
micro::bit v2 Embedded 

Discovery Book
Discover the world of microcontrollers through Rust!

This book is an introductory course on microcontroller-based embedded
systems that uses Rust as the
 teaching language rather than the usual
C/C++.

https://www.rust-lang.org/


Scope
The following topics will be covered (eventually, I hope):

How to write, build, flash and debug an "embedded" (Rust)
program.

Functionality ("peripherals") commonly found in microcontrollers:
Digital input and output, Pulse
Width Modulation (PWM), Analog to
Digital Converters (ADC), common communication protocols like
Serial, I2C and SPI, etc.

Multitasking concepts: cooperative vs preemptive multitasking,
interrupts, schedulers, etc.

Control systems concepts: sensors, calibration, digital filters,
actuators, open loop control,
closed loop control, etc.



Approach

Beginner friendly. No previous experience with microcontrollers or
embedded systems is required.

Hands on. Plenty of exercises to put the theory into practice. You
will be doing most of the
work here.

Tool centered. We'll make plenty use of tooling to ease
development. "Real" debugging, with GDB,
and logging will be
introduced early on. Using LEDs as a debugging mechanism has no
place here.



Non-goals
What's out of scope for this book:

Teaching Rust. There's plenty of material on that topic already.
We'll focus on microcontrollers
and embedded systems.

Being a comprehensive text about electric circuit theory or
electronics. We'll just cover the
minimum required to understand how
some devices work.

Covering details such as linker scripts and the boot process. For
example, we'll use existing tools
to help get your code onto your
board, but not go into detail about how those tools work.

Also I don't intend to port this material to other development boards; this
book will make exclusive
use of the micro:bit development board.



Reporting problems
The source of this book is in this repository. If you encounter any typo

or problem with the code
report it on the issue tracker.

https://github.com/rust-embedded/discovery-mb2
https://github.com/rust-embedded/discovery-mb2/issues


Other embedded Rust resources
This Discovery book is just one of several embedded Rust resources

provided by the
Embedded Working Group. The full selection can be found
at The Embedded Rust Bookshelf. This
 includes the list of Frequently
Asked Questions.

https://github.com/rust-embedded/wg
https://docs.rust-embedded.org/
https://docs.rust-embedded.org/faq.html


Background



What's a microcontroller?
A microcontroller is a system on a chip. Whereas your computer is made

up of several discrete
components: a processor, RAM, storage, an Ethernet
port, etc.; a microcontroller has all those types
of components built into a
single "chip" or package. This makes it possible to build systems with
fewer
parts.



What can you do with a microcontroller?
Lots of things! Microcontrollers are the central part of what are known

as "embedded systems".
Embedded systems are everywhere, but you don't
usually notice them. They control the machines that
 wash your clothes,
print your documents, and cook your food. Embedded systems keep the
buildings
 that you live and work in at a comfortable temperature, and
control the components that make the
vehicles you travel in stop and go.

Most embedded systems operate without user intervention. Even if they
expose a user interface like a
 washing machine does; most of their
operation is done on their own.

Embedded systems are often used to control a physical process. To make
this possible, they have
one or more devices to tell them about the state of
the world ("sensors"), and one or more
devices which allow them to change
things ("actuators"). For example, a building climate control
system might
have:

Sensors which measure temperature and humidity in various locations.
Actuators which control the speed of fans.
Actuators which cause heat to be added or removed from the building.



When should I use a microcontroller?
Many of the embedded systems listed above could be implemented with

a computer running Linux (for
 example a "Raspberry Pi"). Why use a
microcontroller instead? Sounds like it might be harder to
 develop a
program.

Some reasons might include:
Cost. A microcontroller is much cheaper than a general purpose

computer. Not only is the
 microcontroller cheaper; it also requires many
fewer external electrical components to operate.
This makes Printed Circuit
Boards (PCB) smaller and cheaper to design and manufacture.

Power consumption. Most microcontrollers consume a fraction of the
power of a full blown
 processor. For applications which run on batteries,
that makes a huge difference.

Responsiveness. To accomplish their purpose, some embedded systems
must always react within a
limited time interval (e.g. the "anti-lock" braking
system of a car). If the system misses this
type of deadline, a catastrophic
failure might occur. Such a deadline is called a "hard real time"
requirement. An embedded system which is bound by such a deadline is
referred to as a "hard
 real-time system". A general purpose computer and
OS usually has many software components which
 share the computer's
processing resources. This makes it harder to guarantee execution of a
program
within tight time constraints.

Reliability. In systems with fewer components (both hardware and
software), there is less to go
wrong!



When should I not use a microcontroller?
Microcontrollers are often not great at heavy computational work. To

keep their cost and power
consumption low, microcontrollers have limited
computational resources available to them.

Microcontrollers can typically execute fewer instructions per second
than "big" processors. The
slowest parts might run at "only" a few million
instructions per second. In addition, the amount of
work per instruction is
typically lower. Microcontroller parts are typically "32 bit", but "16 bit"
parts are not uncommon: this may mean more instructions to work with
typical Rust datatypes. Most
 microcontrollers have no or little "cache",
meaning instructions can run only as fast as main memory
can be accessed.

Some microcontrollers don't have hardware support for floating point
operations. On those
 devices, performing a simple addition of single
precision numbers can take hundreds of CPU cycles.

Finally, microcontrollers typically come with limited memory. Memory
sizes may be as small as 16KB
for program instructions and 4KB for data,
making programming for these systems quite challenging.
 While the
internal memory size per unit cost and power consumption is constantly
increasing, the
 processor we will work with still has "only" 512KB for
program instructions and 256KB for data — far
 less than that of a "real
computer".



Why use Rust and not C?
Hopefully, I don't need to convince you here as you are probably

familiar with the language
differences between Rust and C. One point I do
want to bring up is package management. C lacks an
 official, widely
accepted package management solution whereas Rust has Cargo. This
makes development
 much easier. And, IMO, easy package management
encourages code reuse because libraries can be
 easily integrated into an
application which is also a good thing as libraries get more "battle
testing".



Why should I not use Rust?
Or why should I prefer C over Rust?
The C ecosystem is more mature. Off-the-shelf solutions for several

problems already exist. If you
need to control a time sensitive process, you
can grab one of the existing commercial Real Time
 Operating Systems
(RTOS) out there and solve your problem. There are no commercial,
production-grade
RTOSes in Rust (as of this writing) so you would have to
either create one yourself or try one of
 the ones that are in development.
You can find a list of those in the Awesome Embedded Rust
repository.

https://github.com/rust-embedded/awesome-embedded-rust#real-time-operating-system-rtos


Hardware/knowledge requirements
The primary knowledge requirement to read this book is to know some

Rust. It's hard for me to
quantify some. Being familiar with the basics of
generics and traits is quite helpful. You do need
 to know how to use
closures. You also need to be familiar with the idioms of the current Rust
edition.

Also, to follow this material you'll need:

A Micro:Bit v2 (MB2) board.
You can purchase this board from many suppliers, including

Amazon and Ali Baba. You can get a list of suppliers
directly from the
BBC, the manufacturers of MB2.

There are several versions of the V2  board
available. While the
material here was written for V2.00 ,
things should work fine with
with any V2  board.

A micro-B USB cable (nothing special — you probably have many
of these). This is required
to power the micro:bit board when not on

https://rust-lang-nursery.github.io/edition-guide/
https://tech.microbit.org/hardware/
https://microbit.org/buy/


battery, and to communicate with it. Make sure
that the cable supports
data transfer, as some cables only support charging devices.

NOTE Some micro:bit kits ship with such cables. USB cables
used with other mobile
devices should work, if they are micro-B
and have the capability to transmit data.

The official micro:bit Go  kit provides both the USB cable and a
nifty battery pack for powering
the MB2 without USB.

FAQ: Wait, why do I need this specific hardware?

It makes my life and yours much easier.
The material is much, much more approachable if we don't have to

worry about hardware differences.
Trust me on this one.

FAQ: Can I follow this material with a different development
board?



Maybe? It depends mainly on two things: your previous experience with
microcontrollers and/or
 whether a high level crate already exists for your
development board somewhere. You probably want at
 least a HAL crate,
like nrf52-hal  used here. You may prefer a board with a Board Support
crate,
 like [ microbit-v2 ] used here. If you intend to use a different
microcontroller, you can look
 through Awesome Embedded Rust or just
search the web to find supported crates.

With a different development board, this text loses most if not all its
beginner friendliness and
 "easy to follow"-ness, in my opinion: you have
been warned.

If you have a different ARM-based development board and you don't
consider yourself a total
 beginner, you might consider starting with the
quickstart project template.

https://docs.rs/nrf52-hal
https://github.com/rust-embedded/awesome-embedded-rust
https://rust-embedded.github.io/cortex-m-quickstart/cortex_m_quickstart/


Setting up a development
environment

Dealing with microcontrollers involves several tools as we'll be dealing
with an architecture
 different from your computer's and we'll have to run
and debug programs on a "remote" device.



Documentation
Tooling is not everything though. Without documentation, it is pretty

much impossible to work with
microcontrollers. The official MB2 technical
documentation is at https://tech.microbit.org. We
 will reference other
technical documentation throughout the book.

https://tech.microbit.org/


Tools
We'll use all the tools listed below. Where a minimum version is not

specified, any recent version
should work but we have listed the version we
have tested.

Rust 1.79.0 or a newer toolchain.
gdb-multiarch . This is a debugging tool. The oldest tested version

is10.2, but other versions
will most likely work as well. If your
distribution/platform does not have gdb-multiarch 
available arm-
none-eabi-gdb  will do the trick as well. Furthermore, some normal 
gdb  binaries
are built with multiarch capabilities as well: you can find
further information about this in the
debugging chapter of this book.

cargo-binutils . Version 0.3.6 or newer.
probe-rs-tools . Version 0.24.0 or newer.
minicom  on Linux and macOS. Tested version: 2.7.1. Other

versions will most likely work as well
though.
PuTTY  on Windows.

Next, follow OS-agnostic installation instructions for a few of the tools:

rustc & Cargo
Install rustup by following the instructions at https://rustup.rs.
If you already have rustup installed, double check that you are on the

stable channel and your
 stable toolchain is up-to-date. rustc -V  should
return a date and version no older than the one
shown below:
$ rustc -V

rustc 1.79.0 (129f3b996 2024-06-10)


cargo-binutils
$ rustup component add llvm-tools

$ cargo install cargo-binutils --vers '^0.3'

$ cargo size --version

cargo-size 0.3.6


https://github.com/rust-embedded/cargo-binutils
https://probe.rs/docs/overview/about-probe-rs/
https://rustup.rs/


probe-rs-tools
NOTE If you already have old versions of probe-run , probe-rs  or

cargo-embed  installed on
 your system, remove them before starting this
step, as they could conceivably cause problems for you
down the line. In
particular, probe-run  no longer officially exists. Try these as needed:
$ cargo uninstall cargo-embed

$ cargo uninstall probe-run

$ cargo uninstall probe-rs

$ cargo uninstall probe-rs-cli


In order to install probe-rs-tools , first install its
 prerequisites (note:
these instructions are
 part of the more general probe-rs  embedded
debugging toolkit). Then install
 probe-rs-tools  with Cargo.
$ cargo install --locked probe-rs-tools


NOTE This may fail due to frequent changes in probe-rs . If so, go to
https://probe.rs and
follow the current installation instructions there.

Installing probe-rs-tools  will install several useful tools, including 
probe-rs  and
 cargo-embed  (which is normally run as a Cargo command).
Check that things are working before
proceeding.
$ cargo embed --version

cargo-embed 0.24.0 (git commit: crates.io)


This repository
This book also contains some small Rust codebases used in various

chapters: the easiest way to use
these is to download the book's source code.
You can do this in one of the following ways:

Visit the repository, click the green "Code"
button and then the
"Download Zip" one.

Clone it using git  (if you know git  you presumably already have
it installed) from the same
repository as linked in the Zip approach.

OS specific instructions

https://probe.rs/docs/getting-started/installation/
https://probe.rs/
https://probe.rs/
https://github.com/rust-embedded/discovery-mb2/


Now follow the instructions specific to the OS you are using:

Linux
Windows
macOS

clbr://internal.invalid/book/OEBPS/03-setup/linux.md
clbr://internal.invalid/book/OEBPS/03-setup/windows.md
clbr://internal.invalid/book/OEBPS/03-setup/macos.md


Linux
Here are the installation commands for a few Linux distributions.



Ubuntu 20.04 or newer / Debian 10 or newer
NOTE gdb-multiarch  is the GDB command you'll use to debug

your ARM Cortex-M programs.

$ sudo apt install gdb-multiarch minicom libunwind-dev




Fedora 32 or newer
NOTE gdb  is the GDB command you'll use to debug your ARM

Cortex-M programs.

$ sudo dnf install gdb minicom libunwind-devel




Arch Linux
NOTE gdb  is the GDB command you'll use to debug your ARM

Cortex-M programs.

$ sudo pacman -S arm-none-eabi-gdb minicom libunwind




Other distros
NOTE arm-none-eabi-gdb  is the GDB command you'll use to

debug your ARM Cortex-M programs.

For distros that don't have packages for ARM's pre-built
 toolchain,
download the "Linux
 64-bit" file and put its bin  directory on your path.
Here's one way to do it:
$ mkdir -p ~/local

$ cd ~/local

$ tar xjf /path/to/downloaded/XXX.tar.bz2


Then, use your editor of choice to append to your PATH  in the
appropriate shell init file
(e.g. ~/.zshrc  or ~/.bashrc ):
PATH=$PATH:$HOME/local/XXX/bin


https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads


udev rules
These rules let you use USB devices like the micro:bit without root

privilege, i.e. sudo .
Create this file in /etc/udev/rules.d  with the content shown below.

$ cat /etc/udev/rules.d/69-microbit.rules


# CMSIS-DAP for microbit

ACTION!="add|change", GOTO="microbit_rules_end"

SUBSYSTEM=="usb", ATTR{idVendor}=="0d28", 
ATTR{idProduct}=="0204", TAG+="uaccess"

LABEL="microbit_rules_end"


Then reload the udev rules with:
$ sudo udevadm control --reload


If you had any board plugged to your computer, unplug them and then
plug them in again, or run the
following command.
$ sudo udevadm trigger




Verify permissions
Connect the micro:bit to your computer using a USB cable.
The micro:bit should now appear as a USB device (file) in 

/dev/bus/usb . Let's find out how it got
enumerated:
$ lsusb | grep -i "NXP ARM mbed"

Bus 001 Device 065: ID 0d28:0204 NXP ARM mbed

$ # ^^^        ^^^


In my case, the micro:bit got connected to the bus #1 and got
enumerated as the device #65. This means the
file /dev/bus/usb/001/065
is the micro:bit. Let's check the file permissions:
$ ls -l /dev/bus/usb/001/065

crw-rw-r--+ 1 nobody nobody 189, 64 Sep  5 14:27 
/dev/bus/usb/001/065


The permissions should be crw-rw-r--+ , note the +  at the end, then see
your access rights by running the following command.
$ getfacl /dev/bus/usb/001/065

getfacl: Removing leadin '/' from absolute path names

# file: dev/bus/usb/001/065

# owner: nobody

# group: nobody

user::rw-

user:<YOUR-USER-NAME>:rw-

group::rw-

mask::rw-

other::r-


You should see your username in the list above with the
 rw-

permissions, if not ... then check your udev rules
 and try re-loading them
with:
$ sudo udevadm control --reload

$ sudo udevadm trigger


Now, go to the next section.

clbr://internal.invalid/book/OEBPS/03-setup/linux.md#udev-rules
clbr://internal.invalid/book/OEBPS/03-setup/verify.md


Windows



arm-none-eabi-gdb
ARM provides .exe  installers for Windows. Grab one from here, and

follow the instructions.
 Just before the installation process finishes
tick/select the "Add path to environment variable"
option. Then verify that
the tools are in your %PATH% :
$ arm-none-eabi-gcc -v

(..)

gcc version 5.4.1 20160919 (release) (..)


https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads


PuTTY
Download the latest putty.exe  from this site and place it somewhere in

your %PATH% .
Now, go to the next section.

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
clbr://internal.invalid/book/OEBPS/03-setup/verify.md


macOS
All the tools can be installed using Homebrew:

$ # ARM GCC debugger

$ brew install arm-none-eabi-gdb



$ # Minicom

$ brew install minicom



$ # lsusb lists USB ports

$ brew install lsusb


That's all! Go to the next section.

http://brew.sh/
clbr://internal.invalid/book/OEBPS/03-setup/verify.md


Verify the installation
Let's verify that all the tools were installed correctly.



Verifying cargo-embed
First, connect the micro:bit to your Computer using a USB cable.
At least an orange LED right next to the USB port of the micro:bit

should light up. Furthermore, if
you have never flashed another program on
to your micro:bit, the default program the micro:bit ships
with should start
blinking the red LEDs on its back: you can ignore them, or you can play
with the
demo app.

Now let's see if probe-rs, and by extensions cargo-embed can see your
micro:bit. You can do this by
running the following command:
$ probe-rs list

The following debug probes were found:

[0]: BBC micro:bit CMSIS-DAP -- 
0d28:0204:990636020005282030f57fa14252d446000000006e052820 
(CMSIS-DAP)


Or if you want more information about the micro:bits debug capabilities
then you can run:
$ probe-rs info

Probing target via JTAG



Error identifying target using protocol JTAG: The probe does 
not support the JTAG protocol.



Probing target via SWD



ARM Chip with debug port Default:

Debug Port: DPv1, DP Designer: ARM Ltd

├── 0 MemoryAP

│   └── ROM Table (Class 1), Designer: Nordic VLSI ASA

│       ├── Cortex-M4 SCS   (Generic IP component)

│       │   └── CPUID

│       │       ├── IMPLEMENTER: ARM Ltd

│       │       ├── VARIANT: 0

│       │       ├── PARTNO: Cortex-M4




│       │       └── REVISION: 1

│       ├── Cortex-M3 DWT   (Generic IP component)

│       ├── Cortex-M3 FBP   (Generic IP component)

│       ├── Cortex-M3 ITM   (Generic IP component)

│       ├── Cortex-M4 TPIU  (Coresight Component)

│       └── Cortex-M4 ETM   (Coresight Component)

└── 1 Unknown AP (Designer: Nordic VLSI ASA, Class: Undefined, 
Type: 0x0, Variant: 0x0, Revision: 0x0)





Debugging RISC-V targets over SWD is not supported. For these 
targets, JTAG is the only supported protocol. RISC-V specific 
information cannot be printed.

Debugging Xtensa targets over SWD is not supported. For these 
targets, JTAG is the only supported protocol. Xtensa specific 
information cannot be printed.


Next, make sure you are in src/03-setup  of this book's source code.
Then run these commands:
$ rustup target add thumbv7em-none-eabihf

$ cargo embed --target thumbv7em-none-eabihf


If everything works correctly cargo-embed should first compile the small
example program
in this directory, then flash it and finally open a nice text
based user interface that
prints Hello World.

(If it does not, check out general troubleshooting instructions.)
This output is coming from the small Rust program you just flashed on

to your micro:bit.
 Everything is working properly and you can continue
with the next chapters!



Getting the most out of your IDE
All code in this book assumes that you use a simple terminal to build

your code,
 run it, and interact with it. It also makes no assumption about
your text editor.

However, you may have your favourite IDEs, providing you auto-
complete, type annotation,
 your preferred shortcuts and much more. This
section explains how to get the most out
 of your IDE using the code
obtained from this book's repo.



IDE configuration
Below, we explain how to configure your IDE to get the most out of this

book.
If your IDE is not listed below, please improve this book by adding a
section, so that the next
reader can get the best experience out of it.



How to build with IntelliJ
When editing the IntelliJ build configuration, here are a few non-default

values:

You should edit the command. When this book tells you to run cargo 
embed FLAGS ,
You'll need to replace the default value run  by the
command embed FLAGS ,
You should enable "Emulate terminal in output console". Otherwise,
your program will fail to print text to a terminal
You should ensure that the working directory is microbit/src/N-
name , with N-name  being the directory of the chapter you
are reading.
You can not run from the src  directory since it contains no cargo file.



Meet your hardware
Let's get familiar with the hardware we'll be working with.



micro:bit

Here are some of the many components on the board:

A microcontroller.
A number of LEDs, most notably the LED matrix on the back
Two user buttons as well as a reset button (the one next to the USB port).
One USB port.
A sensor that is both a magnetometer and an accelerometer

Of these components, the most important is the microcontroller
(sometimes
 shortened to "MCU" for "microcontroller unit"), which is the
bigger of the two
black squares sitting on the side of the board with the USB
port. The MCU is
 what runs your code. You might sometimes read about
"programming a board", when
 in reality what we are doing is programming
the MCU that is installed on the board.

https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Magnetometer
https://en.wikipedia.org/wiki/Accelerometer


If you happen to be interested in a more detailed description of the board
you
can checkout the micro:bit website.

Since the MCU is so important, let's take a closer look at the one sitting on
our board.

https://tech.microbit.org/hardware/


Nordic nRF52833 (the "nRF52",
micro:bit v2)

Our MCU has 73 tiny metal pins sitting right underneath it (it's a so
called aQFN73 chip).
These pins are connected to traces, the little "roads"
that act as the wires connecting
 components together on the board. The
MCU can dynamically alter the electrical properties of the
pins. This works
similarly to a light switch, altering how electrical current flows through a
circuit. By enabling or disabling electrical current to flow through a specific
pin, an LED attached
to that pin (via the traces) can be turned on and off.

Each manufacturer uses a different part numbering scheme, but many
will allow you to
 determine information about a component simply by
looking at the part number. Looking at our
 MCU's part number we find 
N52833 QIAAA0 2024AL : you probably cannot see it with your bare
eye, but
it is on the chip. (If you have a later revision of MB2, your number may
vary
 somewhat. This not an issue. The N52833  part should be there,
though.) The N  at the
 front hints to us that this is a part manufactured by
Nordic Semiconductor. Looking up
 the part number on their website we
quickly find the product page. There we learn that
 our chip's main
marketing point is that it is a "Bluetooth Low Energy and 2.4 GHz SoC"
(SoC
 being short for "System on a Chip"), which explains the RF in the
product name since RF is
 short for radio frequency. If we search through
the documentation of the chip linked on the
product page for a bit we find
the product specification which contains chapter 10
"Ordering Information"
dedicated to explaining the weird chip naming. Here we learn that:

The N52  is the MCU's series, indicating that there are other nRF52
MCUs
The 833  is the part code
The QI  is the package code, short for aQFN73
The AA  is the variant code, indicating how much RAM and flash
memory the MCU has,
in our case 512 kilobyte flash and 128 kilobyte

https://en.wikipedia.org/wiki/Flat_no-leads_package
https://www.nordicsemi.com/
https://www.nordicsemi.com/products/nrf52833
https://www.nordicsemi.com/products/nrf52833
https://infocenter.nordicsemi.com/pdf/nRF52833_PS_v1.3.pdf


RAM
The A0  is the build code, indicating the hardware version ( A ) as well
as the product configuration ( 0 )
The 2024AL  is a tracking code, hence it might differ on your chip

The product specification does of course contain a lot more useful
information about the chip: for
 example, that the chip is an ARM®
Cortex™-M4 32-bit processor.



Arm? Cortex-M4?
If our chip is manufactured by Nordic, then who is Arm? And if our chip

is the
nRF52833, what is the Cortex-M4?
You might be surprised to hear that while "Arm-based" chips are quite

popular, the company behind the "Arm" trademark (Arm Holdings) doesn't
actually manufacture chips for purchase. Instead, their primary business
model is to just design parts of chips. They will then license those designs
to
 manufacturers, who will in turn implement the designs (perhaps with
some of
their own tweaks) in the form of physical hardware that can then be
sold.
Arm's strategy here is different from companies like Intel, which both
designs and manufactures their chips.

Arm licenses a bunch of different designs. Their "Cortex-M" family of
designs
are mainly used as the core in microcontrollers. For example, the
Cortex-M4
(the core our chip is based on) is designed for low cost and low
power usage.
 The Cortex-M7 is higher cost, but with more features and
performance.

Luckily, you don't need to know too much about different types of
processors
or Cortex designs for the sake of this book. However, you are
hopefully now a
 bit more knowledgeable about the terminology of your
device. While you are
working specifically with an nRF52833, you might
find yourself reading
 documentation and using tools for Cortex-M-based
chips, as the nRF52833 is
based on a Cortex-M design.

https://www.arm.com/


Rust Embedded terminology
Before we dive into programming the micro:bit let's have a quick look at

the libraries and
 terminology that will be important for all the future
chapters.



Abstraction layers
For any fully supported microcontroller/board with a microcontroller,

you will usually hear the
 following terms being used for their levels of
abstraction:

Peripheral Access Crate (PAC)
The job of the PAC is to provide a safe (ish) direct interface to the

peripherals of the chip,
 allowing you to configure every last bit however
you want (of course also in wrong ways). Usually
 you only ever have to
deal with the PAC if either the layers that are higher up don't fulfill your
needs or when you are developing higher-level code for them.
Unsurprisingly, the PAC we are (mostly
 implicitly) going to use is for the
nRF52.

Hardware Abstraction Layer (HAL)
The job of the HAL is to build up on top of the chip's PAC and provide

an abstraction that is
actually usable for someone who does not know about
all the special behaviour of this chip. Usually
 a HAL abstracts whole
peripherals away into single structs that can, for example, be used to send
data around via the peripheral. We are going to use the nRF52-hal.

