
Introduction
Welcome to The Embedded Rust Book: An introductory book about

using the Rust Programming Language on "Bare Metal" embedded systems,
such as Microcontrollers.

Who Embedded Rust is For
Embedded Rust is for everyone who wants to do embedded

programming while taking advantage of the higher-level concepts and
safety guarantees the Rust language provides. (See also Who Rust Is For)

https://doc.rust-lang.org/book/ch00-00-introduction.html

Scope
The goals of this book are:

Get developers up to speed with embedded Rust development. i.e.
How to set up a development environment.

Share current best practices about using Rust for embedded
development. i.e. How to best use Rust language features to write
more correct embedded software.

Serve as a cookbook in some cases. e.g. How do I mix C and Rust
in a single project?

This book tries to be as general as possible but to make things easier for
both the readers and the writers it uses the ARM Cortex-M architecture in
all its examples. However, the book doesn't assume that the reader is
familiar with this particular architecture and explains details particular to
this architecture where required.

Who This Book is For
This book caters towards people with either some embedded background

or some Rust background, however we believe everybody curious about
embedded Rust programming can get something out of this book. For those
without any prior knowledge we suggest you read the "Assumptions and
Prerequisites" section and catch up on missing knowledge to get more out
of the book and improve your reading experience. You can check out the
"Other Resources" section to find resources on topics you might want to
catch up on.

Assumptions and Prerequisites

You are comfortable using the Rust Programming Language, and have
written, run, and debugged Rust applications on a desktop
environment. You should also be familiar with the idioms of the 2018
edition as this book targets Rust 2018.

You are comfortable developing and debugging embedded systems in
another language such as C, C++, or Ada, and are familiar with
concepts such as:

Cross Compilation
Memory Mapped Peripherals
Interrupts
Common interfaces such as I2C, SPI, Serial, etc.

Other Resources
If you are unfamiliar with anything mentioned above or if you want

more information about a specific topic mentioned in this book you might
find some of these resources helpful.

Topic Resource Description

https://doc.rust-lang.org/edition-guide/

Topic Resource Description
Rust Rust Book If you are not yet

comfortable with Rust, we
highly suggest reading this
book.

Rust,
Embedded

Discovery Book If you have never done any
embedded programming,
this book might be a better
start

Rust,
Embedded

Embedded Rust
Bookshelf

Here you can find several
other resources provided by
Rust's Embedded Working
Group.

Rust,
Embedded

Embedonomicon The nitty gritty details when
doing embedded
programming in Rust.

Rust,
Embedded

embedded FAQ Frequently asked questions
about Rust in an embedded
context.

Rust,
Embedded

Comprehensive
Rust 🦀 : Bare
Metal

Teaching material for a 1-
day class on bare-metal Rust
development

Interrupts Interrupt -
Memory-
mapped
IO/Peripherals

Memory-
mapped I/O

-

SPI, UART,
RS232, USB,
I2C, TTL

Stack Exchange
about SPI,
UART, and other
interfaces

-

Translations

https://doc.rust-lang.org/book/
https://docs.rust-embedded.org/discovery/
https://docs.rust-embedded.org/
https://docs.rust-embedded.org/embedonomicon/
https://docs.rust-embedded.org/faq.html
https://google.github.io/comprehensive-rust/bare-metal.html
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Memory-mapped_I/O
https://electronics.stackexchange.com/questions/37814/usart-uart-rs232-usb-spi-i2c-ttl-etc-what-are-all-of-these-and-how-do-th

This book has been translated by generous volunteers. If you would like
your translation listed here, please open a PR to add it.

Japanese (repository)
Chinese (repository)

https://tomoyuki-nakabayashi.github.io/book/
https://github.com/tomoyuki-nakabayashi/book
https://xxchang.github.io/book/
https://github.com/XxChang/book

How to Use This Book
This book generally assumes that you’re reading it front-to-back. Later

chapters build on concepts in earlier chapters, and earlier chapters may not
dig into details on a topic, revisiting the topic in a later chapter.

This book will be using the STM32F3DISCOVERY development board
from STMicroelectronics for the majority of the examples contained within.
This board is based on the ARM Cortex-M architecture, and while basic
functionality is the same across most CPUs based on this architecture,
peripherals and other implementation details of Microcontrollers are
different between different vendors, and often even different between
Microcontroller families from the same vendor.

For this reason, we suggest purchasing the STM32F3DISCOVERY
development board for the purpose of following the examples in this book.

http://www.st.com/en/evaluation-tools/stm32f3discovery.html
http://www.st.com/en/evaluation-tools/stm32f3discovery.html

Contributing to This Book
The work on this book is coordinated in this repository and is mainly

developed by the resources team.
If you have trouble following the instructions in this book or find that

some section of the book is not clear enough or hard to follow then that's a
bug and it should be reported in the issue tracker of this book.

Pull requests fixing typos and adding new content are very welcome!

https://github.com/rust-embedded/book
https://github.com/rust-embedded/wg#the-resources-team
https://github.com/rust-embedded/book/issues/

Re-using this material
This book is distributed under the following licenses:

The code samples and free-standing Cargo projects contained within
this book are licensed under the terms of both the MIT License and the
Apache License v2.0.
The written prose, pictures and diagrams contained within this book
are licensed under the terms of the Creative Commons CC-BY-SA
v4.0 license.

TL;DR: If you want to use our text or images in your work, you need to:

Give the appropriate credit (i.e. mention this book on your slide, and
provide a link to the relevant page)
Provide a link to the CC-BY-SA v4.0 licence
Indicate if you have changed the material in any way, and make any
changes to our material available under the same licence

Also, please do let us know if you find this book useful!

https://opensource.org/licenses/MIT
http://www.apache.org/licenses/LICENSE-2.0
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode

Meet Your Hardware
Let's get familiar with the hardware we'll be working with.

STM32F3DISCOVERY (the "F3")

What does this board contain?

A STM32F303VCT6 microcontroller. This microcontroller has

A single-core ARM Cortex-M4F processor with hardware
support for single-precision floating point operations and a
maximum clock frequency of 72 MHz.

256 KiB of "Flash" memory. (1 KiB = 1024 bytes)
48 KiB of RAM.
A variety of integrated peripherals such as timers, I2C, SPI and

USART.
General purpose Input Output (GPIO) and other types of pins

accessible through the two rows of headers along side the board.
A USB interface accessible through the USB port labeled "USB

USER".
An accelerometer as part of the LSM303DLHC chip.

https://www.st.com/en/microcontrollers/stm32f303vc.html
https://en.wikipedia.org/wiki/Accelerometer
https://www.st.com/en/mems-and-sensors/lsm303dlhc.html

A magnetometer as part of the LSM303DLHC chip.
A gyroscope as part of the L3GD20 chip.
8 user LEDs arranged in the shape of a compass.
A second microcontroller: a STM32F103. This microcontroller is

actually part of an on-board programmer / debugger and is connected to
the USB port named "USB ST-LINK".

For a more detailed list of features and further specifications of the board
take a look at the STMicroelectronics website.

A word of caution: be careful if you want to apply external signals to the
board. The microcontroller STM32F303VCT6 pins take a nominal voltage of
3.3 volts. For further information consult the 6.2 Absolute maximum ratings
section in the manual

https://en.wikipedia.org/wiki/Magnetometer
https://www.st.com/en/mems-and-sensors/lsm303dlhc.html
https://en.wikipedia.org/wiki/Gyroscope
https://www.pololu.com/file/0J563/L3GD20.pdf
https://www.st.com/en/microcontrollers/stm32f103cb.html
https://www.st.com/en/evaluation-tools/stm32f3discovery.html
https://www.st.com/resource/en/datasheet/stm32f303vc.pdf

A no_std Rust Environment
The term Embedded Programming is used for a wide range of different

classes of programming. Ranging from programming 8-Bit MCUs (like the
ST72325xx) with just a few KB of RAM and ROM, up to systems like the
Raspberry Pi (Model B 3+) which has a 32/64-bit 4-core Cortex-A53 @ 1.4
GHz and 1GB of RAM. Different restrictions/limitations will apply when
writing code depending on what kind of target and use case you have.

