441
Implemented external credential process support, and added cargo
logout . (RFC 2730) (docs) #8934
Fix panic with -Zbuild-std and no roots. #8942
Set docs.rs as the default extern-map for crates.io #8877

https://github.com/rust-lang/cargo/pull/8987
https://github.com/rust-lang/cargo/pull/8998
https://github.com/rust-lang/cargo/pull/8969
https://github.com/rust-lang/cargo/pull/8950
https://github.com/rust-lang/cargo/pull/8857
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#extra-link-arg
https://github.com/rust-lang/cargo/pull/8441
https://github.com/rust-lang/rfcs/blob/master/text/2730-cargo-token-from-process.md
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#credential-process
https://github.com/rust-lang/cargo/pull/8934
https://github.com/rust-lang/cargo/pull/8942
https://github.com/rust-lang/cargo/pull/8877

Cargo 1.49 (2020-12-31)
75615f8e...rust-1.49.0

Added

Added homepage and documentation fields to cargo metadata .
#8744
Added the CARGO_PRIMARY_PACKAGE environment variable which is set
when running rustc if the package is one of the "root" packages
selected on the command line. #8758
Added support for Unix-style glob patterns for package and target
selection flags on the command-line (such as -p 'serde*' or --test
'*'). #8752

Changed

Computed LTO flags are now included in the filename metadata hash
so that changes in LTO settings will independently cache build
artifacts instead of overwriting previous ones. This prevents rebuilds in
some situations such as switching between cargo build and cargo
test in some circumstances. #8755
cargo tree now displays (proc-macro) next to proc-macro
packages. #8765
Added a warning that the allowed characters for a feature name have
been restricted to letters, digits, _ , - , and + to accommodate future
syntax changes. This is still a superset of the allowed syntax on
crates.io, which requires ASCII. This is intended to be changed to an
error in the future. #8814
-p without a value will now print a list of workspace package names.
#8808
Add period to allowed feature name characters. #8932 #8943

Fixed

https://github.com/rust-lang/cargo/compare/75615f8e...rust-1.49.0
https://github.com/rust-lang/cargo/pull/8744
https://github.com/rust-lang/cargo/pull/8758
https://github.com/rust-lang/cargo/pull/8752
https://github.com/rust-lang/cargo/pull/8755
https://github.com/rust-lang/cargo/pull/8765
https://github.com/rust-lang/cargo/pull/8814
https://github.com/rust-lang/cargo/pull/8808
https://github.com/rust-lang/cargo/pull/8932
https://github.com/rust-lang/cargo/pull/8943

Fixed building a library with both "dylib" and "rlib" crate types with
LTO enabled. #8754
Fixed paths in Cargo's dep-info files. #8819
Fixed inconsistent source IDs in cargo metadata for git dependencies
that explicitly specify branch="master" . #8824
Fixed re-extracting dependencies which contained a .cargo-ok file.
#8835

Nightly only

Fixed a panic with cargo doc -Zfeatures=itarget in some
situations. #8777
New implementation for namespaced features, using the syntax
dep:serde . docs #8799
Added support for "weak" dependency features, using the syntax
dep_name?/feat_name , which will enable a feature for a dependency
without also enabling the dependency. #8818
Fixed the new feature resolver downloading extra dependencies that
weren't strictly necessary. #8823

https://github.com/rust-lang/cargo/pull/8754
https://github.com/rust-lang/cargo/pull/8819
https://github.com/rust-lang/cargo/pull/8824
https://github.com/rust-lang/cargo/pull/8835
https://github.com/rust-lang/cargo/pull/8777
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#namespaced-features
https://github.com/rust-lang/cargo/pull/8799
https://github.com/rust-lang/cargo/pull/8818
https://github.com/rust-lang/cargo/pull/8823

Cargo 1.48 (2020-11-19)
51b66125...rust-1.48.0

Added

Added term.progress configuration option to control when and how
the progress bar is displayed. docs #8165
Added --message-format plain option to cargo locate-project
to display the project location without JSON to make it easier to use in
a script. #8707
Added --workspace option to cargo locate-project to display the
path to the workspace manifest. #8712
A new contributor guide has been added for contributing to Cargo
itself. This is published at https://rust-lang.github.io/cargo/contrib/.
#8715
Zsh --target completion will now complete with the built-in rustc
targets. #8740

Changed
Fixed

Fixed cargo new creating a fossil repository to properly ignore the
target directory. #8671
Don't show warnings about the workspace in the current directory
when using cargo install of a remote package. #8681
Automatically reinitialize the index when an "Object not found" error
is encountered in the git repository. #8735
Updated libgit2, which brings in several fixes for git repository
handling. #8778 #8780

Nightly only

Fixed cargo install so that it will ignore the [unstable] table in
local config files. #8656

https://github.com/rust-lang/cargo/compare/51b66125...rust-1.48.0
https://doc.rust-lang.org/nightly/cargo/reference/config.html#termprogresswhen
https://github.com/rust-lang/cargo/pull/8165
https://github.com/rust-lang/cargo/pull/8707
https://github.com/rust-lang/cargo/pull/8712
https://rust-lang.github.io/cargo/contrib/
https://github.com/rust-lang/cargo/pull/8715
https://github.com/rust-lang/cargo/pull/8740
https://github.com/rust-lang/cargo/pull/8671
https://github.com/rust-lang/cargo/pull/8681
https://github.com/rust-lang/cargo/pull/8735
https://github.com/rust-lang/cargo/pull/8778
https://github.com/rust-lang/cargo/pull/8780
https://github.com/rust-lang/cargo/pull/8656

Fixed nondeterministic behavior of the new feature resolver. #8701
Fixed running cargo test on a proc-macro with the new feature
resolver under a specific combination of circumstances. #8742

https://github.com/rust-lang/cargo/pull/8701
https://github.com/rust-lang/cargo/pull/8742

Cargo 1.47 (2020-10-08)
4f74d9b2...rust-1.47.0

Added

cargo doc will now include the package's version in the left sidebar.
#8509
Added the test field to cargo metadata targets. #8478
Cargo's man pages are now displayed via the cargo help command
(such as cargo help build). #8456 #8577
Added new documentation chapters on how dependency resolution
works and SemVer compatibility, along with suggestions on how to
version your project and work with dependencies. #8609

Changed

The comments added to .gitignore when it is modified have been
tweaked to add some spacing. #8476
cargo metadata output should now be sorted to be deterministic.
#8489
By default, build scripts and proc-macros are now built with opt-
level=0 and the default codegen units, even in release mode. #8500
workspace.default-members is now filtered by
workspace.exclude . #8485
workspace.members globs now ignore non-directory paths. #8511
git zlib errors now trigger a retry. #8520
"http" class git errors now trigger a retry. #8553
git dependencies now override the core.autocrlf git configuration
value to ensure they behave consistently across platforms, particularly
when vendoring git dependencies on Windows. #8523
If Cargo.lock needs to be updated, then it will be automatically
transitioned to the new V2 format. This format removes the
[metadata] table, and should be easier to merge changes in source

https://github.com/rust-lang/cargo/compare/4f74d9b2...rust-1.47.0
https://github.com/rust-lang/cargo/pull/8509
https://github.com/rust-lang/cargo/pull/8478
https://github.com/rust-lang/cargo/pull/8456
https://github.com/rust-lang/cargo/pull/8577
https://doc.rust-lang.org/nightly/cargo/reference/resolver.html
https://doc.rust-lang.org/nightly/cargo/reference/semver.html
https://github.com/rust-lang/cargo/pull/8609
https://github.com/rust-lang/cargo/pull/8476
https://github.com/rust-lang/cargo/pull/8489
https://github.com/rust-lang/cargo/pull/8500
https://github.com/rust-lang/cargo/pull/8485
https://github.com/rust-lang/cargo/pull/8511
https://github.com/rust-lang/cargo/pull/8520
https://github.com/rust-lang/cargo/pull/8553
https://github.com/rust-lang/cargo/pull/8523

control systems. This format was introduced in 1.38, and made the
default for new projects in 1.41. #8554
Added preparation for support of git repositories with a non-"master"
default branch. Actual support will arrive in a future version. This
introduces some warnings:

Warn if a git dependency does not specify a branch, and the
default branch on the repository is not "master". In the future,
Cargo will fetch the default branch. In this scenario, the branch
should be explicitly specified.
Warn if a workspace has multiple dependencies to the same git
repository, one without a branch and one with
branch="master" . Dependencies should all use one form or the
other. #8522

Warnings are now issued if a required-features entry lists a feature
that does not exist. #7950
Built-in aliases are now included in cargo --list . #8542
cargo install with a specific version that has been yanked will now
display an error message that it has been yanked, instead of "could not
find". #8565
cargo publish with a package that has the publish field set to a
single registry, and no --registry flag has been given, will now
publish to that registry instead of generating an error. #8571

Fixed

Fixed issue where if a project directory was moved, and one of the
build scripts did not use the rerun-if-changed directive, then that
build script was being rebuilt when it shouldn't. #8497
Console colors should now work on Windows 7 and 8. #8540
The CARGO_TARGET_{triplet}_RUNNER environment variable will
now correctly override the config file instead of trying to merge the
commands. #8629
Fixed LTO with doctests. #8657 #8658

https://github.com/rust-lang/cargo/pull/8554
https://github.com/rust-lang/cargo/pull/8522
https://github.com/rust-lang/cargo/pull/7950
https://github.com/rust-lang/cargo/pull/8542
https://github.com/rust-lang/cargo/pull/8565
https://github.com/rust-lang/cargo/pull/8571
https://github.com/rust-lang/cargo/pull/8497
https://github.com/rust-lang/cargo/pull/8540
https://github.com/rust-lang/cargo/pull/8629
https://github.com/rust-lang/cargo/pull/8657
https://github.com/rust-lang/cargo/pull/8658

Nightly only

Added support for -Z terminal-width which tells rustc the width
of the terminal so that it can format diagnostics better. docs #8427
Added ability to configure -Z unstable flags in config files via the
[unstable] table. docs #8393
Added -Z build-std-features flag to set features for the standard
library. docs #8490

https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#terminal-width
https://github.com/rust-lang/cargo/pull/8427
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html
https://github.com/rust-lang/cargo/pull/8393
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#build-std-features
https://github.com/rust-lang/cargo/pull/8490

Cargo 1.46 (2020-08-27)
9fcb8c1d...rust-1.46.0

Added

The dl key in config.json of a registry index now supports the
replacement markers {prefix} and {lowerprefix} to allow
spreading crates across directories similar to how the index itself is
structured. docs #8267
Added new environment variables that are set during compilation:

CARGO_CRATE_NAME : The name of the crate being built.
CARGO_BIN_NAME : The name of the executable binary (if this is a
binary crate).
CARGO_PKG_LICENSE : The license field from the manifest.
CARGO_PKG_LICENSE_FILE : The license-file field from the
manifest. #8270 #8325 #8387

If the value for readme is not specified in Cargo.toml , it is now
automatically inferred from the existence of a file named README ,
README.md , or README.txt . This can be suppressed by setting
readme = false . #8277
cargo install now supports the --index flag to install directly
from an index. #8344
Added the metadata table to the workspace definition in
Cargo.toml . This can be used for arbitrary data similar to the
package.metadata table. #8323
Added the --target-dir flag to cargo install to set the target
directory. #8391
Changes to environment variables used by the env! or option_env!
macros are now automatically detected to trigger a rebuild. #8421
The target directory now includes the CACHEDIR.TAG file which is
used by some tools to exclude the directory from backups. #8378
Added docs about rustup's +toolchain syntax. #8455

https://github.com/rust-lang/cargo/compare/9fcb8c1d...rust-1.46.0
https://doc.rust-lang.org/nightly/cargo/reference/registries.html#index-format
https://github.com/rust-lang/cargo/pull/8267
https://github.com/rust-lang/cargo/pull/8270
https://github.com/rust-lang/cargo/pull/8325
https://github.com/rust-lang/cargo/pull/8387
https://github.com/rust-lang/cargo/pull/8277
https://github.com/rust-lang/cargo/pull/8344
https://github.com/rust-lang/cargo/pull/8323
https://github.com/rust-lang/cargo/pull/8391
https://doc.rust-lang.org/std/macro.env.html
https://doc.rust-lang.org/std/macro.option_env.html
https://github.com/rust-lang/cargo/pull/8421
https://github.com/rust-lang/cargo/pull/8378
https://github.com/rust-lang/cargo/pull/8455