Board Support Crate (BSP)
(In non-Rust situations this is usually called the Board Support Package,

hence the acronym.)
The job of the BSP is to abstract a whole board (such as the micro:bit)

away at once. That means it
 has to provide abstractions to use both the
microcontroller as well as the sensors, LEDs etc. that
might be present on
the board. Quite often (especially with custom-made boards) no pre-built
BSP
will be available. Instead you will be working with a HAL for the chip
and build the drivers for the
sensors either yourself or search for them on 
crates.io . Luckily for us though, the micro:bit does
have a BSP, so we
are going to use that on top of our HAL as well.

https://crates.io/crates/nrf52833-pac
https://crates.io/crates/nrf52833-hal
https://crates.io/crates/microbit-v2


Unifying the layers
Next we are going to have a look at a very central piece of software
in

the Rust Embedded world: embedded-hal . As its name suggests it
 relates
to the 2nd level of abstraction we got to know: the HALs.
The idea behind 
embedded-hal  is to provide a set of traits that
describe behaviour which is
usually shared across all implementations
of a specific peripheral in all the
HALs. For example one would always
 expect to have functions that are
capable of turning the power on a pin
either on or off: to switch an LED on
and off on the board or whatever.

embedded-hal  allows us to write a driver for some piece of hardware,
for example a temperature
sensor, that can be used on any chip for which an
implementation of the embedded-hal  traits
exists. This is accomplished by
writing the driver in such a way that it only relies on the
 embedded-hal
traits. Drivers that are written in such a way are called platform-agnostic.
Luckily for us, the drivers we will be getting from crates.io  are almost
all platform agnostic.

https://crates.io/crates/embedded-hal
https://crates.io/crates/embedded-hal
https://crates.io/crates/embedded-hal
https://crates.io/crates/embedded-hal


Further reading
If you want to learn more about these levels of abstraction, Franz

Skarman (a.k.a. TheZoq2) held a
talk about this topic during Oxidize 2020:
An Overview of the Embedded Rust Ecosystem.

https://github.com/TheZoq2/
https://www.youtube.com/watch?v=vLYit_HHPaY


Meet your software
In this chapter we will learn how to build, run and debug some very

simple programs. The goal here
is not to get into the details of MB2 Rust
programming (yet), but to just familiarize yourself with
 the mechanics of
the process.

First, a quick note about the conventions used in the rest of this book.
We expect you to get
a copy of the whole book with
git clone http://github.com/rust-embedded/discovery-mb2


The book's "source code" is in discovery-mb2/mdbook/src . You should
go there in your copy and look
around a bit. Each chapter directory has both
the source Markdown text and the complete source for
all the programs in
that chapter. When we refer to some path like src/main.rs , we mean that
place
 starting from the chapter you are working in. For example, your 
discovery-mb2  has a file called
 mdbook/src/05-meet-your-

software/examples/init.rs . We will refer to that file as just

examples/init.rs  in this chapter.

There are two basic kinds of Rust code: "binary" executable programs,
and "library" code. The
 library code won't play a huge role in this book.
Binary program source code can live in one of
several places:

A program in src/main.rs  will be automatically compiled and run
by cargo embed  or cargo run . No special flags are needed.

A program in examples/foo.rs  can be compiled and run by 
cargo embed --example foo  or
 cargo run --example foo .

A program in src/bin/bar.rs  can be compiled and run by cargo 
embed --bin bar  or
 cargo run --bin bar .

This is confusing, but it's a standard convention of Cargo.
Now let's move on and work with all this.



Build it
The first step is to build our "binary" crate. Because the microcontroller

has a different
architecture than your computer we'll have to cross compile.
Cross compiling in Rust land is as
 simple as passing an extra --target
flag to rustcor Cargo. The complicated part is figuring out
 the argument
of that flag: the name of the target.

As we already know the microcontroller on the micro:bit v2 has a
Cortex-M4F processor in it.
 rustc  knows how to cross-compile to the
Cortex-M architecture and provides several different
 targets that cover the
different processors families within that architecture:

thumbv6m-none-eabi , for the Cortex-M0 and Cortex-M1 processors
thumbv7m-none-eabi , for the Cortex-M3 processor
thumbv7em-none-eabi , for the Cortex-M4 and Cortex-M7 processors
thumbv7em-none-eabihf , for the Cortex-M4F and Cortex-M7F
processors
thumbv8m.main-none-eabi , for the Cortex-M33 and Cortex-M35P
processors
thumbv8m.main-none-eabihf , for the Cortex-M33F and Cortex-
M35PF processors

"Thumb" here refers to a version of the Arm instruction set that has
smaller instructions for
reduced code size (it's a pun, see). The hf / F  parts
have hardware floating point
 acceleration. This will make numeric
computations involving fractional ("floating decimal point")
 computations
much faster.

For the micro:bit v2, we'll want the thumbv7em-none-eabihf  target.
Before cross-compiling you have to download a pre-compiled version of

the standard library (a
reduced version of it, actually) for your target. That's
done using rustup :
$ rustup target add thumbv7em-none-eabihf




You only need to do the above step once; rustup  will then update this
target (re-installing a new
 standard library rust-std  component that
contains the core  library we use) whenever you update
 your toolchain.
Therefore you can skip this step if you have already added the necessary
target
while verifying your setup.

With the rust-std  component in place you can now cross compile the
program using Cargo. Make sure
 you are in the mdbook/src/05-meet-
your-software  directory in the Git repo, then build. This initial code
is an
example, so we compile it as such.
$ cargo build --example init

   Compiling semver-parser v0.7.0

   Compiling proc-macro2 v1.0.86

   ...



    Finished dev [unoptimized + debuginfo] target(s) in 33.67s


NOTE Be sure to compile this crate without optimizations. The
provided Cargo.toml  file and
 build command above will ensure
optimizations are off as long as you don't pass cargo  the
 --release
flag.

OK, now we have produced an executable. This executable won't blink
any LEDs: it's just a simplified
version that we will build upon later in the
chapter. As a sanity check, let's verify that the
 produced executable is
actually an ARM binary. (The command below is equivalent to
readelf -h ../../../target/thumbv7em-none-
eabihf/debug/examples/init


on systems that have readelf .)
$ cargo readobj --example init -- --file-headers

    Finished dev [unoptimized + debuginfo] target(s) in 0.01s

ELF Header:

  Magic:   7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00

  Class:                             ELF32

  Data:                              2's complement, little 



endian

  Version:                           1 (current)

  OS/ABI:                            UNIX - System V

  ABI Version:                       0

  Type:                              EXEC (Executable file)

  Machine:                           ARM

  Version:                           0x1

  Entry point address:               0x117

  Start of program headers:          52 (bytes into file)

  Start of section headers:          793112 (bytes into file)

  Flags:                             0x5000400

  Size of this header:               52 (bytes)

  Size of program headers:           32 (bytes)

  Number of program headers:         4

  Size of section headers:           40 (bytes)

  Number of section headers:         21

  Section header string table index: 19


If your numbers don't exactly match these, don't worry: a lot of this is
quite dependent
on the current build environment.

Next, we'll flash the program into our microcontroller.



Flash it
Flashing is the process of moving our program into the microcontroller's

persistent memory. Once
 flashed, the microcontroller will execute the
flashed program every time it is powered on.

Our program will be the only program in the microcontroller memory.
By this I mean that there's
nothing else running on the microcontroller: no
OS, no "daemon", nothing. Our program has full
control over the device.

Flashing the binary itself is quite simple, thanks to cargo embed .
Before executing that command though, let's look into what it actually

does. If you look at the side
 of your micro:bit with the USB connector
facing upwards, you will notice that there are actually
 three black squares
on there. The biggest one is a speaker. Another is our MCU we already
talked
about… but what purpose does the remaining one serve? This chip is
another MCU, an NRF52820 almost
as powerful as the NRF52833 we will
be programming! This chip has three main purposes:

1. Enable power and reset control of our NRF52833 MCU from the USB
connector.

2. Provide a serial to USB bridge for our MCU (we will look into that in
a later chapter).

3. Provide an interface for programming and debugging our NRF52833
(this is the relevant purpose for
now).

This chip acts as sort of bridge between our computer (to which it is
connected via USB) and the MCU
(to which it is connected via traces and
communicates with using the SWD protocol). This bridge
 enables us to
flash new binaries on to the MCU, inspect a program's state via a debugger
and do
other useful things.

So lets flash it!
$ cargo embed --example init

  (...)

     Erasing sectors ✔ [00:00:00] 
[#############################################################



##############################################################
#########################]  2.00KiB/ 2.00KiB @  4.21KiB/s (eta 
0s )

 Programming pages   ✔ [00:00:00] 
[#############################################################
##############################################################
#########################]  2.00KiB/ 2.00KiB @  2.71KiB/s (eta 
0s )

    Finished flashing in 0.608s


You will notice that cargo-embed  does not exit after outputting the last
line. This is intended:
you should not close cargo-embed , since we need it
in this state for the next step — debugging it!
Furthermore, you will have
noticed that cargo build  and cargo embed  are actually passed the same
flags. This is because cargo embed  actually executes the build and then
flashes the resulting
binary on to the chip. This means you can leave out the
cargo build  step in the future if you want
to flash your code right away.



Debug it
Let's figure out how to debug our little program. It doesn't really have any

interesting bugs yet,
but that's the best kind of program to learn debugging on.



How does this even work?
Before we debug our program let's take a moment to quickly understand

what is actually happening
here. In the previous chapter we already discussed
the purpose of the second chip on the board, as
 well as how it talks to our
computer, but how can we actually use it?

The little option default.gdb.enabled = true  in Embed.toml  made 
cargo embed  open a so-called
"GDB stub" after flashing. This is a server that
our GDB can connect to and send commands like "set
a breakpoint at address
X". The server can then decide on its own how to handle this command. In the
case of the cargo embed  GDB stub it will forward the command via USB to
the "debugging probe" on
the second chip. This chip does the job of talking to
the MCU for us.



Let's debug!
cargo-embed  is running in our current shell. We can open a new shell and

go back into our project
directory. Once we are there we first have to open the
binary in gdb like this:
$ gdb ../../../target/thumbv7em-none-eabihf/debug/examples/init


NOTE: Depending on which GDB you installed you will have to use
a different command to launch
 it. Check out chapter 3 if you forgot
which one it was.

The ../../..  in this command is needed, since each example project is in
a "workspace" that
contains the entire book. Workspaces have a single shared 
target  directory. Check out Workspaces
chapter in Rust Book for more.

NOTE If cargo-embed  prints a lot of warnings here don't worry
about it. As of now it does
not fully implement the GDB protocol, and
thus might not recognize all the commands your GDB is
sending to it. As
long as GDB does not crash, you are fine.

Next we will have to connect to the GDB stub. It runs on localhost:1337
by default so in order to
connect to it run the following:
(gdb) target remote :1337

Remote debugging using :1337

0x00000116 in nrf52833_pac::{{impl}}::fmt (self=0xd472e165, 
f=0x3c195ff7) at /home/nix/.cargo/registry/src/github.com-
1ecc6299db9ec823/nrf52833-pac-0.9.0/src/lib.rs:157

157     #[derive(Copy, Clone, Debug)]


NOTE: The example in the repository for this chapter may
 change over
time. Line numbers and other source details may
thus be different from what
is shown here and below.

Next what we want to do is get to the main  function of our program. We
will do this by first
 setting a breakpoint there and then continuing program
execution until we hit the breakpoint:
(gdb) break main

Breakpoint 1 at 0x104: file src/05-meet-your-

clbr://internal.invalid/book/OEBPS/03-setup/index.md#tools
https://doc.rust-lang.org/book/ch14-03-cargo-workspaces.html#creating-a-workspace


software/examples/init.rs, line 9.

Note: automatically using hardware breakpoints for read-only 
addresses.

(gdb) continue

Continuing.



Breakpoint 1, init::__cortex_m_rt_main_trampoline () at src/05-
meet-your-software/examples/init.rs:9

9       #[entry]


Breakpoints can be used to stop the normal flow of a program. The 
continue  command will let the
 program run freely until it reaches a
breakpoint. In this case, until it reaches the main 
 function because there's a
breakpoint there.

Note that GDB output says "Breakpoint 1". Remember that our processor
can only use a limited amount
of these breakpoints, so it's a good idea to pay
attention to these messages. If you happen to run
out of breakpoints, you can
list all the current ones with info break  and delete desired ones with
 delete 
<breakpoint-num> .

For a nicer debugging experience, we'll be using GDB's Text User
Interface (TUI). To enter into that
mode, on the GDB shell enter the following
command:
(gdb) layout src


NOTE: Apologies Windows users. The GDB shipped with the GNU
ARM Embedded Toolchain doesn't
support this TUI mode :-( .



GDB's break command does works for more than just function names: it
can also break at certain line
numbers. If we want to break in line 13 we can
simply do:
(gdb) break 13

Breakpoint 2 at 0x110: file src/05-meet-your-
software/examples/init.rs, line 13.

(gdb) continue

Continuing.



Breakpoint 2, init::__cortex_m_rt_main () at src/05-meet-your-



software/examples/init.rs:13

(gdb)


At any point you can leave the TUI mode using the following command:
(gdb) tui disable


We are now "on" the _y = x  statement; that statement hasn't been
executed yet. This means that x 
is initialized but _y  could contain anything.
Let's inspect x  using the print  command:
(gdb) print x

$1 = 42

(gdb) print &x

$2 = (*mut i32) 0x20003fe8

(gdb)


As expected, x  contains the value 42 . The command print &x  prints the
address of the variable
 x . The interesting bit here is that GDB output shows
the type of the reference: *mut i32 , a
pointer to a mutable i32  value.

If we want to continue the program execution line by line, we can do that
using the next  command.
Let's proceed to the loop {}  statement:
(gdb) next

16          loop {}


And _y  should now be initialized.
(gdb) print _y

$5 = 42


Instead of printing the local variables one by one you can also use the info 
locals  command:
(gdb) info locals

x = 42

_y = 42

(gdb)


If we use next  again on top of the loop {}  statement, we'll get stuck
because the program will
 never pass that statement. Instead, we'll switch to
the disassemble view with the layout asm 
 command and advance one



instruction at a time using stepi . You can always switch back into Rust
source code view later by issuing the layout src  command again.

NOTE: If you used the next  or continue  command by mistake and
GDB got stuck, you can get
unstuck by hitting Ctrl+C .

(gdb) layout asm


If you are not using the TUI mode, you can use the disassemble /m
command to disassemble the
program around the line you are currently at.
(gdb) disassemble /m

Dump of assembler code for function 
_ZN12init18__cortex_m_rt_main17h3e25e3afbec4e196E:

10      fn main() -> ! {

   0x0000010a <+0>:     sub     sp, #8

   0x0000010c <+2>:     movs    r0, #42 ; 0x2a



11          let _y;

12          let x = 42;

   0x0000010e <+4>:     str     r0, [sp, #0]



13          _y = x;

   0x00000110 <+6>:     str     r0, [sp, #4]



14

15          // infinite loop; just so we don't leave this stack 
frame




16          loop {}

=> 0x00000112 <+8>:     b.n     0x114 
<_ZN12init18__cortex_m_rt_main17h3e25e3afbec4e196E+10>

   0x00000114 <+10>:    b.n     0x114 
<_ZN12init18__cortex_m_rt_main17h3e25e3afbec4e196E+10>



End of assembler dump.


See the fat arrow =>  on the left side? It shows the instruction the processor
will execute next.

If not inside the TUI mode on each stepi  command GDB will print the
statement and the line number
 of the instruction the processor will execute
next.
(gdb) stepi

16          loop {}

(gdb) stepi

16          loop {}


One last trick before we move to something more interesting. Enter the
following commands into GDB:
(gdb) monitor reset

(gdb) c

Continuing.



Breakpoint 1, init::__cortex_m_rt_main_trampoline () at src/05-
meet-your-software/src/main.rs:9

9       #[entry]

(gdb)


We are now back at the beginning of main !
monitor reset  will reset the microcontroller and stop it right at the

program entry point.
The following continue  command will let the program
run freely until it reaches the main 
function that has a breakpoint on it.

This combo is handy when you, by mistake, skipped over a part of the
program that you were
 interested in inspecting. You can easily roll back the
state of your program back to its very
beginning.



The fine print: This reset  command doesn't clear or touch RAM.
That memory will retain its
values from the previous run. That shouldn't
be a problem though, unless your program behavior
depends on the value
of uninitialized variables — but that's the definition of Undefined
Behavior (UB).

We are done with this debug session. You can end it with the quit
command.
(gdb) quit

A debugging session is active.



        Inferior 1 [Remote target] will be detached.



Quit anyway? (y or n) y

Detaching from program: $PWD/target/thumbv7em-none-
eabihf/debug/meet-your-software, Remote target

Ending remote debugging.

[Inferior 1 (Remote target) detached]


NOTE: If the default GDB CLI is not to your liking check out gdb-
dashboard. It uses Python
to turn the default GDB CLI into a dashboard
that shows registers, the source view, the assembly
view and other things.

If you want to learn more about what GDB can do, check out the section
How to use
GDB.

What's next? The high level API I promised.

https://github.com/cyrus-and/gdb-dashboard#gdb-dashboard
clbr://internal.invalid/book/OEBPS/appendix/2-how-to-use-gdb/


Light it up
We will finish this chapter by making one of the many LEDs on the

MB2 light up. In order to get this
 task done we will use one of the traits
provided by embedded-hal , specifically the OutputPin 
 trait which allows
us to turn a pin on or off.

https://docs.rs/embedded-hal/0.2.6/embedded_hal/digital/v2/trait.OutputPin.html


The micro:bit LEDs
On the back of the micro:bit you can see a 5x5 square of LEDs, usually

called an LED matrix. This
 matrix alignment is used so that instead of
having to use 25 separate pins to drive every single one
of the LEDs, we
can just use 10 (5+5) pins in order to control which column and which row
of our
matrix lights up.

Right now we will use the microbit-v2  crate to manipulate the LEDs.
In the next chapter we will
go in detail through all of the options available.



Actually lighting it up!
The code required to light up an LED in the matrix is actually quite

simple but it requires a bit of
setup. First take a look at examples/light-
it-up.rs ; then we can go through it step by step.
#![deny(unsafe_code)]

#![no_main]

#![no_std]



use cortex_m_rt::entry;

use embedded_hal::digital::OutputPin;

use microbit::board::Board;

use panic_halt as _;



#[entry]

fn main() -> ! {

    let mut board = Board::take().unwrap();



    board.display_pins.col1.set_low().unwrap();

    board.display_pins.row1.set_high().unwrap();



    loop {}

}


The first few lines until the main  function just do some basic imports
and setup we mostly looked
at before. However, the main  function looks
pretty different to what we have seen up to now.

The first line is related to how most HALs written in Rust work
internally.
As discussed before they are built on top of PAC crates which
own (in the Rust sense)
all the peripherals of a chip. When we say
let mut board = Board::take().unwrap();


We take all of these peripherals from the PAC and bind them to a
variable. In this specific case we
are not only working with a HAL but with



an entire BSP, so this also takes ownership of the Rust
representation of the
other chips on the board.

NOTE: If you are wondering why we have to call unwrap()  here,
in theory it is possible for
 take()  to be called more than once. This
would lead to the peripherals being represented by two
 separate
variables and thus lots of possible confusing behaviour because two
variables modify the
 same resource. In order to avoid this, PACs are
implemented in a way that it would panic if you
 tried to take the
peripherals twice.

(Again, if you are confused by all of this, the next chapter will go
through it all again in
greater detail.)

Now we can light the LED connected to row1 , col1  up by setting the 
row1  pin to high
(i.e. switching it on). The reason we can leave col1  set to
low is because of how the LED matrix
 circuit works. Furthermore, 
embedded-hal  is designed in a way that every operation on hardware can
possibly return an error, even just toggling a pin on or off. Since that is
highly unlikely in our
case, we can just unwrap()  the result.



Testing it
Testing our little program is quite simple. First put it into src/main.rs .

Afterwards we simply
have to run the cargo embed  command from the last
section again, and let it flash just like
 before. Then open our GDB and
connect to the GDB stub:
$ # Your GDB debug command from the last section

(gdb) target remote :1337

Remote debugging using :1337

cortex_m_rt::Reset () at 
/home/nix/.cargo/registry/src/github.com-
1ecc6299db9ec823/cortex-m-rt-0.6.12/src/lib.rs:489

489     pub unsafe extern "C" fn Reset() -> ! {

(gdb)


We now let the program run via the GDB continue  command: one of
the LEDs on the front of the
micro:bit should light up.



Hello World
In the last section, you wrote a sort of "Hello World" program. But for

embedded programmers, the
"real Hello World" is to blink an LED — any
LED — on and off once per second. A program that does
this is commonly
known as a "blinky".

Why blinky? Because this shows that you have enough control of the
board you're working with to
 perform this simple task. You can get a
program loaded onto the machine and running, you can find
and turn on the
appropriate pin on the MCU, you can delay for a fixed amount of time.
Once you have
 this much control, other tasks become much more
straightforward.

In previous chapters, you found out several ways to load a program onto
your MB2. Now it's just a
question of which pin you turn on and off, and
how you delay between these actions.

Let's start by finding out how to work with the needed pins. There's a
path you can follow for this
 if you know how to read electronic circuit
"schematic" diagrams. You can find the MB2 schematic,
 find an LED on
that schematic that you want to turn on and off, and find what GPIO pins on
the
nRF52833 are attached to that LED. (The MB2 is a bit unusual in this
regard: usually an LED is
attached to just one pin that turns it on or off. The
LED "display" on the MB2 is hooked up in a
 more complicated way to
allow turning on and off combinations of LEDs at once: a feature that we
will be using shortly.)

We will work with the LED in the upper-left corner of the MB2 display.
Tracing the ROW1  and COL1 
wires this LED is connected to, we can see that
they go to pins on the nRF52833 labeled
 AC17 / P0.21  and 
B11 / AIN4 / P0.28 . Digging further through the documentation we find that

AC17  and B11  are the row and column indices of the physical pins (solder
balls, really) on the
bottom of the chip — useless to us. AIN4  just means
that this pin can act as an "Analog Input",
which is also currently useless to
us. (It will come into play later.)

https://github.com/microbit-foundation/microbit-v2-hardware/blob/main/V2.21/MicroBit_V2.2.1_nRF52820%20schematic.PDF


This leaves P0.21  and P0.28 . These labels correspond to bits in the
memory of the nRF52833 that
can be turned on and off to get the LED to
light up. Because electronics reasons, if pin P0.21  is
 turned on (thus
outputting 3.3V) and pin P0.28  is turned off (thus accepting voltage) the
LED will
light up.

But what do we do in software to cause this to occur? We will work at
the level of the
 nrf52833-hal  crate. The Hardware Abstraction Layer
(HAL) is a chunk of software designed to make a
particular microcontroller
easier to work with. As can be seen from the name, we have one for the
microcontroller on the MB2. It happens to contain everything needed to
turn our target LED on.

Take a look at examples/light-up.rs  in this chapter's directory, and
then try running it.
You could use something fancy like before, but we have
it set up so that
cargo run --example light-up


will load and run your program. That one LED should now be brightly
lit!
#![no_main]

#![no_std]



use cortex_m_rt::entry;

use nrf52833_hal::{gpio, pac};

use panic_halt as _;



#[entry]

fn main() -> ! {

    let peripherals = pac::Peripherals::take().unwrap();

    let p0 = gpio::p0::Parts::new(peripherals.P0);

    let _row1 = 
p0.p0_21.into_push_pull_output(gpio::Level::High);

    let _col1 = 
p0.p0_28.into_push_pull_output(gpio::Level::Low);



    #[allow(clippy::empty_loop)]




    loop {}

}


Note that we access the Peripheral Access Crate (PAC) for this chip
through our HAL crate. There's a
complicated dance needed to get access to
our pins. Finally, since we can just initialize the pins
to the right levels, we
don't need to set them. Wiggling the pins is a topic for the next section.



Toggle it
Let's turn the LED on and off repeatedly. That's how you make it blink,

right?
In examples/fast-blink.rs  you'll find the next iteration of our blinky.

I've decided to make it
blink the next LED over, while leaving the original
LED on. That is an easy change.
#![no_main]

#![no_std]



use cortex_m_rt::entry;

use embedded_hal::digital::OutputPin;

use nrf52833_hal::{gpio, pac};

use panic_halt as _;



#[entry]

fn main() -> ! {

    let peripherals = pac::Peripherals::take().unwrap();

    let p0 = gpio::p0::Parts::new(peripherals.P0);

    let _row1 = 
p0.p0_21.into_push_pull_output(gpio::Level::High);

    let mut row2 = 
p0.p0_22.into_push_pull_output(gpio::Level::Low);

    let _col1 = 
p0.p0_28.into_push_pull_output(gpio::Level::Low);



    loop {

        row2.set_high().unwrap();

        row2.set_low().unwrap();

    }

}


The embedded-hal  crate is being used here to provide the Rust traits
needed to set and unset the
LED. This means that this part of the code is



portable to any Rust HAL that implements the
 embedded-hal  traits as ours
does.

But wait: neither LED is blinking! The second one is slightly dimmer
than the first one, but they
are both solidly on… or are they? Out of the box,
the MB2 executes 64 million instructions per
second. Let's assume it takes a
few dozen instructions under the hood to turn the LED on or
off. (Maybe
possibly that many compiled in debug mode, though way less in release
mode. Though the
pins take a while to change state. I don't know.) Anyhow,
that second LED is actually turning on and
 off hundreds of thousands of
times — perhaps millions of times — every second. Your eye just can't
keep up.

We'll need to wait a while between toggles. Turns out waiting is the
hardest part.



Spin wait
To blink the LED, we need to wait about a half-second between each

change. How do we do that?
Well, here's the dumb way. It's not good, but it's a start. Take a look at 

examples/spin-wait.rs .
#![no_main]

#![no_std]



use cortex_m::asm::nop;

use cortex_m_rt::entry;

use embedded_hal::digital::OutputPin;

use nrf52833_hal::{gpio, pac};

use panic_halt as _;



fn wait() {

    for _ in 0..4_000_000 {

        nop();

    }

}



#[entry]

fn main() -> ! {

    let peripherals = pac::Peripherals::take().unwrap();

    let p0 = gpio::p0::Parts::new(peripherals.P0);

    let mut row1 = 
p0.p0_21.into_push_pull_output(gpio::Level::High);

    let _col1 = 
p0.p0_28.into_push_pull_output(gpio::Level::Low);



    loop {

        wait();

        row1.set_high().unwrap();

        wait();




        row1.set_low().unwrap();

    }

}


Run this with cargo run --release --example spin-wait  — the --
release  is really important here — and
you should see the LED on your
MB2 flash on and off about once per second.

Things you might be wondering:

What are those _  characters in that number? Rust allows these
in numbers and ignores them.
It's really convenient to make big
numbers more readable. Here we are using them as commas (or
whatever the separator is for groups of three digits in your country).

If the nRF52833 is running at 64MHz, why is the wait loop
iterating only 4M times? Shouldn't it
be 32M? The wait loop
executes several instructions each time through: the nop  (see next
section), some bookkeeping, and a branch back to the start of the loop.
The code generated is
roughly this for the first wait()  call
.LBB1_4:

    adds r3, #1

    nop

    cmp  r3, r2

    bne  .LBB1_4


and this for the second
.LBB1_6:

    subs	 r3, #1

    nop

    bne	.LBB1_6


This is only three or four instructions, but the backward branch may
cost an extra bit. Notice
that these are not the same: the compiler
chooses to emit different instructions for the first
and second wait
loops. See "it varies depending" below.