There are two general Embedded Programming classifications:

https://www.st.com/resource/en/datasheet/st72325j6.pdf
https://en.wikipedia.org/wiki/Raspberry_Pi#Specifications

Hosted Environments
These kinds of environments are close to a normal PC environment.

What this means is that you are provided with a System Interface E.G.
POSIX that provides you with primitives to interact with various systems,
such as file systems, networking, memory management, threads, etc.
Standard libraries in turn usually depend on these primitives to implement
their functionality. You may also have some sort of sysroot and restrictions
on RAM/ROM-usage, and perhaps some special HW or I/Os. Overall it
feels like coding on a special-purpose PC environment.

https://en.wikipedia.org/wiki/POSIX

Bare Metal Environments
In a bare metal environment no code has been loaded before your

program. Without the software provided by an OS we can not load the
standard library. Instead the program, along with the crates it uses, can only
use the hardware (bare metal) to run. To prevent rust from loading the
standard library use no_std . The platform-agnostic parts of the standard
library are available through libcore. libcore also excludes things which are
not always desirable in an embedded environment. One of these things is a
memory allocator for dynamic memory allocation. If you require this or any
other functionalities there are often crates which provide these.

The libstd Runtime
As mentioned before using libstd requires some sort of system

integration, but this is not only because libstd is just providing a common
way of accessing OS abstractions, it also provides a runtime. This runtime,
among other things, takes care of setting up stack overflow protection,
processing command line arguments, and spawning the main thread before
a program's main function is invoked. This runtime also won't be available
in a no_std environment.

https://doc.rust-lang.org/core/
https://doc.rust-lang.org/std/
https://doc.rust-lang.org/std/

Summary
#![no_std] is a crate-level attribute that indicates that the crate will

link to the core-crate instead of the std-crate. The libcore crate in turn is a
platform-agnostic subset of the std crate which makes no assumptions about
the system the program will run on. As such, it provides APIs for language
primitives like floats, strings and slices, as well as APIs that expose
processor features like atomic operations and SIMD instructions. However
it lacks APIs for anything that involves platform integration. Because of
these properties no_std and libcore code can be used for any kind of
bootstrapping (stage 0) code like bootloaders, firmware or kernels.

Overview

feature no_std std
heap (dynamic memory) * ✓

collections (Vec, BTreeMap, etc) ** ✓

stack overflow protection ✘ ✓

runs init code before main ✘ ✓

libstd available ✘ ✓

libcore available ✓ ✓

writing firmware, kernel, or bootloader code ✓ ✘

* Only if you use the alloc crate and use a suitable allocator like alloc-
cortex-m.

** Only if you use the collections crate and configure a global default
allocator.

** HashMap and HashSet are not available due to a lack of a secure
random number generator.

https://doc.rust-lang.org/core/
https://doc.rust-lang.org/core/
https://github.com/rust-embedded/alloc-cortex-m

See Also

RFC-1184

https://github.com/rust-lang/rfcs/blob/master/text/1184-stabilize-no_std.md

Tooling
Dealing with microcontrollers involves using several different tools as

we'll be dealing with an architecture different than your laptop's and we'll
have to run and debug programs on a remote device.

We'll use all the tools listed below. Any recent version should work
when a minimum version is not specified, but we have listed the versions
we have tested.

Rust 1.31, 1.31-beta, or a newer toolchain PLUS ARM Cortex-M
compilation support.
cargo-binutils ~0.1.4
qemu-system-arm . Tested versions: 3.0.0
OpenOCD >=0.8. Tested versions: v0.9.0 and v0.10.0
GDB with ARM support. Version 7.12 or newer highly recommended.
Tested versions: 7.10, 7.11, 7.12 and 8.1
cargo-generate or git . These tools are optional but will make it
easier to follow along with the book.

The text below explains why we are using these tools. Installation
instructions can be found on the next page.

https://github.com/rust-embedded/cargo-binutils
https://www.qemu.org/
https://github.com/ashleygwilliams/cargo-generate

cargo-generate OR git
Bare metal programs are non-standard (no_std) Rust programs that

require some adjustments to the linking process in order to get the memory
layout of the program right. This requires some additional files (like linker
scripts) and settings (like linker flags). We have packaged those for you in a
template such that you only need to fill in the missing information (such as
the project name and the characteristics of your target hardware).

Our template is compatible with cargo-generate : a Cargo
subcommand for creating new Cargo projects from templates. You can also
download the template using git , curl , wget , or your web browser.

cargo-binutils
cargo-binutils is a collection of Cargo subcommands that make it

easy to use the LLVM tools that are shipped with the Rust toolchain. These
tools include the LLVM versions of objdump , nm and size and are used
for inspecting binaries.

The advantage of using these tools over GNU binutils is that (a)
installing the LLVM tools is the same one-command installation (rustup
component add llvm-tools) regardless of your OS and (b) tools like
objdump support all the architectures that rustc supports -- from ARM to
x86_64 -- because they both share the same LLVM backend.

qemu-system-arm
QEMU is an emulator. In this case we use the variant that can fully

emulate ARM systems. We use QEMU to run embedded programs on the
host. Thanks to this you can follow some parts of this book even if you
don't have any hardware with you!

Tooling for Embedded Rust
Debugging

Overview
Debugging embedded systems in Rust requires specialized tools

including software to manage the debugging process, debuggers to inspect
and control program execution, and hardware probes to facilitate interaction
between the host and the embedded device. This document outlines
essential software tools like Probe-rs and OpenOCD, which simplify and
support the debugging process, alongside prominent debuggers such as
GDB and the Probe-rs Visual Studio Code extension. Additionally, it covers
key hardware probes such as Rusty-probe, ST-Link, J-Link, and MCU-
Link, which are integral for effective debugging and programming of
embedded devices.

Software that drives debugging tools
Probe-rs

Probe-rs is a modern, Rust-focused software designed to work with
debuggers in embedded systems. Unlike OpenOCD, Probe-rs is built with
simplicity in mind and aims to reduce the configuration burden often found
in other debugging solutions. It supports various probes and targets,
providing a high-level interface for interacting with embedded hardware.
Probe-rs integrates directly with Rust tooling, and integrates with Visual
Studio Code through its extension, allowing developers to streamline their
debugging workflow.

OpenOCD (Open On-Chip Debugger)
OpenOCD is an open-source software tool used for debugging, testing,

and programming embedded systems. It provides an interface between the
host system and embedded hardware, supporting various transport layers
like JTAG and SWD (Serial Wire Debug). OpenOCD integrates with GDB,
which is a debugger. OpenOCD is widely supported, with extensive
documentation and a large community, but may require complex
configuration, especially for custom embedded setups.

Debuggers
A debugger allows developers to inspect and control the execution of a

program in order to identify and correct errors or bugs. It provides
functionalities such as setting breakpoints, stepping through code line by
line, and examining the values of variables and memory states. Debuggers
are essential for thorough software development and maintenance, enabling
developers to ensure that their code behaves as intended under various
conditions.

Debuggers know how to:

Interact with the memory mapped registers.
Set Breakpoints/Watchpoints.
Read and write to the memory mapped registers.
Detect when the MCU has been halted for a debug event.
Continue MCU execution after a debug event has been encountered.
Erase and write to the microcontroller's FLASH.

Probe-rs Visual Studio Code Extension
Probe-rs has a Visual Studio Code extension, providing a seamless

debugging experience without extensive setup. Through this connection,
developers can use Rust-specific features like pretty printing and detailed
error messages, ensuring that their debugging process aligns with the Rust
ecosystem.

GDB (GNU Debugger)
GDB is a versatile debugging tool that allows developers to examine the

state of programs while they run or after they crash. For embedded Rust,
GDB connects to the target system via OpenOCD or other debugging
servers to interact with the embedded code. GDB is highly configurable and
supports features like remote debugging, variable inspection, and
conditional breakpoints. It can be used on a variety of platforms, and has
extensive support for Rust-specific debugging needs, such as pretty printing
and integration with IDEs.