Changed

A warning is now displayed if a git dependency includes a # fragment
in the URL. This was potentially confusing because Cargo itself
displays git URLs with this syntax, but it does not have any meaning
outside of the Cargo.lock file, and would not work properly. #8297
Various optimizations and fixes for bitcode embedding and LTO.
#8349
Reduced the amount of data fetched for git dependencies. If Cargo
knows the branch or tag to fetch, it will now only fetch that branch or
tag instead of all branches and tags. #8363
Enhanced git fetch error messages. #8409
.crate files are now generated with GNU tar format instead of UStar,
which supports longer file names. #8453

Fixed

Fixed a rare situation where an update to Cargo.lock failed once, but
then subsequent runs allowed it proceed. #8274
Removed assertion that Windows dylibs must have a .dll extension.
Some custom JSON spec targets may change the extension. #8310
Updated libgit2, which brings in a fix for zlib errors for some remote
git servers like googlesource.com. #8320
Fixed the GitHub fast-path check for up-to-date git dependencies on
non-master branches. #8363
Fixed issue when enabling a feature with pkg/feature syntax, and
pkg is an optional dependency, but also a dev-dependency, and the
dev-dependency appears before the optional normal dependency in the
registry summary, then the optional dependency would not get
activated. #8395
Fixed clean -p deleting the build directory if there is a test named
build . #8398
Fixed indentation of multi-line Cargo error messages. #8409

https://github.com/rust-lang/cargo/pull/8297
https://github.com/rust-lang/cargo/pull/8349
https://github.com/rust-lang/cargo/pull/8363
https://github.com/rust-lang/cargo/pull/8409
https://github.com/rust-lang/cargo/pull/8453
https://github.com/rust-lang/cargo/pull/8274
https://github.com/rust-lang/cargo/pull/8310
https://github.com/rust-lang/cargo/pull/8320
https://github.com/rust-lang/cargo/pull/8363
https://github.com/rust-lang/cargo/pull/8395
https://github.com/rust-lang/cargo/pull/8398
https://github.com/rust-lang/cargo/pull/8409

Fixed issue where the automatic inclusion of the --document-
private-items flag for rustdoc would override any flags passed to the
cargo rustdoc command. #8449
Cargo will now include a version in the hash of the fingerprint
directories to support backwards-incompatible changes to the
fingerprint structure. #8473 #8488

Nightly only

Added -Zrustdoc-map feature which provides external mappings for
rustdoc (such as https://docs.rs/ links). docs #8287
Fixed feature calculation when a proc-macro is declared in
Cargo.toml with an underscore (like proc_macro = true). #8319
Added support for setting -Clinker with -Zdoctest-xcompile .
#8359
Fixed setting the strip profile field in config files. #8454

https://github.com/rust-lang/cargo/pull/8449
https://github.com/rust-lang/cargo/pull/8473
https://github.com/rust-lang/cargo/pull/8488
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#rustdoc-map
https://github.com/rust-lang/cargo/pull/8287
https://github.com/rust-lang/cargo/pull/8319
https://github.com/rust-lang/cargo/pull/8359
https://github.com/rust-lang/cargo/pull/8454

Cargo 1.45 (2020-07-16)
ebda5065e...rust-1.45.0

Added
Changed

Changed official documentation to recommend
.cargo/config.toml filenames (with the .toml extension). .toml
extension support was added in 1.39. #8121

The registry.index config value is no longer allowed (it has
been deprecated for 4 years). #7973

An error is generated if both --index and --registry are passed
(previously --index was silently ignored). #7973

The registry.token config value is no longer used with the --
index flag. This is intended to avoid potentially leaking the crates.io
token to another registry. #7973

Added a warning if registry.token is used with source
replacement. It is intended this will be an error in future versions.
#7973

Windows GNU targets now copy .dll.a import library files for
DLL crate types to the output directory. #8141

Dylibs for all dependencies are now unconditionally copied to the
output directory. Some obscure scenarios can cause an old dylib to be
referenced between builds, and this ensures that all the latest copies are
used. #8139

package.exclude can now match directory names. If a directory is
specified, the entire directory will be excluded, and Cargo will not
attempt to inspect it further. Previously Cargo would try to check every
file in the directory which could cause problems if the directory
contained unreadable files. #8095

https://github.com/rust-lang/cargo/compare/ebda5065...rust-1.45.0
https://github.com/rust-lang/cargo/pull/8121
https://github.com/rust-lang/cargo/pull/7973
https://github.com/rust-lang/cargo/pull/7973
https://github.com/rust-lang/cargo/pull/7973
https://github.com/rust-lang/cargo/pull/7973
https://github.com/rust-lang/cargo/pull/8141
https://github.com/rust-lang/cargo/pull/8139
https://github.com/rust-lang/cargo/pull/8095

When packaging with cargo publish or cargo package , Cargo
can use git to guide its decision on which files to include. Previously
this git-based logic required a Cargo.toml file to exist at the root of
the repository. This is no longer required, so Cargo will now use git-
based guidance even if there is not a Cargo.toml in the root of the
repository. #8095

While unpacking a crate on Windows, if it fails to write a file
because the file is a reserved Windows filename (like "aux.rs"), Cargo
will display an extra message to explain why it failed. #8136

Failures to set mtime on files are now ignored. Some filesystems
did not support this. #8185

Certain classes of git errors will now recommend enabling
net.git-fetch-with-cli . #8166

When doing an LTO build, Cargo will now instruct rustc not to
perform codegen when possible. This may result in a faster build and
use less disk space. Additionally, for non-LTO builds, Cargo will
instruct rustc to not embed LLVM bitcode in libraries, which should
decrease their size. #8192 #8226 #8254

The implementation for cargo clean -p has been rewritten so that
it can more accurately remove the files for a specific package. #8210

The way Cargo computes the outputs from a build has been
rewritten to be more complete and accurate. Newly tracked files will
be displayed in JSON messages, and may be uplifted to the output
directory in some cases. Some of the changes from this are:

.exp export files on Windows MSVC dynamic libraries are now
tracked.
Proc-macros on Windows track import/export files.
All targets (like tests, etc.) that generate separate debug files
(pdb/dSYM) are tracked.
Added .map files for wasm32-unknown-emscripten.
macOS dSYM directories are tracked for all dynamic libraries
(dylib/cdylib/proc-macro) and for build scripts.

There are a variety of other changes as a consequence of this:

https://github.com/rust-lang/cargo/pull/8095
https://github.com/rust-lang/cargo/pull/8136
https://github.com/rust-lang/cargo/pull/8185
https://github.com/rust-lang/cargo/pull/8166
https://github.com/rust-lang/cargo/pull/8192
https://github.com/rust-lang/cargo/pull/8226
https://github.com/rust-lang/cargo/pull/8254
https://github.com/rust-lang/cargo/pull/8210

Binary examples on Windows MSVC with a hyphen will now
show up twice in the examples directory (foo_bar.exe and foo-
bar.exe). Previously Cargo just renamed the file instead of hard-
linking it.
Example libraries now follow the same rules for
hyphen/underscore translation as normal libs (they will now use
underscores).

#8210
Cargo attempts to scrub any secrets from the debug log for HTTP

debugging. #8222
Context has been added to many of Cargo's filesystem operations,

so that error messages now provide more information, such as the path
that caused the problem. #8232

Several commands now ignore the error if stdout or stderr is closed
while it is running. For example cargo install --list | grep -q
cargo-fuzz would previously sometimes panic because grep -q may
close stdout before the command finishes. Regular builds continue to
fail if stdout or stderr is closed, matching the behavior of many other
build systems. #8236

If cargo install is given an exact version, like --
version=1.2.3 , it will now avoid updating the index if that version is
already installed, and exit quickly indicating it is already installed.
#8022

Changes to the [patch] section will now attempt to automatically
update Cargo.lock to the new version. It should now also provide
better error messages for the rare cases where it is unable to
automatically update. #8248

Fixed

Fixed copying Windows .pdb files to the output directory when the
filename contained dashes. #8123
Fixed error where Cargo would fail when scanning if a package is
inside a git repository when any of its ancestor paths is a symlink.

https://github.com/rust-lang/cargo/pull/8210
https://github.com/rust-lang/cargo/pull/8222
https://github.com/rust-lang/cargo/pull/8232
https://github.com/rust-lang/cargo/pull/8236
https://github.com/rust-lang/cargo/pull/8022
https://github.com/rust-lang/cargo/pull/8248
https://github.com/rust-lang/cargo/pull/8123

#8186
Fixed cargo update with an unused [patch] so that it does not get
stuck and refuse to update. #8243
Fixed a situation where Cargo would hang if stderr is closed, and the
compiler generated a large number of messages. #8247
Fixed backtraces on macOS not showing filenames or line numbers.
As a consequence of this, binary executables on apple targets do not
include a hash in the filename in Cargo's cache. This means Cargo can
only track one copy, so if you switch features or rustc versions, Cargo
will need to rebuild the executable. #8329 #8335
Fixed fingerprinting when using lld on Windows with a dylib. Cargo
was erroneously thinking the dylib was never fresh. #8290 #8335

Nightly only

Fixed passing the full path for --target to rustdoc when using
JSON spec targets. #8094
-Cembed-bitcode=no renamed to -Cbitcode-in-rlib=no #8134
Added new resolver field to Cargo.toml to opt-in to the new
feature resolver. #8129
-Zbuild-std no longer treats std dependencies as "local". This means
that it won't use incremental compilation for those dependencies,
removes them from dep-info files, and caps lints at "allow". #8177
Added -Zmultitarget which allows multiple --target flags to
build the same thing for multiple targets at once. docs #8167
Added strip option to the profile to remove symbols and debug
information. docs #8246
Fixed panic with cargo tree --target=all -Zfeatures=all . #8269

https://github.com/rust-lang/cargo/pull/8186
https://github.com/rust-lang/cargo/pull/8243
https://github.com/rust-lang/cargo/pull/8247
https://github.com/rust-lang/cargo/pull/8329
https://github.com/rust-lang/cargo/pull/8335
https://github.com/rust-lang/cargo/pull/8290
https://github.com/rust-lang/cargo/pull/8335
https://github.com/rust-lang/cargo/pull/8094
https://github.com/rust-lang/cargo/pull/8134
https://github.com/rust-lang/cargo/pull/8129
https://github.com/rust-lang/cargo/pull/8177
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#multitarget
https://github.com/rust-lang/cargo/pull/8167
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#profile-strip-option
https://github.com/rust-lang/cargo/pull/8246
https://github.com/rust-lang/cargo/pull/8269

Cargo 1.44 (2020-06-04)
bda50510...rust-1.44.0

Added

🔥 Added the cargo tree command. docs #8062
Added warnings if a package has Windows-restricted filenames (like
nul , con , aux , prn , etc.). #7959
Added a "build-finished" JSON message when compilation is
complete so that tools can detect when they can stop listening for
JSON messages with commands like cargo run or cargo test .
#8069

Changed

Valid package names are now restricted to Unicode XID identifiers.
This is mostly the same as before, except package names cannot start
with a number or - . #7959
cargo new and init will warn or reject additional package names
(reserved Windows names, reserved Cargo directories, non-ASCII
names, conflicting std names like core , etc.). #7959
Tests are no longer hard-linked into the output directory
(target/debug/). This ensures tools will have access to debug
symbols and execute tests in the same way as Cargo. Tools should use
JSON messages to discover the path to the executable. #7965
Updating git submodules now displays an "Updating" message for
each submodule. #7989
File modification times are now preserved when extracting a .crate
file. This reverses the change made in 1.40 where the mtime was not
preserved. #7935
Build script warnings are now displayed separately when the build
script fails. #8017
Removed the git-checkout subcommand. #8040

https://github.com/rust-lang/cargo/compare/bda50510...rust-1.44.0
https://doc.rust-lang.org/nightly/cargo/commands/cargo-tree.html
https://github.com/rust-lang/cargo/pull/8062
https://github.com/rust-lang/cargo/pull/7959
https://github.com/rust-lang/cargo/pull/8069
https://github.com/rust-lang/cargo/pull/7959
https://github.com/rust-lang/cargo/pull/7959
https://github.com/rust-lang/cargo/pull/7965
https://github.com/rust-lang/cargo/pull/7989
https://github.com/rust-lang/cargo/pull/7935
https://github.com/rust-lang/cargo/pull/8017
https://github.com/rust-lang/cargo/pull/8040

The progress bar is now enabled for all unix platforms. Previously it
was only Linux, macOS, and FreeBSD. #8054
Artifacts generated by pre-release versions of rustc now share the
same filenames. This means that changing nightly versions will not
leave stale files in the build directory. #8073
Invalid package names are rejected when using renamed dependencies.
#8090
Added a certain class of HTTP2 errors as "spurious" that will get
retried. #8102
Allow cargo package --list to succeed, even if there are other
validation errors (such as Cargo.lock generation problem, or missing
dependencies). #8175 #8215