Still, we're executing about 4 instructions per loop iteration. This
means that on our 64MHz CPU a
half-second spin should take



64M/2/4 = 8M iterations to complete. So something is slowing us
down
by a factor of 2. What? I dunno. This whole thing is terrible.

Why is --release  so all-important? Try without it. Notice that
the LED is still flashing on
and off, but with a period of many seconds.
The wait loop is now unoptimized and is taking many
instructions each
time through.

What is that nop()  call and why is it there? We shall answer this
in the next section.

Why do you refer to this as "the dumb way"?

It isn't precise. Trying to tune that loop to reliably hit exactly
0.5 seconds is… not
really a thing.

It varies depending. Different CPU? Different compilation
flags? Different anything really?
Now the timing has changed.

It sucks power. The CPU is running instructions as fast as it
can, just to stay in place.
If there's nothing else for it to do, it
should quietly sleep until it is needed again. This
doesn't matter
much if you have USB power. But if you hook up your MB2
using the battery pack
you'll really feel this.

In the next section, we'll discuss nop() . After that, we'll talk more about
the other things about
our blinky that need improving.

For such a simple program, this is a pretty complicated program. That's
why we start with blinky.



NOP
You might wonder what that nop()  call is doing in the wait()  loop in 

src/bin/spin-wait.rs .
The answer is that it literally does nothing. The nop()  function causes

the compiler to put a
 NOP  ARM machine instruction at that point in the
program. NOP  is a special instruction that
 causes the CPU to skip it. To
ignore it. To literally do No OPeration with it (hence the name).

So get rid of that line and recompile the program. Don't forget --
release  mode. Then run it.

We're back to a slightly darker solid LED again. With no loop body, the
compiler's optimizer decided
 that wait()  function wasn't doing anything.
So it just removed it for you at compile time. Thanks
optimizer. You have
made my wait loop infinitely fast.

How does nop()  do its job? Well, if you look at the implementation of 
nop()  you will find
 (after a bunch of digging around) that it is
implemented like this:
asm!("nop", options(nomem, nostack, preserves_flags));


The nop()  function is "inlined", so when you "call" it an actual ARM 
NOP  assembly instruction is
inserted into your program's code at that point.
Because details, this NOP  will not be removed or
 moved around by the
compiler: it will stay right there where you put it.

The ability to insert assembly code into your program where needed is
sometimes quite important in
 embedded programming. Sometime a CPU
will have instructions the compiler doesn't know about, but
 that you still
need in order to use the CPU effectively. Rust's asm!()  directive gives you
a way
to do that.

Our spin-wait is still terrible. Let's talk about doing better.



Timers
One of the big advantages of a "bare-metal" embedded system is that

you control everything that
happens on your machine. This allows you to
have really precise control of time: nothing will slow
you down unless you
let it.

However, we've seen that if we really want to get time right, we
probably need help. Embedded MCUs
 like the nRF52833 all provide this
kind of help in the form of "timers". A timer is a peripheral
that, as its name
implies, acts like a little clock that keeps very precise track of time.

The nRF52833 contains four timers. If you look at the documentation for
the chip, you'll find that
 they are pretty complicated to set up and use.
Luckily, the HAL provides a wrapper around timers
 that makes common
uses easy. The most common use of a timer is to delay for a precise amount
of
time: just what our wait()  function of the previous sections was trying
to do.

Take a look at examples/timer-blinky.rs . This code sets up a timer
and uses it to delay for 500ms
(0.5s) between each toggle.
#![no_main]

#![no_std]



use cortex_m_rt::entry;

use embedded_hal::{delay::DelayNs, digital::OutputPin};

use nrf52833_hal::{gpio, pac, timer};

use panic_halt as _;



#[entry]

fn main() -> ! {

    let peripherals = pac::Peripherals::take().unwrap();



    let p0 = gpio::p0::Parts::new(peripherals.P0);

    let mut row1 = 
p0.p0_21.into_push_pull_output(gpio::Level::High);




    let _col1 = 
p0.p0_28.into_push_pull_output(gpio::Level::Low);



    let mut timer0 = timer::Timer::new(peripherals.TIMER0);



    loop {

        timer0.delay_ms(500);

        row1.set_high().unwrap();

        timer0.delay_ms(500);

        row1.set_low().unwrap();

    }

}


Run this code with cargo run --release --example timer-blinky
and time it with a stopwatch. You'll
 find that it is exactly one second for
each on-off cycle.

Things you might notice:

We need to use the embedded_hal::Delay  trait to get the 
delay_ms()  method we're using.

As before, we dig the peripheral out of the PAC peripherals struct
and give it to the HAL.

Now we have a production-quality blinky. Let's talk a bit about the
implications of all this.



Portability
(This section is optional. Feel free to skip to the next section, where we

clean our code up a bit
and call it a day.)
You may wonder whether all this fancy ecosystem is worth its weight.

The setup for our blinky is
pretty fancy, and uses a lot of Rust crates and
features for such a simple job.

One cool advantage, though, is that our code becomes really portable.
On a different board, the
setup may be different, but the actual blinky loop
is identical!

Let's take a look at a blinky for the Sipeed Longan Nano. This is a little
$5 board that, like the
 MB2, is an embedded board with an MCU.
Otherwise, it is completely different: different processor
(the GD32VF103,
with a RISC-V instruction set entirely unlike the ARM instruction set we're
using),
different peripherals, different board. But it has an LED attached to
a GPIO pin, so we can blinky
it.
#![no_std]

#![no_main]



use panic_halt as _;

use riscv_rt::entry;

use gd32vf103xx_hal::{pac, prelude::*, delay::McycleDelay};

use embedded_hal::{blocking::delay::DelayMs, 
digital::v2::OutputPin};



#[entry]

fn main() -> ! {

    let dp = pac::Peripherals::take().unwrap();



    let mut rcu = 
dp.RCU.configure().ext_hf_clock(8.mhz()).sysclk(108.mhz()).fre
eze();



    let gpioc = dp.GPIOC.split(&mut rcu);




    let mut led = gpioc.pc13.into_push_pull_output();

    let mut delay = McycleDelay::new(&rcu.clocks);



    loop {

        delay.delay_ms(500);

        led.set_high().unwrap();

        delay.delay_ms(500);

        led.set_low().unwrap();

    }

}


The differences in setup here are partly because different hardware, and
partly because this code
 uses an older HAL crate that hasn't yet been
updated for embedded-hal  1.0. Yet the main loop is
identical as advertised,
and the rest of the code is pretty recognizable. Because of the portability
provided by Rust's easy cross-compilation and the embedded Rust
ecosystem, blinky is just blinky.

You can find a complete working nanoblinky example on GitHub, if you
want to see all the
details or even get your own board and try it yourself.

https://github.com/pdx-cs-rust/nanoblinky


Board support crate
Working directly with the PAC and HAL is pretty neat. Most ARM

MCUs and many other MCUs that Rust
can compile for have a PAC crate.
If you are working with one that does not, writing a PAC crate can
 be
tedious but is pretty straightforward. Many MCUs that have a PAC crate
also have a HAL crate —
again, it's mostly just tedious work to build one if
it is absent. Code written at the PAC and HAL
level gives access to the fine
details of the MCU.

As we have seen, though, it becomes pretty annoying to keep track of
just what is going on at the
interface between our nRF52833 and the rest of
our MB2. We have had to read schematics and whatnot
 to see how to use
our off-board hardware.

A "board support crate" — known in the non-Rust embedded
community as a Board Support Package (BSP)
— is a crate built on top of
the HAL and PAC for a board to abstract away the details and provide
conveniences. The board support crate we have been working with is the 
microbit-v2  crate.

Let's use microbit-v2  to get a final, cleaned up blinky ( src/main.rs ).
#![no_main]

#![no_std]



use cortex_m_rt::entry;

use embedded_hal::{delay::DelayNs, digital::OutputPin};

use microbit::hal::{gpio, timer};

use panic_halt as _;



#[entry]

fn main() -> ! {

    let board = microbit::Board::take().unwrap();



    let mut row1 = 
board.display_pins.row1.into_push_pull_output(gpio::Level::Hig



h);

    let _col1 = 
board.display_pins.col1.into_push_pull_output(gpio::Level::Low
);



    let mut timer0 = timer::Timer::new(board.TIMER0);



    loop {

        timer0.delay_ms(500);

        row1.set_high().unwrap();

        timer0.delay_ms(500);

        row1.set_low().unwrap();

    }

}


In this case, we haven't changed much. Our board support crate has
hidden the PAC (for now). More
 importantly, it has done so by letting us
just use reasonable names for the row and column GPIO pins
for the LED.

The microbit-v2  crate provides even fancier support for those
"display" LEDs. We will see this
support used soon to do things more fun
than blinky.



Registers
This chapter is a technical deep-dive. You can safely skip it for now and

come back to it later if
you like. That said, there's a lot of good stuff in here,
so I'd recommend you dive in.

It's time to explore what calling display_pins.row1.set_high()  does
under the hood.

In a nutshell, it just writes to some special memory regions. Go into the 
07-registers  directory
 and let's run the starter code statement by
statement ( src/main.rs ).
#![no_main]

#![no_std]



#[allow(unused_imports)]

use registers::entry;



#[entry]

fn main() -> ! {

    registers::init();



    unsafe {

        // A magic address!

        const PORT_P0_OUT: u32 = 0x50000504;



        // Turn on the top row

        *(PORT_P0_OUT as *mut u32) |= 1 << 21;



        // Turn on the bottom row

        *(PORT_P0_OUT as *mut u32) |= 1 << 19;



        // Turn off the top row

        *(PORT_P0_OUT as *mut u32) &= !(1 << 21);






        // Turn off the bottom row

        *(PORT_P0_OUT as *mut u32) &= !(1 << 19);

    }



    loop {}

}


What's this magic?
The address 0x50000504  points to a register. A register is a special

region of memory that
 controls a peripheral. A peripheral is a piece of
electronics that sits right next to the
 processor within the microcontroller
package and provides the processor with extra functionality.
After all, the
processor, on its own, can only do math and logic.

This particular register controls General Purpose Input/Output (GPIO)
pins (GPIO is a
peripheral) and can be used to drive each of those pins
low
or high.

(On the nRF52833 there are more than 32
GPIOs, yet the CPU is 32-bit.
Thus, the GPIO
pins are organized in two groups "P0" and "P1", with a set
of registers
 for reading, writing and configuring each group. The address
above is the address of the output register for the P0 pins.)



An aside: LEDs, digital outputs and voltage levels
Drive? Pin? Low? High?
A pin is a electrical contact. Our microcontroller has several of them and

some of them are
connected to Light Emitting Diodes (LEDs). An LED will
emit light when voltage is applied to it. As
the name implies, an LED also
acts as a "diode". A diode will only let electricity flow in one
 direction.
Hook an LED up "forwards" and light comes out. Hook it up "backwards"
and nothing
happens.

Luckily for us, the microcontroller's pins are connected such that we can
drive the LEDs the right
way round. All that we have to do is apply enough
voltage across the pins to turn the LED on. The
pins attached to the LEDs
are normally configured as digital outputs and can output two different
voltage levels: "low", 0 Volts, or "high", 3 Volts. A "high" (voltage) level
will turn the LED on
whereas a "low" (voltage) level will turn it off.

These "low" and "high" states map directly to the concept of digital
logic. "low" is 0  or false 
and "high" is 1  or true . This is why this pin
configuration is known as digital output.

OK. But how can one find out what this register does? Time to RTRM
(Read the Reference Manual)!



RTRM: Reading The Reference
Manual

We have previously seen the GPIO pins on the nRF52833. On this chip
(and on many others) the GPIO
pins are grouped into ports. There are two
ports, Port 0 and Port 1, abbreviated to P0  and P1 
 respectively. The pins
within each port are named with numbers starting from 0. Port 0 has 32
pins,
 named P0.00  to P0.31 , and Port 1 has 10 pins, named P1.00  to 
P1.09 .

The first thing we have to remember out is which pin is connected to
which LED. We previously did
this by tracing the schematic. That turns out
to be hard mode: the required information is in the
MB2 pinmap table.

The table says:

ROW1 , the top LED row, is connected to the pin P0.21 . P0.21  is the
short form of: Pin 21 on Port 0.
ROW5 , the bottom LED row, is connected to the pin P0.19 .

Up to this point, we know that we want to change the state of the pins 
P0.21  and P0.19  to turn
the top and bottom rows on and off. These pins
are part of Port 0 so we'll use the P0  peripheral
to set them up.

Each peripheral has a register block associated with it. A register block
is a collection of
registers allocated in contiguous memory. The address at
which the register block starts is known as
 its base address. We need to
figure out what's the base address of the P0  peripheral. That
information is
in the following section of the microcontroller Product Specification:

Section 4.2.4 Instantiation - Page 22

The table says that base address of the P0  register block is 
0x5000_0000 .

Each peripheral also has its own section in the documentation. Each of
these sections ends with a
table of the registers that the peripheral's register

https://tech.microbit.org/hardware/schematic/#v2-pinmap
https://docs.nordicsemi.com/bundle/nRF52833_PS_v1.6/resource/nRF52833_PS_v1.6.pdf


block contains. For the GPIO  family of
peripheral, that table is in:

Section 6.8.2 Registers - Page 144

OUT  is the register which we will be using to set/reset. Its offset value is 
0x504  from the base
 address of the P0 . We can look up OUT  in the
reference manual.

That register is specified right under the GPIO  registers table:

Subsection 6.8.2.1 OUT - Page 145

Anyway, 0x5000_0000  + 0x504  = 0x50000504 . That looks familiar!
Finally!

This is the register we were writing to. The documentation says some
interesting things. First, this
register can both be written to and read from.
Next, the register is a 32-bit piece of memory, and
each bit represents the
state of the corresponding pin. That means that bit 19 matches pin 19, for
instance. Setting the bit to 1 will enable the pin output, and setting it to 0
will reset
 it. Furthermore, we can see that all pin outputs are disabled by
default, as the reset value of all
bits is 0.

We'll use GDB's examine  command: x . Depending on the configuration
of your GDB server,
GDB will refuse to read memory that isn't specified.
You can disable this behaviour by running:
set mem inaccessible-by-default off


So here we go. First turn off the inaccessible-by-default  flag, then
set a couple of breakpoints, reset the device and halt.
(gdb) set mem inaccessible-by-default off

(gdb) break 16

Breakpoint 1 at 0x172: file src/07-registers/src/main.rs, line 
16.

Note: automatically using hardware breakpoints for read-only 
addresses.

(gdb) break 19

Breakpoint 2 at 0x17c: file src/07-registers/src/main.rs, line 
19.

(gdb) break 22




Breakpoint 3 at 0x184: file src/07-registers/src/main.rs, line 
22.

(gdb) break 25

Breakpoint 4 at 0x18c: file src/07-registers/src/main.rs, line 
25.

(gdb) monitor reset halt

Resetting and halting target

Target halted


All right. Let's continue until the first breakpoint, right before line 16,
and print the contents
of the register at address 0x50000504 .
(gdb) c

Continuing.



Breakpoint 1, registers::__cortex_m_rt_main () at src/07-
registers/src/main.rs:16

16              *(PORT_P0_OUT as *mut u32) |= 1 << 21;

(gdb) x 0x50000504

0x50000504:     0x00000000


Ok, we see that the register's value is 0x00000000  or 0  at this point.
This corresponds with the
data in the product specification, which says that 
0  is the 'reset value' of this register. That
means that once the MCU resets,
the register will have 0  as its value.

Let's go on. This line consists of multiple instructions (reading, bitwise
ORing and writing), so we
 need to instruct the debugger to continue
execution more than once, until we hit the next
breakpoint.
(gdb) c

Continuing.



Program received signal SIGINT, Interrupt.

0x00000174 in registers::__cortex_m_rt_main () at src/07-
registers/src/main.rs:16

16              *(PORT_P0_OUT as *mut u32) |= 1 << 21;

(gdb) c

Continuing.






Breakpoint 2, registers::__cortex_m_rt_main () at src/07-
registers/src/main.rs:19

19              *(PORT_P0_OUT as *mut u32) |= 1 << 19;


We've stopped right before line 19, meaning that line 16 is fully executed
at this point. Let's have
a look at the OUT  register's contents again:
(gdb) x 0x50000504

0x50000504:     0x00200000


The value of the OUT  register is 0x00200000  at this point, which is 
2097152  in decimal, or
 2^21 . That means that bit 21 is set to 1, and the
rest of the bits is set to 0. That corresponds
 to the code on line 16, which
writes 1 << 21 , or a 1 shifted left 21 positions, bitwise ORed with
 OUT s
current value (which was 0), to the OUT  register.

Writing 1 << 21  ( OUT[21]= 1 ) to OUT  sets P0.21  high. That turns the
top LED row
on. Check that the top row is now indeed lit up.
(gdb) c

Continuing.


Yeah, I was gonna say that. Now, hit 'c' another time to continue
execution up to the next
breakpoint and print its value.
Program received signal SIGINT, Interrupt.

0x0000017e in registers::__cortex_m_rt_main () at src/07-
registers/src/main.rs:19

19              *(PORT_P0_OUT as *mut u32) |= 1 << 19;

(gdb) c

Continuing.



Breakpoint 3, registers::__cortex_m_rt_main () at src/07-
registers/src/main.rs:22

22              *(PORT_P0_OUT as *mut u32) &= !(1 << 21);

(gdb) x 0x50000504

0x50000504:     0x00280000




On line 19, we've set bit 21 of OUT  to 1, keeping bit 19 as is. The result
is 0x00280000 , which
 is 2621440  in decimal, or 2^19 + 2^21 , meaning
that both bit 19 and bit 21 is set to 1.

Writing 1 << 19  ( OUT[19]= 1 ) to OUT  sets P0.19  high. That turns the
bottom LED row
on. As such, the bottom row should now be lit up.

The following lines turn the rows off again. First the top row, then the
bottom row. This time,
 we're doing a bitwise AND operation, combined
with a bitwise NOT. We calculate !(1 << 21) , which
 is all bits set to 1,
except for bit 21. Next, we bitwise AND that with the current value of OUT ,
ensuring that only bit 21 is set to 0, keeping the value of the other bits
intact.

Continue execution and check that the reported values of the OUT

register matches what you
expect. You can press CTRL+C  to pause execution
once the device enters the endless loop at the end
of the main  function.
(gdb) c

Continuing.



Program received signal SIGINT, Interrupt.

0x00000186 in registers::__cortex_m_rt_main () at src/07-
registers/src/main.rs:22

22              *(PORT_P0_OUT as *mut u32) &= !(1 << 21);

(gdb) c

Continuing.



Breakpoint 4, registers::__cortex_m_rt_main () at src/07-
registers/src/main.rs:25

25              *(PORT_P0_OUT as *mut u32) &= !(1 << 19);

(gdb) x 0x50000504

0x50000504:     0x00080000

(gdb) c

Continuing.



Program received signal SIGINT, Interrupt.

0x0000018e in registers::__cortex_m_rt_main () at src/07-



registers/src/main.rs:25

25              *(PORT_P0_OUT as *mut u32) &= !(1 << 19);

(gdb) c

Continuing.

^C

Program received signal SIGINT, Interrupt.

0x00000196 in registers::__cortex_m_rt_main () at src/07-
registers/src/main.rs:28

28          loop {}

(gdb) x 0x50000504

0x50000504:     0x00000000


And at this points all LEDs should be turned off again!



(mis)Optimization
Reads/writes to registers are quite special. I may even dare to say that

they are embodiment of side
effects. In the previous example we wrote four
different values to the same register. If you didn't
know that address was a
register, you may have simplified the logic to just write the final value

0x00000000  into the register.

Actually, LLVM, the compiler's backend / optimizer, does not know we
are dealing with a register and
 will merge the writes thus changing the
behavior of our program. Let's check that really quick.

First, we'll use cargo objdump to get us the assembly of the build
artifacts from both the optimized
and the non-optimized build.
# Non-optimized

cargo objdump -- --disassemble --no-show-raw-insn --source > 
debug.dump

# Optimized

cargo objdump --release -- --disassemble --no-show-raw-insn --
source > release.dump


Let's see what's in there. Specifically, let's try to find the assembly that
manipulates the OUT 
register.

First, let's have a look at the contents of debug.dump , the assembly from
the non-optimized build.
I skipped a bunch and added my comments behind
the ; <-- , indicating the line number in the source
code that corresponds
to the instruction.
$ cat debug.dump

[...]

00000158 <main>:

     158:      	push	 {r7, lr}

     15a:      	mov	 r7, sp

     15c:      	 bl	 0x160  
<registers::__cortex_m_rt_main::h0b7888ca966441cf> @ imm = 
#0x0






00000160 <registers::__cortex_m_rt_main::h0b7888ca966441cf>:

     160:      	push	 {r7, lr}

     162:      	mov	 r7, sp

     164:      	sub	 sp, #0x8

     166:      	 bl	 0x198  
<registers::init::hb6346637538e8ec5> @ imm = #0x2e

     16a:      	 movw	 r1, #0x504        ; <-- Load  
half of `OUT` register address into register `r1`

     16e:      	 movt	 r1, #0x5000       ; <-- Load  
half of `OUT` register address into register `r1`

     172:      	str	 r1, [sp, #0x4]

     174:      	 ldr	 r0, [r1]          ; <-- (16) 
value at the address in `r1` into `r0`.

     176:      	 orr	 r0, r0, #0x200000 ; <-- (16) B 
OR the value in `r0` with `0x200000`, and store in `r0`

     17a:      	 str	 r0, [r1]          ; <-- (16)  
contents of `r0` in memory at address from `r1`

     17c:      	 ldr	 r0, [r1]          ; <-- (19) 
value at the address in `r1` into `r0`.

     17e:      	 orr	 r0, r0, #0x80000  ; <-- (19) B 
OR the value in `r0` with `0x80000`, and store in `r0`

     182:      	 str	 r0, [r1]          ; <-- (19)  
contents of `r0` in memory at address from `r1`

     184:      	 ldr	 r0, [r1]          ; <-- (22) 
value at the address in `r1` into `r0`.

     186:      	 bic	 r0, r0, #0x200000 ; <-- (22) B 
AND the value in `r0` with bitwise complement of `0x200000`, 
and store in `r0`

     18a:      	 str	 r0, [r1]          ; <-- (22)  
contents of `r0` in memory at address from `r1`

     18c:      	 ldr	 r0, [r1]          ; <-- (25) 
value at the address in `r1` into `r0`.

     18e:      	 bic	 r0, r0, #0x80000  ; <-- (25) B 
AND the value in `r0` with bitwise complement of `0x80000`, 
and store in `r0`

     192:      	 str	 r0, [r1]          ; <-- (25)  



contents of `r0` in memory at address from `r1`

     194:      	 b	 0x196  
<registers::__cortex_m_rt_main::h0b7888ca966441cf+0x36> @ imm 
= #-0x2

     196:      	 b	 0x196  
<registers::__cortex_m_rt_main::h0b7888ca966441cf+0x36> @ imm 
= #-0x4

[...]


As you can see, the non-optimized assembly contains 4 loads, 4 stores,
and 4 bit manipulation
instructions. Those correspond nicely with the code
we wrote. Now, let's have a look at the
optimized assembly.
$ cat release.dump

[...]

00000158 <main>:

     158:      	push	 {r7, lr}

     15a:      	mov	 r7, sp

     15c:      	 bl	 0x160  
<registers::__cortex_m_rt_main::h1f38525e07b97485> @ imm = 
#0x0



00000160 <registers::__cortex_m_rt_main::h1f38525e07b97485>:

     160:      	push	 {r7, lr}

     162:      	mov	 r7, sp

     164:      	 bl	 0x17a  
<registers::init::h4390f1d4f8a071f7> @ imm = #0x12

     168:      	 movw	 r0, #0x504          ; <-- Load 
half of `OUT` register address into register `r0`

     16c:      	 movt	 r0, #0x5000         ; <-- Load 
half of `OUT` register address into register `r0`

     170:      	ldr	 r1, [r0]                ; <-- (?) Load 
value at the address in `r0` into `r1`.

     172:      	 bic	 r1, r1, #0x280000       ; <-- 
Bitwise AND the value in `r1` with bitwise complement of 
`0x280000`, and store in `r1`

     176:      	 str	 r1, [r0]                ; <- 



Store contents of `r0` in memory at address from `r0`

     178:      	 b	 0x178  
<registers::__cortex_m_rt_main::h1f38525e07b97485+0x18> @ imm 
= #-0x4

[...]


Huh? Just a single load - bit manipulate - store? The state of the LEDs
didn't change this time!
The str  instruction is the one that writes a value to
the register. Our debug (unoptimized)
 program had four of them, one for
each write to the register, but the release (optimized) program
only has one.

How do we prevent LLVM from misoptimizing our program? We use
volatile operations instead of plain
reads/writes ( examples/volatile.rs ):
#![no_main]

#![no_std]



use core::ptr;



#[allow(unused_imports)]

use registers::entry;



#[entry]

fn main() -> ! {

    registers::init();



    unsafe {

        // A magic address!

        const PORT_P0_OUT: u32 = 0x50000504;



        // Turn on the top row

        let out = ptr::read_volatile(PORT_P0_OUT as *mut u32);

        ptr::write_volatile(PORT_P0_OUT as *mut u32, out | 1 
<< 21);



        // Turn on the bottom row

        let out = ptr::read_volatile(PORT_P0_OUT as *mut u32);




        ptr::write_volatile(PORT_P0_OUT as *mut u32, out | 1 
<< 19);



        // Turn off the top row

        let out = ptr::read_volatile(PORT_P0_OUT as *mut u32);

        ptr::write_volatile(PORT_P0_OUT as *mut u32, out & !(1 
<< 21));



        // Turn off the bottom row

        let out = ptr::read_volatile(PORT_P0_OUT as *mut u32);

        ptr::write_volatile(PORT_P0_OUT as *mut u32, out & !(1 
<< 19));

    }



    loop {}

}


Let's run cargo objdump once again, with optimizations enabled.
cargo objdump -q --release --bin volatile -- --disassemble --
no-show-raw-insn  > release.volatile.dump


All right, now have a look at what's inside:
$ cat release.volatile.dump

[...]