Probes
A hardware probe is a device used in the development and debugging of

embedded systems to facilitate communication between a host computer
and the target embedded device. It typically supports protocols like JTAG
or SWD, enabling it to program, debug, and analyze the microcontroller or
microprocessor on the embedded system. Hardware probes are crucial for
developers to set breakpoints, step through code, and inspect memory and
processor registers, effectively allowing them to diagnose and fix issues in
real-time.

Rusty-probe
Rusty-probe is an open-sourced USB-based hardware debugging probe

designed to work with probe-rs. The combination of Rusty-Probe and
probe-rs provides an easy-to-use, cost-effective solution for developers
working with embedded Rust applications.

ST-Link
The ST-Link is a popular debugging and programming probe developed

by STMicroelectronics primarily for their STM32 and STM8
microcontroller series. It supports both debugging and programming via
JTAG or SWD (Serial Wire Debug) interfaces. ST-Link is widely used due
to its direct support from STMicroelectronics' extensive range of
development boards and its integration into major IDEs, making it a
convenient choice for developers working with STM microcontrollers.

J-Link
J-Link, developed by SEGGER Microcontroller, is a robust and versatile

debugger supporting a wide range of CPU cores and devices beyond just
ARM, such as RISC-V. Known for its high performance and reliability, J-
Link supports various communication interfaces, including JTAG, SWD,
and fine-pitch JTAG interfaces. It is favored for its advanced features like
unlimited breakpoints in flash memory and its compatibility with a
multitude of development environments.

MCU-Link

MCU-Link is a debugging probe that also functions as a programmer,
provided by NXP Semiconductors. It supports a variety of ARM Cortex
microcontrollers and interfaces seamlessly with development tools like
MCUXpresso IDE. MCU-Link is particularly notable for its versatility and
affordability, making it an accessible option for hobbyists, educators, and
professional developers alike.

Installing the tools
This page contains OS-agnostic installation instructions for a few of the

tools:

Rust Toolchain
Install rustup by following the instructions at https://rustup.rs.
NOTE Make sure you have a compiler version equal to or newer than

1.31 . rustc -V should return a date newer than the one shown below.
$ rustc -V
rustc 1.31.1 (b6c32da9b 2018-12-18)

For bandwidth and disk usage concerns the default installation only
supports native compilation. To add cross compilation support for the ARM
Cortex-M architectures choose one of the following compilation targets. For
the STM32F3DISCOVERY board used for the examples in this book, use
the thumbv7em-none-eabihf target. Find the best Cortex-M for you.

Cortex-M0, M0+, and M1 (ARMv6-M architecture):
rustup target add thumbv6m-none-eabi

Cortex-M3 (ARMv7-M architecture):
rustup target add thumbv7m-none-eabi

Cortex-M4 and M7 without hardware floating point (ARMv7E-M
architecture):
rustup target add thumbv7em-none-eabi

Cortex-M4F and M7F with hardware floating point (ARMv7E-M
architecture):
rustup target add thumbv7em-none-eabihf

Cortex-M23 (ARMv8-M architecture):
rustup target add thumbv8m.base-none-eabi

Cortex-M33 and M35P (ARMv8-M architecture):
rustup target add thumbv8m.main-none-eabi

https://rustup.rs/
https://developer.arm.com/ip-products/processors/cortex-m#c-7d3b69ce-5b17-4c9e-8f06-59b605713133

Cortex-M33F and M35PF with hardware floating point (ARMv8-M
architecture):
rustup target add thumbv8m.main-none-eabihf

cargo-binutils
cargo install cargo-binutils

rustup component add llvm-tools

WINDOWS: prerequisite C++ Build Tools for Visual Studio 2019 is
installed. https://visualstudio.microsoft.com/thank-you-downloading-visual-
studio/?sku=BuildTools&rel=16

cargo-generate
We'll use this later to generate a project from a template.

cargo install cargo-generate

Note: on some Linux distros (e.g. Ubuntu) you may need to install the
packages libssl-dev and pkg-config prior to installing cargo-generate.

OS-Specific Instructions
Now follow the instructions specific to the OS you are using:

Linux
Windows
macOS

clbr://internal.invalid/book/OEBPS/intro/install/linux.md
clbr://internal.invalid/book/OEBPS/intro/install/windows.md
clbr://internal.invalid/book/OEBPS/intro/install/macos.md

Linux
Here are the installation commands for a few Linux distributions.

Packages

Ubuntu 18.04 or newer / Debian stretch or newer

NOTE gdb-multiarch is the GDB command you'll use to debug
your ARM Cortex-M programs

sudo apt install gdb-multiarch openocd qemu-system-arm

Ubuntu 14.04 and 16.04

NOTE arm-none-eabi-gdb is the GDB command you'll use to
debug your ARM Cortex-M programs

sudo apt install gdb-arm-none-eabi openocd qemu-system-arm

Fedora 27 or newer
sudo dnf install gdb openocd qemu-system-arm

Arch Linux

NOTE arm-none-eabi-gdb is the GDB command you'll use to
debug ARM Cortex-M programs

sudo pacman -S arm-none-eabi-gdb qemu-system-arm openocd

udev rules
This rule lets you use OpenOCD with the Discovery board without root

privilege.
Create the file /etc/udev/rules.d/70-st-link.rules with the

contents shown below.
STM32F3DISCOVERY rev A/B - ST-LINK/V2
ATTRS{idVendor}=="0483", ATTRS{idProduct}=="3748",
TAG+="uaccess"

STM32F3DISCOVERY rev C+ - ST-LINK/V2-1
ATTRS{idVendor}=="0483", ATTRS{idProduct}=="374b",
TAG+="uaccess"

Then reload all the udev rules with:
sudo udevadm control --reload-rules

If you had the board plugged to your laptop, unplug it and then plug it
again.

You can check the permissions by running this command:
lsusb

Which should show something like
(..)
Bus 001 Device 018: ID 0483:374b STMicroelectronics ST-
LINK/V2.1
(..)

Take note of the bus and device numbers. Use those numbers to create a
path like /dev/bus/usb/<bus>/<device> . Then use this path like so:
ls -l /dev/bus/usb/001/018

crw-------+ 1 root root 189, 17 Sep 13 12:34
/dev/bus/usb/001/018

getfacl /dev/bus/usb/001/018 | grep user

user::rw-
user:you:rw-

The + appended to permissions indicates the existence of an extended
permission. The getfacl command tells the user you can make use of this
device.

Now, go to the next section.

clbr://internal.invalid/book/OEBPS/intro/install/verify.md

macOS
All the tools can be installed using Homebrew or MacPorts:

http://brew.sh/
https://www.macports.org/

Install tools with Homebrew
$ # GDB
$ brew install arm-none-eabi-gdb

$ # OpenOCD
$ brew install openocd

$ # QEMU
$ brew install qemu

NOTE If OpenOCD crashes you may need to install the latest
version using:

$ brew install --HEAD openocd

http://brew.sh/

Install tools with MacPorts
$ # GDB
$ sudo port install arm-none-eabi-gcc

$ # OpenOCD
$ sudo port install openocd

$ # QEMU
$ sudo port install qemu

That's all! Go to the next section.

https://www.macports.org/
clbr://internal.invalid/book/OEBPS/intro/install/verify.md

Windows

arm-none-eabi-gdb
ARM provides .exe installers for Windows. Grab one from here, and

follow the instructions. Just before the installation process finishes
tick/select the "Add path to environment variable" option. Then verify that
the tools are in your %PATH% :
$ arm-none-eabi-gdb -v
GNU gdb (GNU Tools for Arm Embedded Processors 7-2018-q2-
update) 8.1.0.20180315-git
(..)

https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads

OpenOCD
There's no official binary release of OpenOCD for Windows but if you're

not in the mood to compile it yourself, the xPack project provides a binary
distribution, here. Follow the provided installation instructions. Then update
your %PATH% environment variable to include the path where the binaries
were installed. (C:\Users\USERNAME\AppData\Roaming\xPacks\@xpack-
dev-tools\openocd\0.10.0-13.1\.content\bin\ , if you've been using
the easy install)

Verify that OpenOCD is in your %PATH% with:
$ openocd -v
Open On-Chip Debugger 0.10.0
(..)

https://xpack.github.io/openocd/

QEMU
Grab QEMU from the official website.

https://www.qemu.org/download/#windows

ST-LINK USB driver
You'll also need to install this USB driver or OpenOCD won't work.