Fixed

Cargo no longer buffers excessive amounts of compiler output in
memory. #7838
Symbolic links in git repositories now work on Windows. #7996
Fixed an issue where profile.dev was not loaded from a config file
with cargo test when the dev profile was not defined in
Cargo.toml . #8012
When a binary is built as an implicit dependency of an integration test,
it now checks dep_name/feature_name syntax in required-
features correctly. #8020
Fixed an issue where Cargo would not detect that an executable (such
as an integration test) needs to be rebuilt when the previous build was
interrupted with Ctrl-C. #8087
Protect against some (unknown) situations where Cargo could panic
when the system monotonic clock doesn't appear to be monotonic.
#8114
Fixed panic with cargo clean -p if the package has a build script.
#8216

Nightly only

https://github.com/rust-lang/cargo/pull/8054
https://github.com/rust-lang/cargo/pull/8073
https://github.com/rust-lang/cargo/pull/8090
https://github.com/rust-lang/cargo/pull/8102
https://github.com/rust-lang/cargo/pull/8175
https://github.com/rust-lang/cargo/pull/8215
https://github.com/rust-lang/cargo/pull/7838
https://github.com/rust-lang/cargo/pull/7996
https://github.com/rust-lang/cargo/pull/8012
https://github.com/rust-lang/cargo/pull/8020
https://github.com/rust-lang/cargo/pull/8087
https://github.com/rust-lang/cargo/pull/8114
https://github.com/rust-lang/cargo/pull/8216

Fixed panic with new feature resolver and required-features. #7962
Added RUSTC_WORKSPACE_WRAPPER environment variable, which
provides a way to wrap rustc for workspace members only, and
affects the filename hash so that artifacts produced by the wrapper are
cached separately. This usage can be seen on nightly clippy with
cargo clippy -Zunstable-options . #7533
Added --unit-graph CLI option to display Cargo's internal
dependency graph as JSON. #7977
Changed -Zbuild_dep to -Zhost_dep , and added proc-macros to the
feature decoupling logic. #8003 #8028
Fixed so that --crate-version is not automatically passed when the
flag is found in RUSTDOCFLAGS . #8014
Fixed panic with -Zfeatures=dev_dep and check --profile=test .
#8027
Fixed panic with -Zfeatures=itarget with certain host
dependencies. #8048
Added support for -Cembed-bitcode=no , which provides a
performance boost and disk-space usage reduction for non-LTO builds.
#8066
-Zpackage-features has been extended with several changes
intended to make it easier to select features on the command-line in a
workspace. #8074

https://github.com/rust-lang/cargo/pull/7962
https://github.com/rust-lang/cargo/pull/7533
https://github.com/rust-lang/cargo/pull/7977
https://github.com/rust-lang/cargo/pull/8003
https://github.com/rust-lang/cargo/pull/8028
https://github.com/rust-lang/cargo/pull/8014
https://github.com/rust-lang/cargo/pull/8027
https://github.com/rust-lang/cargo/pull/8048
https://github.com/rust-lang/cargo/pull/8066
https://github.com/rust-lang/cargo/pull/8074

Cargo 1.43 (2020-04-23)
9d32b7b0...rust-1.43.0

Added

🔥 Profiles may now be specified in config files (and environment
variables). docs #7823
❗ Added CARGO_BIN_EXE_<name> environment variable when
building integration tests. This variable contains the path to any
[[bin]] targets in the package. Integration tests should use the env!
macro to determine the path to a binary to execute. docs #7697

Changed

cargo install --git now honors workspaces in a git repository.
This allows workspace settings, like [patch] , [replace] , or
[profile] to be used. #7768
cargo new will now run rustfmt on the new files to pick up rustfmt
settings like tab_spaces so that the new file matches the user's
preferred indentation settings. #7827
Environment variables printed with "very verbose" output (-vv) are
now consistently sorted. #7877
Debug logging for fingerprint rebuild-detection now includes more
information. #7888 #7890 #7952
Added warning during publish if the license-file doesn't exist. #7905
The license-file file is automatically included during publish, even
if it is not explicitly listed in the include list or is in a location
outside of the root of the package. #7905
CARGO_CFG_DEBUG_ASSERTIONS and CARGO_CFG_PROC_MACRO are no
longer set when running a build script. These were inadvertently set in
the past, but had no meaning as they were always true. Additionally,
cfg(proc-macro) is no longer supported in a target expression.
#7943 #7970

https://github.com/rust-lang/cargo/compare/9d32b7b0...rust-1.43.0
https://doc.rust-lang.org/nightly/cargo/reference/config.html#profile
https://github.com/rust-lang/cargo/pull/7823
https://doc.rust-lang.org/nightly/cargo/reference/environment-variables.html#environment-variables-cargo-sets-for-crates
https://github.com/rust-lang/cargo/pull/7697
https://github.com/rust-lang/cargo/pull/7768
https://github.com/rust-lang/cargo/pull/7827
https://github.com/rust-lang/cargo/pull/7877
https://github.com/rust-lang/cargo/pull/7888
https://github.com/rust-lang/cargo/pull/7890
https://github.com/rust-lang/cargo/pull/7952
https://github.com/rust-lang/cargo/pull/7905
https://github.com/rust-lang/cargo/pull/7905
https://github.com/rust-lang/cargo/pull/7943
https://github.com/rust-lang/cargo/pull/7970

Fixed

Global command-line flags now work with aliases (like cargo -v b).
#7837
Required-features using dependency syntax (like
renamed_dep/feat_name) now handle renamed dependencies
correctly. #7855
Fixed a rare situation where if a build script is run multiple times
during the same build, Cargo will now keep the results separate instead
of losing the output of the first execution. #7857
Fixed incorrect interpretation of environment variable
CARGO_TARGET_*_RUNNER=true as a boolean. Also improved related
env var error messages. #7891
Updated internal libgit2 library, bringing various fixes to git support.
#7939
cargo package / cargo publish should no longer buffer the entire
contents of each file in memory. #7946
Ignore more invalid Cargo.toml files in a git dependency. Cargo
currently walks the entire repo to find the requested package. Certain
invalid manifests were already skipped, and now it should skip all of
them. #7947

Nightly only

Added build.out-dir config variable to set the output directory.
#7810
Added -Zjobserver-per-rustc feature to support improved
performance for parallel rustc. #7731
Fixed filename collision with build-std and crates like cc . #7860
-Ztimings will now save its report even if there is an error. #7872
Updated --config command-line flag to support taking a path to a
config file to load. #7901
Added new feature resolver. #7820

https://github.com/rust-lang/cargo/pull/7837
https://github.com/rust-lang/cargo/pull/7855
https://github.com/rust-lang/cargo/pull/7857
https://github.com/rust-lang/cargo/pull/7891
https://github.com/rust-lang/cargo/pull/7939
https://github.com/rust-lang/cargo/pull/7946
https://github.com/rust-lang/cargo/pull/7947
https://github.com/rust-lang/cargo/pull/7810
https://github.com/rust-lang/cargo/pull/7731
https://github.com/rust-lang/cargo/pull/7860
https://github.com/rust-lang/cargo/pull/7872
https://github.com/rust-lang/cargo/pull/7901
https://github.com/rust-lang/cargo/pull/7820

Rustdoc docs now automatically include the version of the package in
the side bar (requires -Z crate-versions flag). #7903

https://github.com/rust-lang/cargo/pull/7903

Cargo 1.42 (2020-03-12)
0bf7aafe...rust-1.42.0

Added

Added documentation on git authentication. #7658
Bitbucket Pipeline badges are now supported on crates.io. #7663
cargo vendor now accepts the --versioned-dirs option to force it
to always include the version number in each package's directory
name. #7631
The proc_macro crate is now automatically added to the extern
prelude for proc-macro packages. This means that extern crate
proc_macro; is no longer necessary for proc-macros. #7700

Changed

Emit a warning if debug_assertions , test , proc_macro , or
feature= is used in a cfg() expression. #7660
Large update to the Cargo documentation, adding new chapters on
Cargo targets, workspaces, and features. #7733
Windows: .lib DLL import libraries are now copied next to the dll
for all Windows MSVC targets. Previously it was only supported for
pc-windows-msvc . This adds DLL support for uwp-windows-msvc
targets. #7758
The ar field in the [target] configuration is no longer read. It has
been ignored for over 4 years. #7763
Bash completion file simplified and updated for latest changes. #7789
Credentials are only loaded when needed, instead of every Cargo
command. #7774

Fixed

Removed --offline empty index check, which was a false positive
in some cases. #7655

https://github.com/rust-lang/cargo/compare/0bf7aafe...rust-1.42.0
https://github.com/rust-lang/cargo/pull/7658
https://github.com/rust-lang/cargo/pull/7663
https://github.com/rust-lang/cargo/pull/7631
https://github.com/rust-lang/cargo/pull/7700
https://github.com/rust-lang/cargo/pull/7660
https://github.com/rust-lang/cargo/pull/7733
https://github.com/rust-lang/cargo/pull/7758
https://github.com/rust-lang/cargo/pull/7763
https://github.com/rust-lang/cargo/pull/7789
https://github.com/rust-lang/cargo/pull/7774
https://github.com/rust-lang/cargo/pull/7655

Files and directories starting with a . can now be included in a
package by adding it to the include list. #7680
Fixed cargo login removing alternative registry tokens when
previous entries existed in the credentials file. #7708
Fixed cargo vendor from panicking when used with alternative
registries. #7718
Fixed incorrect explanation in the fingerprint debug log message.
#7749
A [source] that is defined multiple times will now result in an error.
Previously it was randomly picking a source, which could cause non-
deterministic behavior. #7751
dep_kinds in cargo metadata are now de-duplicated. #7756
Fixed packaging where Cargo.lock was listed in .gitignore in a
subdirectory inside a git repository. Previously it was assuming
Cargo.lock was at the root of the repo. #7779
Partial file transfer errors will now cause an automatic retry. #7788
Linux: Fixed panic if CPU iowait stat decreases. #7803
Fixed using the wrong sysroot for detecting host compiler settings
when --sysroot is passed in via RUSTFLAGS . #7798

Nightly only

build-std now uses --extern instead of --sysroot to find sysroot
packages. #7699
Added --config command-line option to set config settings. #7649
Added include config setting which allows including another config
file. #7649
Profiles in config files now support any named profile. Previously it
was limited to dev/release. #7750

https://github.com/rust-lang/cargo/pull/7680
https://github.com/rust-lang/cargo/pull/7708
https://github.com/rust-lang/cargo/pull/7718
https://github.com/rust-lang/cargo/pull/7749
https://github.com/rust-lang/cargo/pull/7751
https://github.com/rust-lang/cargo/pull/7756
https://github.com/rust-lang/cargo/pull/7779
https://github.com/rust-lang/cargo/pull/7788
https://github.com/rust-lang/cargo/pull/7803
https://github.com/rust-lang/cargo/pull/7798
https://github.com/rust-lang/cargo/pull/7699
https://github.com/rust-lang/cargo/pull/7649
https://github.com/rust-lang/cargo/pull/7649
https://github.com/rust-lang/cargo/pull/7750

Cargo 1.41 (2020-01-30)
5da4b4d4...rust-1.41.0

Added

🔥 Cargo now uses a new Cargo.lock file format. This new format
should support easier merges in source control systems. Projects using
the old format will continue to use the old format, only new
Cargo.lock files will use the new format. #7579
🔥 cargo install will now upgrade already installed packages
instead of failing. #7560
🔥 Profile overrides have been added. This allows overriding profiles
for individual dependencies or build scripts. See the documentation for
more. #7591
Added new documentation for build scripts. #7565
Added documentation for Cargo's JSON output. #7595
Significant expansion of config and environment variable
documentation. #7650
Add back support for BROWSER environment variable for cargo doc -
-open . #7576
Added kind and platform for dependencies in cargo metadata .
#7132
The OUT_DIR value is now included in the build-script-executed
JSON message. #7622