00000158 <main>:

     158:      	push	 {r7, lr}

     15a:      	mov	 r7, sp

     15c:      	 bl	 0x160  
<registers::__cortex_m_rt_main::h1f38525e07b97485> @ imm = 
#0x0



00000160 <registers::__cortex_m_rt_main::h1f38525e07b97485>:

     160:      	push	 {r7, lr}

     162:      	mov	 r7, sp

     164:      	 bl	 0x192  
<registers::init::h4390f1d4f8a071f7> @ imm = #0x2a




     168:      	movw	 r0, #0x504

     16c:      	movt	 r0, #0x5000

     170:      	ldr	 r1, [r0]

     172:      	orr	 r1, r1, #0x200000

     176:      	str	 r1, [r0]

     178:      	ldr	 r1, [r0]

     17a:      	orr	 r1, r1, #0x80000

     17e:      	str	 r1, [r0]

     180:      	ldr	 r1, [r0]

     182:      	bic	 r1, r1, #0x200000

     186:      	str	 r1, [r0]

     188:      	ldr	 r1, [r0]

     18a:      	bic	 r1, r1, #0x80000

     18e:      	str	 r1, [r0]

     190:      	 b	 0x190  
<registers::__cortex_m_rt_main::h1f38525e07b97485+0x30> @ imm 
= #-0x4

[...]


Hey, look at that! Now we've got our four load - manipulate - store
cycles back.
Step through the code once again using GDB to see the volatile
operations in action!



0xBAAAAAAD address
Not all the peripheral memory can be accessed. Look at this program

( examples/bad.rs ).
#![no_main]

#![no_std]



use core::ptr;



#[allow(unused_imports)]

use registers::entry;



#[entry]

fn main() -> ! {

    registers::init();



    unsafe {

        ptr::read_volatile(0x5000_A784 as *const u32);

    }



    loop {}

}


This address is close to the OUT  address we used before but this address
is invalid, in the
sense that there's no register at this address.

Now, let's try it.
$ cargo run

(..)

Resetting and halting target

Target halted

(gdb) continue

Continuing.



Breakpoint 1, registers::__cortex_m_rt_main_trampoline () at 



src/07-registers/src/main.rs:9

9	 #[entry]

(gdb) continue

Continuing.



Program received signal SIGINT, Interrupt.

registers::__cortex_m_rt_main () at src/07-
registers/src/main.rs:10

10	 fn main() -> ! {

(gdb) continue

Continuing.



Breakpoint 3, cortex_m_rt::HardFault_ (ef=0x2001ffb8) at 
src/lib.rs:1046

1046	     loop {}

(gdb) 


We tried to do an invalid operation, reading memory that doesn't exist,
so the processor raised an
exception: a hardware exception.

In most cases, exceptions are raised when the processor attempts to
perform an invalid operation.
 Exceptions break the normal flow of a
program and force the processor to execute an exception
handler, which is
just a function/subroutine.

There are different kind of exceptions. Each kind of exception is raised
by different conditions and
 each one is handled by a different exception
handler.

The registers  crate depends on the cortex-m-rt  crate which defines
a default hard fault
handler, named HardFault_ , that handles the "invalid
memory address" exception. embed.gdb  placed
 a breakpoint on 
HardFault ; that's why the debugger halted your program while it was
executing the
 exception handler. We can get more information about the
exception from the debugger. Let's see:
(gdb) list

1040  #[allow(unused_variables)]

1041	 #[doc(hidden)]




1042	 #[cfg_attr(cortex_m, link_section =  
".HardFault.default")]

1043	 #[no_mangle]

1044	 pub unsafe extern "C" fn HardFault_(ef:  
&ExceptionFrame) -> ! {

1045	     #[allow(clippy::empty_loop)]

1046	     loop {}

1047	 }

1048	 

1049	 #[doc(hidden)]

1050	 #[no_mangle]


ef  is a snapshot of the program state right before the exception
occurred. Let's inspect it:
(gdb) print/x *ef

$1 = cortex_m_rt::ExceptionFrame {

  r0: 0x5000a784,

  r1: 0x3,

  r2: 0x2001ff24,

  r3: 0x0,

  r12: 0x1,

  lr: 0x4403,

  pc: 0x43ea,

  xpsr: 0x1000000

}


There are several fields here but the most important one is pc , the
Program Counter register. The
 address in this register points to the
instruction that generated the exception. Let's disassemble
 the program
around the bad instruction.
(gdb) disassemble /m ef.pc

Dump of assembler code for function 
core::ptr::read_volatile<u32>:

1654	 pub unsafe fn read_volatile<T>(src: *const T) -> T {

   0x000043d2 <+0>:	 push	 {r7, lr}

   0x000043d4 <+2>:	 mov	 r7, sp




   0x000043d6 <+4>:	 sub	 sp, #16

   0x000043d8 <+6>:	 str	 r0, [sp, #4]

   0x000043da <+8>:	 str	 r0, [sp, #8]



1655	     // SAFETY: the caller must uphold the safety  
contract for `volatile_load`.

1656	     unsafe {

1657	         assert_unsafe_precondition!(

   0x000043dc <+10>:	 b.n	 0x43de  
<core::ptr::read_volatile<u32>+12>

   0x000043de <+12>:	 ldr	 r0, [sp, #4]

   0x000043e0 <+14>:	 movs	 r1, #4

   0x000043e2 <+16>:	 bl	 0x43f4  
<core::ptr::read_volatile::precondition_check>

   0x000043e6 <+20>:	 b.n	 0x43e8  
<core::ptr::read_volatile<u32>+22>



1658	             check_language_ub,

1659	             "ptr::read_volatile requires that the  
pointer argument is aligned and non-null",

1660	             (

1661	                 addr: *const () = src as *const (),

1662	                 align: usize = align_of::<T>(),

1663	             ) => is_aligned_and_not_null(addr, align)

1664	         );

1665	         intrinsics::volatile_load(src)

   0x000043e8 <+22>:	 ldr	 r0, [sp, #4]

   0x000043ea <+24>:	 ldr	 r0, [r0, #0]          ; <--  
That's the one!

   0x000043ec <+26>:	 str	 r0, [sp, #12]

   0x000043ee <+28>:	 ldr	 r0, [sp, #12]



1666	     }

1667	 }

   0x000043f0 <+30>:	 add	 sp, #16

   0x000043f2 <+32>:	 pop	 {r7, pc}






End of assembler dump.




The exception was caused by the ldr r0, [r0, #0]  instruction, a read
instruction. The instruction
 tried to read the memory at the address
indicated by the r0  CPU register. By the way, a CPU
(processor) register
not a memory mapped register; it doesn't have an associated address like,
say,
 OUT .

Wouldn't it be nice if we could check what the value of the r0  register
was right at the instant
 when the exception was raised? Well, we already
did! The r0  field in the ef  value we printed
 before is the value of r0
register had when the exception was raised. Here it is again:
(gdb) print/x *ef

$1 = cortex_m_rt::ExceptionFrame {

  r0: 0x5000a784,

  r1: 0x3,

  r2: 0x2001ff24,

  r3: 0x0,

  r12: 0x1,

  lr: 0x4403,

  pc: 0x43ea,

  xpsr: 0x1000000

}


r0  contains the value 0x5000_A784  which is the invalid address we
called the read_volatile 
function with.



Spooky action at a distance
OUT  is not the only register that can control the pins of Port E. The 

OUTSET  register also lets
you change the value of the pins, as can OUTCLR .
However, ODRSET  and OUTCLR  don't let you
 retrieve the current output
status of Port E.

OUTSET  is documented in:

Subsection 6.8.2.2. OUTSET - Page 145

Let's look at below program. The key to this program is fn print_out .
This function prints the
 current value in OUT  to the RTT  console
( examples/spooky.rs ):
#![no_main]

#![no_std]



use core::ptr;



#[allow(unused_imports)]

use registers::{entry, rprintln};



// Print the current contents of P0.OUT

fn print_out() {

    const P0_OUT: u32 = 0x5000_0504;



    let out = unsafe { ptr::read_volatile(P0_OUT as *const 
u32) };



    rprintln!("P0.OUT = {:#08x}", out);

}



#[entry]

fn main() -> ! {

    registers::init();






    unsafe {

        // A bunch of magic addresses!

        const P0_OUTSET: u32 = 0x5000_0508;

        const P0_OUTCLR: u32 = 0x5000_050C;



        // Print the initial contents of OUT

        print_out();



        // Turn on the top LED row

        ptr::write_volatile(P0_OUTSET as *mut u32, 1 << 21);

        print_out();



        // Turn on the bottom LED row

        ptr::write_volatile(P0_OUTSET as *mut u32, 1 << 19);

        print_out();



        // Turn off the top LED row

        ptr::write_volatile(P0_OUTCLR as *mut u32, 1 << 21);

        print_out();



        // Turn off the bottom LED row

        ptr::write_volatile(P0_OUTCLR as *mut u32, 1 << 19);

        print_out();

    }



    loop {}

}


You'll see this if you run this program:
$ cargo embed

# cargo-embed's console

(..)

15:13:24.055: P0.OUT = 0x000000

15:13:24.055: P0.OUT = 0x200000

15:13:24.055: P0.OUT = 0x280000




15:13:24.055: P0.OUT = 0x080000

15:13:24.055: P0.OUT = 0x000000


Side effects! Although we are reading the same address multiple times
without actually modifying it,
 we still see its value change every time 
OUTSET  or OUTCLR  is written to.



Type safe manipulation
One of the registers of P0 , the IN  register, is documented as a read-only

register.

6.8.2.4 IN - Pages 145 and 146

Note that in the 'Access' column of the table, only the 'R' is given for this
register. We are not
 supposed to write to this register or Bad Stuff May
Happen.

Registers have different read/write permissions. Some of them are write
only, others can be read and
written to and there must be others that are read
only.

Directly working with hexadecimal addresses is also error-prone. You
already saw that trying to
 access an invalid memory address caused an
exception which disrupted the execution of our program.

Wouldn't it be nice if we had an API to manipulate registers in a "safe"
manner? Ideally, the API
should encode these three points I've mentioned:
No messing around with the actual addresses, should
 respect read/write
permissions and should prevent modification of the reserved parts of a
register.

Well, we do! registers::init()  actually returns a value that provides
a type safe API to
manipulate the registers of the P0  and P1  ports.

As you may remember: a group of registers associated to a peripheral is
called register block, and
it's located in a contiguous region of memory. In
this type safe API each register block is modeled
as a struct  where each
of its fields represents a register. Each register field is a different
newtype
over e.g. u32  that exposes a combination of the following methods: read , 
write  or
 modify  according to its read/write permissions. Finally, these
methods don't take primitive values
like u32 , instead they take yet another
newtype that can be constructed using the builder pattern
and that prevent
the modification of the reserved parts of the register.

The best way to get familiar with this API is to port our running example
to it
( examples/type-safe.rs ).



#![no_main]

#![no_std]



#[allow(unused_imports)]

use registers::entry;



#[entry]

fn main() -> ! {

    let (p0, _p1) = registers::init();



    // Turn on the top row

    p0.out.modify(|_, w| w.pin21().set_bit());



    // Turn on the bottom row

    p0.out.modify(|_, w| w.pin19().set_bit());



    // Turn off the top row

    p0.out.modify(|_, w| w.pin21().clear_bit());



    // Turn off the bottom row

    p0.out.modify(|_, w| w.pin19().clear_bit());



    loop {}

}


First thing you notice: There are no magic addresses involved. Instead
we use a more human friendly
way, p0.out , to refer to the OUT  register in
the P0  port register block.

The register block has a modify  method that takes a closure. Before this
closure is called, the
 OUT  register's value is read and passed to the closure
as the r  parameter. Given the value of
 r , you can manipulate w  to the
desired new value of the register using its methods. The result
is written to
the register once the closure returns. In our case, the current value of the
register
is also passed in the w  parameter, allowing us to just manipulate w
when we want to keep the
rest of the register bits as is.

https://docs.rs/svd2rust/latest/svd2rust/#modify


The modify  method is defined for registers that allow both write and
read access. If you'd like to
just read a register's value, but not update it, you
can use the read  method. Or, if you simply
want to write a register value
without reading, there's the write  method.

Read-only registers only expose read , and write-only registers only
expose write . This prevents
users from accessing a register in a way that's
not allowed, and therefore you don't need to wrap
 the calls in an unsafe
block. And you don't need to figure out the exact register address and bit
positions yourself!

Let's run this program! There's some interesting stuff we can do while
debugging the program.

p0  is a reference to the P0  port's register block. print p0  will return
the base address of
the register block, and print *p0  will print its value.
$ cargo run

(..)

Target halted

(gdb) set mem inaccessible-by-default off

(gdb) break main.rs:12

Breakpoint 4 at 0x162: main.rs:12. (2 locations)

(gdb) continue

Continuing.



Program received signal SIGINT, Interrupt.

cortex_m_rt::DefaultPreInit () at src/lib.rs:1058

1058	 pub unsafe extern "C" fn DefaultPreInit() {}

(gdb) continue

Continuing.



Breakpoint 1, registers::__cortex_m_rt_main_trampoline () at 
src/07-registers/src/main.rs:7

7	 #[entry]

(gdb) continue

Continuing.




https://docs.rs/svd2rust/latest/svd2rust/#read
https://docs.rs/svd2rust/latest/svd2rust/#write


Program received signal SIGINT, Interrupt.

registers::__cortex_m_rt_main () at src/07-
registers/src/main.rs:8

8	 fn main() -> ! {

(gdb) continue

Continuing.



Breakpoint 4.2, registers::__cortex_m_rt_main () at src/07-
registers/src/main.rs:12

12	     p0.out.modify(|_, w| w.pin21().set_bit());

(gdb) print *p0 
; ⬅️ Printing `*p0` here!

$1 = nrf52833_pac::p0::RegisterBlock {

  _reserved0: [0 <repeats 1284 times>],

  out: 
nrf52833_pac::generic::Reg<nrf52833_pac::p0::out::OUT_SPEC> {

    register: vcell::VolatileCell<u32> {

      value: core::cell::UnsafeCell<u32> {

        value: 0

      }

    },

    _marker: 
core::marker::PhantomData<nrf52833_pac::p0::out::OUT_SPEC>

  },

  outset: 
nrf52833_pac::generic::Reg<nrf52833_pac::p0::outset::OUTSET_SP
EC> {

    register: vcell::VolatileCell<u32> {

      value: core::cell::UnsafeCell<u32> {

        value: 0

      }

    },

    _marker: 
core::marker::PhantomData<nrf52833_pac::p0::outset::OUTSET_SPE
C>

  },




  outclr: 
nrf52833_pac::generic::Reg<nrf52833_pac::p0::outclr::OUTCLR_SP
EC> {

    register: vcell::VolatileCell<u32> {

      value: core::cell::UnsafeCell<u32> {

        value: 0

      }

    },

    _marker: 
core::marker::PhantomData<nrf52833_pac::p0::outclr::OUTCLR_SPE
C>

  },

  in_: 
nrf52833_pac::generic::Reg<nrf52833_pac::p0::in_::IN_SPEC> {

    register: vcell::VolatileCell<u32> {

      value: core::cell::UnsafeCell<u32> {

        value: 0

      }

    },

    _marker: 
core::marker::PhantomData<nrf52833_pac::p0::in_::IN_SPEC>

  },

  dir: 
nrf52833_pac::generic::Reg<nrf52833_pac::p0::dir::DIR_SPEC> {

    register: vcell::VolatileCell<u32> {

      value: core::cell::UnsafeCell<u32> {

        value: 3513288704

      }

    },

    _marker: 
core::marker::PhantomData<nrf52833_pac::p0::dir::DIR_SPEC>

  },

  dirset: 
nrf52833_pac::generic::Reg<nrf52833_pac::p0::dirset::DIRSET_SP
EC> {

    register: vcell::VolatileCell<u32> {




      value: core::cell::UnsafeCell<u32> {

        value: 3513288704

      }

    },

    _marker: 
core::marker::PhantomData<nrf52833_pac::p0::dirset::DIRSET_SPE
C>

  },

  dirclr: 
nrf52833_pac::generic::Reg<nrf52833_pac::p0::dirclr::DIRCLR_SP
EC> {

    register: vcell::VolatileCell<u32> {

      value: core::cell::UnsafeCell<u32> {

        value: 3513288704

      }

    },

    _marker: 
core::marker::PhantomData<nrf52833_pac::p0::dirclr::DIRCLR_SPE
C>

  },

  latch: 
nrf52833_pac::generic::Reg<nrf52833_pac::p0::latch::LATCH_SPEC
> {

    register: vcell::VolatileCell<u32> {

      value: core::cell::UnsafeCell<u32> {

        value: 0

      }

    },

    _marker: 
core::marker::PhantomData<nrf52833_pac::p0::latch::LATCH_SPEC>

  },

  detectmode: 
nrf52833_pac::generic::Reg<nrf52833_pac::p0::detectmode::DETEC
TMODE_SPEC> {

    register: vcell::VolatileCell<u32> {

      value: core::cell::UnsafeCell<u32> {




        value: 0

      }

    },

    _marker: 
core::marker::PhantomData<nrf52833_pac::p0::detectmode::DETECT
MODE_SPEC>

  },

  _reserved9: [0 <repeats 472 times>],

  pin_cnf: 
[nrf52833_pac::generic::Reg<nrf52833_pac::p0::pin_cnf::PIN_CNF
_SPEC> {

      register: vcell::VolatileCell<u32> {

        value: core::cell::UnsafeCell<u32> {

          value: 2

        }

      },

      _marker: 
core::marker::PhantomData<nrf52833_pac::p0::pin_cnf::PIN_CNF_S
PEC>

    } <repeats 11 times>, 
nrf52833_pac::generic::Reg<nrf52833_pac::p0::pin_cnf::PIN_CNF_
SPEC> {

      register: vcell::VolatileCell<u32> {

        value: core::cell::UnsafeCell<u32> {

          value: 3

        }

      },

      _marker: 
core::marker::PhantomData<nrf52833_pac::p0::pin_cnf::PIN_CNF_S
PEC>

    }, 
nrf52833_pac::generic::Reg<nrf52833_pac::p0::pin_cnf::PIN_CNF_
SPEC> {

      register: vcell::VolatileCell<u32> {

        value: core::cell::UnsafeCell<u32> {

          value: 2




        }

      },

      _marker: 
core::marker::PhantomData<nrf52833_pac::p0::pin_cnf::PIN_CNF_S
PEC>

    }, 
nrf52833_pac::generic::Reg<nrf52833_pac::p0::pin_cnf::PIN_CNF_
SPEC> {

      register: vcell::VolatileCell<u32> {

        value: core::cell::UnsafeCell<u32> {

          value: 2

        }

      },

--Type <RET> for more, q to quit, c to continue without 
paging--c

      _marker: 
core::marker::PhantomData<nrf52833_pac::p0::pin_cnf::PIN_CNF_S
PEC>

    }, 
nrf52833_pac::generic::Reg<nrf52833_pac::p0::pin_cnf::PIN_CNF_
SPEC> {

      register: vcell::VolatileCell<u32> {

        value: core::cell::UnsafeCell<u32> {

          value: 2

        }

      },

      _marker: 
core::marker::PhantomData<nrf52833_pac::p0::pin_cnf::PIN_CNF_S
PEC>

    }, 
nrf52833_pac::generic::Reg<nrf52833_pac::p0::pin_cnf::PIN_CNF_
SPEC> {

      register: vcell::VolatileCell<u32> {

        value: core::cell::UnsafeCell<u32> {

          value: 3

        }




      },

      _marker: 
core::marker::PhantomData<nrf52833_pac::p0::pin_cnf::PIN_CNF_S
PEC>

    }, 
nrf52833_pac::generic::Reg<nrf52833_pac::p0::pin_cnf::PIN_CNF_
SPEC> {

      register: vcell::VolatileCell<u32> {

        value: core::cell::UnsafeCell<u32> {

          value: 2

        }

      },

      _marker: 
core::marker::PhantomData<nrf52833_pac::p0::pin_cnf::PIN_CNF_S
PEC>

    }, 
nrf52833_pac::generic::Reg<nrf52833_pac::p0::pin_cnf::PIN_CNF_
SPEC> {

      register: vcell::VolatileCell<u32> {

        value: core::cell::UnsafeCell<u32> {

          value: 2

        }

      },

      _marker: 
core::marker::PhantomData<nrf52833_pac::p0::pin_cnf::PIN_CNF_S
PEC>

    }, 
nrf52833_pac::generic::Reg<nrf52833_pac::p0::pin_cnf::PIN_CNF_
SPEC> {

      register: vcell::VolatileCell<u32> {

        value: core::cell::UnsafeCell<u32> {

          value: 2

        }

      },

      _marker: 
core::marker::PhantomData<nrf52833_pac::p0::pin_cnf::PIN_CNF_S



PEC>

    }, 
nrf52833_pac::generic::Reg<nrf52833_pac::p0::pin_cnf::PIN_CNF_
SPEC> {

      register: vcell::VolatileCell<u32> {

        value: core::cell::UnsafeCell<u32> {

          value: 3

        }

      },

      _marker: 
core::marker::PhantomData<nrf52833_pac::p0::pin_cnf::PIN_CNF_S
PEC>

    }, 
nrf52833_pac::generic::Reg<nrf52833_pac::p0::pin_cnf::PIN_CNF_
SPEC> {

      register: vcell::VolatileCell<u32> {

        value: core::cell::UnsafeCell<u32> {

          value: 2

        }

      },

      _marker: 
core::marker::PhantomData<nrf52833_pac::p0::pin_cnf::PIN_CNF_S
PEC>

    }, 
nrf52833_pac::generic::Reg<nrf52833_pac::p0::pin_cnf::PIN_CNF_
SPEC> {

      register: vcell::VolatileCell<u32> {

        value: core::cell::UnsafeCell<u32> {

          value: 3

        }

      },

      _marker: 
core::marker::PhantomData<nrf52833_pac::p0::pin_cnf::PIN_CNF_S
PEC>

    }, 
nrf52833_pac::generic::Reg<nrf52833_pac::p0::pin_cnf::PIN_CNF_



SPEC> {

      register: vcell::VolatileCell<u32> {

        value: core::cell::UnsafeCell<u32> {

          value: 3

        }

      },

      _marker: 
core::marker::PhantomData<nrf52833_pac::p0::pin_cnf::PIN_CNF_S
PEC>

    }, 
nrf52833_pac::generic::Reg<nrf52833_pac::p0::pin_cnf::PIN_CNF_
SPEC> {

      register: vcell::VolatileCell<u32> {

        value: core::cell::UnsafeCell<u32> {

          value: 2

        }

      },

      _marker: 
core::marker::PhantomData<nrf52833_pac::p0::pin_cnf::PIN_CNF_S
PEC>

    }, 
nrf52833_pac::generic::Reg<nrf52833_pac::p0::pin_cnf::PIN_CNF_
SPEC> {

      register: vcell::VolatileCell<u32> {

        value: core::cell::UnsafeCell<u32> {

          value: 3

        }

      },

      _marker: 
core::marker::PhantomData<nrf52833_pac::p0::pin_cnf::PIN_CNF_S
PEC>

    }, 
nrf52833_pac::generic::Reg<nrf52833_pac::p0::pin_cnf::PIN_CNF_
SPEC> {

      register: vcell::VolatileCell<u32> {

        value: core::cell::UnsafeCell<u32> {




          value: 2

        }

      },

      _marker: 
core::marker::PhantomData<nrf52833_pac::p0::pin_cnf::PIN_CNF_S
PEC>

    }, 
nrf52833_pac::generic::Reg<nrf52833_pac::p0::pin_cnf::PIN_CNF_
SPEC> {

      register: vcell::VolatileCell<u32> {

        value: core::cell::UnsafeCell<u32> {

          value: 2

        }

      },

      _marker: 
core::marker::PhantomData<nrf52833_pac::p0::pin_cnf::PIN_CNF_S
PEC>

    }, 
nrf52833_pac::generic::Reg<nrf52833_pac::p0::pin_cnf::PIN_CNF_
SPEC> {

      register: vcell::VolatileCell<u32> {

        value: core::cell::UnsafeCell<u32> {

          value: 2

        }

      },

      _marker: 
core::marker::PhantomData<nrf52833_pac::p0::pin_cnf::PIN_CNF_S
PEC>

    }, 
nrf52833_pac::generic::Reg<nrf52833_pac::p0::pin_cnf::PIN_CNF_
SPEC> {

      register: vcell::VolatileCell<u32> {

        value: core::cell::UnsafeCell<u32> {

          value: 3

        }

      },




      _marker: 
core::marker::PhantomData<nrf52833_pac::p0::pin_cnf::PIN_CNF_S
PEC>

    }, 
nrf52833_pac::generic::Reg<nrf52833_pac::p0::pin_cnf::PIN_CNF_
SPEC> {

      register: vcell::VolatileCell<u32> {

        value: core::cell::UnsafeCell<u32> {

          value: 2

        }

      },

      _marker: 
core::marker::PhantomData<nrf52833_pac::p0::pin_cnf::PIN_CNF_S
PEC>

    }, 
nrf52833_pac::generic::Reg<nrf52833_pac::p0::pin_cnf::PIN_CNF_
SPEC> {

      register: vcell::VolatileCell<u32> {

        value: core::cell::UnsafeCell<u32> {

          value: 3

        }

      },

      _marker: 
core::marker::PhantomData<nrf52833_pac::p0::pin_cnf::PIN_CNF_S
PEC>

    }, 
nrf52833_pac::generic::Reg<nrf52833_pac::p0::pin_cnf::PIN_CNF_
SPEC> {

      register: vcell::VolatileCell<u32> {

        value: core::cell::UnsafeCell<u32> {

          value: 3

        }

      },

      _marker: 
core::marker::PhantomData<nrf52833_pac::p0::pin_cnf::PIN_CNF_S
PEC>




    }]

}






All these newtypes and closures sound like they'd generate large, bloated
programs. If you actually
compile the program in release mode with LTO
enabled, though, you'll see exactly the same
 instructions that the "unsafe"
version that used write_volatile  and hexadecimal addresses had!