Follow the installer instructions and make sure you install the right version
(32-bit or 64-bit) of the driver.

That's all! Go to the next section.

http://www.st.com/en/embedded-software/stsw-link009.html
clbr://internal.invalid/book/OEBPS/intro/install/verify.md

Verify Installation
In this section we check that some of the required tools / drivers have been

correctly installed and configured.
Connect your laptop / PC to the discovery board using a Mini-USB USB

cable. The discovery board has two USB connectors; use the one labeled
"USB ST-LINK" that sits on the center of the edge of the board.

Also check that the ST-LINK header is populated. See the picture below;
the ST-LINK header is highlighted.

Now run the following command:
openocd -f interface/stlink.cfg -f target/stm32f3x.cfg

NOTE: Old versions of openocd, including the 0.10.0 release from
2017, do not contain the new (and preferable) interface/stlink.cfg
file; instead you may need to use interface/stlink-v2.cfg or
interface/stlink-v2-1.cfg .

You should get the following output and the program should block the
console:
Open On-Chip Debugger 0.10.0
Licensed under GNU GPL v2
For bug reports, read
 http://openocd.org/doc/doxygen/bugs.html
Info : auto-selecting first available session transport
"hla_swd". To override use 'transport select <transport>'.
adapter speed: 1000 kHz
adapter_nsrst_delay: 100
Info : The selected transport took over low-level target
control. The results might differ compared to plain JTAG/SWD
none separate
Info : Unable to match requested speed 1000 kHz, using 950 kHz
Info : Unable to match requested speed 1000 kHz, using 950 kHz
Info : clock speed 950 kHz
Info : STLINK v2 JTAG v27 API v2 SWIM v15 VID 0x0483 PID 0x374B
Info : using stlink api v2
Info : Target voltage: 2.919881
Info : stm32f3x.cpu: hardware has 6 breakpoints, 4 watchpoints

The contents may not match exactly but you should get the last line about
breakpoints and watchpoints. If you got it then terminate the OpenOCD
process and move to the next section.

If you didn't get the "breakpoints" line then try one of the following
commands.
openocd -f interface/stlink-v2.cfg -f target/stm32f3x.cfg

openocd -f interface/stlink-v2-1.cfg -f target/stm32f3x.cfg

If one of those commands works it means you got an old hardware revision
of the discovery board. That won't be a problem but commit that fact to
memory as you'll need to configure things a bit differently later on. You can
move to the next section.

If none of the commands work as a normal user then try to run them with
root permission (e.g. sudo openocd ..). If the commands do work with root
permission then check that the udev rules have been correctly set.

clbr://internal.invalid/book/OEBPS/start/index.md
clbr://internal.invalid/book/OEBPS/start/index.md
clbr://internal.invalid/book/OEBPS/intro/install/linux.md#udev-rules

If you have reached this point and OpenOCD is not working please open
an issue and we'll help you out!

https://github.com/rust-embedded/book/issues

Getting Started
In this section we'll walk you through the process of writing, building,

flashing and debugging embedded programs. You will be able to try most of
the examples without any special hardware as we will show you the basics
using QEMU, a popular open-source hardware emulator. The only section
where hardware is required is, naturally enough, the Hardware section,
where we use OpenOCD to program an STM32F3DISCOVERY.

clbr://internal.invalid/book/OEBPS/start/hardware.md
http://www.st.com/en/evaluation-tools/stm32f3discovery.html

QEMU
We'll start writing a program for the LM3S6965, a Cortex-M3

microcontroller. We have chosen this as our initial target because it can be
emulated using QEMU so you don't need to fiddle with hardware in this
section and we can focus on the tooling and the development process.

IMPORTANT We'll use the name "app" for the project name in this
tutorial. Whenever you see the word "app" you should replace it with the
name you selected for your project. Or, you could also name your project
"app" and avoid the substitutions.

http://www.ti.com/product/LM3S6965
https://wiki.qemu.org/Documentation/Platforms/ARM#Supported_in_qemu-system-arm

Creating a non standard Rust program
We'll use the cortex-m-quickstart project template to generate a new

project from it. The created project will contain a barebone application: a
good starting point for a new embedded rust application. In addition, the
project will contain an examples directory, with several separate
applications, highlighting some of the key embedded rust functionality.

Using cargo-generate
First install cargo-generate

cargo install cargo-generate

Then generate a new project
cargo generate --git https://github.com/rust-embedded/cortex-
m-quickstart

 Project Name: app
 Creating project called `app`...
 Done! New project created /tmp/app

cd app

Using git
Clone the repository

git clone https://github.com/rust-embedded/cortex-m-quickstart
app
cd app

And then fill in the placeholders in the Cargo.toml file
[package]
authors = ["{{authors}}"] # "{{authors}}" -> "John Smith"
edition = "2018"
name = "{{project-name}}" # "{{project-name}}" -> "app"
version = "0.1.0"

..

https://github.com/rust-embedded/cortex-m-quickstart

[[bin]]
name = "{{project-name}}" # "{{project-name}}" -> "app"
test = false
bench = false

Using neither
Grab the latest snapshot of the cortex-m-quickstart template and

extract it.
curl -LO https://github.com/rust-embedded/cortex-m-
quickstart/archive/master.zip
unzip master.zip
mv cortex-m-quickstart-master app
cd app

Or you can browse to cortex-m-quickstart , click the green "Clone or
download" button and then click "Download ZIP".

Then fill in the placeholders in the Cargo.toml file as done in the
second part of the "Using git " version.

https://github.com/rust-embedded/cortex-m-quickstart

Program Overview
For convenience here are the most important parts of the source code in

src/main.rs :
#![no_std]
#![no_main]

use panic_halt as _;

use cortex_m_rt::entry;

#[entry]
fn main() -> ! {
 loop {
 // your code goes here
 }
}

This program is a bit different from a standard Rust program so let's take
a closer look.

#![no_std] indicates that this program will not link to the standard
crate, std . Instead it will link to its subset: the core crate.

#![no_main] indicates that this program won't use the standard main
interface that most Rust programs use. The main (no pun intended) reason
to go with no_main is that using the main interface in no_std context
requires nightly.

use panic_halt as _; . This crate provides a panic_handler that
defines the panicking behavior of the program. We will cover this in more
detail in the Panicking chapter of the book.

#[entry] is an attribute provided by the cortex-m-rt crate that's used
to mark the entry point of the program. As we are not using the standard
main interface we need another way to indicate the entry point of the
program and that'd be #[entry] .

clbr://internal.invalid/book/OEBPS/start/panicking.md
https://docs.rs/cortex-m-rt-macros/latest/cortex_m_rt_macros/attr.entry.html
https://crates.io/crates/cortex-m-rt

fn main() -> ! . Our program will be the only process running on the
target hardware so we don't want it to end! We use a divergent function (the
-> ! bit in the function signature) to ensure at compile time that'll be the
case.

https://doc.rust-lang.org/rust-by-example/fn/diverging.html

Cross compiling
The next step is to cross compile the program for the Cortex-M3

architecture. That's as simple as running cargo build --target $TRIPLE
if you know what the compilation target ($TRIPLE) should be. Luckily, the
.cargo/config.toml in the template has the answer:
tail -n6 .cargo/config.toml

[build]
Pick ONE of these compilation targets
target = "thumbv6m-none-eabi" # Cortex-M0 and Cortex-M0+
target = "thumbv7m-none-eabi" # Cortex-M3
target = "thumbv7em-none-eabi" # Cortex-M4 and Cortex-M7
(no FPU)
target = "thumbv7em-none-eabihf" # Cortex-M4F and Cortex-M7F
(with FPU)