Changed

cargo doc will now document private items in binaries by default.
#7593
Subcommand typo suggestions now include aliases. #7486
Tweak how the "already existing..." comment is added to .gitignore .
#7570
Ignore cargo login text from copy/paste in token. #7588

https://github.com/rust-lang/cargo/compare/5da4b4d4...rust-1.41.0
https://github.com/rust-lang/cargo/pull/7579
https://github.com/rust-lang/cargo/pull/7560
https://doc.rust-lang.org/nightly/cargo/reference/profiles.html#overrides
https://github.com/rust-lang/cargo/pull/7591
https://github.com/rust-lang/cargo/pull/7565
https://github.com/rust-lang/cargo/pull/7595
https://github.com/rust-lang/cargo/pull/7650
https://github.com/rust-lang/cargo/pull/7576
https://github.com/rust-lang/cargo/pull/7132
https://github.com/rust-lang/cargo/pull/7622
https://github.com/rust-lang/cargo/pull/7593
https://github.com/rust-lang/cargo/pull/7486
https://github.com/rust-lang/cargo/pull/7570
https://github.com/rust-lang/cargo/pull/7588

Windows: Ignore errors for locking files when not supported by the
filesystem. #7602
Remove **/*.rs.bk from .gitignore . #7647

Fixed

Fix unused warnings for some keys in the build config section.
#7575
Linux: Don't panic when parsing /proc/stat . #7580
Don't show canonical path in cargo vendor . #7629

Nightly only

https://github.com/rust-lang/cargo/pull/7602
https://github.com/rust-lang/cargo/pull/7647
https://github.com/rust-lang/cargo/pull/7575
https://github.com/rust-lang/cargo/pull/7580
https://github.com/rust-lang/cargo/pull/7629

Cargo 1.40 (2019-12-19)
1c6ec66d...5da4b4d4

Added

Added http.ssl-version config option to control the version of
TLS, along with min/max versions. #7308
🔥 Compiler warnings are now cached on disk. If a build generates
warnings, re-running the build will now re-display the warnings.
#7450
Added --filter-platform option to cargo metadata to narrow the
nodes shown in the resolver graph to only packages included for the
given target triple. #7376

Changed

Cargo's "platform" cfg parsing has been extracted into a separate
crate named cargo-platform . #7375
Dependencies extracted into Cargo's cache no longer preserve mtimes
to reduce syscall overhead. #7465
Windows: EXE files no longer include a metadata hash in the
filename. This helps with debuggers correlating the filename with the
PDB file. #7400
Wasm32: .wasm files are no longer treated as an "executable",
allowing cargo test and cargo run to work properly with the
generated .js file. #7476
crates.io now supports SPDX 3.6 licenses. #7481
Improved cyclic dependency error message. #7470
Bare cargo clean no longer locks the package cache. #7502
cargo publish now allows dev-dependencies without a version key
to be published. A git or path-only dev-dependency will be removed
from the package manifest before uploading. #7333
--features and --no-default-features in the root of a virtual
workspace will now generate an error instead of being ignored. #7507

https://github.com/rust-lang/cargo/compare/1c6ec66d...5da4b4d4
https://github.com/rust-lang/cargo/pull/7308
https://github.com/rust-lang/cargo/pull/7450
https://github.com/rust-lang/cargo/pull/7376
https://github.com/rust-lang/cargo/pull/7375
https://github.com/rust-lang/cargo/pull/7465
https://github.com/rust-lang/cargo/pull/7400
https://github.com/rust-lang/cargo/pull/7476
https://github.com/rust-lang/cargo/pull/7481
https://github.com/rust-lang/cargo/pull/7470
https://github.com/rust-lang/cargo/pull/7502
https://github.com/rust-lang/cargo/pull/7333
https://github.com/rust-lang/cargo/pull/7507

Generated files (like Cargo.toml and Cargo.lock) in a package
archive now have their timestamp set to the current time instead of the
epoch. #7523
The -Z flag parser is now more strict, rejecting more invalid syntax.
#7531

Fixed

Fixed an issue where if a package had an include field, and
Cargo.lock in .gitignore , and a binary or example target, and the
Cargo.lock exists in the current project, it would fail to publish
complaining the Cargo.lock was dirty. #7448
Fixed a panic in a particular combination of [patch] entries. #7452
Windows: Better error message when cargo test or rustc crashes
in an abnormal way, such as a signal or seg fault. #7535

Nightly only

The mtime-on-use feature may now be enabled via the
unstable.mtime_on_use config option. #7411
Added support for named profiles. #6989
Added -Zpanic-abort-tests to allow building and running tests
with the "abort" panic strategy. #7460
Changed build-std to use --sysroot . #7421
Various fixes and enhancements to -Ztimings . #7395 #7398 #7397
#7403 #7428 #7429
Profile overrides have renamed the syntax to be
[profile.dev.package.NAME] . #7504
Fixed warnings for unused profile overrides in a workspace. #7536

https://github.com/rust-lang/cargo/pull/7523
https://github.com/rust-lang/cargo/pull/7531
https://github.com/rust-lang/cargo/pull/7448
https://github.com/rust-lang/cargo/pull/7452
https://github.com/rust-lang/cargo/pull/7535
https://github.com/rust-lang/cargo/pull/7411
https://github.com/rust-lang/cargo/pull/6989
https://github.com/rust-lang/cargo/pull/7460
https://github.com/rust-lang/cargo/pull/7421
https://github.com/rust-lang/cargo/pull/7395
https://github.com/rust-lang/cargo/pull/7398
https://github.com/rust-lang/cargo/pull/7397
https://github.com/rust-lang/cargo/pull/7403
https://github.com/rust-lang/cargo/pull/7428
https://github.com/rust-lang/cargo/pull/7429
https://github.com/rust-lang/cargo/pull/7504
https://github.com/rust-lang/cargo/pull/7536

Cargo 1.39 (2019-11-07)
e853aa97...1c6ec66d

Added

Config files may now use the .toml filename extension. #7295
The --workspace flag has been added as an alias for --all to help
avoid confusion about the meaning of "all". #7241
The publish field has been added to cargo metadata . #7354

Changed

Display more information if parsing the output from rustc fails.
#7236
TOML errors now show the column number. #7248
cargo vendor no longer deletes files in the vendor directory that
starts with a . . #7242
cargo fetch will now show manifest warnings. #7243
cargo publish will now check git submodules if they contain any
uncommitted changes. #7245
In a build script, cargo:rustc-flags now allows -l and -L flags
without spaces. #7257
When cargo install replaces an older version of a package it will
now delete any installed binaries that are no longer present in the
newly installed version. #7246
A git dependency may now also specify a version key when
published. The git value will be stripped from the uploaded crate,
matching the behavior of path dependencies. #7237
The behavior of workspace default-members has changed. The default-
members now only applies when running Cargo in the root of the
workspace. Previously it would always apply regardless of which
directory Cargo is running in. #7270
libgit2 updated pulling in all upstream changes. #7275

https://github.com/rust-lang/cargo/compare/e853aa97...1c6ec66d
https://github.com/rust-lang/cargo/pull/7295
https://github.com/rust-lang/cargo/pull/7241
https://github.com/rust-lang/cargo/pull/7354
https://github.com/rust-lang/cargo/pull/7236
https://github.com/rust-lang/cargo/pull/7248
https://github.com/rust-lang/cargo/pull/7242
https://github.com/rust-lang/cargo/pull/7243
https://github.com/rust-lang/cargo/pull/7245
https://github.com/rust-lang/cargo/pull/7257
https://github.com/rust-lang/cargo/pull/7246
https://github.com/rust-lang/cargo/pull/7237
https://github.com/rust-lang/cargo/pull/7270
https://github.com/rust-lang/cargo/pull/7275

Bump home dependency for locating home directories. #7277
zsh completions have been updated. #7296
SSL connect errors are now retried. #7318
The jobserver has been changed to acquire N tokens (instead of N-1),
and then immediately acquires the extra token. This was changed to
accommodate the cc crate on Windows to allow it to release its
implicit token. #7344
The scheduling algorithm for choosing which crate to build next has
been changed. It now chooses the crate with the greatest number of
transitive crates waiting on it. Previously it used a maximum
topological depth. #7390
RUSTFLAGS are no longer incorporated in the metadata and filename
hash, reversing the change from 1.33 that added it. This means that any
change to RUSTFLAGS will cause a recompile, and will not affect
symbol munging. #7459

Fixed

Git dependencies with submodules with shorthand SSH URLs (like
git@github.com/user/repo.git) should now work. #7238
Handle broken symlinks when creating .dSYM symlinks on macOS.
#7268
Fixed issues with multiple versions of the same crate in a [patch]
table. #7303
Fixed issue with custom target .json files where a substring of the
name matches an unsupported crate type (like "bin"). #7363
Fixed issues with generating documentation for proc-macro crate
types. #7159
Fixed hang if Cargo panics within a build thread. #7366
Fixed rebuild detection if a build.rs script issues different rerun-if
directives between builds. Cargo was erroneously causing a rebuild
after the change. #7373
Properly handle canonical URLs for [patch] table entries, preventing
the patch from working after the first time it is used. #7368

https://github.com/rust-lang/cargo/pull/7277
https://github.com/rust-lang/cargo/pull/7296
https://github.com/rust-lang/cargo/pull/7318
https://github.com/rust-lang/cargo/pull/7344
https://github.com/rust-lang/cargo/pull/7390
https://github.com/rust-lang/cargo/pull/7459
https://github.com/rust-lang/cargo/pull/7238
https://github.com/rust-lang/cargo/pull/7268
https://github.com/rust-lang/cargo/pull/7303
https://github.com/rust-lang/cargo/issues/7363
https://github.com/rust-lang/cargo/pull/7159
https://github.com/rust-lang/cargo/pull/7366
https://github.com/rust-lang/cargo/pull/7373
https://github.com/rust-lang/cargo/pull/7368

Fixed an issue where integration tests were waiting for the package
binary to finish building before starting their own build. They now
may build concurrently. #7394
Fixed accidental change in the previous release on how --features a
b flag is interpreted, restoring the original behavior where this is
interpreted as --features a along with the argument b passed to the
command. To pass multiple features, use quotes around the features to
pass multiple features like --features "a b" , or use commas, or use
multiple --features flags. #7419

Nightly only

Basic support for building the standard library directly from Cargo has
been added. (docs) #7216
Added -Ztimings feature to generate an HTML report on the time
spent on individual compilation steps. This also may output
completion steps on the console and JSON data. (docs) #7311
Added ability to cross-compile doctests. (docs) #6892

https://github.com/rust-lang/cargo/pull/7394
https://github.com/rust-lang/cargo/pull/7419
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#build-std
https://github.com/rust-lang/cargo/pull/7216
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#timings
https://github.com/rust-lang/cargo/pull/7311
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#doctest-xcompile
https://github.com/rust-lang/cargo/pull/6892

Cargo 1.38 (2019-09-26)
4c1fa54d...23ef9a4e

Added

🔥 Cargo build pipelining has been enabled by default to leverage
more idle CPU parallelism during builds. #7143
The --message-format option to Cargo can now be specified
multiple times and accepts a comma-separated list of values. In
addition to the previous values it also now accepts json-diagnostic-
short and json-diagnostic-rendered-ansi which configures the
output coming from rustc in json message mode. #7214
Cirrus CI badges are now supported on crates.io. #7119
A new format for Cargo.lock has been introduced. This new format
is intended to avoid source-control merge conflicts more often, and to
generally make it safer to merge changes. This new format is not
enabled at this time, though Cargo will use it if it sees it. At some point
in the future, it is intended that this will become the default. #7070
Progress bar support added for FreeBSD. #7222

Changed

The -q flag will no longer suppress the root error message for an error
from Cargo itself. #7116
The Cargo Book is now published with mdbook 0.3 providing a
number of formatting fixes and improvements. #7140
The --features command-line flag can now be specified multiple
times. The list of features from all the flags are joined together. #7084
Package include/exclude glob-vs-gitignore warnings have been
removed. Packages may now use gitignore-style matching without
producing any warnings. #7170
Cargo now shows the command and output when parsing rustc
output fails when querying rustc for information like cfg values.
#7185

https://github.com/rust-lang/cargo/compare/4c1fa54d...23ef9a4e
https://github.com/rust-lang/cargo/pull/7143
https://github.com/rust-lang/cargo/pull/7214
https://github.com/rust-lang/cargo/pull/7119
https://github.com/rust-lang/cargo/pull/7070
https://github.com/rust-lang/cargo/pull/7222
https://github.com/rust-lang/cargo/pull/7116
https://github.com/rust-lang/cargo/pull/7140
https://github.com/rust-lang/cargo/pull/7084
https://github.com/rust-lang/cargo/pull/7170
https://github.com/rust-lang/cargo/pull/7185

cargo package / cargo publish now allows a symbolic link to a git
submodule to include that submodule. #6817
Improved the error message when a version requirement does not
match any versions, but there are pre-release versions available. #7191