Use cargo objdump  to grab the assembler code to release.type-

safe.dump :
cargo objdump -q --release --bin type-safe -- --disassemble --
no-show-raw-insn  > release.type-safe.dump


Then search for main  in release.type-safe.dump
00000158 <main>:

     158:      	push	 {r7, lr}

     15a:      	mov	 r7, sp

     15c:      	 bl	 0x160  
<registers::__cortex_m_rt_main::h0e9b57c6799332fd> @ imm = 
#0x0



00000160 <registers::__cortex_m_rt_main::h0e9b57c6799332fd>:

     160:      	push	 {r7, lr}

     162:      	mov	 r7, sp

     164:      	 bl	 0x192  
<registers::init::hec71dddc40be11b5> @ imm = #0x2a

     168:      	movw	 r0, #0x504

     16c:      	movt	 r0, #0x5000

     170:      	ldr	 r1, [r0]

     172:      	orr	 r1, r1, #0x200000

     176:      	str	 r1, [r0]

     178:      	ldr	 r1, [r0]

     17a:      	orr	 r1, r1, #0x80000

     17e:      	str	 r1, [r0]

     180:      	ldr	 r1, [r0]


https://en.wikipedia.org/wiki/Interprocedural_optimization


     182:      	bic	 r1, r1, #0x200000

     186:      	str	 r1, [r0]

     188:      	ldr	 r1, [r0]

     18a:      	bic	 r1, r1, #0x80000

     18e:      	str	 r1, [r0]

     190:      	 b	 0x190  
<registers::__cortex_m_rt_main::h0e9b57c6799332fd+0x30> @ imm 
= #-0x4


You can validate that this yields the exact same binary as the one with
the calls to
 ptr::read_volatile  and ptr::write_volatile .

The best part of all this is that nobody had to write a single line of code
to implement the GPIO
API. All the code was automatically generated from
a System View Description (SVD) file using the
 svd2rust tool. This SVD
file is actually an XML file that microcontroller vendors provide and that
contains the register maps of their microcontrollers. The file contains the
layout of register
blocks, the base addresses, the read/write permissions of
each register, the layout of the
registers, whether a register has reserved bits
and lots of other useful information.

https://crates.io/crates/svd2rust


LED roulette
Alright, let's build a "real" application. The goal is to get to this display

of spinning lights:

Since working with the LED pins separately is quite annoying
(especially if you have to use
basically all of them like here) you can use
the microbit-v2  BSP crate, discussed previously, to
work with the MB2's
LED "display". It works like this ( examples/light-it-all.rs ):
#![no_main]

#![no_std]



use cortex_m_rt::entry;

use embedded_hal::delay::DelayNs;

use microbit::{board::Board, display::blocking::Display, 
hal::Timer};

use panic_rtt_target as _;

use rtt_target::rtt_init_print;



#[entry]

fn main() -> ! {

    rtt_init_print!();



    let board = Board::take().unwrap();




    let mut timer = Timer::new(board.TIMER0);

    let mut display = Display::new(board.display_pins);

    let light_it_all = [

        [1, 1, 1, 1, 1],

        [1, 1, 1, 1, 1],

        [1, 1, 1, 1, 1],

        [1, 1, 1, 1, 1],

        [1, 1, 1, 1, 1],

    ];



    loop {

        // Show light_it_all for 1000ms

        display.show(&mut timer, light_it_all, 1000);

        // clear the display again

        display.clear();

        timer.delay_ms(1000_u32);

    }

}


The Rust array light_it_all  shown in the example contains 1 where
the LED is on and 0 where it is
off. The call to show()  takes a timer for the
BSP display code to use for delaying, a copy of
 the array, and a length of
time in milliseconds to show this display before returning.



The challenge
You are now well armed to face our challenge! Again, your application

should look like this:

If you can't exactly see what's happening here it is in a much slower
version:

If you need a hint, templates/solution.rs  provides a mostly-filled-
out chunk of code to finish. I
would suggest you try it on your own first,
though: it should be doable by now…

Got it?



My solution
What solution did you come up with?
Here's mine. It's probably one of the simplest (but of course not most

beautiful) ways to generate
the required matrix:
#![deny(unsafe_code)]

#![no_main]

#![no_std]



use cortex_m_rt::entry;

use microbit::{board::Board, display::blocking::Display, 
hal::Timer};

use panic_rtt_target as _;

use rtt_target::rtt_init_print;



#[rustfmt::skip]

const PIXELS: [(usize, usize); 16] = [

    (0, 0),

    (0, 1),

    (0, 2),

    (0, 3),

    (0, 4),

    (1, 4),

    (2, 4),

    (3, 4),

    (4, 4),

    (4, 3),

    (4, 2),

    (4, 1),

    (4, 0),

    (3, 0),

    (2, 0),

    (1, 0),

];






#[entry]

fn main() -> ! {

    rtt_init_print!();



    let board = Board::take().unwrap();

    let mut timer = Timer::new(board.TIMER0);

    let mut display = Display::new(board.display_pins);

    #[rustfmt::skip]

    let mut leds = [

        [0, 0, 0, 0, 0],

        [0, 0, 0, 0, 0],

        [0, 0, 0, 0, 0],

        [0, 0, 0, 0, 0],

        [0, 0, 0, 0, 0],

    ];



    let mut last_led = (0, 0);



    loop {

        for current_led in PIXELS.iter() {

            leds[last_led.0][last_led.1] = 0;

            leds[current_led.0][current_led.1] = 1;

            display.show(&mut timer, leds, 30);

            last_led = *current_led;

        }

    }

}


One more thing! Check that your solution also works when compiled in
"release" mode:
$ cargo embed --release


If you want to debug your "release" mode binary you'll have to use a
different GDB command:



$ gdb ../../../target/thumbv7em-none-eabihf/release/led-
roulette


The Rust compiler modifies the machine instructions generated in a
release build (sometimes by a
lot) in order to try to make the code faster or
smaller. Unfortunately, GDB has a hard time figuring
out what is going on
after this. As a result, debugging release builds with GDB can be difficult.

Binary size is something we should always keep an eye on! How big is
your solution? You can check
that using the size  command on the release
binary:
$ cargo size --release -- -A

    Finished release [optimized + debuginfo] target(s) in 
0.02s

led-roulette  :

section              size        addr

.vector_table         256         0x0

.text                6332       0x100

.rodata               648      0x19bc

.data                   0  0x20000000

.bss                 1076  0x20000000

.uninit                 0  0x20000434

.debug_loc           9036         0x0

.debug_abbrev        2754         0x0

.debug_info         96460         0x0

.debug_aranges       1120         0x0

.debug_ranges       11520         0x0

.debug_str          71325         0x0

.debug_pubnames     32316         0x0

.debug_pubtypes     29294         0x0

.ARM.attributes        58         0x0

.debug_frame         2108         0x0

.debug_line         19303         0x0

.comment              109         0x0

Total              283715




Your numbers may differ somewhat depending on how your code is
built: this is OK.

Know how to read this output? The text  section contains the program
instructions. The rodata 
 section contains read-only data stored with the
program instructions. The data  and bss  sections
 contain variables
statically allocated in RAM ( static  variables). If you remember the
specification of the microcontroller on your micro:bit, you should notice
that its flash memory is
 less than double the size of this extremely simple
binary: can this be right? As we can see from
the size statistics most of the
binary is actually made up of debugging related sections. However,
 those
are not flashed to the microcontroller at any time — after all they aren't
relevant for the
execution.



Serial communication

This is what we'll be using. I hope your computer has one!
Nah, don't worry. This connector, the DE-9, went out of fashion on PCs

quite some time ago; it got
replaced by the Universal Serial Bus (USB). We
won't be dealing with the DE-9 connector itself but
with the communication
protocol that this cable is/was usually used for.

So what's this serial communication? It's an asynchronous
communication protocol where
 two devices exchange data serially, as in
one bit at a time, using two data lines (plus a common
 ground). The
protocol is asynchronous in the sense that neither of the shared lines carries
a clock
signal. Instead, both parties must agree on how fast data will be sent
along the wire before the
 communication occurs. This protocol allows
duplex communication as data can be sent from A to B
and from B to A
simultaneously.

We'll be using this protocol to exchange data between the
microcontroller and your computer. Now you
might be asking yourself why
exactly we aren't using RTT for this like we did before. RTT is a
protocol
that is meant to be used solely for debugging. You will most definitely not
be able to find
a device that actually uses RTT to communicate with some
other device in production. However, serial
 communication is used quite
often. For example some GPS receivers send the positioning information
they receive via serial communication. In addition RTT, like many
debugging protocols, is slow even
compared to serial transfer rates.

https://en.wikipedia.org/wiki/File:Serial_port.jpg
https://en.wikipedia.org/wiki/Asynchronous_serial_communication


The next practical question you probably want to ask is: How fast can
we send data through this
protocol?

This protocol works with frames. Each frame has one start bit, 5 to 9 bits
of payload (data) and 1
to 2 stop bits. The speed of the protocol is known as
baud rate and it's quoted in bits per
second (bps). Common baud rates are:
9600, 19200, 38400, 57600 and 115200 bps.

To actually answer the question: With a common configuration of 1 start
bit, 8 bits of data, 1 stop
 bit and a baud rate of 115200 bps one can, in
theory, send 11,520 frames per second. Since each one
frame carries a byte
of data, that results in a data rate of 11.52 KB/s. In practice, the data rate
will probably be lower because of processing times on the slower side of
the communication (the
microcontroller).

Today's computers don't usually support the serial communication
protocol, and even if they do the
voltage they use, ±5..12V, may be higher
than the micro:bit will accept and may result in damaging
 it. You can't
directly connect your computer to the microcontroller. You can buy very
inexpensive
 USB←→serial converters that will support the 0..3V most
modern microntroller boards need. While a
serial converter is not necessary
for the MB2, as shown below, it can be handy for inexpensive
boards that
have few communications options other than serial.)

The debug probe on the micro:bit itself can act as a USB←→serial
converter. This means that the
 converter will sit between the two and
expose a serial interface to the microcontroller and a USB
interface to your
computer. The microcontroller will see your computer as another serial
device and
 your computer will see the microcontroller as a virtual serial
device.

Now, let's get familiar with the serial module and the serial
communication tools that your OS
offers. Pick a route:

Linux/UNIX
Windows

For MacOS check out the Linux documentation, although your
experience may differ somewhat.

clbr://internal.invalid/book/OEBPS/09-serial-communication/nix-tooling.md
clbr://internal.invalid/book/OEBPS/09-serial-communication/windows-tooling.md


Linux USB←→serial tooling
The micro:bit's USB emulated serial device shows up in Linux when you

connect the MB2 to a Linux USB
port.



Connecting the micro:bit board
If you connect the micro:bit board to your computer you should see a new

TTY device appear in
 /dev .
$ sudo dmesg -T | tail | grep -i tty

[63712.446286] cdc_acm 1-1.7:1.1: ttyACM0: USB ACM device


This is the USB←→serial device. On Linux, it's named tty  (for
"TeleTYpe", believe it or not). It
 should show up as ttyACM0 , or maybe 
ttyUSB0 . If other "ACM" devices are plugged in, the number
will be higher.
(On Mac OS ls /dev/cu.usbmodem*  will show the serial device.)

But what exactly is ttyACM0 ? It's a file of course! Everything is a file in
Unix:
$ ls -l /dev/ttyACM0

crw-rw----+ 1 root plugdev 166, 0 Jan 21 11:56 /dev/ttyACM0


Note that you will need to be either running as root  (not advised) or a
member of the group
 plugdev  to read and write this device. You can then
send out data by simply writing to this file:
$ echo 'Hello, world!' > /dev/ttyACM0


You should see the orange LED on the micro:bit, right next to the USB
port, blink for a moment,
whenever you enter this command.



minicom
We'll use the program minicom  to interact with the serial device using the

keyboard.
We must configure minicom  before we use it. There are quite a few ways

to do that but we'll use a
 .minirc.dfl  file in the home directory. Create a file
in ~/.minirc.dfl  with the following
contents:
$ cat ~/.minirc.dfl

pu baudrate 115200

pu bits 8

pu parity N

pu stopbits 1

pu rtscts No

pu xonxoff No


NOTE Make sure this file ends in a newline! Otherwise, minicom
will fail to read the last
line.

That file should be straightforward to read (except for the last two lines),
but nonetheless let's
go over it line by line:

pu baudrate 115200 . Sets baud rate to 115200 bps.
pu bits 8 . 8 bits per frame.
pu parity N . No "parity check bit", which would be used for error
detection.
pu stopbits 1 . 1 stop bit.
pu rtscts No . No hardware flow control.
pu xonxoff No . No software flow control.

Once that's in place, we can launch minicom  on our ACM device, for
example:
$ minicom -D /dev/ttyACM0 -b 115200


This tells minicom  to open the serial device at /dev/ttyACM0  and set its
baud rate to 115200. A text-based user interface (TUI) will pop out.



You can now send data using the keyboard! Go ahead and type something.
Note that
the text UI will not echo back what you type. If you pay attention to
the yellow LED
on top of the micro:bit though, you will notice that it blinks
whenever you type something.



minicom commands
minicom  exposes commands via keyboard shortcuts. On Linux, the

shortcuts start with Ctrl+A . (On
Mac, the shortcuts start with the Meta  key.)
Some useful commands below:

Ctrl+A  + Z . Minicom Command Summary
Ctrl+A  + C . Clear the screen
Ctrl+A  + X . Exit and reset
Ctrl+A  + Q . Quit with no reset

NOTE Mac users: In the above commands, replace Ctrl+A  with 
Meta .



Windows tooling
Start by unplugging your micro:bit.
Before plugging the micro:bit back in, run the following command on

the terminal:
$ mode


It will print a list of devices that are connected to your computer. The
ones that start with COM 
in their names are serial devices. This is the kind of
device we'll be working with. Take note of
all the COM  ports' mode  outputs
before plugging the serial module.

Now, plug in the micro:bit and run the mode  command again. If you see
a new
 COM  port appear on the list, then that's the COM port assigned to the
serial functionality on the micro:bit.

Now launch putty . A GUI will pop out.



On the starter screen, which should have the "Session" category open,
pick "Serial" as the
"Connection type". On the "Serial line" field enter the 
COM  device you got on the previous step,
for example COM3 .

Next, pick the "Connection/Serial" category from the menu on the left.
On this new view, make sure
that the serial port is configured as follows:

"Speed (baud)": 115200
"Data bits": 8
"Stop bits": 1
"Parity": None
"Flow control": None

Finally, click the Open button. A console will show up now:



If you type on this console, the yellow LED on top of the micro:bit will
blink. Each keystroke
 should make the LED blink once. Note that the
console won't echo back what you type so the screen
will remain blank.



UART
Our microcontroller (like most) has a peripheral called a UART (for

"Universal Asynchronous
 Receiver/Transmitter). This peripheral can be
configured to work with several serial communication
 protocols. The
peripheral we will be working with is named UARTE (for "UART with
Easy DMA", a topic
outside the scope of this chapter).

Throughout this chapter, we'll use serial communication to exchange
information between the
microcontroller and your computer.



Send a single byte
Our first task will be to send a single byte from the microcontroller to

the computer over the
serial connection.
In order to do that we will use the following snippet (this one is already

in
 10-uart/examples/send-byte.rs ):
#![no_main]

#![no_std]



use cortex_m::asm::wfi;

use cortex_m_rt::entry;

use panic_rtt_target as _;

use rtt_target::rtt_init_print;



use microbit::{

    hal::uarte,

    hal::uarte::{Baudrate, Parity},

};



use serial_setup::UartePort;



#[entry]

fn main() -> ! {

    rtt_init_print!();

    let board = microbit::Board::take().unwrap();



    let mut serial = {

        let serial = uarte::Uarte::new(

            board.UARTE0,

            board.uart.into(),

            Parity::EXCLUDED,

            Baudrate::BAUD115200,

        );

        UartePort::new(serial)




    };



    serial.write(b'X').unwrap();

    serial.flush().unwrap();



    loop {

        wfi();

    }

}


You might notice that one of the libraries used here, the serial_setup
module, is not from
 crates.io , but was written for this project. The
purpose of serial_setup  is to provide a nice
wrapper around the UARTE
peripheral. If you want, you can check out what exactly the module does,
but it is not required to understand this chapter in general.

We'll next discuss the initialization of UARTE. The UARTE is initialized
with this piece of code:
uarte::Uarte::new(

    board.UARTE0,

    board.uart.into(),

    Parity::EXCLUDED,

    Baudrate::BAUD115200,

);


This function takes ownership of the UARTE peripheral representation
in Rust ( board.UARTE0 ) and
 the TX/RX pins on the board
( board.uart.into() ) so nobody else can mess with either the UARTE
peripheral or our pins while we are using them. After that we pass two
configuration options to the
constructor: the baud rate (that one should be
familiar) as well as an option called "parity". Parity
is a way to allow serial
communication lines to check whether the data they received was corrupted
during transmission. We don't want to use that here so we simply exclude it.
Then we wrap it up in
the UartePort  type so we can use it.

After the initialization, we send our X  via the newly created uart
instance. These serial
functions are "blocking": they wait for the data to be



sent before returning. This is not always
 what is wanted: the
microcontroller can do a lot of work while waiting for the byte to go out on
the
 wire. However, in our case it is convenient and we didn't have other
work to do anyway.

Last but not least, we flush()  the serial port. This is because the
UARTE may decide to buffer
output until it has received a certain number
of bytes to send. Calling flush()  forces it to
write the bytes it currently
has right now instead of waiting for more.



Testing it
Before flashing this you should make sure to start your minicom/PuTTY

as the data we receive via our
 serial communication is not backed up or
anything: we have to view it live. Once your serial monitor
 is up you can
flash the program just like in chapter 5:
$ cargo embed --example send-byte

  (...)


And after the flashing is finished, you should see the character X  show
up on your minicom/PuTTY
terminal, congrats!

If you missed it, you can hit the reset button on the back of the MB2.
This will cause the program
 to start from the beginning and send an X
again.



Send a string
The next task will be to send a whole string from the microcontroller to

your computer.
I want you to send the string "The quick brown fox jumps over the 

lazy dog."  from the microcontroller to
your computer.
It's your turn to write the program.



Naive approach and write!



Naive approach
You probably came up with a program similar to the following

( examples/naive-send-string.rs ):
#![no_main]

#![no_std]



use cortex_m::asm::wfi;

use cortex_m_rt::entry;

use panic_rtt_target as _;

use rtt_target::rtt_init_print;



use microbit::hal::uarte::{self, Baudrate, Parity};



use serial_setup::UartePort;



#[entry]

fn main() -> ! {

    rtt_init_print!();

    let board = microbit::Board::take().unwrap();



    let mut serial = {

        let serial = uarte::Uarte::new(

            board.UARTE0,

            board.uart.into(),

            Parity::EXCLUDED,

            Baudrate::BAUD115200,

        );

        UartePort::new(serial)

    };



    for byte in b"The quick brown fox jumps over the lazy 
dog.\r\n".iter() {

        serial.write(*byte).unwrap();

    }




    serial.flush().unwrap();



    loop {

        wfi();

    }

}


While this is a perfectly valid implementation, at some point you might
want to have all the nice
perks of print!  such as argument formatting and
so on. If you are wondering how to do that, read
on.



write! and core::fmt::Write
The core::fmt::Write  trait allows us to use any struct that implements

it in basically the same
way as we use print!  in the std  world. In this
case, the Uart  struct from the nrf  HAL does
 implement 
core::fmt::Write  so we can refactor our previous program into this
( examples/send-string.rs ):
#![no_main]

#![no_std]



use core::fmt::Write;

use cortex_m::asm::wfi;

use cortex_m_rt::entry;

use panic_rtt_target as _;

use rtt_target::rtt_init_print;



use microbit::hal::uarte::{self, Baudrate, Parity};



use serial_setup::UartePort;



#[entry]

fn main() -> ! {

    rtt_init_print!();

    let board = microbit::Board::take().unwrap();



    let mut serial = {

        let serial = uarte::Uarte::new(

            board.UARTE0,

            board.uart.into(),

            Parity::EXCLUDED,

            Baudrate::BAUD115200,

        );

        UartePort::new(serial)

    };






    write!(serial, "The quick brown fox jumps over the lazy 
dog.\r\n").unwrap();

    serial.flush().unwrap();



    loop {

        wfi();

    }

}


If you flash this program onto your micro:bit, you'll see that it is
functionally equivalent to the
iterator-based program you came up with.



Receive a single byte
So far we can send data from the microcontroller to your computer. It's

time to try the opposite:
 receiving data from your computer
( examples/receive-byte.rs ).
#![no_main]

#![no_std]



use cortex_m_rt::entry;

use panic_rtt_target as _;

use rtt_target::{rprintln, rtt_init_print};



use microbit::hal::uarte::{self, Baudrate, Parity};



use serial_setup::UartePort;



#[entry]

fn main() -> ! {

    rtt_init_print!();

    let board = microbit::Board::take().unwrap();



    let mut serial = {

        let serial = uarte::Uarte::new(

            board.UARTE0,

            board.uart.into(),

            Parity::EXCLUDED,

            Baudrate::BAUD115200,

        );

        UartePort::new(serial)

    };



    loop {

        let byte = serial.read().unwrap();

        rprintln!("{}", byte);




    }

}


The only part that changed, compared to our send byte program, is the
loop at the end of
 main() . Here we use the serial.read()  function in
order to wait until a byte is available and
 read it. Then we print that byte
into our RTT debugging console to see whether stuff is actually
arriving.

Note that if you flash this program and start typing characters inside 
minicom  to send them to
 your microcontroller you'll only be able to see
numbers inside your RTT console since we are not
converting the u8  we
received into an actual char . Since the conversion from u8  to char  is
quite simple, I'll leave this task to you if you really do want to see the
characters inside the RTT
console.



Echo server
Let's merge transmission and reception into a single program and write

an echo server. An echo
 server sends back to the client the same text it
receives. For this application, the microcontroller
will be the server and you
and your computer will be the client.

This should be straightforward to implement. (hint: do it byte by byte)



Reverse a string
Alright, next let's make the server more interesting by having it respond

to the client with the
 reverse of the text that they sent. The server will
respond to the client every time they press the
 ENTER key. Each server
response will be in a new line.

This time you'll need a buffer; you can use heapless::Vec . Here's the
starter code:
#![no_main]

#![no_std]



use cortex_m_rt::entry;

use core::fmt::Write;

use heapless::Vec;

use rtt_target::rtt_init_print;

use panic_rtt_target as _;



use microbit::{

    hal::prelude::*,

    hal::uarte,

    hal::uarte::{Baudrate, Parity},

};



mod serial_setup;

use serial_setup::UartePort;



#[entry]

fn main() -> ! {

    rtt_init_print!();

    let board = microbit::Board::take().unwrap();



    let mut serial = {

        let serial = uarte::Uarte::new(

            board.UARTE0,


https://docs.rs/heapless/latest/heapless/struct.Vec.html


            board.uart.into(),

            Parity::EXCLUDED,

            Baudrate::BAUD115200,

        );

        UartePort::new(serial)

    };



    // A buffer with 32 bytes of capacity

    let mut buffer: Vec<u8, 32> = Vec::new();



    loop {

        buffer.clear();



        // TODO Receive a user request. Each user request ends 
with ENTER

        // NOTE `buffer.push` returns a `Result`. Handle the 
error by responding

        // with an error message.



        // TODO Send back the reversed string

    }

}




My solution
You will find my solution in src/main.rs :

#![no_main]

#![no_std]



use core::fmt::Write;

use cortex_m_rt::entry;

use heapless::Vec;

use microbit::hal::uarte::{self, Baudrate, Parity};

use panic_rtt_target as _;

use rtt_target::rtt_init_print;

use serial_setup::UartePort;



#[entry]

fn main() -> ! {

    rtt_init_print!();

    let board = microbit::Board::take().unwrap();



    let mut serial = {

        let serial = uarte::Uarte::new(

            board.UARTE0,

            board.uart.into(),

            Parity::EXCLUDED,

            Baudrate::BAUD115200,

        );

        UartePort::new(serial)

    };



    // A buffer with 32 bytes of capacity

    let mut buffer: Vec<u8, 32> = Vec::new();



    loop {

        buffer.clear();






        loop {

            // We assume that the receiving cannot fail

            let byte = serial.read().unwrap();



            if buffer.push(byte).is_err() {

                write!(serial, "error: buffer 
full\r\n").unwrap();

                break;

            }



            if byte == b'\r' {

                for byte in buffer.iter().rev().chain(&[b'\n', 
b'\r']) {

                    serial.write(*byte).unwrap();

                }

                break;

            }

        }

        serial.flush().unwrap()

    }

}




I2C
We just saw the UART serial communication format. UART serial is

widely used because it is simple
 and has been around almost forever.
(Remember how the host device is called a "tty" for "TeleTYpe"?
Yeah, that.)
This ubiquity and simplicity makes it a popular choice for simple
communications.

Because of hardware limitations on line length vs signal quality and
because of difficulty of
accurate decoding, UART serial typically caps out at
about 115200 baud under ideal conditions. A
UART serial port has both low
bandwidth (11.5KB/s) and high latency (87µs/byte).

UART serial is point-to-point: there is no way to connect three or more
devices to the same wire,
and each wire requires a dedicated hardware device
on each end.

The good news (and the bad news) is that there are plenty of other
hardware-assisted serial
communication protocols in the embedded space that
overcome these limitations. Some of them are
widely used in digital sensors.

The micro:bit board we are using has two motion sensors in it: an
accelerometer and a magnetometer.
Both of these sensors are packaged into a
single component and can be accessed via an I2C bus.

I2C is pronounced "EYE-SQUARED-CEE" and stands for Inter-Integrated
Circuit. I2C is a synchronous
serial bus communication protocol: it uses two
lines to exchange data: a data line (SDA) and a
clock line (SCL). The clock
line is used to synchronize the communication. Synchronous serial can
 run
faster and more reliably than async serial. I2C devices have bus addresses: the
hardware
 implementation allows sending bytes to a particular device, with
other devices connected to the same
wires ignoring this communication.



I2C uses a controller/target model: the controller is the device that starts
and drives the
 communication with a target device. Several devices can be
connected to the same bus at the same
time, and can choose to act either as a
controller or as a target. A controller device can
communicate with a specific
target device by first broadcasting the target address to the bus. This
address
can be 7 bits or 10 bits long. Once a controller has started a communication
with a target,
 no device is other than the controller and target is allowed to
transmit on the bus until the
controller ends the communication.