To cross compile for the Cortex-M3 architecture we have to use
thumbv7m-none-eabi . That target is not automatically installed when
installing the Rust toolchain, it would now be a good time to add that target
to the toolchain, if you haven't done it yet:
rustup target add thumbv7m-none-eabi

Since the thumbv7m-none-eabi compilation target has been set as the
default in your .cargo/config.toml file, the two commands below do the
same:
cargo build --target thumbv7m-none-eabi
cargo build

Inspecting
Now we have a non-native ELF binary in target/thumbv7m-none-

eabi/debug/app . We can inspect it using cargo-binutils .
With cargo-readobj we can print the ELF headers to confirm that this

is an ARM binary.
cargo readobj --bin app -- --file-headers

Note that:

--bin app is sugar for inspect the binary at
target/$TRIPLE/debug/app

--bin app will also (re)compile the binary, if necessary
ELF Header:
 Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
 Class: ELF32
 Data: 2's complement, little
endian
 Version: 1 (current)
 OS/ABI: UNIX - System V
 ABI Version: 0x0
 Type: EXEC (Executable file)
 Machine: ARM
 Version: 0x1
 Entry point address: 0x405
 Start of program headers: 52 (bytes into file)
 Start of section headers: 153204 (bytes into file)
 Flags: 0x5000200
 Size of this header: 52 (bytes)
 Size of program headers: 32 (bytes)
 Number of program headers: 2
 Size of section headers: 40 (bytes)
 Number of section headers: 19
 Section header string table index: 18

cargo-size can print the size of the linker sections of the binary.
cargo size --bin app --release -- -A

we use --release to inspect the optimized version
app :
section size addr
.vector_table 1024 0x0
.text 92 0x400
.rodata 0 0x45c
.data 0 0x20000000
.bss 0 0x20000000
.debug_str 2958 0x0
.debug_loc 19 0x0
.debug_abbrev 567 0x0
.debug_info 4929 0x0
.debug_ranges 40 0x0
.debug_macinfo 1 0x0
.debug_pubnames 2035 0x0
.debug_pubtypes 1892 0x0
.ARM.attributes 46 0x0
.debug_frame 100 0x0
.debug_line 867 0x0
Total 14570

A refresher on ELF linker sections

.text contains the program instructions

.rodata contains constant values like strings

.data contains statically allocated variables whose initial values
are not zero
.bss also contains statically allocated variables whose initial
values are zero
.vector_table is a non-standard section that we use to store the
vector (interrupt) table

.ARM.attributes and the .debug_* sections contain metadata
and will not be loaded onto the target when flashing the binary.

IMPORTANT: ELF files contain metadata like debug information so
their size on disk does not accurately reflect the space the program will
occupy when flashed on a device. Always use cargo-size to check how
big a binary really is.

cargo-objdump can be used to disassemble the binary.
cargo objdump --bin app --release -- --disassemble --no-show-
raw-insn --print-imm-hex

NOTE if the above command complains about Unknown command
line argument see the following bug report: https://github.com/rust-
embedded/book/issues/269

NOTE this output can differ on your system. New versions of rustc,
LLVM and libraries can generate different assembly. We truncated
some of the instructions to keep the snippet small.

app: file format ELF32-arm-little

Disassembly of section .text:
main:
 400: bl #0x256
 404: b #-0x4 <main+0x4>

Reset:
 406: bl #0x24e
 40a: movw r0, #0x0
 < .. truncated any more instructions .. >

DefaultHandler_:
 656: b #-0x4 <DefaultHandler_>

UsageFault:
 657: strb r7, [r4, #0x3]

DefaultPreInit:
 658: bx lr

__pre_init:
 659: strb r7, [r0, #0x1]

__nop:
 65a: bx lr

HardFaultTrampoline:
 65c: mrs r0, msp
 660: b #-0x2 <HardFault_>

HardFault_:
 662: b #-0x4 <HardFault_>

HardFault:
 663: <unknown>

Running
Next, let's see how to run an embedded program on QEMU! This time

we'll use the hello example which actually does something.
For convenience here's the source code of examples/hello.rs :

//! Prints "Hello, world!" on the host console using
semihosting

#![no_main]
#![no_std]

use panic_halt as _;

use cortex_m_rt::entry;
use cortex_m_semihosting::{debug, hprintln};

#[entry]
fn main() -> ! {
 hprintln!("Hello, world!").unwrap();

 // exit QEMU
 // NOTE do not run this on hardware; it can corrupt
OpenOCD state
 debug::exit(debug::EXIT_SUCCESS);

 loop {}
}

This program uses something called semihosting to print text to the host
console. When using real hardware this requires a debug session but when
using QEMU this Just Works.

Let's start by compiling the example:
cargo build --example hello

The output binary will be located at target/thumbv7m-none-

eabi/debug/examples/hello .
To run this binary on QEMU run the following command:

qemu-system-arm \
 -cpu cortex-m3 \
 -machine lm3s6965evb \
 -nographic \
 -semihosting-config enable=on,target=native \
 -kernel target/thumbv7m-none-eabi/debug/examples/hello

Hello, world!

The command should successfully exit (exit code = 0) after printing the
text. On *nix you can check that with the following command:
echo $?

0

Let's break down that QEMU command:

qemu-system-arm . This is the QEMU emulator. There are a few
variants of these QEMU binaries; this one does full system emulation
of ARM machines hence the name.

-cpu cortex-m3 . This tells QEMU to emulate a Cortex-M3 CPU.
Specifying the CPU model lets us catch some miscompilation errors:
for example, running a program compiled for the Cortex-M4F, which
has a hardware FPU, will make QEMU error during its execution.

-machine lm3s6965evb . This tells QEMU to emulate the
LM3S6965EVB, an evaluation board that contains a LM3S6965
microcontroller.

-nographic . This tells QEMU to not launch its GUI.
-semihosting-config (..) . This tells QEMU to enable

semihosting. Semihosting lets the emulated device, among other
things, use the host stdout, stderr and stdin and create files on the host.

-kernel $file . This tells QEMU which binary to load and run on
the emulated machine.

Typing out that long QEMU command is too much work! We can set a
custom runner to simplify the process. .cargo/config.toml has a
commented out runner that invokes QEMU; let's uncomment it:
head -n3 .cargo/config.toml

[target.thumbv7m-none-eabi]
uncomment this to make `cargo run` execute programs on QEMU
runner = "qemu-system-arm -cpu cortex-m3 -machine lm3s6965evb
-nographic -semihosting-config enable=on,target=native -
kernel"

This runner only applies to the thumbv7m-none-eabi target, which is
our default compilation target. Now cargo run will compile the program
and run it on QEMU:
cargo run --example hello --release

 Compiling app v0.1.0 (file:///tmp/app)
 Finished release [optimized + debuginfo] target(s) in
0.26s
 Running `qemu-system-arm -cpu cortex-m3 -machine
lm3s6965evb -nographic -semihosting-config
enable=on,target=native -kernel target/thumbv7m-none-
eabi/release/examples/hello`
Hello, world!

Debugging
Debugging is critical to embedded development. Let's see how it's done.
Debugging an embedded device involves remote debugging as the

program that we want to debug won't be running on the machine that's
running the debugger program (GDB or LLDB).

Remote debugging involves a client and a server. In a QEMU setup, the
client will be a GDB (or LLDB) process and the server will be the QEMU
process that's also running the embedded program.

In this section we'll use the hello example we already compiled.
The first debugging step is to launch QEMU in debugging mode:

qemu-system-arm \
 -cpu cortex-m3 \
 -machine lm3s6965evb \
 -nographic \
 -semihosting-config enable=on,target=native \
 -gdb tcp::3333 \
 -S \
 -kernel target/thumbv7m-none-eabi/debug/examples/hello

This command won't print anything to the console and will block the
terminal. We have passed two extra flags this time:

-gdb tcp::3333 . This tells QEMU to wait for a GDB connection
on TCP port 3333.

-S . This tells QEMU to freeze the machine at startup. Without this
the program would have reached the end of main before we had a
chance to launch the debugger!