Fixed

Fixed using the wrong directory when updating git repositories when
using the git-fetch-with-cli config option, and the GIT_DIR
environment variable is set. This may happen when running cargo
from git callbacks. #7082
Fixed dep-info files being overwritten for targets that have separate
debug outputs. For example, binaries on -apple- targets with .dSYM
directories would overwrite the .d file. #7057
Fix [patch] table not preserving "one major version per source" rule.
#7118
Ignore --remap-path-prefix flags for the metadata hash in the
cargo rustc command. This was causing the remap settings to
inadvertently affect symbol names. #7134
Fixed cycle detection in [patch] dependencies. #7174
Fixed cargo new leaving behind a symlink on Windows when
core.symlinks git config is true. Also adds a number of fixes and
updates from upstream libgit2. #7176
macOS: Fixed setting the flag to mark the target directory to be
excluded from backups. #7192
Fixed cargo fix panicking under some situations involving multi-
byte characters. #7221

Nightly only

Added cargo fix --clippy which will apply machine-applicable
fixes from Clippy. #7069
Added -Z binary-dep-depinfo flag to add change tracking for
binary dependencies like the standard library. #7137 #7219

https://github.com/rust-lang/cargo/pull/6817
https://github.com/rust-lang/cargo/pull/7191
https://github.com/rust-lang/cargo/pull/7082
https://github.com/rust-lang/cargo/pull/7057
https://github.com/rust-lang/cargo/pull/7118
https://github.com/rust-lang/cargo/pull/7134
https://github.com/rust-lang/cargo/pull/7174
https://github.com/rust-lang/cargo/pull/7176
https://github.com/rust-lang/cargo/pull/7192
https://github.com/rust-lang/cargo/pull/7221
https://github.com/rust-lang/cargo/pull/7069
https://github.com/rust-lang/cargo/pull/7137
https://github.com/rust-lang/cargo/pull/7219

cargo clippy-preview will always run, even if no changes have
been made. #7157
Fixed exponential blowup when using CARGO_BUILD_PIPELINING .
#7062
Fixed passing args to clippy in cargo clippy-preview . #7162

https://github.com/rust-lang/cargo/pull/7157
https://github.com/rust-lang/cargo/pull/7062
https://github.com/rust-lang/cargo/pull/7162

Cargo 1.37 (2019-08-15)
c4fcfb72...9edd0891

Added

Added doctest field to cargo metadata to determine if a target's
documentation is tested. #6953 #6965
🔥 The cargo vendor command is now built-in to Cargo. This
command may be used to create a local copy of the sources of all
dependencies. #6869
🔥 The "publish lockfile" feature is now stable. This feature will
automatically include the Cargo.lock file when a package is
published if it contains a binary executable target. By default, Cargo
will ignore Cargo.lock when installing a package. To force Cargo to
use the Cargo.lock file included in the published package, use cargo
install --locked . This may be useful to ensure that cargo install
consistently reproduces the same result. It may also be useful when a
semver-incompatible change is accidentally published to a
dependency, providing a way to fall back to a version that is known to
work. #7026
🔥 The default-run feature has been stabilized. This feature allows
you to specify which binary executable to run by default with cargo
run when a package includes multiple binaries. Set the default-run
key in the [package] table in Cargo.toml to the name of the binary
to use by default. #7056

Changed

cargo package now verifies that build scripts do not create empty
directories. #6973
A warning is now issued if cargo doc generates duplicate outputs,
which causes files to be randomly stomped on. This may happen for a
variety of reasons (renamed dependencies, multiple versions of the

https://github.com/rust-lang/cargo/compare/c4fcfb72...9edd0891
https://github.com/rust-lang/cargo/pull/6953
https://github.com/rust-lang/cargo/pull/6965
https://doc.rust-lang.org/nightly/cargo/commands/cargo-vendor.html
https://github.com/rust-lang/cargo/pull/6869
https://github.com/rust-lang/cargo/pull/7026
https://github.com/rust-lang/cargo/pull/7056
https://github.com/rust-lang/cargo/pull/6973

same package, packages with renamed libraries, etc.). This is a known
bug, which needs more work to handle correctly. #6998
Enabling a dependency's feature with --features foo/bar will no
longer compile the current crate with the foo feature if foo is not an
optional dependency. #7010
If --remap-path-prefix is passed via RUSTFLAGS, it will no
longer affect the filename metadata hash. #6966
libgit2 has been updated to 0.28.2, which Cargo uses to access git
repositories. This brings in hundreds of changes and fixes since it was
last updated in November. #7018
Cargo now supports absolute paths in the dep-info files generated by
rustc. This is laying the groundwork for tracking binaries, such as
libstd, for rebuild detection. (Note: this contains a known bug.) #7030

Fixed

Fixed how zsh completions fetch the list of commands. #6956
"+ debuginfo" is no longer printed in the build summary when debug
is set to 0. #6971
Fixed cargo doc with an example configured with doc = true to
document correctly. #7023
Don't fail if a read-only lock cannot be acquired in CARGO_HOME.
This helps when CARGO_HOME doesn't exist, but --locked is used
which means CARGO_HOME is not needed. #7149
Reverted a change in 1.35 which released jobserver tokens when
Cargo blocked on a lock file. It caused a deadlock in some situations.
#7204

Nightly only

Added compiler message caching. The -Z cache-messages flag
makes cargo cache the compiler output so that future runs can
redisplay previous warnings. #6933
-Z mtime-on-use no longer touches intermediate artifacts. #7050

https://github.com/rust-lang/cargo/pull/6998
https://github.com/rust-lang/cargo/pull/7010
https://github.com/rust-lang/cargo/pull/6966
https://github.com/rust-lang/cargo/pull/7018
https://github.com/rust-lang/rust/pull/61727
https://github.com/rust-lang/cargo/pull/7030
https://github.com/rust-lang/cargo/pull/6956
https://github.com/rust-lang/cargo/pull/6971
https://github.com/rust-lang/cargo/pull/7023
https://github.com/rust-lang/cargo/pull/7149
https://github.com/rust-lang/cargo/pull/7204
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#cache-messages
https://github.com/rust-lang/cargo/pull/6933
https://github.com/rust-lang/cargo/pull/7050

Cargo 1.36 (2019-07-04)
6f3e9c36...c4fcfb72

Added

Added more detailed documentation on target auto-discovery. #6898
🔥 Stabilize the --offline flag which allows using cargo without a
network connection. #6934 #6871

Changed

publish = ["crates-io"] may be added to the manifest to restrict
publishing to crates.io only. #6838
macOS: Only include the default paths if
DYLD_FALLBACK_LIBRARY_PATH is not set. Also, remove /lib from
the default set. #6856
cargo publish will now exit early if the login token is not available.
#6854
HTTP/2 stream errors are now considered "spurious" and will cause a
retry. #6861
Setting a feature on a dependency where that feature points to a
required dependency is now an error. Previously it was a warning.
#6860
The registry.index config value now supports relative file:
URLs. #6873
macOS: The .dSYM directory is now symbolically linked next to
example binaries without the metadata hash so that debuggers can find
it. #6891
The default Cargo.toml template for now projects now includes a
comment providing a link to the documentation. #6881
Some improvements to the wording of the crate download summary.
#6916 #6920
✨ Changed RUST_LOG environment variable to CARGO_LOG so that
user code that uses the log crate will not display cargo's debug output.

https://github.com/rust-lang/cargo/compare/6f3e9c36...c4fcfb72
https://github.com/rust-lang/cargo/pull/6898
https://github.com/rust-lang/cargo/pull/6934
https://github.com/rust-lang/cargo/pull/6871
https://github.com/rust-lang/cargo/pull/6838
https://github.com/rust-lang/cargo/pull/6856
https://github.com/rust-lang/cargo/pull/6854
https://github.com/rust-lang/cargo/pull/6861
https://github.com/rust-lang/cargo/pull/6860
https://github.com/rust-lang/cargo/pull/6873
https://github.com/rust-lang/cargo/pull/6891
https://github.com/rust-lang/cargo/pull/6881
https://github.com/rust-lang/cargo/pull/6916
https://github.com/rust-lang/cargo/pull/6920

#6918
Cargo.toml is now always included when packaging, even if it is not
listed in package.include . #6925
Package include/exclude values now use gitignore patterns instead of
glob patterns. #6924
Provide a better error message when crates.io times out. Also improve
error messages with other HTTP response codes. #6936

Performance

Resolver performance improvements for some cases. #6853
Optimized how cargo reads the index JSON files by caching the
results. #6880 #6912 #6940
Various performance improvements. #6867

Fixed

More carefully track the on-disk fingerprint information for
dependencies. This can help in some rare cases where the build is
interrupted and restarted. #6832
cargo run now correctly passes non-UTF8 arguments to the child
process. #6849
Fixed bash completion to run on bash 3.2, the stock version in macOS.
#6905
Various fixes and improvements to zsh completion. #6926 #6929
Fix cargo update ignoring -p arguments if the Cargo.lock file was
missing. #6904

Nightly only

Added -Z install-upgrade feature to track details about installed
crates and to update them if they are out-of-date. #6798
Added the public-dependency feature which allows tracking public
versus private dependencies. #6772
Added build pipelining via the build.pipelining config option
(CARGO_BUILD_PIPELINING env var). #6883

https://github.com/rust-lang/cargo/pull/6918
https://github.com/rust-lang/cargo/pull/6925
https://github.com/rust-lang/cargo/pull/6924
https://github.com/rust-lang/cargo/pull/6936
https://github.com/rust-lang/cargo/pull/6853
https://github.com/rust-lang/cargo/pull/6880
https://github.com/rust-lang/cargo/pull/6912
https://github.com/rust-lang/cargo/pull/6940
https://github.com/rust-lang/cargo/pull/6867
https://github.com/rust-lang/cargo/pull/6832
https://github.com/rust-lang/cargo/pull/6849
https://github.com/rust-lang/cargo/pull/6905
https://github.com/rust-lang/cargo/pull/6926
https://github.com/rust-lang/cargo/pull/6929
https://github.com/rust-lang/cargo/pull/6904
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#install-upgrade
https://github.com/rust-lang/cargo/pull/6798
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#public-dependency
https://github.com/rust-lang/cargo/pull/6772
https://github.com/rust-lang/cargo/pull/6883

The publish-lockfile feature has had some significant changes. The
default is now true , the Cargo.lock will always be published for
binary crates. The Cargo.lock is now regenerated during publishing.
cargo install now ignores the Cargo.lock file by default, and
requires --locked to use the lock file. Warnings have been added if
yanked dependencies are detected. #6840

https://github.com/rust-lang/cargo/pull/6840

Cargo 1.35 (2019-05-23)
6789d8a0...6f3e9c36

Added

Added the rustc-cdylib-link-arg key for build scripts to specify
linker arguments for cdylib crates. #6298

Changed

When passing a test filter, such as cargo test foo , don't build
examples (unless they set test = true). #6683
Forward the --quiet flag from cargo test to the libtest harness so
that tests are actually quiet. #6358
The verification step in cargo package that checks if any files are
modified is now stricter. It uses a hash of the contents instead of
checking filesystem mtimes. It also checks all files in the package.
#6740
Jobserver tokens are now released whenever Cargo blocks on a file
lock. #6748
Issue a warning for a previous bug in the TOML parser that allowed
multiple table headers with the same name. #6761
Removed the CARGO_PKG_* environment variables from the metadata
hash and added them to the fingerprint instead. This means that when
these values change, stale artifacts are not left behind. Also added the
"repository" value to the fingerprint. #6785
cargo metadata no longer shows a null field for a dependency
without a library in resolve.nodes.deps . The dependency is no
longer shown. #6534
cargo new will no longer include an email address in the authors
field if it is set to the empty string. #6802
cargo doc --open now works when documenting multiple packages.
#6803

https://github.com/rust-lang/cargo/compare/6789d8a0...6f3e9c36
https://github.com/rust-lang/cargo/pull/6298
https://github.com/rust-lang/cargo/pull/6683
https://github.com/rust-lang/cargo/pull/6358
https://github.com/rust-lang/cargo/pull/6740
https://github.com/rust-lang/cargo/pull/6748
https://github.com/rust-lang/cargo/pull/6761
https://github.com/rust-lang/cargo/pull/6785
https://github.com/rust-lang/cargo/pull/6534
https://github.com/rust-lang/cargo/pull/6802
https://github.com/rust-lang/cargo/pull/6803

cargo install --path P now loads the .cargo/config file from
the directory P. #6805
Using semver metadata in a version requirement (such as
1.0.0+1234) now issues a warning that it is ignored. #6806
cargo install now rejects certain combinations of flags where some
flags would have been ignored. #6801
Resolver performance improvements for some cases. #6776