NOTE "Controller/target" was formerly referred to as "master/slave".
You may still see that in
 literature or as labeling on boards. This
terminology is now deprecated both in official standards
 and newer
documents, but is used in the Nordic manual for our nRF52833 part and
in some embedded
Rust documentation.

The clock line determines how fast data can be exchanged. The MB2 I2C
interface can operate at
speeds of 100, 250 or 400 Kbps. With other devices
even faster modes are possible.



General protocol
The I2C protocol is more elaborate than the serial communication protocol

because it has to support
 communication between several devices. Let's see
how it works using examples:



Controller → Target
If the Controller wants to send data to the Target:

1. Controller: Broadcast START
2. C: Broadcast target address (7 bits) + the R/W (8th) bit set to WRITE
3. Target: Responds ACK (ACKnowledgement)
4. C: Send one byte
5. T: Responds ACK
6. Repeat steps 4 and 5 zero or more times
7. C: Broadcast STOP OR (broadcast RESTART and go back to (2))

NOTE The target address could have been 10 bits instead of 7 bits
long. Nothing else would have
changed.



Controller ← Target
If the controller wants to read data from the target:

1. C: Broadcast START
2. C: Broadcast target address (7 bits) + the R/W (8th) bit set to READ
3. T: Responds with ACK
4. T: Send byte
5. C: Responds with ACK
6. Repeat steps 4 and 5 zero or more times
7. C: Broadcast STOP OR (broadcast RESTART and go back to (2))

NOTE The target address could have been 10 bits instead of 7 bits
long. Nothing else would
have changed.



LSM303AGR
Both of the motion sensors on the micro:bit, the magnetometer and the

accelerometer, are packaged in
 a single component: the LSM303AGR
integrated circuit. These two sensors can be accessed via an I2C
bus. Each
sensor behaves like an I2C target and has a different address.

Each sensor has its own memory where it stores the results of sensing its
environment. Our
interaction with these sensors will mainly involve reading
their memory.

The memory of these sensors is modeled as byte addressable registers.
These sensors can be
 configured too; that's done by writing to their
registers. So, in a sense, these sensors are very
 similar to the peripherals
inside the microcontroller. The difference is that their registers are
 not
mapped into the microcontrollers' memory. Instead, their registers have to
be accessed via the
I2C bus.

The main source of information about the LSM303AGR is its Data
Sheet. Read through it to see how
one can read the sensors' registers. That
part is in:

Section 6.1.1 I2C Operation - Page 38 - LSM303AGR Data Sheet

The other part of the documentation relevant to this book is the
description of the registers. That
part is in:

Section 8 Register description - Page 46 - LSM303AGR Data Sheet

https://www.st.com/resource/en/datasheet/lsm303agr.pdf


Read a single register
Let's put all that theory into practice!
First things first we need to know the target addresses of both the

accelerometer and the
magnetometer inside the chip, these can be found in
the LSM303AGR's datasheet on page 39 and are:

0011001 for the accelerometer
0011110 for the magnetometer

NOTE Remember that these are only the 7 leading bits of the
address, the 8th bit is going to
be the bit that determines whether we
are performing a read or write.

Next up we'll need a register to read from. Lots of I2C chips out there
will provide some sort of
device identification register for their controllers
to read. Considering the thousands (or even
millions) of I2C chips out there
it is highly likely that at some point two chips with the same
address will
end up being built (after all the address is "only" 7 bit wide). With this
device ID
 register a driver can make sure that it is indeed talking to a
LSM303AGR and not some other chip
that just happens to have the same
address. As you can read in the LSM303AGR's datasheet
 (specifically on
page 46 and 61) this part does provide two registers — WHO_AM_I_A  at
address
 0x0f  and WHO_AM_I_M  at address 0x4f  — which contain some bit
patterns that are unique to the
device. (The "A" is for "Accelerometer" and
the "M" is for "Magnetometer".)

The only thing missing now is the software part: we need to determine
which API of the microbit  or
a HAL crate we should use for this. If you
read through the datasheet of the nRF chip you are using
you will soon find
out that it doesn't actually have an I2C-specific peripheral. Instead, it has
more general-purpose I2C-compatible peripherals called TWI ("Two-Wire
Interface"), TWIM ("Two-Wire
 Interface Master") and TWIS ("Two-Wire
Interface Slave"). We will normally be operating in
 controller mode and
will use the newer TWIM, which supports "Easy DMA" — the TWI is
provided mostly
for backward compatibility with older devices.



Now if we put the documentation of the twi(m)  module from the 
microbit  crate
together with all the other information we have gathered so
far we'll end up with this
piece of code to read out and print the two device
IDs ( examples/chip-id.rs ):
#![deny(unsafe_code)]

#![no_main]

#![no_std]



use cortex_m::asm::wfi;

use cortex_m_rt::entry;

use panic_rtt_target as _;

use rtt_target::{rprintln, rtt_init_print};



use embedded_hal::i2c::I2c;

use microbit::{hal::twim, pac::twim0::frequency::FREQUENCY_A};



const ACCELEROMETER_ADDR: u8 = 0b0011001;

const MAGNETOMETER_ADDR: u8 = 0b0011110;



const ACCELEROMETER_ID_REG: u8 = 0x0f;

const MAGNETOMETER_ID_REG: u8 = 0x4f;



#[entry]

fn main() -> ! {

    rtt_init_print!();

    let board = microbit::Board::take().unwrap();



    let mut i2c = { twim::Twim::new(board.TWIM0, 
board.i2c_internal.into(), FREQUENCY_A::K100) };



    let mut acc = [0u8];

    let mut mag = [0u8];



    // First write the address + register onto the bus, then 
read the chip's responses


https://docs.rs/microbit-v2/0.11.0/microbit/hal/twim/index.html


    i2c.write_read(ACCELEROMETER_ADDR, &
[ACCELEROMETER_ID_REG], &mut acc)

        .unwrap();

    i2c.write_read(MAGNETOMETER_ADDR, &[MAGNETOMETER_ID_REG], 
&mut mag)

        .unwrap();



    rprintln!("The accelerometer chip's id is: {:#b}", 
acc[0]);

    rprintln!("The magnetometer chip's id is: {:#b}", mag[0]);



    loop {

        wfi();

    }

}


Apart from the initialization, this piece of code should be straight
forward if you understood the
 I2C protocol as described before. The
initialization here works similarly to the one from the UART
chapter. We
pass the peripheral as well as the pins that are used to communicate with the
chip to
the constructor; and then the frequency we wish the bus to operate
on, in this case 100 kHz ( K100 ,
since identifiers can't start with a digit).



Testing it
As usual

$ cargo embed --example chip-id


in order to test our little example program.



Using a driver
As we already discussed in chapter 5 embedded-hal  provides

abstractions
which can be used to write platform independent code that can
interact with
hardware. In fact all the methods we have used to interact with
hardware
 in chapter 7 and up until now in chapter 8 were from traits,
defined by embedded-hal .
 Now we'll make actual use of the traits 
embedded-hal  provides for the first time.

It would be pointless to implement a driver for our LSM303AGR for
every platform
 embedded Rust supports (and new ones that might
eventually pop up). To avoid this a driver
 can be written that consumes
generic types that implement embedded-hal  traits in order to provide
 a
platform agnostic version of a driver. Luckily for us this has already been
done in the
 lsm303agr  crate. Hence reading the actual accelerometer and
magnetometer values will now
be basically a plug and play experience (plus
reading a bit of documentation). In fact the crates.io 
 page already
provides us with everything we need to know in order to read accelerometer
data but using a Raspberry Pi. We'll
just have to adapt it to our chip:

Take a look at the linked page for the Raspberry Pi Linux sample code.
Because we already know how to create an instance of an object that

implements the
 embedded_hal::blocking::i2c  traits from the previous
page, adapting
 the sample code is straightforward ( examples/show-
accel.rs ):
#![deny(unsafe_code)]

#![no_main]

#![no_std]



use cortex_m_rt::entry;

use panic_rtt_target as _;

use rtt_target::{rprintln, rtt_init_print};



use microbit::{

    hal::{twim, Timer},


https://crates.io/crates/lsm303agr
https://docs.rs/embedded-hal/0.2.6/embedded_hal/blocking/i2c/index.html
clbr://internal.invalid/book/OEBPS/11-i2c/read-a-single-register.md


    pac::twim0::frequency::FREQUENCY_A,

};



use lsm303agr::{AccelMode, AccelOutputDataRate, Lsm303agr};



#[entry]

fn main() -> ! {

    rtt_init_print!();

    let board = microbit::Board::take().unwrap();



    let i2c = { twim::Twim::new(board.TWIM0, 
board.i2c_internal.into(), FREQUENCY_A::K100) };

    let mut timer0 = Timer::new(board.TIMER0);



    // Code from documentation

    let mut sensor = Lsm303agr::new_with_i2c(i2c);

    sensor.init().unwrap();

    sensor

        .set_accel_mode_and_odr(

            &mut timer0,

            AccelMode::HighResolution,

            AccelOutputDataRate::Hz50,

        )

        .unwrap();

    loop {

        if sensor.accel_status().unwrap().xyz_new_data() {

            let (x, y, z) = 
sensor.acceleration().unwrap().xyz_mg();

            // RTT instead of normal print

            rprintln!("Acceleration: x {} y {} z {}", x, y, 
z);

        }

    }

}


Just like the last snippet you should just be able to try this out like this:



$ cargo embed --example show-accel


Furthermore if you (physically) move around your micro:bit a little you
should see the
acceleration numbers that are being printed change.



The challenge
The challenge for this chapter is, to build a small application that

communicates with the outside world via the serial interface introduced
in
the last chapter. It should be able to receive the commands "magnetometer"
as well as "accelerometer" and then print the corresponding sensor data
in
response. This time no template code will be provided since all you need
is
already provided in the UART and this chapter. However, here are a few
clues:

You might be interested in core::str::from_utf8  to convert the
bytes in the buffer to a &str , since we need to compare with 
"magnetometer"  and "accelerometer" .
You will (obviously) have to read the documentation of the
magnetometer API, however
it's more or less equivalent to the
accelerometer one

clbr://internal.invalid/book/OEBPS/10-uart/index.md


My solution
My solution is in src/main.rs .

#![no_main]

#![no_std]



use core::str;



use cortex_m_rt::entry;

use embedded_hal::delay::DelayNs;

use panic_rtt_target as _;

use rtt_target::rtt_init_print;



use microbit::{

    hal::uarte::{self, Baudrate, Parity},

    hal::{twim, Timer},

    pac::twim0::frequency::FREQUENCY_A,

};



use core::fmt::Write;

use heapless::Vec;

use lsm303agr::{AccelMode, AccelOutputDataRate, Lsm303agr, 
MagMode, MagOutputDataRate};



use serial_setup::UartePort;



#[entry]

fn main() -> ! {

    rtt_init_print!();

    let board = microbit::Board::take().unwrap();



    let serial = uarte::Uarte::new(

        board.UARTE0,

        board.uart.into(),




        Parity::EXCLUDED,

        Baudrate::BAUD115200,

    );

    let mut serial = UartePort::new(serial);



    let i2c = { twim::Twim::new(board.TWIM0, 
board.i2c_internal.into(), FREQUENCY_A::K100) };

    let mut timer0 = Timer::new(board.TIMER0);



    let mut sensor = Lsm303agr::new_with_i2c(i2c);

    sensor.init().unwrap();

    sensor

        .set_accel_mode_and_odr(

            &mut timer0,

            AccelMode::HighResolution,

            AccelOutputDataRate::Hz50,

        )

        .unwrap();

    sensor

        .set_mag_mode_and_odr(

            &mut timer0,

            MagMode::HighResolution,

            MagOutputDataRate::Hz50,

        )

        .unwrap();

    let mut sensor = 
sensor.into_mag_continuous().ok().unwrap();

    let mut buffer: Vec<u8, 32> = Vec::new();



    loop {

        buffer.clear();



        loop {

            let byte = serial.read().unwrap();



            if byte == b'\r' {




                break;

            }



            if buffer.push(byte).is_err() {

                write!(serial, "error: buffer 
full\r\n").unwrap();

                break;

            }

        }



        if str::from_utf8(&buffer).unwrap().trim() == 
"accelerometer" {

            while 
!sensor.accel_status().unwrap().xyz_new_data() {

                timer0.delay_ms(1u32);

            }



            let (x, y, z) = 
sensor.acceleration().unwrap().xyz_mg();

            write!(serial, "Accelerometer: x {} y {} z 
{}\r\n", x, y, z).unwrap();

        } else if str::from_utf8(&buffer).unwrap().trim() == 
"magnetometer" {

            while !sensor.mag_status().unwrap().xyz_new_data() 
{

                timer0.delay_ms(1u32);

            }



            let (x, y, z) = 
sensor.magnetic_field().unwrap().xyz_nt();

            write!(serial, "Magnetometer: x {} y {} z {}\r\n", 
x, y, z).unwrap();

        } else {

            write!(serial, "error: command not 
detected\r\n").unwrap();

        }




    }

}




LED compass
In this section, we'll implement a compass using the LEDs on the

micro:bit. Like proper compasses,
 our LED compass must point north
somehow. It will do that by turning on one of its outer LEDs; the
 LED
turned on should point towards north.

Magnetic fields have both a magnitude, measured in Gauss or Teslas,
and a direction. The
 magnetometer on the micro:bit measures both the
magnitude and the direction of an external magnetic
 field, but it reports
back the decomposition of said field along its axes.

The magnetometer has three axes associated with it. When the board is
held flat with the LEDs facing
uupward and the logo facing forward, the X
and Y axes span the plane that is the floor. The X axis
points to the left edge
of the board. The Y axis points to the bottom (card connector) edge of the
board. The Z axis points "into the floor", so downwards: "upside down"
since the chip is mounted on
the back. This is a "right-handed" coordinate
system. It's all a bit confusing, since the reported
 field strengths are
components of the magnetic field vector.



You should already be able to write a program that continuously prints
the magnetometer data on the
RTT console from the I2C chapter. After you
write that program
( examples/show-mag.rs ), locate where north is at your
current location. Then line up your
micro:bit with that direction and observe
how the sensor's X and Y measurements look.

Now rotate the board 90 degrees while keeping it parallel to the ground.
What X, Y and Z values do
 you see this time? Then rotate it 90 degrees
again. What values do you see?

NOTE Of the two MB2s I have handy at the time of this writing,
one of them seems to have a
somewhat broken magnetometer: the Z-
axis is unusably offset. The manufacturer has a self-test
 process for
detecting this and a calibration process for mitigating this kind of
"hard iron"
fault, which is usually the result of exposing the MB2 to a
strong magnetic field at some
 point. However, the lsm303agr  crate
currently doesn't support either of these, and it seems like
a lot for an

clbr://internal.invalid/book/OEBPS/11-i2c/index.md


introductory guide to embedded systems. If you have only one MB2
and it doesn't seem
 to be working, you may just want to skip to the
next chapter. Cheap hardware: whatcha gonna do?

The Earth's magnetic north is a fickle thing: it differs from true north in
most places on Earth,
 sometimes substantially. It can point down into the
ground quite a bit. It changes over time.
Without allowing for all this, you
won't get a very accurate compass even if your MB2 magnetometer
 is
perfect (it's not). This US NOAA calculator
https://www.ngdc.noaa.gov/geomag/calculators/mobileDeclination.shtml
can be visited on your mobile
device to get a good estimate of true north as
well as magnetic north; you can give this UK BGS
calculator your latitude,
longitude and altitude to get both declination and inclination. At my
location the "declination" (difference between true and magnetic north) is
about 15°; the
"inclination" is an astonishing 67° down into the ground.

NOTE The LSM303AGR magnetometer is not a particularly
accurate device out-of-the box. The
manufacturer recommends a fancy
calibration procedure for finding adjustments to the magnetometer
readings. You can find further information, a sample calibration
implementation and some fancier
 compass graphics in appendix 3:
since we're doing something fairly basic with the magnetometer
 we
won't worry about it in this chapter.

https://www.ngdc.noaa.gov/geomag/calculators/mobileDeclination.shtml
http://www.geomag.bgs.ac.uk/data_service/models_compass/wmm_calc.html


Magnitude
How strong is the Earth's magnetic field? According to the

documentation about the
 magnetic_field()  method the x  y  z  values we
are getting are in nanoteslas. That means the
only thing we have to compute
in order to get the magnitude of the magnetic field in nanoteslas is
 the
magnitude of the 3D vector that our x  y  z  values describe. As you might
remember from
school this is simply:
use libm::sqrtf;

let magnitude = sqrtf(x * x + y * y + z * z);


Rust does not have floating-point math functions such as sqrtf()  in 
core , so our no_std 
 program has to get an implementation from
somewhere. We use the libm crate for this.

Putting all this together in a program ( examples/magnitude.rs ):
#![deny(unsafe_code)]

#![no_main]

#![no_std]



use cortex_m_rt::entry;

use embedded_hal::delay::DelayNs;

use panic_rtt_target as _;

use rtt_target::{rprintln, rtt_init_print};



use libm::sqrtf;



use microbit::{

    hal::{twim, Timer},

    pac::twim0::frequency::FREQUENCY_A,

};



use lsm303agr::{Lsm303agr, MagMode, MagOutputDataRate};



#[entry]


https://docs.rs/lsm303agr/1.1.0/lsm303agr/struct.Lsm303agr.html#method.magnetic_field
https://crates.io/crates/libm


fn main() -> ! {

    rtt_init_print!();

    let board = microbit::Board::take().unwrap();



    let i2c = { twim::Twim::new(board.TWIM0, 
board.i2c_internal.into(), FREQUENCY_A::K100) };



    let mut timer0 = Timer::new(board.TIMER0);



    let mut sensor = Lsm303agr::new_with_i2c(i2c);

    sensor.init().unwrap();

    sensor

        .set_mag_mode_and_odr(

            &mut timer0,

            MagMode::HighResolution,

            MagOutputDataRate::Hz10,

        )

        .unwrap();

    let mut sensor = 
sensor.into_mag_continuous().ok().unwrap();



    loop {

        while !sensor.mag_status().unwrap().xyz_new_data() {

            timer0.delay_ms(1u32);

        }

        let (x, y, z) = 
sensor.magnetic_field().unwrap().xyz_nt();

        let (x, y, z) = (x as f32, y as f32, z as f32);

        let magnitude = sqrtf(x * x + y * y + z * z);

        rprintln!("{} mG", magnitude / 100.0);

    }

}


Run this with cargo run --example magnitude .
This program will report the magnitude (strength) of the magnetic field

in nanotesla ( nT ) and
 milligauss ( mG , where 1 mG  = 100 nT ). The



magnitude of the Earth's magnetic field is in the
 range of 250 mG  to 650 
mG  (the magnitude varies depending on your geographical location) so you
ideally would see a value vaguely in that range. Your value will likely be
off quite a bit because
the sensor has not been calibrated: see appendix 3 for
calibration. With calibration, I see a
magnitude of around 340 mG .

Some questions:

Without moving the board, what value do you see? Do you always
see the same value?

If you rotate the board, does the magnitude change? Should it
change?



The Challenge
We'll use some fancy math to get the precise angle that the magnetic

field forms with the X and Y
axes of the magnetometer. This will allow us
to figure out which LED is pointing north.

We'll use the atan2  function. This function returns an angle in the -PI
to PI  range. The
graphic below shows how this angle is measured:

atan2(0, 1) = 0

π/2

π

−π/2

(1, 0)

(0, 1)

(0,-1)

The limit of atan2
from this side is −π

π/3

(   ,     )

π/3 (=60°)

atan2(√3, 1) = π/3 

0

atan2(1, 0) = π/2

(1, √3) 

Although not explicitly shown, in this graph the X axis points to the
right and the Y axis points
up. Note that our coordinate system is rotated
180° from this.

Here's the starter code (in templates/compass.rs ). theta , in radians,
has already been
computed. You need to pick which LED to turn on based
on the value of theta .
#![deny(unsafe_code)]

#![no_main]




#![no_std]



use cortex_m_rt::entry;

use embedded_hal::delay::DelayNs;

use panic_rtt_target as _;

use rtt_target::rtt_init_print;



// You'll find these useful ;-).

use core::f32::consts::PI;

use libm::{atan2f, floorf};



use microbit::{

    display::blocking::Display,

    hal::{Timer, twim},

    pac::twim0::frequency::FREQUENCY_A,

};



use lsm303agr::{Lsm303agr, MagMode, MagOutputDataRate};



#[entry]

fn main() -> ! {

    rtt_init_print!();

    let board = microbit::Board::take().unwrap();



    let i2c = { twim::Twim::new(board.TWIM0, 
board.i2c_internal.into(), FREQUENCY_A::K100) };



    let mut timer0 = Timer::new(board.TIMER0);

    let mut display = Display::new(board.display_pins);



    let mut sensor = Lsm303agr::new_with_i2c(i2c);

    sensor.init().unwrap();

    sensor.set_mag_mode_and_odr(

        &mut timer0,

        MagMode::HighResolution,

        MagOutputDataRate::Hz10,




    ).unwrap();

    let mut sensor = 
sensor.into_mag_continuous().ok().unwrap();



    let mut leds = [[0u8; 5]; 5];



    // Indexes of the 16 LEDs to be used in the display, and 
their

    // compass directions.

    #[rustfmt::skip]

    let indices = [

        (2, 0) /* W */, (3, 0) /* W-SW */, (3, 1) /* SW */, 
(4, 1) /* S-SW */,

        (4, 2) /* S */, (4, 3) /* S-SE */, (3, 3) /* SE */, 
(3, 4) /* E-SE */,

        (2, 4) /* E */, (1, 4) /* E-NE */, (1, 3) /* NE */, 
(0, 3) /* N-NE */,

        (0, 2) /* N */, (0, 1) /* N-NW */, (1, 1) /* NW */, 
(1, 0) /* W-NW */,

    ];



    loop {

        // Measure the magnetic field.

        let (x, y) = todo!();



        // Get an angle between -180° and 180° from the x 
axis.

        let theta = atan2f(y as f32, x as f32);



        // Figure out what LED index to blink.

        let index = todo!();



        // Blink the given LED.

        let (r, c) = indices[index];

        leds[r][c] = 255u8;

        display.show(&mut timer0, leds, 50);




        leds[r][c] = 0u8;

        display.show(&mut timer0, leds, 50);

    }

}


Suggestions/tips:

A whole circle rotation equals 360 degrees.
PI  radians is equivalent to 180 degrees.
If theta  is zero, which direction are you pointing at?
If theta  is instead very close to zero, which direction are you pointing
at?
If theta  keeps increasing, at what value should you change the
direction



My Solution
Here's my solution (in src/main.rs ):

#![deny(unsafe_code)]

#![no_main]

#![no_std]



use cortex_m_rt::entry;

use embedded_hal::delay::DelayNs;

use panic_rtt_target as _;

use rtt_target::rtt_init_print;



// You'll find these useful ;-).

use core::f32::consts::PI;

use libm::{atan2f, floorf};



use microbit::{

    display::blocking::Display,

    hal::{twim, Timer},

    pac::twim0::frequency::FREQUENCY_A,

};



use lsm303agr::{Lsm303agr, MagMode, MagOutputDataRate};



#[entry]

fn main() -> ! {

    rtt_init_print!();

    let board = microbit::Board::take().unwrap();



    let i2c = { twim::Twim::new(board.TWIM0, 
board.i2c_internal.into(), FREQUENCY_A::K100) };



    let mut timer0 = Timer::new(board.TIMER0);

    let mut display = Display::new(board.display_pins);






    let mut sensor = Lsm303agr::new_with_i2c(i2c);

    sensor.init().unwrap();

    sensor

        .set_mag_mode_and_odr(

            &mut timer0,

            MagMode::HighResolution,

            MagOutputDataRate::Hz10,

        )

        .unwrap();

    let mut sensor = 
sensor.into_mag_continuous().ok().unwrap();



    let mut leds = [[0u8; 5]; 5];



    // Indexes of the 16 LEDs to be used in the display, and 
their

    // compass directions.

    #[rustfmt::skip]

    let indices = [

        (2, 0), /* W */

        (3, 0), /* W-SW */

        (3, 1), /* SW */

        (4, 1), /* S-SW */

        (4, 2), /* S */

        (4, 3), /* S-SE */

        (3, 3), /* SE */

        (3, 4), /* E-SE */

        (2, 4), /* E */

        (1, 4), /* E-NE */

        (1, 3), /* NE */

        (0, 3), /* N-NE */

        (0, 2), /* N */

        (0, 1), /* N-NW */

        (1, 1), /* NW */

        (1, 0), /* W-NW */




    ];



    loop {

        while !sensor.mag_status().unwrap().xyz_new_data() {

            timer0.delay_ms(1u32);

        }

        let (x, y, _) = 
sensor.magnetic_field().unwrap().xyz_nt();



        // Get an angle between -180° and 180° from the x 
axis.

        let theta = atan2f(y as f32, x as f32);



        // Cut the unit circle into thirty-two segments,

        // with pairs of adjacent segments corresponding to

        // each compass direction.

        let seg = floorf(16.0 * theta / PI) as i8;



        // Figure out what LED index to blink.

        let index = if seg >= 15 || seg <= -15 {

            8

        } else if seg >= 0 {

            (seg / 2) as usize

        } else {

            ((31 + seg) / 2) as usize

        };



        // Blink the given LED.

        let (r, c) = indices[index];

        leds[r][c] = 255u8;

        display.show(&mut timer0, leds, 50);

        leds[r][c] = 0u8;

        display.show(&mut timer0, leds, 50);

    }

}




Punch-o-meter
In this section we'll be playing with the accelerometer that's in the board.
What are we building this time? A punch-o-meter! We'll be measuring

the power of your jabs. Well,
actually the maximum acceleration that you
can reach because acceleration is what accelerometers
 measure. Strength
and acceleration are proportional though so it's a good approximation.

As we already know from previous chapters the accelerometer is built
inside the LSM303AGR package.
 And just like the magnetometer, it is
accessible using the
I2C bus.

The accelerometer also has the same coordinate system as the
magnetometer. Here's a reminder:



Gravity is up?
What's the first thing we'll do?
Perform a sanity check!
You should already be able to write a program that continuously prints

the accelerometer data on the
RTT console from the I2C chapter. Mine is in 
examples/show-accel.rs . Do you
 observe something interesting even
when holding the board parallel to the floor with the back side
facing up?
(Remember that the accelerometer is mounted on the back of the board, so
holding it
upside-down like this makes the Z axis point up.)