Next we launch GDB in another terminal and tell it to load the debug
symbols of the example:
gdb-multiarch -q target/thumbv7m-none-
eabi/debug/examples/hello

NOTE: you might need another version of gdb instead of gdb-

multiarch depending on which one you installed in the installation chapter.

This could also be arm-none-eabi-gdb or just gdb .
Then within the GDB shell we connect to QEMU, which is waiting for a

connection on TCP port 3333.
target remote :3333

Remote debugging using :3333
Reset () at $REGISTRY/cortex-m-rt-0.6.1/src/lib.rs:473
473 pub unsafe extern "C" fn Reset() -> ! {

You'll see that the process is halted and that the program counter is
pointing to a function named Reset . That is the reset handler: what Cortex-
M cores execute upon booting.

Note that on some setup, instead of displaying the line Reset ()
at $REGISTRY/cortex-m-rt-0.6.1/src/lib.rs:473 as shown
above, gdb may print some warnings like :

core::num::bignum::Big32x40::mul_small () at

src/libcore/num/bignum.rs:254
src/libcore/num/bignum.rs: No such file or directory.

That's a known glitch. You can safely ignore those warnings, you're
most likely at Reset().

This reset handler will eventually call our main function. Let's skip all
the way there using a breakpoint and the continue command. To set the
breakpoint, let's first take a look where we would like to break in our code,
with the list command.
list main

This will show the source code, from the file examples/hello.rs.
6 use panic_halt as _;
7
8 use cortex_m_rt::entry;
9 use cortex_m_semihosting::{debug, hprintln};
10
11 #[entry]
12 fn main() -> ! {

13 hprintln!("Hello, world!").unwrap();
14
15 // exit QEMU

We would like to add a breakpoint just before the "Hello, world!", which
is on line 13. We do that with the break command:
break 13

We can now instruct gdb to run up to our main function, with the
continue command:
continue

Continuing.

Breakpoint 1, hello::__cortex_m_rt_main () at
examples\hello.rs:13
13 hprintln!("Hello, world!").unwrap();

We are now close to the code that prints "Hello, world!". Let's move
forward using the next command.
next

16 debug::exit(debug::EXIT_SUCCESS);

At this point you should see "Hello, world!" printed on the terminal
that's running qemu-system-arm .
$ qemu-system-arm (..)
Hello, world!

Calling next again will terminate the QEMU process.
next

[Inferior 1 (Remote target) exited normally]

You can now exit the GDB session.
quit

Hardware
By now you should be somewhat familiar with the tooling and the

development process. In this section we'll switch to real hardware; the
process will remain largely the same. Let's dive in.

Know your hardware
Before we begin you need to identify some characteristics of the target

device as these will be used to configure the project:

The ARM core. e.g. Cortex-M3.
Does the ARM core include an FPU? Cortex-M4F and Cortex-M7F

cores do.
How much Flash memory and RAM does the target device have?

e.g. 256 KiB of Flash and 32 KiB of RAM.
Where are Flash memory and RAM mapped in the address space?

e.g. RAM is commonly located at address 0x2000_0000 .
You can find this information in the data sheet or the reference manual

of your device.
In this section we'll be using our reference hardware, the

STM32F3DISCOVERY. This board contains an STM32F303VCT6
microcontroller. This microcontroller has:

A Cortex-M4F core that includes a single precision FPU
256 KiB of Flash located at address 0x0800_0000.
40 KiB of RAM located at address 0x2000_0000. (There's another

RAM region but for simplicity we'll ignore it).

Configuring
We'll start from scratch with a fresh template instance. Refer to the

previous section on QEMU for a refresher on how to do this without
cargo-generate .
$ cargo generate --git https://github.com/rust-
embedded/cortex-m-quickstart
 Project Name: app
 Creating project called `app`...
 Done! New project created /tmp/app

$ cd app

Step number one is to set a default compilation target in
.cargo/config.toml .
tail -n5 .cargo/config.toml

Pick ONE of these compilation targets
target = "thumbv6m-none-eabi" # Cortex-M0 and Cortex-M0+
target = "thumbv7m-none-eabi" # Cortex-M3
target = "thumbv7em-none-eabi" # Cortex-M4 and Cortex-M7
(no FPU)
target = "thumbv7em-none-eabihf" # Cortex-M4F and Cortex-M7F
(with FPU)

We'll use thumbv7em-none-eabihf as that covers the Cortex-M4F core.

NOTE: As you may remember from the previous chapter, we have
to install all targets and this is a new one. So don't forget to run the
installation process rustup target add thumbv7em-none-eabihf for
this target.

The second step is to enter the memory region information into the
memory.x file.
$ cat memory.x
/* Linker script for the STM32F303VCT6 */
MEMORY

clbr://internal.invalid/book/OEBPS/start/qemu.md

{
 /* NOTE 1 K = 1 KiBi = 1024 bytes */
 FLASH : ORIGIN = 0x08000000, LENGTH = 256K
 RAM : ORIGIN = 0x20000000, LENGTH = 40K
}

NOTE: If you for some reason changed the memory.x file after
you had made the first build of a specific build target, then do cargo
clean before cargo build , because cargo build may not track
updates of memory.x .

We'll start with the hello example again, but first we have to make a
small change.

In examples/hello.rs , make sure the debug::exit() call is
commented out or removed. It is used only for running in QEMU.
#[entry]
fn main() -> ! {
 hprintln!("Hello, world!").unwrap();

 // exit QEMU
 // NOTE do not run this on hardware; it can corrupt
OpenOCD state
 // debug::exit(debug::EXIT_SUCCESS);

 loop {}
}

You can now cross compile programs using cargo build and inspect
the binaries using cargo-binutils as you did before. The cortex-m-rt
crate handles all the magic required to get your chip running, as helpfully,
pretty much all Cortex-M CPUs boot in the same fashion.
cargo build --example hello

Debugging
Debugging will look a bit different. In fact, the first steps can look

different depending on the target device. In this section we'll show the steps
required to debug a program running on the STM32F3DISCOVERY. This
is meant to serve as a reference; for device specific information about
debugging check out the Debugonomicon.

As before we'll do remote debugging and the client will be a GDB
process. This time, however, the server will be OpenOCD.

As done during the verify section connect the discovery board to your
laptop / PC and check that the ST-LINK header is populated.

On a terminal run openocd to connect to the ST-LINK on the discovery
board. Run this command from the root of the template; openocd will pick
up the openocd.cfg file which indicates which interface file and target file
to use.
cat openocd.cfg

Sample OpenOCD configuration for the STM32F3DISCOVERY
development board

Depending on the hardware revision you got you'll have to
pick ONE of these
interfaces. At any time only one interface should be
commented out.

Revision C (newer revision)
source [find interface/stlink.cfg]

Revision A and B (older revisions)
source [find interface/stlink-v2.cfg]

source [find target/stm32f3x.cfg]

NOTE If you found out that you have an older revision of the
discovery board during the verify section then you should modify the

https://github.com/rust-embedded/debugonomicon
clbr://internal.invalid/book/OEBPS/intro/install/verify.md
clbr://internal.invalid/book/OEBPS/intro/install/verify.md

openocd.cfg file at this point to use interface/stlink-v2.cfg .

$ openocd
Open On-Chip Debugger 0.10.0
Licensed under GNU GPL v2
For bug reports, read
 http://openocd.org/doc/doxygen/bugs.html
Info : auto-selecting first available session transport
"hla_swd". To override use 'transport select <transport>'.
adapter speed: 1000 kHz
adapter_nsrst_delay: 100
Info : The selected transport took over low-level target
control. The results might differ compared to plain JTAG/SWD
none separate
Info : Unable to match requested speed 1000 kHz, using 950 kHz
Info : Unable to match requested speed 1000 kHz, using 950 kHz
Info : clock speed 950 kHz
Info : STLINK v2 JTAG v27 API v2 SWIM v15 VID 0x0483 PID
0x374B
Info : using stlink api v2
Info : Target voltage: 2.913879
Info : stm32f3x.cpu: hardware has 6 breakpoints, 4 watchpoints

On another terminal run GDB, also from the root of the template.
gdb-multiarch -q target/thumbv7em-none-
eabihf/debug/examples/hello

NOTE: like before you might need another version of gdb instead of
gdb-multiarch depending on which one you installed in the installation
chapter. This could also be arm-none-eabi-gdb or just gdb .