Fixed

Fixed running separate commands (such as cargo build then cargo
test) where the second command could use stale results from a build
script. #6720
Fixed cargo fix not working properly if a .gitignore file that
matched the root package directory. #6767
Fixed accidentally compiling a lib multiple times if panic=unwind
was set in a profile. #6781
Paths to JSON files in build.target config value are now
canonicalized to fix building dependencies. #6778
Fixed re-running a build script if its compilation was interrupted (such
as if it is killed). #6782
Fixed cargo new initializing a fossil repo. #6792
Fixed supporting updating a git repo that has a force push when using
the git-fetch-with-cli feature. git-fetch-with-cli also shows
more error information now when it fails. #6800
--example binaries built for the WASM target are fixed to no longer
include a metadata hash in the filename, and are correctly emitted in
the compiler-artifact JSON message. #6812

Nightly only

cargo clippy-preview is now a built-in cargo command. #6759
The build-override profile setting now includes proc-macros and
their dependencies. #6811

https://github.com/rust-lang/cargo/pull/6805
https://github.com/rust-lang/cargo/pull/6806
https://github.com/rust-lang/cargo/pull/6801
https://github.com/rust-lang/cargo/pull/6776
https://github.com/rust-lang/cargo/pull/6720
https://github.com/rust-lang/cargo/pull/6767
https://github.com/rust-lang/cargo/pull/6781
https://github.com/rust-lang/cargo/pull/6778
https://github.com/rust-lang/cargo/pull/6782
https://github.com/rust-lang/cargo/pull/6792
https://github.com/rust-lang/cargo/pull/6800
https://github.com/rust-lang/cargo/pull/6812
https://github.com/rust-lang/cargo/pull/6759
https://github.com/rust-lang/cargo/pull/6811

Optional and target dependencies now work better with -Z offline .
#6814

https://github.com/rust-lang/cargo/pull/6814

Cargo 1.34 (2019-04-11)
f099fe94...6789d8a0

Added

🔥 Stabilized support for alternate registries. #6654
Added documentation on using builds.sr.ht Continuous Integration
with Cargo. #6565
Cargo.lock now includes a comment at the top that it is @generated .
#6548
Azure DevOps badges are now supported. #6264
Added a warning if --exclude flag specifies an unknown package.
#6679

Changed

cargo test --doc --no-run doesn't do anything, so it now displays
an error to that effect. #6628
Various updates to bash completion: add missing options and
commands, support libtest completions, use rustup for --target
completion, fallback to filename completion, fix editing the command
line. #6644
Publishing a crate with a [patch] section no longer generates an
error. The [patch] section is removed from the manifest before
publishing. #6535
build.incremental = true config value is now treated the same as
CARGO_INCREMENTAL=1 , previously it was ignored. #6688
Errors from a registry are now always displayed regardless of the
HTTP response code. #6771

Fixed

Fixed bash completion for cargo run --example . #6578

https://github.com/rust-lang/cargo/compare/f099fe94...6789d8a0
https://doc.rust-lang.org/1.34.0/cargo/reference/registries.html
https://github.com/rust-lang/cargo/pull/6654
https://github.com/rust-lang/cargo/pull/6565
https://github.com/rust-lang/cargo/pull/6548
https://github.com/rust-lang/cargo/pull/6264
https://github.com/rust-lang/cargo/pull/6679
https://github.com/rust-lang/cargo/pull/6628
https://github.com/rust-lang/cargo/pull/6644
https://github.com/rust-lang/cargo/pull/6535
https://github.com/rust-lang/cargo/pull/6688
https://github.com/rust-lang/cargo/pull/6771
https://github.com/rust-lang/cargo/pull/6578

Fixed a race condition when using a local registry and running
multiple cargo commands at the same time that build the same crate.
#6591
Fixed some flickering and excessive updates of the progress bar. #6615
Fixed a hang when using a git credential helper that returns incorrect
credentials. #6681
Fixed resolving yanked crates with a local registry. #6750

Nightly only

Added -Z mtime-on-use flag to cause the mtime to be updated on the
filesystem when a crate is used. This is intended to be able to track
stale artifacts in the future for cleaning up unused files. #6477 #6573
Added experimental -Z dual-proc-macros to build proc macros for
both the host and the target. #6547

https://github.com/rust-lang/cargo/pull/6591
https://github.com/rust-lang/cargo/pull/6615
https://github.com/rust-lang/cargo/pull/6681
https://github.com/rust-lang/cargo/pull/6750
https://github.com/rust-lang/cargo/pull/6477
https://github.com/rust-lang/cargo/pull/6573
https://github.com/rust-lang/cargo/pull/6547

Cargo 1.33 (2019-02-28)
8610973a...f099fe94

Added

compiler-artifact JSON messages now include an "executable"
key which includes the path to the executable that was built. #6363
The man pages have been rewritten, and are now published with the
web documentation. #6405
cargo login now displays a confirmation after saving the token.
#6466
A warning is now emitted if a [patch] entry does not match any
package. #6470
cargo metadata now includes the links key for a package. #6480
"Very verbose" output with -vv now displays the environment
variables that cargo sets when it runs a process. #6492
--example , --bin , --bench , or --test without an argument now
lists the available targets for those options. #6505
Windows: If a process fails with an extended status exit code, a
human-readable name for the code is now displayed. #6532
Added --features , --no-default-features , and --all-features
flags to the cargo package and cargo publish commands to use the
given features when verifying the package. #6453

Changed

If cargo fix fails to compile the fixed code, the rustc errors are now
displayed on the console. #6419
Hide the --host flag from cargo login , it is unused. #6466
Build script fingerprints now include the rustc version. #6473
macOS: Switched to setting DYLD_FALLBACK_LIBRARY_PATH instead of
DYLD_LIBRARY_PATH . #6355
RUSTFLAGS is now included in the metadata hash, meaning that
changing the flags will not overwrite previously built files. #6503

https://github.com/rust-lang/cargo/compare/8610973a...f099fe94
https://github.com/rust-lang/cargo/pull/6363
https://github.com/rust-lang/cargo/pull/6405
https://github.com/rust-lang/cargo/pull/6466
https://github.com/rust-lang/cargo/pull/6470
https://github.com/rust-lang/cargo/pull/6480
https://github.com/rust-lang/cargo/pull/6492
https://github.com/rust-lang/cargo/pull/6505
https://github.com/rust-lang/cargo/pull/6532
https://github.com/rust-lang/cargo/pull/6453
https://github.com/rust-lang/cargo/pull/6419
https://github.com/rust-lang/cargo/pull/6466
https://github.com/rust-lang/cargo/pull/6473
https://github.com/rust-lang/cargo/pull/6355
https://github.com/rust-lang/cargo/pull/6503

When updating the crate graph, unrelated yanked crates were
erroneously removed. They are now kept at their original version if
possible. This was causing unrelated packages to be downgraded
during cargo update -p somecrate . #5702
TOML files now support the 0.5 TOML syntax.

Fixed

cargo fix will now ignore suggestions that modify multiple files.
#6402
cargo fix will now only fix one target at a time, to deal with targets
which share the same source files. #6434
Fixed bash completion showing the list of cargo commands. #6461
cargo init will now avoid creating duplicate entries in .gitignore
files. #6521
Builds now attempt to detect if a file is modified in the middle of a
compilation, allowing you to build again and pick up the new changes.
This is done by keeping track of when the compilation starts not when
it finishes. Also, #5919 was reverted, meaning that cargo does not treat
equal filesystem mtimes as requiring a rebuild. #6484

Nightly only

Allow using registry names in [patch] tables instead of just URLs.
#6456
cargo metadata added the registry key for dependencies. #6500
Registry names are now restricted to the same style as package names
(alphanumeric, - and _ characters). #6469
cargo login now displays the /me URL from the registry config.
#6466
cargo login --registry=NAME now supports interactive input for
the token. #6466
Registries may now elide the api key from config.json to indicate
they do not support API access. #6466

https://github.com/rust-lang/cargo/issues/5702
https://github.com/toml-lang/toml/blob/master/CHANGELOG.md#050--2018-07-11
https://github.com/rust-lang/cargo/pull/6402
https://github.com/rust-lang/cargo/pull/6434
https://github.com/rust-lang/cargo/issues/6461
https://github.com/rust-lang/cargo/pull/6521
https://github.com/rust-lang/cargo/pull/5919
https://github.com/rust-lang/cargo/pull/6484
https://github.com/rust-lang/cargo/pull/6456
https://github.com/rust-lang/cargo/pull/6500
https://github.com/rust-lang/cargo/pull/6469
https://github.com/rust-lang/cargo/pull/6466
https://github.com/rust-lang/cargo/pull/6466
https://github.com/rust-lang/cargo/pull/6466

Fixed panic when using --message-format=json with metabuild.
#6432
Fixed detection of publishing to crates.io when using alternate
registries. #6525

https://github.com/rust-lang/cargo/pull/6432
https://github.com/rust-lang/cargo/pull/6525

Cargo 1.32 (2019-01-17)
339d9f9c...8610973a

Added

Registries may now display warnings after a successful publish. #6303
Added a glossary to the documentation. #6321
Added the alias c for cargo check . #6218

Changed

🔥 HTTP/2 multiplexing is now enabled by default. The
http.multiplexing config value may be used to disable it. #6271
Use ANSI escape sequences to clear lines instead of spaces. #6233
Disable git templates when checking out git dependencies, which can
cause problems. #6252
Include the --update-head-ok git flag when using the net.git-
fetch-with-cli option. This can help prevent failures when fetching
some repositories. #6250
When extracting a crate during the verification step of cargo
package , the filesystem mtimes are no longer set, which was failing
on some rare filesystems. #6257
crate-type = ["proc-macro"] is now treated the same as proc-
macro = true in Cargo.toml . #6256
An error is raised if dependencies , features , target , or badges is
set in a virtual workspace. Warnings are displayed if replace or
patch is used in a workspace member. #6276
Improved performance of the resolver in some cases. #6283 #6366
.rmeta files are no longer hard-linked into the base target directory
(target/debug). #6292
A warning is issued if multiple targets are built with the same output
filenames. #6308

https://github.com/rust-lang/cargo/compare/339d9f9c...8610973a
https://github.com/rust-lang/cargo/pull/6303
https://doc.rust-lang.org/cargo/appendix/glossary.html
https://github.com/rust-lang/cargo/pull/6321
https://github.com/rust-lang/cargo/pull/6218
https://github.com/rust-lang/cargo/pull/6271
https://github.com/rust-lang/cargo/pull/6233
https://github.com/rust-lang/cargo/pull/6252
https://github.com/rust-lang/cargo/pull/6250
https://github.com/rust-lang/cargo/pull/6257
https://github.com/rust-lang/cargo/pull/6256
https://github.com/rust-lang/cargo/pull/6276
https://github.com/rust-lang/cargo/pull/6283
https://github.com/rust-lang/cargo/pull/6366
https://github.com/rust-lang/cargo/pull/6292
https://github.com/rust-lang/cargo/pull/6308

When using cargo build (without --release) benchmarks are now
built using the "test" profile instead of "bench". This makes it easier to
debug benchmarks, and avoids confusing behavior. #6309
User aliases may now override built-in aliases (b , r , t , and c).
#6259
Setting autobins=false now disables auto-discovery of inferred
targets. #6329
cargo verify-project will now fail on stable if the project uses
unstable features. #6326
Platform targets with an internal . within the name are now allowed.
#6255
cargo clean --release now only deletes the release directory.
#6349

Fixed

Avoid adding extra angle brackets in email address for cargo new .
#6243
The progress bar is disabled if the CI environment variable is set.
#6281
Avoid retaining all rustc output in memory. #6289
If JSON parsing fails, and rustc exits nonzero, don't lose the parse
failure message. #6290
Fixed renaming a project directory with build scripts. #6328
Fixed cargo run --example NAME to work correctly if the example
sets crate_type = ["bin"] . #6330
Fixed issue with cargo package git discovery being too aggressive.
The --allow-dirty now completely disables the git repo checks.
#6280
Fixed build change tracking for [patch] deps which resulted in
cargo build rebuilding when it shouldn't. #6493