What you should see when holding the board like this is that both the X
and Y values are rather
 close to 0, while the Z value is at around 1000.
Which is weird: the board is not moving, yet its
 acceleration is non-zero.
What's going on? This must be related to the gravity, right? Because the
acceleration of gravity is 1 g  (aha, 1 g  = -1000 from the accelerometer).
But the gravity pulls
objects downwards so the acceleration along the Z axis
should be positive, not negative.

Did the program get the Z axis backwards? Nope, you can test rotating
the board to align the gravity
 to the X or Y axis but the acceleration
measured by the accelerometer is always pointing up.

What happens here is that the accelerometer is measuring the proper
acceleration of the board, not
 the acceleration you are observing. This
proper acceleration is the acceleration of the board as
seen from an observer
that's in free fall. An observer that's in free fall is moving toward the
center
of the Earth with an acceleration of 1g ; from its point of view the board is
actually
 moving upwards (away from the center of the Earth) with an
acceleration of 1g . And that's why the
proper acceleration is pointing up.
This also means that if the board was in free fall, the
accelerometer would
report a proper acceleration of zero. Please, don't try that at home. Or do, if
you're willing to risk your MB2 by dropping it.

Yes, physics is hard. Let's move on.

clbr://internal.invalid/book/OEBPS/11-i2c/index.md


The challenge
To keep things simple, we'll measure the acceleration only in the X axis

while the board remains
horizontal. That way we won't have to deal with
subtracting that fictitious 1g  we observed
 before which would be hard
because that 1g  could have X Y Z components depending on how the
board
is oriented.

Here's what the punch-o-meter must do:

By default, the app is not "observing" the acceleration of the board.
When a significant X acceleration is detected (i.e. the acceleration
goes above some threshold),
the app should start a new measurement.
During that measurement interval, the app should keep track of the
maximum acceleration observed
After the measurement interval ends, the app must report the
maximum acceleration observed. You
can report the value using the 
rprintln!  macro.

Give it a try and let me know how hard you can punch ;-) .

NOTE There is an additional API that should be useful for this task
that we haven't
 discussed yet: the set_accel_scale  one which you
need to measure high g values.

https://docs.rs/lsm303agr/1.1.0/lsm303agr/struct.Lsm303agr.html#method.set_accel_scale


My solution
Here's my solution ( src/main.rs ). Note that you can get quite high G

values by rapping the edge of
your MB2 on a table. Note also that this can
break the accelerometer, so probably don't?
#![deny(unsafe_code)]

#![no_main]

#![no_std]



const TICKS_PER_SEC: u32 = 400;

const THRESHOLD: f32 = 1.5;



use cortex_m::asm::nop;

use cortex_m_rt::entry;

use panic_rtt_target as _;

use rtt_target::{rprintln, rtt_init_print};



use microbit::{

    hal::{twim, Timer},

    pac::twim0::frequency::FREQUENCY_A,

};



use lsm303agr::{AccelMode, AccelOutputDataRate, AccelScale, 
Lsm303agr};



#[entry]

fn main() -> ! {

    rtt_init_print!();

    let board = microbit::Board::take().unwrap();



    let i2c = { twim::Twim::new(board.TWIM0, 
board.i2c_internal.into(), FREQUENCY_A::K100) };



    let mut delay = Timer::new(board.TIMER0);




    let mut sensor = Lsm303agr::new_with_i2c(i2c);

    sensor.init().unwrap();

    sensor

        .set_accel_mode_and_odr(&mut delay, AccelMode::Normal, 
AccelOutputDataRate::Hz400)

        .unwrap();

    // Allow the sensor to measure up to 16 G since human 
punches

    // can actually be quite fast

    sensor.set_accel_scale(AccelScale::G16).unwrap();



    let mut max_g = 0.;

    let mut countdown_ticks = None;



    loop {

        while !sensor.accel_status().unwrap().xyz_new_data() {

            nop();

        }

        // x acceleration in g

        let (x, _, _) = 
sensor.acceleration().unwrap().xyz_mg();

        let g_x = x as f32 / 1000.0;



        if let Some(ticks) = countdown_ticks {

            if ticks > 0 {

                // countdown isn't done yet

                if g_x > max_g {

                    max_g = g_x;

                }

                countdown_ticks = Some(ticks - 1);

            } else {

                // Countdown is done: report max value

                rprintln!("Max acceleration: {}g", max_g);



                // Reset

                max_g = 0.;




                countdown_ticks = None;

            }

        } else {

            // If acceleration goes above a threshold, we 
start measuring

            if g_x > THRESHOLD {

                rprintln!("START!");



                max_g = g_x;

                countdown_ticks = Some(TICKS_PER_SEC);

            }

        }

    }

}




Snake game
We're now going to implement a basic snake
game that you can play on

an MB2 using its 5×5 LED matrix as a display and its two buttons as
controls. In doing so, we will build on some of the concepts covered in the
earlier chapters of this
book, and also learn about some new peripherals and
concepts.

In particular, we will be using the concept of hardware interrupts to
allow our program to interact
with multiple peripherals at once. Interrupts
are a common way to implement concurrency in embedded
contexts. There
is a good introduction to concurrency in an embedded context here that
you
might read through before proceeding.

https://en.wikipedia.org/wiki/Snake_(video_game_genre)
https://docs.rust-embedded.org/book/concurrency/index.html


Modularity
The source code here is more modular than it probably should be. This

fine-grained modularity allows
 us to look at the source code a little at a
time. We will build the code bottom-up: we will first
build three modules —
game , controls  and display , and then compose these to build the final
program. Each module will have a top-level source file and one or more
included source files: for
 example, the game  module will consist of 
src/game.rs , src/game/coords.rs ,
 src/game/movement.rs , etc. The
Rust mod  statement is used to combine the various components of
 the
module. The Rust Programming Language has a good description of Rust's
module system.

https://doc.rust-lang.org/book/ch07-02-defining-modules-to-control-scope-and-privacy.html


Game logic
The first module we will build is the game logic. You are probably

familiar with snake games, but
if not, the basic idea is that the player guides
a snake around a 2D grid. At any given time, there
 is some "food" at a
random location on the grid and the goal of the game is to get the snake to
"eat" as much food as possible. Each time the snake eats food it grows in
length. The player loses
if the snake crashes into its own tail.

In some variants of the game, the player also loses if the snake crashes
into the edge of the grid,
but given the small size of our grid we are going to
implement a "wraparound" rule: if the snake
goes off one edge of the grid,
it will continue from the opposite edge.

https://en.wikipedia.org/wiki/Snake_%28video_game_genre%29


The game module
We will build up the game mechanics in the game  module.

Coordinates
We start by defining a coordinate system for our game

( src/game/coords.rs ).
use super::Prng;



use heapless::FnvIndexSet;



/// A single point on the grid.

#[derive(Debug, Copy, Clone, Eq, PartialEq, Hash)]

pub struct Coords {

    // Signed ints to allow negative values (handy when 
checking if we have gone

    // off the top or left of the grid)

    pub row: i8,

    pub col: i8,

}



impl Coords {

    /// Get random coordinates within a grid. `exclude` is an 
optional set of

    /// coordinates which should be excluded from the output.

    pub fn random(rng: &mut Prng, exclude: 
Option<&FnvIndexSet<Coords, 32>>) -> Self {

        let mut coords = Coords {

            row: ((rng.random_u32() as usize) % 5) as i8,

            col: ((rng.random_u32() as usize) % 5) as i8,

        };

        while exclude.is_some_and(|exc| exc.contains(&coords)) 
{

            coords = Coords {

                row: ((rng.random_u32() as usize) % 5) as i8,




                col: ((rng.random_u32() as usize) % 5) as i8,

            }

        }

        coords

    }



    /// Whether the point is outside the bounds of the grid.

    pub fn is_out_of_bounds(&self) -> bool {

        self.row < 0 || self.row >= 5 || self.col < 0 || 
self.col >= 5

    }

}


We use a Coords  struct to refer to a position on the grid. Because 
Coords  only contains two
 integers, we tell the compiler to derive an
implementation of the Copy  trait for it, so we can
 pass around Coords
structs without having to worry about ownership.

Random Number Generation
We define an associated function, Coords::random , which will give us

a random position on the
grid. We will use this later to determine where to
place the snake's food.

To generate random coordinates, we need a source of random numbers.
The nRF52833 has a hardware
 random number generator (HWRNG)
peripheral, documented at section 6.19 of the nRF52833 spec. The
 HAL
gives us a simple interface to the HWRNG via the 
microbit::hal::rng::Rng  struct. The HWRNG may
 not be fast enough
for a game; it is also convenient for testing to be able to replicate the
sequence of random numbers produced by the generator between runs,
which is impossible for the HWRNG
 by design. We thus also define a
pseudo-random number generator (PRNG). The PRNG uses an
 xorshift
algorithm to generate pseudo-random u32  values. The algorithm is basic
and not
cryptographically secure, but it is efficient, easy to implement and
good enough for our humble
 snake game. Our Prng  struct requires an
initial seed value, which we do get from the RNG
peripheral.

https://infocenter.nordicsemi.com/pdf/nRF52833_PS_v1.3.pdf
https://en.wikipedia.org/wiki/Pseudorandom_number_generator
https://en.wikipedia.org/wiki/Xorshift


All of this makes up src/game/rng.rs .
use crate::Rng;



/// A basic pseudo-random number generator.

pub struct Prng {

    value: u32,

}



impl Prng {

    pub fn seeded(rng: &mut Rng) -> Self {

        Self::new(rng.random_u32())

    }



    pub fn new(seed: u32) -> Self {

        Self { value: seed }

    }



    /// Basic xorshift PRNG function: see 
<https://en.wikipedia.org/wiki/Xorshift>

    fn xorshift32(mut input: u32) -> u32 {

        input ^= input << 13;

        input ^= input >> 17;

        input ^= input << 5;

        input

    }



    /// Return a pseudo-random u32.

    pub fn random_u32(&mut self) -> u32 {

        self.value = Self::xorshift32(self.value);

        self.value

    }

}


Movement



We also need to define a few enum s that help us manage the game's
state: direction of movement,
direction to turn, the current game status and
the outcome of a particular "step" in the game (ie, a
single movement of the
snake). src/game/movement.rs  contains these.
use super::Coords;



/// Define the directions the snake can move.

pub enum Direction {

    Up,

    Down,

    Left,

    Right,

}



/// What direction the snake should turn.

#[derive(Debug, Copy, Clone)]

pub enum Turn {

    Left,

    Right,

    None,

}



/// The current status of the game.

pub enum GameStatus {

    Won,

    Lost,

    Ongoing,

}



/// The outcome of a single move/step.

pub enum StepOutcome {

    /// Grid full (player wins)

    Full,

    /// Snake has collided with itself (player loses)

    Collision,




    /// Snake has eaten some food

    Eat(Coords),

    /// Snake has moved (and nothing else has happened)

    Move(Coords),

}


A Snake (A Snaaake!)
Next up we define a Snake  struct, which keeps track of the coordinates

occupied by the snake and
 its direction of travel. We use a queue
( heapless::spsc::Queue ) to keep track of the order of
coordinates and a
hash set ( heapless::FnvIndexSet ) to allow for quick collision detection.
The
 Snake  has methods to allow it to move. src/game/snake.rs  gets this.
use super::{Coords, Direction, FnvIndexSet, Turn};



use heapless::spsc::Queue;



pub struct Snake {

    /// Coordinates of the snake's head.

    pub head: Coords,

    /// Queue of coordinates of the rest of the snake's body. 
The end of the tail is

    /// at the front.

    pub tail: Queue<Coords, 32>,

    /// A set containing all coordinates currently occupied by 
the snake (for fast

    /// collision checking).

    pub coord_set: FnvIndexSet<Coords, 32>,

    /// The direction the snake is currently moving in.

    pub direction: Direction,

}



impl Snake {

    pub fn make_snake() -> Self {

        let head = Coords { row: 2, col: 2 };

        let initial_tail = Coords { row: 2, col: 1 };




        let mut tail = Queue::new();

        tail.enqueue(initial_tail).unwrap();

        let mut coord_set: FnvIndexSet<Coords, 32> = 
FnvIndexSet::new();

        coord_set.insert(head).unwrap();

        coord_set.insert(initial_tail).unwrap();

        Self {

            head,

            tail,

            coord_set,

            direction: Direction::Right,

        }

    }



    /// Move the snake onto the tile at the given coordinates. 
If `extend` is false,

    /// the snake's tail vacates the rearmost tile.

    pub fn move_snake(&mut self, coords: Coords, extend: bool) 
{

        // Location of head becomes front of tail

        self.tail.enqueue(self.head).unwrap();

        // Head moves to new coords

        self.head = coords;

        self.coord_set.insert(coords).unwrap();

        if !extend {

            let back = self.tail.dequeue().unwrap();

            self.coord_set.remove(&back);

        }

    }



    fn turn_right(&mut self) {

        self.direction = match self.direction {

            Direction::Up => Direction::Right,

            Direction::Down => Direction::Left,

            Direction::Left => Direction::Up,

            Direction::Right => Direction::Down,




        }

    }



    fn turn_left(&mut self) {

        self.direction = match self.direction {

            Direction::Up => Direction::Left,

            Direction::Down => Direction::Right,

            Direction::Left => Direction::Down,

            Direction::Right => Direction::Up,

        }

    }



    pub fn turn(&mut self, direction: Turn) {

        match direction {

            Turn::Left => self.turn_left(),

            Turn::Right => self.turn_right(),

            Turn::None => (),

        }

    }

}


Game Module Top-Level
The Game  struct keeps track of the game state. It holds a Snake  object,

the current coordinates
of the food, the speed of the game (which is used to
determine the time that elapses between each
movement of the snake), the
status of the game (whether the game is ongoing or the player has won or
lost) and the player's score.

This struct contains methods to handle each step of the game,
determining the snake's next move and
updating the game state accordingly.
It also contains two methods-- game_matrix  and
 score_matrix --that
output 2D arrays of values which can be used to display the game state or
the
player score on the LED matrix (as we will see later).

We put the Game  struct at the top of the game  module, in src/game.rs .



mod coords;

mod movement;

mod rng;

mod snake;



use crate::Rng;



pub use coords::Coords;

pub use movement::{Direction, GameStatus, StepOutcome, Turn};

pub use rng::Prng;

pub use snake::Snake;



use heapless::FnvIndexSet;



/// Struct to hold game state and associated behaviour

pub struct Game {

    pub status: GameStatus,

    rng: Prng,

    snake: Snake,

    food_coords: Coords,

    speed: u8,

    score: u8,

}



impl Game {

    pub fn new(rng: &mut Rng) -> Self {

        let mut rng = Prng::seeded(rng);

        let snake = Snake::make_snake();

        let food_coords = Coords::random(&mut rng, 
Some(&snake.coord_set));

        Self {

            rng,

            snake,

            food_coords,

            speed: 1,




            status: GameStatus::Ongoing,

            score: 0,

        }

    }



    /// Reset the game state to start a new game.

    pub fn reset(&mut self) {

        self.snake = Snake::make_snake();

        self.place_food();

        self.speed = 1;

        self.status = GameStatus::Ongoing;

        self.score = 0;

    }



    /// Randomly place food on the grid.

    fn place_food(&mut self) -> Coords {

        let coords = Coords::random(&mut self.rng, 
Some(&self.snake.coord_set));

        self.food_coords = coords;

        coords

    }



    /// "Wrap around" out of bounds coordinates (eg, 
coordinates that are off to the

    /// left of the grid will appear in the rightmost column). 
Assumes that

    /// coordinates are out of bounds in one dimension only.

    fn wraparound(&self, coords: Coords) -> Coords {

        if coords.row < 0 {

            Coords { row: 4, ..coords }

        } else if coords.row >= 5 {

            Coords { row: 0, ..coords }

        } else if coords.col < 0 {

            Coords { col: 4, ..coords }

        } else {

            Coords { col: 0, ..coords }




        }

    }



    /// Determine the next tile that the snake will move on to 
(without actually

    /// moving the snake).

    fn get_next_move(&self) -> Coords {

        let head = &self.snake.head;

        let next_move = match self.snake.direction {

            Direction::Up => Coords {

                row: head.row - 1,

                col: head.col,

            },

            Direction::Down => Coords {

                row: head.row + 1,

                col: head.col,

            },

            Direction::Left => Coords {

                row: head.row,

                col: head.col - 1,

            },

            Direction::Right => Coords {

                row: head.row,

                col: head.col + 1,

            },

        };

        if next_move.is_out_of_bounds() {

            self.wraparound(next_move)

        } else {

            next_move

        }

    }



    /// Assess the snake's next move and return the outcome. 
Doesn't actually update

    /// the game state.




    fn get_step_outcome(&self) -> StepOutcome {

        let next_move = self.get_next_move();

        if self.snake.coord_set.contains(&next_move) {

            // We haven't moved the snake yet, so if the next 
move is at the end of

            // the tail, there won't actually be any collision 
(as the tail will have

            // moved by the time the head moves onto the tile)

            if next_move != *self.snake.tail.peek().unwrap() {

                StepOutcome::Collision

            } else {

                StepOutcome::Move(next_move)

            }

        } else if next_move == self.food_coords {

            if self.snake.tail.len() == 23 {

                StepOutcome::Full

            } else {

                StepOutcome::Eat(next_move)

            }

        } else {

            StepOutcome::Move(next_move)

        }

    }



    /// Handle the outcome of a step, updating the game's 
internal state.

    fn handle_step_outcome(&mut self, outcome: StepOutcome) {

        self.status = match outcome {

            StepOutcome::Collision => GameStatus::Lost,

            StepOutcome::Full => GameStatus::Won,

            StepOutcome::Eat(c) => {

                self.snake.move_snake(c, true);

                self.place_food();

                self.score += 1;

                if self.score % 5 == 0 {

                    self.speed += 1




                }

                GameStatus::Ongoing

            }

            StepOutcome::Move(c) => {

                self.snake.move_snake(c, false);

                GameStatus::Ongoing

            }

        }

    }



    pub fn step(&mut self, turn: Turn) {

        self.snake.turn(turn);

        let outcome = self.get_step_outcome();

        self.handle_step_outcome(outcome);

    }



    /// Calculate the length of time to wait between game 
steps, in milliseconds.

    /// Generally this will get lower as the player's score 
increases, but need to

    /// be careful it cannot result in a value below zero.

    pub fn step_len_ms(&self) -> u32 {

        let result = 1000 - (200 * ((self.speed as i32) - 1));

        if result < 200 {

            200u32

        } else {

            result as u32

        }

    }



    /// Return an array representing the game state, which can 
be used to display the

    /// state on the microbit's LED matrix. Each `_brightness` 
parameter should be a

    /// value between 0 and 9.

    pub fn game_matrix(




        &self,

        head_brightness: u8,

        tail_brightness: u8,

        food_brightness: u8,

    ) -> [[u8; 5]; 5] {

        let mut values = [[0u8; 5]; 5];

        values[self.snake.head.row as usize]
[self.snake.head.col as usize] = head_brightness;

        for t in &self.snake.tail {

            values[t.row as usize][t.col as usize] = 
tail_brightness

        }

        values[self.food_coords.row as usize]
[self.food_coords.col as usize] = food_brightness;

        values

    }



    /// Return an array representing the game score, which can 
be used to display the

    /// score on the microbit's LED matrix (by illuminating 
the equivalent number of

    /// LEDs, going left->right and top->bottom).

    pub fn score_matrix(&self) -> [[u8; 5]; 5] {

        let mut values = [[0u8; 5]; 5];

        let full_rows = (self.score as usize) / 5;

        #[allow(clippy::needless_range_loop)]

        for r in 0..full_rows {

            values[r] = [1; 5];

        }

        for c in 0..(self.score as usize) % 5 {

            values[full_rows][c] = 1;

        }

        values

    }

}




Next we will add the ability to control the snake's movements.



Controls
Our protagonist will be controlled by the two buttons on the front of the

micro:bit. Button A will
 turn to the snake's left, and button B will turn to
the snake's right.

We will use the microbit::pac::interrupt  macro to handle button
presses in a concurrent way. The
interrupt will be generated by the MB2's
General Purpose Input/Output Tasks and Events (GPIOTE)
peripheral.



The controls module
We will need to keep track of two separate pieces of global mutable

state: A reference to the
 GPIOTE  peripheral, and a record of the selected
direction to turn next.

Shared data is wrapped in a RefCell  to permit interior mutability and
locking. You can learn more
 about RefCell  by reading the RefCell
documentation and the interior mutability chapter of the
Rust Book]. The 
RefCell  is, in turn, wrapped in a cortex_m::interrupt::Mutex  to allow
safe
access. The Mutex provided by the cortex_m  crate uses the concept of
a critical section. Data
 in a Mutex can only be accessed from within a
function or closure passed to
 cortex_m::interrupt:free  (renamed here
to interrupt_free  for clarity), which ensures that the
code in the function
or closure cannot itself be interrupted.

Initialization
First, we will initialise the buttons ( src/controls/init.rs ).

use super::{Buttons, GPIO};



use cortex_m::interrupt::free as interrupt_free;

use microbit::{

    hal::{

        gpio::{Floating, Input, Pin},

        gpiote::{Gpiote, GpioteChannel},

    },

    pac,

};



/// Initialise the buttons and enable interrupts.

pub fn init_buttons(board_gpiote: pac::GPIOTE, board_buttons: 
Buttons) {

    let gpiote = Gpiote::new(board_gpiote);



    fn init_channel(channel: &GpioteChannel<'_>, button: 

https://doc.rust-lang.org/std/cell/struct.RefCell.html
https://doc.rust-lang.org/book/ch15-05-interior-mutability.html
https://en.wikipedia.org/wiki/Critical_section


&Pin<Input<Floating>>) {

        
channel.input_pin(button).hi_to_lo().enable_interrupt();

        channel.reset_events();

    }



    let channel0 = gpiote.channel0();

    init_channel(&channel0, 
&board_buttons.button_a.degrade());



    let channel1 = gpiote.channel1();

    init_channel(&channel1, 
&board_buttons.button_b.degrade());



    interrupt_free(move |cs| {

        *GPIO.borrow(cs).borrow_mut() = Some(gpiote);



        unsafe {

            pac::NVIC::unmask(pac::Interrupt::GPIOTE);

        }

        pac::NVIC::unpend(pac::Interrupt::GPIOTE);

    });

}


The GPIOTE  peripheral on the nRF52 has 8 "channels", each of which
can be connected to a GPIO 
pin and configured to respond to certain events,
including rising edge (transition from low to high
signal) and falling edge
(high to low signal). A button is a GPIO  pin which has high signal when
not
pressed and low signal otherwise. Therefore, a button press is a falling
edge.

Note the awkward use of the function init_channel()  in initialization
to avoid copy-pasting the
 button initialization code. The types that the
various embedded crates for the MB2 have been hiding
 from you are
sometimes a bit scary. I would encourage you to explore the type structure
of the HAL
and PAC crates at some point, as it is a bit odd and takes getting
used to. In particular, note that
each pin on the microbit has its own unique



type. The purpose of the degrade()  function in
initialization is to convert
these to a common type that can reasonably be used as an argument to

init_channel()  and thence to input_pin() .

We connect channel0  to button_a  and channel1  to button_b . In
each case, we set the button up
 to generate events on a falling edge
( hi_to_lo ). We store a reference to our GPIOTE  peripheral
 in the GPIO
Mutex. We then unmask  GPIOTE  interrupts, allowing them to be propagated
by the
 hardware, and call unpend  to clear any interrupts with pending
status (which may have been
 generated prior to the interrupts being
unmasked).

Interrupt handler
Next, we write the code that handles the interrupt. We use the 

interrupt  macro re-exported from
the nrf52833_hal  crate. We define a
function with the same name as the interrupt we want to handle
 (you can
see them all
 here) and annotate it
 with #[interrupt]

( src/controls/interrupt.rs ).
use super::{Turn, GPIO, TURN};



use cortex_m::interrupt::free as interrupt_free;

use microbit::pac::{self, interrupt};



#[pac::interrupt]

fn GPIOTE() {

    interrupt_free(|cs| {

        if let Some(gpiote) = 
GPIO.borrow(cs).borrow().as_ref() {

            let a_pressed = 
gpiote.channel0().is_event_triggered();

            let b_pressed = 
gpiote.channel1().is_event_triggered();



            let turn = match (a_pressed, b_pressed) {

                (true, false) => Turn::Left,


https://docs.rs/nrf52833-hal/latest/nrf52833_hal/pac/enum.Interrupt.html


                (false, true) => Turn::Right,

                _ => Turn::None,

            };



            gpiote.channel0().reset_events();

            gpiote.channel1().reset_events();



            *TURN.borrow(cs).borrow_mut() = turn;

        }

    });

}


When a GPIOTE  interrupt is generated, we check each button to see
whether it has been pressed. If
only button A has been pressed, we record
that the snake should turn to the left. If only button B
has been pressed, we
record that the snake should turn to the right. In any other case, we record
that the snake should not make any turn. (Having both buttons pressed "at
the same time" is
 exceedingly unlikely: button presses are noted almost
instantly, and this interrupt handler runs
very fast — it would be hard to get
both buttons down in time for this to happen. Similarly, it
would be hard to
press a button for a short enough time for this code to miss it and report that
neither button is pressed. Still, Rust enforces that you plan for these
unexpected cases: the code
 will not compile unless you check all the
possibilities.) The relevant turn is stored in the TURN 
 Mutex. All of this
happens within an interrupt_free  block, to ensure that we cannot be
interrupted
by some other event while handling this interrupt.

Finally, we expose a simple function to get the next turn
( src/controls.rs ).
mod init;

mod interrupt;



pub use init::init_buttons;



use crate::game::Turn;

use core::cell::RefCell;




use cortex_m::interrupt::{free as interrupt_free, Mutex};

use microbit::{board::Buttons, hal::gpiote::Gpiote};

pub static GPIO: Mutex<RefCell<Option<Gpiote>>> = 
Mutex::new(RefCell::new(None));

pub static TURN: Mutex<RefCell<Turn>> = 
Mutex::new(RefCell::new(Turn::None));



/// Get the next turn (ie, the turn corresponding to the most 
recently pressed button).

pub fn get_turn(reset: bool) -> Turn {

    interrupt_free(|cs| {

        let turn = *TURN.borrow(cs).borrow();

        if reset {

            *TURN.borrow(cs).borrow_mut() = Turn::None

        }

        turn

    })

}


This function simply returns the current value of the TURN  Mutex. It
takes a single boolean
 argument, reset . If reset  is true , the value of 
TURN  is reset, i.e., set to Turn::None .