Next connect GDB to OpenOCD, which is waiting for a TCP connection
on port 3333.
(gdb) target remote :3333
Remote debugging using :3333
0x00000000 in ?? ()

Now proceed to flash (load) the program onto the microcontroller using
the load command.
(gdb) load
Loading section .vector_table, size 0x400 lma 0x8000000
Loading section .text, size 0x1518 lma 0x8000400
Loading section .rodata, size 0x414 lma 0x8001918
Start address 0x08000400, load size 7468
Transfer rate: 13 KB/sec, 2489 bytes/write.

The program is now loaded. This program uses semihosting so before
we do any semihosting call we have to tell OpenOCD to enable
semihosting. You can send commands to OpenOCD using the monitor
command.
(gdb) monitor arm semihosting enable
semihosting is enabled

You can see all the OpenOCD commands by invoking the monitor
help command.

Like before we can skip all the way to main using a breakpoint and the
continue command.
(gdb) break main
Breakpoint 1 at 0x8000490: file examples/hello.rs, line 11.
Note: automatically using hardware breakpoints for read-only
addresses.

(gdb) continue
Continuing.

Breakpoint 1, hello::__cortex_m_rt_main_trampoline () at
examples/hello.rs:11
11 #[entry]

NOTE If GDB blocks the terminal instead of hitting the breakpoint
after you issue the continue command above, you might want to

double check that the memory region information in the memory.x file
is correctly set up for your device (both the starts and lengths).

Step into the main function with step .
(gdb) step
halted: PC: 0x08000496
hello::__cortex_m_rt_main () at examples/hello.rs:13
13 hprintln!("Hello, world!").unwrap();

After advancing the program with next you should see "Hello, world!"
printed on the OpenOCD console, among other stuff.
$ openocd
(..)
Info : halted: PC: 0x08000502
Hello, world!
Info : halted: PC: 0x080004ac
Info : halted: PC: 0x080004ae
Info : halted: PC: 0x080004b0
Info : halted: PC: 0x080004b4
Info : halted: PC: 0x080004b8
Info : halted: PC: 0x080004bc

The message is only displayed once as the program is about to enter the
infinite loop defined in line 19: loop {}

You can now exit GDB using the quit command.
(gdb) quit
A debugging session is active.

 Inferior 1 [Remote target] will be detached.

Quit anyway? (y or n)

Debugging now requires a few more steps so we have packed all those
steps into a single GDB script named openocd.gdb . The file was created
during the cargo generate step, and should work without any
modifications. Let's have a peek:

cat openocd.gdb

target extended-remote :3333

print demangled symbols
set print asm-demangle on

detect unhandled exceptions, hard faults and panics
break DefaultHandler
break HardFault
break rust_begin_unwind

monitor arm semihosting enable

load

start the process but immediately halt the processor
stepi

Now running <gdb> -x openocd.gdb target/thumbv7em-none-

eabihf/debug/examples/hello will immediately connect GDB to
OpenOCD, enable semihosting, load the program and start the process.

Alternatively, you can turn <gdb> -x openocd.gdb into a custom
runner to make cargo run build a program and start a GDB session. This
runner is included in .cargo/config.toml but it's commented out.
head -n10 .cargo/config.toml

[target.thumbv7m-none-eabi]
uncomment this to make `cargo run` execute programs on QEMU
runner = "qemu-system-arm -cpu cortex-m3 -machine
lm3s6965evb -nographic -semihosting-config
enable=on,target=native -kernel"

[target.'cfg(all(target_arch = "arm", target_os = "none"))']
uncomment ONE of these three option to make `cargo run`
start a GDB session

which option to pick depends on your system
runner = "arm-none-eabi-gdb -x openocd.gdb"
runner = "gdb-multiarch -x openocd.gdb"
runner = "gdb -x openocd.gdb"

$ cargo run --example hello
(..)
Loading section .vector_table, size 0x400 lma 0x8000000
Loading section .text, size 0x1e70 lma 0x8000400
Loading section .rodata, size 0x61c lma 0x8002270
Start address 0x800144e, load size 10380
Transfer rate: 17 KB/sec, 3460 bytes/write.
(gdb)

Memory Mapped Registers
Embedded systems can only get so far by executing normal Rust code

and moving data around in RAM. If we want to get any information into or
out of our system (be that blinking an LED, detecting a button press or
communicating with an off-chip peripheral on some sort of bus) we're going
to have to dip into the world of Peripherals and their 'memory mapped
registers'.

You may well find that the code you need to access the peripherals in
your micro-controller has already been written, at one of the following
levels:

Micro-architecture Crate - This sort of crate handles any useful
routines common to the processor core your microcontroller is using,
as well as any peripherals that are common to all micro-controllers that
use that particular type of processor core. For example the cortex-m
crate gives you functions to enable and disable interrupts, which are
the same for all Cortex-M based micro-controllers. It also gives you
access to the 'SysTick' peripheral included with all Cortex-M based
micro-controllers.
Peripheral Access Crate (PAC) - This sort of crate is a thin wrapper
over the various memory-wrapper registers defined for your particular

https://crates.io/crates/cortex-m

part-number of micro-controller you are using. For example, tm4c123x
for the Texas Instruments Tiva-C TM4C123 series, or stm32f30x for
the ST-Micro STM32F30x series. Here, you'll be interacting with the
registers directly, following each peripheral's operating instructions
given in your micro-controller's Technical Reference Manual.
HAL Crate - These crates offer a more user-friendly API for your
particular processor, often by implementing some common traits
defined in embedded-hal. For example, this crate might offer a Serial
struct, with a constructor that takes an appropriate set of GPIO pins
and a baud rate, and offers some sort of write_byte function for
sending data. See the chapter on Portability for more information on
embedded-hal.
Board Crate - These crates go one step further than a HAL Crate by
pre-configuring various peripherals and GPIO pins to suit the specific
developer kit or board you are using, such as stm32f3-discovery for
the STM32F3DISCOVERY board.

https://crates.io/crates/tm4c123x
https://crates.io/crates/stm32f30x
https://crates.io/crates/embedded-hal
clbr://internal.invalid/book/OEBPS/portability/index.md
https://crates.io/crates/embedded-hal
https://crates.io/crates/stm32f3-discovery

Board Crate
A board crate is the perfect starting point, if you're new to embedded

Rust. They nicely abstract the HW details that might be overwhelming
when starting studying this subject, and makes standard tasks easy, like
turning a LED on or off. The functionality it exposes varies a lot between
boards. Since this book aims at staying hardware agnostic, the board crates
won't be covered by this book.

If you want to experiment with the STM32F3DISCOVERY board, it is
highly recommended to take a look at the stm32f3-discovery board crate,
which provides functionality to blink the board LEDs, access its compass,
bluetooth and more. The Discovery book offers a great introduction to the
use of a board crate.