Nightly only

Allow usernames in registry URLs. #6242

https://github.com/rust-lang/cargo/pull/6309
https://github.com/rust-lang/cargo/pull/6259
https://github.com/rust-lang/cargo/pull/6329
https://github.com/rust-lang/cargo/pull/6326
https://github.com/rust-lang/cargo/pull/6255
https://github.com/rust-lang/cargo/pull/6349
https://github.com/rust-lang/cargo/pull/6243
https://github.com/rust-lang/cargo/pull/6281
https://github.com/rust-lang/cargo/pull/6289
https://github.com/rust-lang/cargo/pull/6290
https://github.com/rust-lang/cargo/pull/6328
https://github.com/rust-lang/cargo/pull/6330
https://github.com/rust-lang/cargo/pull/6280
https://github.com/rust-lang/cargo/pull/6493
https://github.com/rust-lang/cargo/pull/6242

Added "compile_mode" key to the build-plan JSON structure to be
able to distinguish running a custom build script versus compiling the
build script. #6331
--out-dir no longer copies over build scripts. #6300

https://github.com/rust-lang/cargo/pull/6331
https://github.com/rust-lang/cargo/pull/6300

Cargo 1.31 (2018-12-06)
36d96825...339d9f9c

Added

🔥 Stabilized support for the 2018 edition. #5984 #5989
🔥 Added the ability to rename dependencies in Cargo.toml. #6319
🔥 Added support for HTTP/2 pipelining and multiplexing. Set the
http.multiplexing config value to enable. #6005
Added http.debug configuration value to debug HTTP connections.
Use CARGO_HTTP_DEBUG=true RUST_LOG=cargo::ops::registry
cargo build to display the debug information. #6166
CARGO_PKG_REPOSITORY environment variable is set with the
repository value from Cargo.toml when building . #6096

Changed

cargo test --doc now rejects other flags instead of ignoring them.
#6037
cargo install ignores ~/.cargo/config . #6026
cargo version --verbose is now the same as cargo -vV . #6076
Comments at the top of Cargo.lock are now preserved. #6181
When building in "very verbose" mode (cargo build -vv), build
script output is prefixed with the package name and version, such as
[foo 0.0.1] . #6164
If cargo fix --broken-code fails to compile after fixes have been
applied, the files are no longer reverted and are left in their broken
state. #6316

Fixed

Windows: Pass Ctrl-C to the process with cargo run . #6004
macOS: Fix bash completion. #6038

https://github.com/rust-lang/cargo/compare/36d96825...339d9f9c
https://github.com/rust-lang/cargo/pull/5984
https://github.com/rust-lang/cargo/pull/5989
https://doc.rust-lang.org/1.31.0/cargo/reference/specifying-dependencies.html#renaming-dependencies-in-cargotoml
https://github.com/rust-lang/cargo/pull/6319
https://github.com/rust-lang/cargo/pull/6005
https://github.com/rust-lang/cargo/pull/6166
https://github.com/rust-lang/cargo/pull/6096
https://github.com/rust-lang/cargo/pull/6037
https://github.com/rust-lang/cargo/pull/6026
https://github.com/rust-lang/cargo/pull/6076
https://github.com/rust-lang/cargo/pull/6181
https://github.com/rust-lang/cargo/pull/6164
https://github.com/rust-lang/cargo/pull/6316
https://github.com/rust-lang/cargo/pull/6004
https://github.com/rust-lang/cargo/pull/6038

Support arbitrary toolchain names when completing +toolchain in
bash completion. #6038
Fixed edge cases in the resolver, when backtracking on failed
dependencies. #5988
Fixed cargo test --all-targets running lib tests three times.
#6039
Fixed publishing renamed dependencies to crates.io. #5993
Fixed cargo install on a git repo with multiple binaries. #6060
Fixed deeply nested JSON emitted by rustc being lost. #6081
Windows: Fix locking msys terminals to 60 characters. #6122
Fixed renamed dependencies with dashes. #6140
Fixed linking against the wrong dylib when the dylib existed in both
target/debug and target/debug/deps . #6167
Fixed some unnecessary recompiles when panic=abort is used.
#6170

Nightly only

Added --registry flag to cargo install . #6128
Added registry.default configuration value to specify the default
registry to use if --registry flag is not passed. #6135
Added --registry flag to cargo new and cargo init . #6135

https://github.com/rust-lang/cargo/pull/6038
https://github.com/rust-lang/cargo/pull/5988
https://github.com/rust-lang/cargo/pull/6039
https://github.com/rust-lang/cargo/pull/5993
https://github.com/rust-lang/cargo/pull/6060
https://github.com/rust-lang/cargo/pull/6081
https://github.com/rust-lang/cargo/pull/6122
https://github.com/rust-lang/cargo/pull/6140
https://github.com/rust-lang/cargo/pull/6167
https://github.com/rust-lang/cargo/pull/6170
https://github.com/rust-lang/cargo/pull/6128
https://github.com/rust-lang/cargo/pull/6135
https://github.com/rust-lang/cargo/pull/6135

Cargo 1.30 (2018-10-25)
524a578d...36d96825

Added

🔥 Added an animated progress bar shows progress during building.
#5995
Added resolve.nodes.deps key to cargo metadata , which includes
more information about resolved dependencies, and properly handles
renamed dependencies. #5871
When creating a package, provide more detail with -v when failing to
discover if files are dirty in a git repository. Also fix a problem with
discovery on Windows. #5858
Filters like --bin , --test , --example , --bench , or --lib can be
used in a workspace without selecting a specific package. #5873
cargo run can be used in a workspace without selecting a specific
package. #5877
cargo doc --message-format=json now outputs JSON messages
from rustdoc. #5878
Added --message-format=short to show one-line messages. #5879
Added .cargo_vcs_info.json file to .crate packages that captures
the current git hash. #5886
Added net.git-fetch-with-cli configuration option to use the git
executable to fetch repositories instead of using the built-in libgit2
library. #5914
Added required-features to cargo metadata . #5902
cargo uninstall within a package will now uninstall that package.
#5927
Added --allow-staged flag to cargo fix to allow it to run if files
are staged in git. #5943
Added net.low-speed-limit config value, and also honor
net.timeout for http operations. #5957
Added --edition flag to cargo new . #5984

https://github.com/rust-lang/cargo/compare/524a578d...36d96825
https://github.com/rust-lang/cargo/pull/5995/
https://github.com/rust-lang/cargo/pull/5871
https://github.com/rust-lang/cargo/pull/5858
https://github.com/rust-lang/cargo/pull/5873
https://github.com/rust-lang/cargo/pull/5877
https://github.com/rust-lang/cargo/pull/5878
https://github.com/rust-lang/cargo/pull/5879
https://github.com/rust-lang/cargo/pull/5886
https://github.com/rust-lang/cargo/pull/5914
https://github.com/rust-lang/cargo/pull/5902
https://github.com/rust-lang/cargo/pull/5927
https://github.com/rust-lang/cargo/pull/5943
https://github.com/rust-lang/cargo/pull/5957
https://github.com/rust-lang/cargo/pull/5984

Temporarily stabilized 2018 edition support for the duration of the
beta. #5984 #5989
Added support for target.'cfg(…)'.runner config value to specify
the run/test/bench runner for targets that use config expressions. #5959

Changed

Windows: cargo run will not kill child processes when the main
process exits. #5887
Switched to the opener crate to open a web browser with cargo doc
--open . This should more reliably select the system-preferred browser
on all platforms. #5888
Equal file mtimes now cause a target to be rebuilt. Previously only if
files were strictly newer than the last build would it cause a rebuild.
#5919
Ignore build.target config value when running cargo install .
#5874
Ignore RUSTC_WRAPPER for cargo fix . #5983
Ignore empty RUSTC_WRAPPER . #5985

Fixed

Fixed error when creating a package with an edition field in
Cargo.toml . #5908
More consistently use relative paths for path dependencies in a
workspace. #5935
cargo fix now always runs, even if it was run previously. #5944
Windows: Attempt to more reliably detect terminal width. msys-based
terminals are forced to 60 characters wide. #6010
Allow multiple target flags with cargo doc --document-private-
items . 6022

Nightly only

Added metabuild. #5628

https://github.com/rust-lang/cargo/pull/5984
https://github.com/rust-lang/cargo/pull/5989
https://github.com/rust-lang/cargo/pull/5959
https://github.com/rust-lang/cargo/pull/5887
https://github.com/rust-lang/cargo/pull/5888
https://github.com/rust-lang/cargo/pull/5919
https://github.com/rust-lang/cargo/pull/5874
https://github.com/rust-lang/cargo/pull/5983
https://github.com/rust-lang/cargo/pull/5985
https://github.com/rust-lang/cargo/pull/5908
https://github.com/rust-lang/cargo/pull/5935
https://github.com/rust-lang/cargo/pull/5944
https://github.com/rust-lang/cargo/pull/6010
https://github.com/rust-lang/cargo/pull/6022
https://doc.rust-lang.org/1.30.0/cargo/reference/unstable.html#metabuild
https://github.com/rust-lang/cargo/pull/5628

Glossary

Artifact
An artifact is the file or set of files created as a result of the compilation

process. This includes linkable libraries, executable binaries, and generated
documentation.

Cargo
Cargo is the Rust package manager, and the primary topic of this book.

Cargo.lock
See lock file.

Cargo.toml
See manifest.

Crate
A Rust crate is either a library or an executable program, referred to as

either a library crate or a binary crate, respectively.
Every target defined for a Cargo package is a crate.
Loosely, the term crate may refer to either the source code of the target

or to the compiled artifact that the target produces. It may also refer to a
compressed package fetched from a registry.

The source code for a given crate may be subdivided into modules.

Edition
A Rust edition is a developmental landmark of the Rust language. The

edition of a package is specified in the Cargo.toml manifest, and
individual targets can specify which edition they use. See the Edition Guide
for more information.

clbr://internal.invalid/book/OEBPS/reference/manifest.md#the-edition-field
clbr://internal.invalid/book/edition-guide/index.html

Feature
The meaning of feature depends on the context:

A feature is a named flag which allows for conditional compilation.
A feature can refer to an optional dependency, or an arbitrary name
defined in a Cargo.toml manifest that can be checked within source
code.

Cargo has unstable feature flags which can be used to enable
experimental behavior of Cargo itself.

The Rust compiler and Rustdoc have their own unstable feature
flags (see The Unstable Book and The Rustdoc Book).

CPU targets have target features which specify capabilities of a
CPU.

clbr://internal.invalid/book/OEBPS/reference/features.md
clbr://internal.invalid/book/OEBPS/reference/unstable.md
https://doc.rust-lang.org/nightly/unstable-book/index.html
https://doc.rust-lang.org/nightly/rustdoc/unstable-features.html
clbr://internal.invalid/book/reference/attributes/codegen.html#the-target_feature-attribute

Index
The index is the searchable list of crates in a registry.

Lock file
The Cargo.lock lock file is a file that captures the exact version of

every dependency used in a workspace or package. It is automatically
generated by Cargo. See Cargo.toml vs Cargo.lock.

clbr://internal.invalid/book/OEBPS/guide/cargo-toml-vs-cargo-lock.md

Manifest
A manifest is a description of a package or a workspace in a file named

Cargo.toml .
A virtual manifest is a Cargo.toml file that only describes a workspace,

and does not include a package.

clbr://internal.invalid/book/OEBPS/reference/manifest.md
clbr://internal.invalid/book/OEBPS/reference/workspaces.md

Member
A member is a package that belongs to a workspace.

Module
Rust's module system is used to organize code into logical units called

modules, which provide isolated namespaces within the code.
The source code for a given crate may be subdivided into one or more

separate modules. This is usually done to organize the code into areas of
related functionality or to control the visible scope (public/private) of
symbols within the source (structs, functions, and so on).

A Cargo.toml file is primarily concerned with the package it defines,
its crates, and the packages of the crates on which they depend.
Nevertheless, you will see the term "module" often when working with
Rust, so you should understand its relationship to a given crate.

Package
A package is a collection of source files and a Cargo.toml manifest file

which describes the package. A package has a name and version which is
used for specifying dependencies between packages.

A package contains multiple targets, each of which is a crate. The
Cargo.toml file describes the type of the crates (binary or library) within
the package, along with some metadata about each one --- how each is to be
built, what their direct dependencies are, etc., as described throughout this
book.

The package root is the directory where the package's Cargo.toml

manifest is located. (Compare with workspace root.)
The package ID specification, or SPEC, is a string used to uniquely

reference a specific version of a package from a specific source.
Small to medium sized Rust projects will only need a single package,

though it is common for them to have multiple crates.
Larger projects may involve multiple packages, in which case Cargo

workspaces can be used to manage common dependencies and other related
metadata between the packages.

clbr://internal.invalid/book/OEBPS/reference/pkgid-spec.md

Package manager
Broadly speaking, a package manager is a program (or collection of

related programs) in a software ecosystem that automates the process of
obtaining, installing, and upgrading artifacts. Within a programming
language ecosystem, a package manager is a developer-focused tool whose
primary functionality is to download library artifacts and their dependencies
from some central repository; this capability is often combined with the
ability to perform software builds (by invoking the language-specific
compiler).