Next we will build support for a high-fidelity game display.



Using the non-blocking display
We will next display the snake and food on the LEDs of the MB2 screen.

So far, we have used the
blocking interface, which provides for LEDs to be
either maximally bright or turned off. With this,
a basic functioning snake
game would be possible. But you might find that when the snake got a bit
longer, it would be difficult to tell the snake from the food, and to tell which
direction the snake
 was heading. Let's figure out how to allow the LED
brightness to vary: we can make the snake's body
a bit dimmer, which will
help sort out the clutter.

The microbit  library makes available two different interfaces to the
LED matrix. There is the
blocking interface we've already seen in previous
chapters. There is also a non-blocking interface
 which allows you to
customise the brightness of each LED. At the hardware level, each LED is
either
 "on" or "off", but the microbit::display::nonblocking  module
simulates ten levels of brightness
 for each LED by rapidly switching the
LED on and off.

(There is no great reason the two display modes of the microbit  library
crate have to be separate
 and use separate code. A more complete design
would allow either non-blocking or blocking use of a
 single display API
with variable brightness levels and refresh rates specified by the user. Never
assume that the stuff you have been handed is perfected, or even close.
Always think about what you
might do differently. For now, though, we'll
work with what we have, which is adequate for our
immediate purpose.)

The code to interact with the non-blocking interface ( src/display.rs )
is pretty simple and will
 follow a similar structure to the code we used to
interact with the buttons. This time we'll start
at the top level.



Display module
pub mod interrupt;

pub mod show;



pub use show::{clear_display, display_image};



use core::cell::RefCell;

use cortex_m::interrupt::{free as interrupt_free, Mutex};

use microbit::display::nonblocking::Display;

use microbit::gpio::DisplayPins;

use microbit::pac;

use microbit::pac::TIMER1;



static DISPLAY: Mutex<RefCell<Option<Display<TIMER1>>>> = 
Mutex::new(RefCell::new(None));



pub fn init_display(board_timer: TIMER1, board_display: 
DisplayPins) {

    let display = Display::new(board_timer, board_display);



    interrupt_free(move |cs| {

        *DISPLAY.borrow(cs).borrow_mut() = Some(display);

    });

    unsafe { pac::NVIC::unmask(pac::Interrupt::TIMER1) }

}


First, we initialise a microbit::display::nonblocking::Display

struct representing the LED
 display, passing it the board's TIMER1  and 
DisplayPins  peripherals. Then we store the display in
 a Mutex. Finally,
we unmask the TIMER1  interrupt.



Display API
We then define a couple of convenience functions which allow us to

easily set (or unset) the image
to be displayed ( src/display/show.rs ).
use super::DISPLAY;



use cortex_m::interrupt::free as interrupt_free;



use tiny_led_matrix::Render;



/// Display an image.

pub fn display_image(image: &impl Render) {

    interrupt_free(|cs| {

        if let Some(display) = 
DISPLAY.borrow(cs).borrow_mut().as_mut() {

            display.show(image);

        }

    })

}



/// Clear the display (turn off all LEDs).

pub fn clear_display() {

    interrupt_free(|cs| {

        if let Some(display) = 
DISPLAY.borrow(cs).borrow_mut().as_mut() {

            display.clear();

        }

    })

}


display_image  takes an image and tells the display to show it. Like the 
Display::show  method
 that it calls, this function takes a struct that
implements the tiny_led_matrix::Render 
trait. That trait ensures that the
struct contains the data and methods necessary for the Display 
to render it
on the LED matrix. The two implementations of Render  provided by the




microbit::display::nonblocking  module are BitImage  and 
GreyscaleImage . In a BitImage , each
 "pixel" (or LED) is either
illuminated or not (like when we used the blocking interface), whereas in
a 
GreyscaleImage  each "pixel" can have a different brightness.

clear_display  does exactly as the name suggests.



Display interrupt handling
Finally, we use the interrupt  macro to define a handler for the TIMER1

interrupt. This interrupt
fires many times a second, and this is what allows
the Display  to rapidly cycle the different LEDs
 on and off to give the
illusion of varying brightness levels. All our handler code does is call the

Display::handle_display_event  method, which handles this
( src/display/interrupt.rs ).
use super::DISPLAY;



use cortex_m::interrupt::free as interrupt_free;

use microbit::pac::{self, interrupt};



#[pac::interrupt]

fn TIMER1() {

    interrupt_free(|cs| {

        if let Some(display) = 
DISPLAY.borrow(cs).borrow_mut().as_mut() {

            display.handle_display_event();

        }

    })

}


Now we can understand how our main  function will do display: we will
call init_display  and use
 the new functions we have defined to interact
with it.



Snake game: final assembly
The code in our src/main.rs  file brings all the previously-discussed

machinery together to make
our final game.
#![no_main]

#![no_std]



mod controls;

mod display;

pub mod game;



use controls::{get_turn, init_buttons};

use display::{clear_display, display_image, init_display};

use game::{Game, GameStatus};



use cortex_m_rt::entry;

use embedded_hal::delay::DelayNs;

use microbit::{

    display::nonblocking::{BitImage, GreyscaleImage},

    hal::{Rng, Timer},

    Board,

};

use panic_rtt_target as _;

use rtt_target::rtt_init_print;



#[entry]

fn main() -> ! {

    rtt_init_print!();

    let board = Board::take().unwrap();

    let mut timer = Timer::new(board.TIMER0).into_periodic();

    let mut rng = Rng::new(board.RNG);

    let mut game = Game::new(&mut rng);



    init_buttons(board.GPIOTE, board.buttons);




    init_display(board.TIMER1, board.display_pins);



    loop {

        loop {

            // Game loop

            let image = 
GreyscaleImage::new(&game.game_matrix(6, 3, 9));

            display_image(&image);

            timer.delay_ms(game.step_len_ms());

            match game.status {

                GameStatus::Ongoing => 
game.step(get_turn(true)),

                _ => {

                    for _ in 0..3 {

                        clear_display();

                        timer.delay_ms(200u32);

                        display_image(&image);

                        timer.delay_ms(200u32);

                    }

                    clear_display();

                    
display_image(&BitImage::new(&game.score_matrix()));

                    timer.delay_ms(2000u32);

                    break;

                }

            }

        }

        game.reset();

    }

}


After initialising the board and its timer and RNG peripherals, we
initialise a Game  struct and a
 Display  from the 
microbit::display::blocking  module.

In our "game loop" (which runs inside of the "main loop" we place in
our main  function), we
repeatedly perform the following steps:



1. Get a 5×5 array of bytes representing the grid. The 
Game::get_matrix  method takes three integer
arguments (which
should be between 0 and 9, inclusive) which will, eventually, represent
how
brightly the head, tail and food should be displayed.

2. Display the matrix, for an amount of time determined by the 
Game::step_len_ms  method. As
currently implemented, this method
basically provides for 1 second between steps, reducing by
200ms
every time the player scores 5 points (eating 1 piece of food = 1 point),
subject to a
floor of 200ms.

3. Check the game status. If it is Ongoing  (which is its initial value),
run a step of the game
and update the game state (including its status
property). Otherwise, the game is over, so
flash the current image three
times, then show the player's score (represented as a number of
illuminated LEDs corresponding to the score), and exit the game loop.

Our main loop just runs the game loop repeatedly, resetting the game's
state after each iteration.



What's left for you to explore
We have barely scratched the surface! There's lots of stuff left for you to

explore.

NOTE: If you're reading this, and you'd like to help add examples
or
exercises to the Discovery book for any of the items below, or any
other
relevant embedded topics, we'd love to have your help!

Please open an issue if you would like to help, but need assistance
or
 mentoring for how to contribute this to the book, or open a Pull
Request
adding the information!

https://github.com/rust-embedded/discovery-mb2/issues/new


Topics about embedded software
These topics discuss strategies for writing embedded software. Although

many
problems can be solved in different ways, these sections talk about
some
strategies, and when they make sense (or don't make sense) to use.

Multitasking
Most of our programs executed a single task. How could we achieve

multitasking in a system with no
OS, and thus no threads? There are two
main approaches to multitasking: preemptive multitasking and
cooperative
multitasking.

In preemptive multitasking a task that's currently being executed can, at
any point in time, be
 preempted (interrupted) by another task. On
preemption, the first task will be suspended and the
processor will instead
execute the second task. At some point the first task will be resumed.
Microcontrollers provide hardware support for preemption in the form of
interrupts. We were
introduced to interrupts when we built our snake game
in chapter 14.

In cooperative multitasking a task that's being executed will run until it
reaches a suspension
 point. When the processor reaches that suspension
point it will stop executing the current task and
 instead go and execute a
different task. At some point the first task will be resumed. The main
difference between these two approaches to multitasking is that in
cooperative multitasking yields
 execution control at known suspension
points instead of being forcefully preempted at any point of
its execution.

Sleeping
All our programs have been continuously polling peripherals to see if

there's anything that needs to
be done. However, sometimes there's nothing
to be done! At those times, the microcontroller should
"sleep".

When the processor sleeps, it stops executing instructions and this saves
power. It's almost always
a good idea to save power so your microcontroller
should be sleeping as much as possible. But, how
does it know when it has
to wake up to perform some action? Interrupts are one of the events that
wake up the microcontroller but there are others. The ARM machine

clbr://internal.invalid/book/OEBPS/14-snake-game/index.md


instructions wfi  and wfe  are
 the instructions that make the processor
"sleep" waiting for an interrupt or event.



Topics related to microcontroller capabilities
Microcontrollers (like our nRF52/nRF51) have many capabilities.

However, many share similar
capabilities that can be used to solve all sorts
of different problems.

These topics discuss some of those capabilities, and how they can be
used effectively
in embedded development.

Direct Memory Access (DMA).
Some peripherals have DMA, a kind of asynchronous memcpy  that

allows the peripheral to move data
into or out of memory without the CPU
being involved.

If you are working with a micro:bit v2 you have actually already used
DMA: the HAL does this for you
with the UARTE and TWIM peripherals.
A DMA peripheral can be used to perform bulk transfers of data:
 either
from RAM to RAM, from a peripheral like a UARTE, to RAM, or from
RAM to a peripheral. You can
 schedule a DMA transfer — for example
"read 256 bytes from UARTE into this buffer" — and leave it
running in the
background. You can check some register later to see if the transfer has
completed,
 or you can ask to receive an interrupt when the transfer
completes. Thus, you can schedule the DMA
 transfer and do other work
while the transfer is ongoing.

The details of low-level DMA can be a bit tricky. We hope to add a
chapter covering this topic in
the near future.

Interrupts
We saw button interrupts briefly in chapter 14.
This introduced the key

idea: in order to interact with the real world, it is often necessary for
 the
microcontroller to respond immediately when some kind of event occurs.

Microcontrollers have the ability to be interrupted, meaning when a
certain event
 occurs, it will stop whatever it is doing at the moment, to
instead respond to that
event. This can be very useful when we want to stop
a motor when a button is pressed,
or measure a sensor when a timer finishes
counting down.



Although these interrupts can be very useful, they can also be a bit
difficult
 to work with properly. We want to make sure that we respond to
events quickly,
but also allow other work to continue as well.

In Rust, we model interrupts similar to the concept of threading on
desktop Rust
 programs. This means we also must think about the Rust
concepts of Send  and Sync 
 when sharing data between our main
application, and code that executes as part of
handling an interrupt event.

Pulse Width Modulation (PWM)
In a nutshell, PWM is turning on something and then turning it off

periodically
while keeping some proportion ("duty cycle") between the "on
time" and the "off
 time". When used on a LED with a sufficiently high
frequency, this can be used
to dim the LED. A low duty cycle, say 10% on
time and 90% off time, will make
 the LED very dim wheres a high duty
cycle, say 90% on time and 10% off time,
will make the LED much brighter
(almost as if it were fully powered).

In general, PWM can be used to control how much power is given to
some
 electric device. With proper (power) electronics between a
microcontroller and
an electrical motor, PWM can be used to control how
much power is given to the
motor thus it can be used to control its torque
and speed. Then you can add an
 angular position sensor and you got
yourself a closed loop controller that can
control the position of the motor at
different loads.

There are some abstraction for working with PWM in the embedded-
hal  pwm  module and you will
 find implementations of these traits in 
nrf52833-hal .

Digital inputs and outputs
We have used the microcontroller pins as digital outputs, to drive LEDs.

When building our snake
game, we also caught a glimpse of how these pins
can be configured as digital inputs. As digital
inputs, these pins can read the
binary state of switches (on/off) or buttons (pressed/not pressed).

Digital inputs and outputs are abstracted within the embedded-hal  
digital  module and
 [ nrf52833-hal ] does have an implementation for

https://docs.rs/embedded-hal/latest/embedded_hal/pwm/index.html
https://docs.rs/embedded-hal/latest/embedded_hal/digital/index.html


them.
(spoilers reading the binary state of switches / buttons is not as

straightforward as it sounds
;-) )

Analog-to-Digital Converters (ADC)
There are a lot of digital sensors out there. You can use a protocol like

I2C and SPI to read
them. But analog sensors also exist! These sensors just
output a reading to the CPU of the voltage
they are sensing at an ADC input
pin.

The ADC peripheral can thus be used to measure an "analog" voltage
level — for example, 1.25  Volts
— as a "digital" number — for example, 
24824  — that the processor can use in its calculations.

There were generic ADC traits in embedded-hal , but they were
removed for embedded-hal  1.0: see
 issue #377. The nrf52833-hal  crate
provides a nice interface to the specific ADC built into the
nRF52833.

Digital-to-Analog Converters (DAC)
As you might expect a DAC is exactly the opposite of ADC. You can

write some digital number into a
 register to produce a specific voltage on
some analog output pin. When this analog output pin is
connected to some
appropriate electronics and the register is written to quickly with the right
values you can do things like produce sounds or music.

Neither the nRF52833 nor the MB2 board has a dedicated DAC. One
typically gets a kind of DAC effect
by outputting PWM and using a bit of
electronics on the output (RC filter) to "smooth" out the PWM
waveform.

Real Time Clock
A Real-Time Clock peripheral keeps track of time under its own power,

usually in "human format":
 seconds, minutes, hours, days, months and
years. Some Real-Time Clocks even handle leap years and
Daylight Saving
Time automatically.

Neither the nRF52833 nor the MB2 board contains a Real-Time Clock.
The nRF52833 does contain
"Real-Time Counter" (RTC), a low-frequency
ticking clock that is supported by nrf52833-hal . This
 counter can be

https://github.com/rust-embedded/embedded-hal/issues/377


dedicated to serve as a synthesized real-time clock. The key requirement, of
course,
is to keep the RTC peripheral powered even when the MB2 is not in
use. While the MB2 does not have
an on-board battery, the RTC should be
able to run for a long time (possibly years) with a battery
plugged into the
battery port on the MB2 (for example, the battery pack provided with the
micro::bit
Go kit).

Other communication protocols

I2C: discussed in earlier chapters of this book
SPI: abstracted within the embedded-hal  spi  module and
implemented by the [ nrf52-hal ]
I2S: currently not abstracted within the embedded-hal  but
implemented by the [ nrf52-hal ]
Ethernet: there does exist a small TCP/IP stack named smoltcp  which
is implemented for some
chips. The MB2 does not have an Ethernet
peripheral
USB: there is some experimental work on this, for example with the 
usb-device  crate
Bluetooth: the nrf-softdevice  wrapper provided by the Embassy
MB2 runtime is probably the
easiest entry into MB2 Bluetooth right
now
CAN, SMBUS, IrDA, etc: All kinds of specialty interfaces exist in the
world; Rust sometimes has
support for them. Please investigate the
current situation for the interface you need

Different applications use different communication protocols. User
facing applications usually have
 a USB connector because USB is a
ubiquitous protocol in PCs and smartphones. Whereas inside cars
 you'll
find plenty of CAN buses. Some digital sensors use SPI, I2C or SMBUS.

If you happen to be interested in developing abstractions in the 
embedded-hal  or implementations
of peripherals in general, don't be shy to
open an issue in the HAL repositories. Alternatively you
could also join the
Rust Embedded matrix channel and get into contact with most of the people
who
built the stuff from above.

https://docs.rs/embedded-hal/0.2.6/embedded_hal/spi/index.html
https://github.com/smoltcp-rs/smoltcp
https://github.com/mvirkkunen/usb-device
https://matrix.to/#/#rust-embedded:matrix.org


General Embedded-Relevant Topics
These topics cover items that are not specific to our device, or the

hardware on it. Instead, they
discuss useful techniques that could be used on
embedded systems. Most of what we will discuss here
 is not available on
the MB2 — but most of it could easily be added by connecting a cheap
piece of
hardware to the MB2 edge-card connector, either driving it directly
or using something like SPI or
I2C to control it.

Gyroscopes
As part of our Punch-o-meter exercise, we used the Accelerometer to

measure changes in acceleration
 in three dimensions. But there are other
motion sensors such as gyroscopes, which allows us to
measure changes in
"spin" in three dimensions.

This can be very useful when trying to build certain systems, such as a
robot that wants to avoid
tipping over. Additionally, the data from a sensor
like a gyroscope can also be combined with data
from accelerometer using
a technique called Sensor Fusion (see below for more information).

Servo and Stepper Motors
While some motors are used primarily just to spin in one direction or the

other, for example driving
a remote control car forwards or backwards, it is
sometimes useful to measure more precisely how a
motor rotates.

A microcontroller can be used to drive Servo or Stepper motors, which
allow for more precise control
of how many turns are being made by the
motor, or can even position the motor in one specific place,
for example if
we wanted to move the arms of a clock to a particular direction.

Sensor fusion
The micro:bit contains two motion sensors: an accelerometer and a

magnetometer. On their own these
measure (proper) acceleration and (the
Earth's) magnetic field. But these magnitudes can be "fused"
into something
more useful: a "robust" measurement of the orientation of the board, with
less
measurement error than that of any single sensor.



This idea of deriving more reliable data from different sources is known
as sensor fusion.

So where to next?
First and foremost, join us on the Rust Embedded matrix channel. Lots

of people who contribute or
 work on embedded software hang out there,
including, for example, the people who wrote the
 microbit  BSP, the 
nrf52-hal  crate, the embedded-hal  crates, etc. We are happy to help you
get
started or move on with embedded programming in Rust!

There are many other options:

You could check out the examples in the microbit-v2  board support
crate. All those examples
work for the micro:bit board you have.

If you are looking for a general overview of what is available in Rust
Embedded right now check
out the Awesome Rust Embedded list.

You could check out Embassy. This is a modern efficient cooperative
multitasking framework that
supports concurrent execution using Rust 
async/await .

You could check out Real-Time Interrupt-driven Concurrency RTIC.
RTIC is a very efficient
preemptive multitasking framework that
supports task prioritization and deadlock-free execution.

You could check out more abstractions of the embedded-hal  project
and maybe even try and write
your own platform agnostic driver based
on it.

You could try running Rust on a different development board. The
easiest way to get started is to
use the cortex-m-quickstart  Cargo
project template.

https://matrix.to/#/#rust-embedded:matrix.org
https://github.com/nrf-rs/microbit/
https://github.com/rust-embedded/awesome-embedded-rust/
https://embassy.dev/
https://rtic.rs/
https://github.com/rust-embedded/embedded-hal
https://docs.rs/cortex-m-quickstart/0.3.1/cortex_m_quickstart/


General troubleshooting



cargo-embed problems
Most cargo-embed  problems are related to not having installed the 

udev  rules properly on
Linux, so make sure you got that right.
If you are stuck, you can open an issue in the discovery  issue tracker or

visit the Rust
Embedded matrix channel or the probe-rs matrix channel and
ask for help there.

https://github.com/rust-embedded/discovery-mb2/issues
https://matrix.to/#/#rust-embedded:matrix.org
https://matrix.to/#/#probe-rs:matrix.org


Cargo problems
"can't find crate for core"

Symptoms:
   Compiling volatile-register v0.1.2

   Compiling rlibc v1.0.0

   Compiling r0 v0.1.0

error[E0463]: can't find crate for `core`



error: aborting due to previous error



error[E0463]: can't find crate for `core`



error: aborting due to previous error



error[E0463]: can't find crate for `core`



error: aborting due to previous error



Build failed, waiting for other jobs to finish...

Build failed, waiting for other jobs to finish...

error: Could not compile `r0`.



To learn more, run the command again with --verbose.


Cause:
You forgot to install the proper target for your microcontroller 

thumbv7em-none-eabihf .
Fix:
Install the proper target.

$ rustup target add thumbv7em-none-eabihf




How to use GDB
Below are some useful GDB commands that can help us debug our

programs. This assumes you have
 flashed a program onto your
microcontroller and
attached GDB to a cargo-embed  session.

clbr://internal.invalid/book/OEBPS/05-meet-your-software/flash-it.md


General Debugging
NOTE: Many of the commands you see below can be executed

using a short form. For example,
 continue  can simply be used as c ,
or break $location  can be used as b $location . Once you
 have
experience with the commands below, try to see how short you can get
the commands to go
before GDB doesn't recognize them!

Dealing with Breakpoints

break $location : Set a breakpoint at a place in your code. The value
of $location  can include:

break *main  - Break on the exact address of the function main
break *0x080012f2  - Break on the exact memory location 
0x080012f2

break 123  - Break on line 123 of the currently displayed file
break main.rs:123  - Break on line 123 of the file main.rs

info break : Display current breakpoints
delete : Delete all breakpoints

delete $n : Delete breakpoint $n  ( n  being a number. For
example: delete $2 )

clear : Delete breakpoint at next instruction

clear main.rs:$function : Delete breakpoint at entry of 
$function  in main.rs
clear main.rs:123 : Delete breakpoint on line 123 of main.rs

enable : Enable all set breakpoints

enable $n : Enable breakpoint $n
disable : Disable all set breakpoints

disable $n : Disable breakpoint $n



Controlling Execution

continue : Begin or continue execution of your program
next : Execute the next line of your program

next $n : Repeat next  $n  number times
nexti : Same as next  but with machine instructions instead
step : Execute the next line, if the next line includes a call to another
function, step into that code

step $n : Repeat step  $n  number times
stepi : Same as step  but with machine instructions instead
jump $location : Resume execution at specified location:

jump 123 : Resume execution at line 123
jump 0x080012f2 : Resume execution at address 0x080012f2

Printing Information

print /$f $data  - Print the value contained by the variable 
$data . Optionally format the
output with $f , which can include:
x: hexadecimal

d: signed decimal

u: unsigned decimal

o: octal

t: binary

a: address

c: character

f: floating point


print /t 0xA : Prints the hexadecimal value 0xA  as binary
(0b1010)

x /$n$u$f $address : Examine memory at $address . Optionally, 
$n  define the number of units to
display, $u  unit size (bytes,



halfwords, words, etc.), $f  any print  format defined above

x /5i 0x080012c4 : Print 5 machine instructions staring at
address 0x080012c4
x/4xb $pc : Print 4 bytes of memory starting where $pc
currently is pointing

disassemble $location

disassemble /r main : Disassemble the function main , using 
/r  to show the bytes that make
up each instruction

Looking at the Symbol Table

info functions $regex : Print the names and data types of functions
matched by $regex , omit
 $regex  to print all functions

info functions main : Print names and types of defined
functions that contain the word main

info address $symbol : Print where $symbol  is stored in memory

info address GPIOC : Print the memory address of the variable 
GPIOC

info variables $regex : Print names and types of global variables
matched by $regex , omit
 $regex  to print all global variables
ptype $data : Print more detailed information about $data

ptype cp : Print detailed type information about the variable cp

Poking around the Program Stack

backtrace $n : Print trace of $n  frames, or omit $n  to print all
frames

backtrace 2 : Print trace of first 2 frames



frame $n : Select frame with number or address $n , omit $n  to
display current frame
up $n : Select frame $n  frames up
down $n : Select frame $n  frames down
info frame $address : Describe frame at $address , omit $address
for currently selected frame
info args : Print arguments of selected frame
info registers $r : Print the value of register $r  in selected frame,
omit $r  for all
registers

info registers $sp : Print the value of the stack pointer register
$sp  in the current frame

Controlling cargo-embed Remotely

monitor reset : Reset the CPU, starting execution over again



Magnetometer Calibration
One very important thing to do before using a sensor and trying to

develop an application using it
 is verifying that it's output is actually
correct. If this does not happen to be the case we need
 to calibrate the
sensor. Alternatively the sensor could be broken: health-checking sensors
before
and during use is a really good idea when possible.

In my case, on two different MB2s the LSM303AGR's magnetometer
without calibration is quite a bit
 off. (I also have one where the z-axis
appears to be broken; the manufacturer has some extra
 hardware and a
process to help detect this, but we won't deal with that complexity here.)

There is a manufacturer-specified procedure for calibrating the
magnetometer. The calibration
involves quite a bit of math (matrices) so we
won't cover it in detail here: this Design Note
describes the procedure if you
are interested in the details.

Luckily for us, the CODAL group that built the original C++ software
for the micro:bit already
 implemented the manufacturer calibration
mechanism (or something similar) in C++ over here.

You can find a translation of this C++ calibration to Rust in 
src/lib.rs . Note that this is a
translation from Matlab to C++ to Rust, and
that it makes some interesting choices. In particular,
 when reading
calibrated values the axes are flipped so that viewed from the top with the
USB
connector forward the X, Y and Z axes of the calibrated value are in
"standard" (right, forward, up)
orientation.

The usage of this calibrator is demonstrated in src/main.rs  here.
The way the user does the calibration is shown in this video from the

C++ version. (Ignore the
 initial printing — the calibration starts about
halfway through.)

https://www.st.com/resource/en/design_tip/dt0103-compensating-for-magnetometer-installation-error-and-hardiron-effects-using-accelerometerassisted-2d-calibration-stmicroelectronics.pdf
https://github.com/lancaster-university/codal-microbit-v2/blob/006abf5566774fbcf674c0c7df27e8a9d20013de/source/MicroBitCompassCalibrator.cpp


You have to tilt the micro:bit until all the LEDs on the LED matrix light
up. The blinking cursor
shows the current target LED.

Note that the calibration matrix is printed by the demo program. This
matrix can be hard-coded into
a program such as the chapter 12 compass
program (or stored in flash somewhere somehow) to avoid
 the need to
recalibrate every time the user runs the program.
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