Cargo is the package manager within the Rust ecosystem. Cargo
downloads your Rust package’s dependencies (artifacts known as crates),
compiles your packages, makes distributable packages, and (optionally)
uploads them to crates.io, the Rust community’s package registry.

https://crates.io/

Package registry
See registry.

Project
Another name for a package.

Registry
A registry is a service that contains a collection of downloadable crates

that can be installed or used as dependencies for a package. The default
registry in the Rust ecosystem is crates.io. The registry has an index which
contains a list of all crates, and tells Cargo how to download the crates that
are needed.

https://crates.io/

Source
A source is a provider that contains crates that may be included as

dependencies for a package. There are several kinds of sources:

Registry source --- See registry.
Local registry source --- A set of crates stored as compressed files on
the filesystem. See Local Registry Sources.
Directory source --- A set of crates stored as uncompressed files on
the filesystem. See Directory Sources.
Path source --- An individual package located on the filesystem (such
as a path dependency) or a set of multiple packages (such as path
overrides).
Git source --- Packages located in a git repository (such as a git
dependency or git source).

See Source Replacement for more information.

clbr://internal.invalid/book/OEBPS/reference/source-replacement.md#local-registry-sources
clbr://internal.invalid/book/OEBPS/reference/source-replacement.md#directory-sources
clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md#specifying-path-dependencies
clbr://internal.invalid/book/OEBPS/reference/overriding-dependencies.md#paths-overrides
clbr://internal.invalid/book/OEBPS/reference/specifying-dependencies.md#specifying-dependencies-from-git-repositories
clbr://internal.invalid/book/OEBPS/reference/source-replacement.md
clbr://internal.invalid/book/OEBPS/reference/source-replacement.md

Spec
See package ID specification.

Target
The meaning of the term target depends on the context:

Cargo Target --- Cargo packages consist of targets which
correspond to artifacts that will be produced. Packages can have
library, binary, example, test, and benchmark targets. The list of targets
are configured in the Cargo.toml manifest, often inferred
automatically by the directory layout of the source files.

Target Directory --- Cargo places all built artifacts and
intermediate files in the target directory. By default this is a directory
named target at the workspace root, or the package root if not using
a workspace. The directory may be changed with the --target-dir
command-line option, the CARGO_TARGET_DIR environment variable,
or the build.target-dir config option.

Target Architecture --- The OS and machine architecture for the
built artifacts are typically referred to as a target.

Target Triple --- A triple is a specific format for specifying a target
architecture. Triples may be referred to as a target triple which is the
architecture for the artifact produced, and the host triple which is the
architecture that the compiler is running on. The target triple can be
specified with the --target command-line option or the
build.target config option. The general format of the triple is
<arch><sub>-<vendor>-<sys>-<abi> where:

arch = The base CPU architecture, for example x86_64 , i686 ,
arm , thumb , mips , etc.
sub = The CPU sub-architecture, for example arm has v7 , v7s ,
v5te , etc.
vendor = The vendor, for example unknown , apple , pc ,
nvidia , etc.
sys = The system name, for example linux , windows , darwin ,
etc. none is typically used for bare-metal without an OS.

clbr://internal.invalid/book/OEBPS/reference/cargo-targets.md#configuring-a-target
clbr://internal.invalid/book/OEBPS/guide/project-layout.md
clbr://internal.invalid/book/OEBPS/reference/environment-variables.md
clbr://internal.invalid/book/OEBPS/reference/config.md
clbr://internal.invalid/book/OEBPS/reference/config.md

abi = The ABI, for example gnu , android , eabi , etc.
Some parameters may be omitted. Run rustc --print target-

list for a list of supported targets.

Test Targets
Cargo test targets generate binaries which help verify proper operation

and correctness of code. There are two types of test artifacts:

Unit test --- A unit test is an executable binary compiled directly from
a library or a binary target. It contains the entire contents of the library
or binary code, and runs #[test] annotated functions, intended to
verify individual units of code.
Integration test target --- An integration test target is an executable
binary compiled from a test target which is a distinct crate whose
source is located in the tests directory or specified by the [[test]]
table in the Cargo.toml manifest. It is intended to only test the public
API of a library, or execute a binary to verify its operation.

clbr://internal.invalid/book/OEBPS/reference/cargo-targets.md#integration-tests
clbr://internal.invalid/book/OEBPS/reference/cargo-targets.md#configuring-a-target

Workspace
A workspace is a collection of one or more packages that share common

dependency resolution (with a shared Cargo.lock lock file), output
directory, and various settings such as profiles.

A virtual workspace is a workspace where the root Cargo.toml

manifest does not define a package, and only lists the workspace members.
The workspace root is the directory where the workspace's Cargo.toml

manifest is located. (Compare with package root.)

clbr://internal.invalid/book/OEBPS/reference/workspaces.md
clbr://internal.invalid/book/OEBPS/reference/workspaces.md

Git Authentication
Cargo supports some forms of authentication when using git

dependencies and registries. This appendix contains some information for
setting up git authentication in a way that works with Cargo.

If you need other authentication methods, the net.git-fetch-with-cli
config value can be set to cause Cargo to execute the git executable to
handle fetching remote repositories instead of using the built-in support.
This can be enabled with the CARGO_NET_GIT_FETCH_WITH_CLI=true

environment variable.

Note: Cargo does not require authentication for public git
dependencies so if you see an authentication failure in that context,
ensure that the URL is correct.

clbr://internal.invalid/book/OEBPS/reference/config.md#netgit-fetch-with-cli

HTTPS authentication
HTTPS authentication requires the credential.helper mechanism.

There are multiple credential helpers, and you specify the one you want to
use in your global git configuration file.
~/.gitconfig

[credential]
helper = store

Cargo does not ask for passwords, so for most helpers you will need to
give the helper the initial username/password before running Cargo. One
way to do this is to run git clone of the private git repo and enter the
username/password.

Tip:
macOS users may want to consider using the osxkeychain helper.
Windows users may want to consider using the GCM helper.

Note: Windows users will need to make sure that the sh shell is
available in your PATH . This typically is available with the Git for
Windows installation.

https://git-scm.com/book/en/v2/Git-Tools-Credential-Storage
https://github.com/microsoft/Git-Credential-Manager-Core/

SSH authentication
SSH authentication requires ssh-agent to be running to acquire the

SSH key. Make sure the appropriate environment variables are set up
(SSH_AUTH_SOCK on most Unix-like systems), and that the correct keys are
added (with ssh-add).

Windows can use Pageant (part of PuTTY) or ssh-agent . To use ssh-
agent , Cargo needs to use the OpenSSH that is distributed as part of
Windows, as Cargo does not support the simulated Unix-domain sockets
used by MinGW or Cygwin. More information about installing with
Windows can be found at the Microsoft installation documentation and the
page on key management has instructions on how to start ssh-agent and to
add keys.

Note: Cargo does not support git's shorthand SSH URLs like
git@example.com:user/repo.git . Use a full SSH URL like
ssh://git@example.com/user/repo.git .

Note: SSH configuration files (like OpenSSH's ~/.ssh/config)
are not used by Cargo's built-in SSH library. More advanced
requirements should use net.git-fetch-with-cli .

SSH Known Hosts
When connecting to an SSH host, Cargo must verify the identity of the

host using "known hosts", which are a list of host keys. Cargo can look for
these known hosts in OpenSSH-style known_hosts files located in their
standard locations (.ssh/known_hosts in your home directory, or
/etc/ssh/ssh_known_hosts on Unix-like platforms or
%PROGRAMDATA%\ssh\ssh_known_hosts on Windows). More information
about these files can be found in the sshd man page. Alternatively, keys
may be configured in a Cargo configuration file with net.ssh.known-
hosts .

When connecting to an SSH host before the known hosts has been
configured, Cargo will display an error message instructing you how to add

https://www.chiark.greenend.org.uk/~sgtatham/putty/
https://docs.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse
https://docs.microsoft.com/en-us/windows-server/administration/openssh/openssh_keymanagement
clbr://internal.invalid/book/OEBPS/reference/config.md#netgit-fetch-with-cli
https://man.openbsd.org/sshd#SSH_KNOWN_HOSTS_FILE_FORMAT
clbr://internal.invalid/book/OEBPS/reference/config.md#netsshknown-hosts

the host key. This also includes a "fingerprint", which is a smaller hash of
the host key, which should be easier to visually verify. The server
administrator can get the fingerprint by running ssh-keygen against the
public key (for example, ssh-keygen -l -f

/etc/ssh/ssh_host_ecdsa_key.pub). Well-known sites may publish their
fingerprints on the web; for example GitHub posts theirs at
https://docs.github.com/en/authentication/keeping-your-account-and-data-
secure/githubs-ssh-key-fingerprints.

Cargo comes with the host keys for github.com built-in. If those ever
change, you can add the new keys to the config or known_hosts file.

Note: Cargo doesn't support the @cert-authority or @revoked
markers in known_hosts files. To make use of this functionality, use
net.git-fetch-with-cli . This is also a good tip if Cargo's SSH
client isn't behaving the way you expect it to.

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/githubs-ssh-key-fingerprints
https://github.com/
clbr://internal.invalid/book/OEBPS/reference/config.md#netgit-fetch-with-cli

	Introduction
	1. Getting Started
	1.1. Installation
	1.2. First Steps with Cargo

	2. Cargo Guide
	2.1. Why Cargo Exists
	2.2. Creating a New Package
	2.3. Working on an Existing Package
	2.4. Dependencies
	2.5. Package Layout
	2.6. Cargo.toml vs Cargo.lock
	2.7. Tests
	2.8. Continuous Integration
	2.9. Publishing on crates.io
	2.10. Cargo Home

	3. Cargo Reference
	3.1. The Manifest Format
	3.1.1. Cargo Targets
	3.1.2. Rust version

	3.2. Workspaces
	3.3. Specifying Dependencies
	3.3.1. Overriding Dependencies
	3.3.2. Source Replacement
	3.3.3. Dependency Resolution

	3.4. Features
	3.4.1. Features Examples

	3.5. Profiles
	3.6. Configuration
	3.7. Environment Variables
	3.8. Build Scripts
	3.8.1. Build Script Examples

	3.9. Build Cache
	3.10. Package ID Specifications
	3.11. External Tools
	3.12. Registries
	3.12.1. Registry Authentication
	3.12.1.1. Credential Provider Protocol

	3.12.2. Running a Registry
	3.12.2.1. Registry Index
	3.12.2.2. Registry Web API

	3.13. SemVer Compatibility
	3.14. Future incompat report
	3.15. Reporting build timings
	3.16. Lints
	3.17. Unstable Features

	4. Cargo Commands
	4.1. General Commands
	4.1.1. cargo
	4.1.2. cargo help
	4.1.3. cargo version

	4.2. Build Commands
	4.2.1. cargo bench
	4.2.2. cargo build
	4.2.3. cargo check
	4.2.4. cargo clean
	4.2.5. cargo clippy
	4.2.6. cargo doc
	4.2.7. cargo fetch
	4.2.8. cargo fix
	4.2.9. cargo fmt
	4.2.10. cargo miri
	4.2.11. cargo report
	4.2.12. cargo run
	4.2.13. cargo rustc
	4.2.14. cargo rustdoc
	4.2.15. cargo test

	4.3. Manifest Commands
	4.3.1. cargo add
	4.3.2. cargo generate-lockfile
	4.3.3. cargo info
	4.3.4. cargo locate-project
	4.3.5. cargo metadata
	4.3.6. cargo pkgid
	4.3.7. cargo remove
	4.3.8. cargo tree
	4.3.9. cargo update
	4.3.10. cargo vendor

	4.4. Package Commands
	4.4.1. cargo init
	4.4.2. cargo install
	4.4.3. cargo new
	4.4.4. cargo search
	4.4.5. cargo uninstall

	4.5. Publishing Commands
	4.5.1. cargo login
	4.5.2. cargo logout
	4.5.3. cargo owner
	4.5.4. cargo package
	4.5.5. cargo publish
	4.5.6. cargo yank

	4.6. Deprecated and Removed

	5. FAQ
	6. Changelog
	7. Appendix: Glossary
	8. Appendix: Git Authentication