But if you're working on a system that doesn't yet have dedicated board
crate, or you need functionality not provided by existing crates, read on as
we start from the bottom, with the micro-architecture crates.

https://crates.io/crates/stm32f3-discovery
https://rust-embedded.github.io/discovery/

Micro-architecture crate
Let's look at the SysTick peripheral that's common to all Cortex-M based

micro-controllers. We can find a pretty low-level API in the cortex-m crate,
and we can use it like this:
#![no_std]
#![no_main]
use cortex_m::peripheral::{syst, Peripherals};
use cortex_m_rt::entry;
use panic_halt as _;

#[entry]
fn main() -> ! {
 let peripherals = Peripherals::take().unwrap();
 let mut systick = peripherals.SYST;
 systick.set_clock_source(syst::SystClkSource::Core);
 systick.set_reload(1_000);
 systick.clear_current();
 systick.enable_counter();
 while !systick.has_wrapped() {
 // Loop
 }

 loop {}
}

The functions on the SYST struct map pretty closely to the functionality
defined by the ARM Technical Reference Manual for this peripheral.
There's nothing in this API about 'delaying for X milliseconds' - we have to
crudely implement that ourselves using a while loop. Note that we can't
access our SYST struct until we have called Peripherals::take() - this is
a special routine that guarantees that there is only one SYST structure in our
entire program. For more on that, see the Peripherals section.

https://crates.io/crates/cortex-m
clbr://internal.invalid/book/OEBPS/peripherals/index.md

Using a Peripheral Access Crate (PAC)
We won't get very far with our embedded software development if we

restrict ourselves to only the basic peripherals included with every Cortex-
M. At some point, we're going to need to write some code that's specific to
the particular micro-controller we're using. In this example, let's assume we
have an Texas Instruments TM4C123 - a middling 80MHz Cortex-M4 with
256 KiB of Flash. We're going to pull in the tm4c123x crate to make use of
this chip.
#![no_std]
#![no_main]

use panic_halt as _; // panic handler

use cortex_m_rt::entry;
use tm4c123x;

#[entry]
pub fn init() -> (Delay, Leds) {
 let cp = cortex_m::Peripherals::take().unwrap();
 let p = tm4c123x::Peripherals::take().unwrap();

 let pwm = p.PWM0;
 pwm.ctl.write(|w| w.globalsync0().clear_bit());
 // Mode = 1 => Count up/down mode
 pwm._2_ctl.write(|w|
w.enable().set_bit().mode().set_bit());
 pwm._2_gena.write(|w|
w.actcmpau().zero().actcmpad().one());
 // 528 cycles (264 up and down) = 4 loops per video line
(2112 cycles)
 pwm._2_load.write(|w| unsafe { w.load().bits(263) });
 pwm._2_cmpa.write(|w| unsafe { w.compa().bits(64) });
 pwm.enable.write(|w| w.pwm4en().set_bit());

https://crates.io/crates/tm4c123x

}

We've accessed the PWM0 peripheral in exactly the same way as we
accessed the SYST peripheral earlier, except we called
tm4c123x::Peripherals::take() . As this crate was auto-generated using
svd2rust, the access functions for our register fields take a closure, rather
than a numeric argument. While this looks like a lot of code, the Rust
compiler can use it to perform a bunch of checks for us, but then generate
machine-code which is pretty close to hand-written assembler! Where the
auto-generated code isn't able to determine that all possible arguments to a
particular accessor function are valid (for example, if the SVD defines the
register as 32-bit but doesn't say if some of those 32-bit values have a
special meaning), then the function is marked as unsafe . We can see this in
the example above when setting the load and compa sub-fields using the
bits() function.

Reading
The read() function returns an object which gives read-only access to

the various sub-fields within this register, as defined by the manufacturer's
SVD file for this chip. You can find all the functions available on special R
return type for this particular register, in this particular peripheral, on this
particular chip, in the tm4c123x documentation.
if pwm.ctl.read().globalsync0().is_set() {
 // Do a thing
}

Writing
The write() function takes a closure with a single argument. Typically

we call this w . This argument then gives read-write access to the various
sub-fields within this register, as defined by the manufacturer's SVD file for
this chip. Again, you can find all the functions available on the 'w' for this
particular register, in this particular peripheral, on this particular chip, in the
tm4c123x documentation. Note that all of the sub-fields that we do not set

https://crates.io/crates/svd2rust
https://docs.rs/tm4c123x/0.7.0/tm4c123x/pwm0/ctl/struct.R.html
https://docs.rs/tm4c123x/0.7.0/tm4c123x/pwm0/ctl/struct.W.html

will be set to a default value for us - any existing content in the register will
be lost.
pwm.ctl.write(|w| w.globalsync0().clear_bit());

Modifying
If we wish to change only one particular sub-field in this register and

leave the other sub-fields unchanged, we can use the modify function. This
function takes a closure with two arguments - one for reading and one for
writing. Typically we call these r and w respectively. The r argument can
be used to inspect the current contents of the register, and the w argument
can be used to modify the register contents.
pwm.ctl.modify(|r, w| w.globalsync0().clear_bit());

The modify function really shows the power of closures here. In C, we'd
have to read into some temporary value, modify the correct bits and then
write the value back. This means there's considerable scope for error:
uint32_t temp = pwm0.ctl.read();
temp |= PWM0_CTL_GLOBALSYNC0;
pwm0.ctl.write(temp);
uint32_t temp2 = pwm0.enable.read();
temp2 |= PWM0_ENABLE_PWM4EN;
pwm0.enable.write(temp); // Uh oh! Wrong variable!

Using a HAL crate
The HAL crate for a chip typically works by implementing a custom

Trait for the raw structures exposed by the PAC. Often this trait will define
a function called constrain() for single peripherals or split() for things
like GPIO ports with multiple pins. This function will consume the
underlying raw peripheral structure and return a new object with a higher-
level API. This API may also do things like have the Serial port new
function require a borrow on some Clock structure, which can only be
generated by calling the function which configures the PLLs and sets up all
the clock frequencies. In this way, it is statically impossible to create a
Serial port object without first having configured the clock rates, or for the
Serial port object to misconvert the baud rate into clock ticks. Some crates
even define special traits for the states each GPIO pin can be in, requiring
the user to put a pin into the correct state (say, by selecting the appropriate
Alternate Function Mode) before passing the pin into Peripheral. All with
no run-time cost!

Let's see an example:
#![no_std]
#![no_main]

use panic_halt as _; // panic handler

use cortex_m_rt::entry;
use tm4c123x_hal as hal;
use tm4c123x_hal::prelude::*;
use tm4c123x_hal::serial::{NewlineMode, Serial};
use tm4c123x_hal::sysctl;

#[entry]
fn main() -> ! {
 let p = hal::Peripherals::take().unwrap();
 let cp = hal::CorePeripherals::take().unwrap();

 // Wrap up the SYSCTL struct into an object with a higher-
layer API
 let mut sc = p.SYSCTL.constrain();
 // Pick our oscillation settings
 sc.clock_setup.oscillator = sysctl::Oscillator::Main(
 sysctl::CrystalFrequency::_16mhz,

sysctl::SystemClock::UsePll(sysctl::PllOutputFrequency::_80_00
mhz),
);
 // Configure the PLL with those settings
 let clocks = sc.clock_setup.freeze();

 // Wrap up the GPIO_PORTA struct into an object with a
higher-layer API.
 // Note it needs to borrow `sc.power_control` so it can
power up the GPIO
 // peripheral automatically.
 let mut porta = p.GPIO_PORTA.split(&sc.power_control);

 // Activate the UART.
 let uart = Serial::uart0(
 p.UART0,
 // The transmit pin
 porta
 .pa1
 .into_af_push_pull::<hal::gpio::AF1>(&mut
porta.control),
 // The receive pin
 porta
 .pa0
 .into_af_push_pull::<hal::gpio::AF1>(&mut
porta.control),
 // No RTS or CTS required
 (),
 (),

 // The baud rate
 115200_u32.bps(),
 // Output handling
 NewlineMode::SwapLFtoCRLF,
 // We need the clock rates to calculate the baud rate
divisors
 &clocks,
 // We need this to power up the UART peripheral
 &sc.power_control,
);

 loop {
 writeln!(uart, "Hello, World!\r\n").unwrap();
 }
}

Semihosting
Semihosting is a mechanism that lets embedded devices do I/O on the

host and is mainly used to log messages to the host console. Semihosting
requires a debug session and pretty much nothing else (no extra wires!) so
it's super convenient to use. The downside is that it's super slow: each write
operation can take several milliseconds depending on the hardware
debugger (e.g. ST-Link) you use.

The cortex-m-semihosting crate provides an API to do semihosting
operations on Cortex-M devices. The program below is the semihosting
version of "Hello, world!":
#![no_main]
#![no_std]

use panic_halt as _;

use cortex_m_rt::entry;
use cortex_m_semihosting::hprintln;

#[entry]
fn main() -> ! {
 hprintln!("Hello, world!").unwrap();

 loop {}
}

If you run this program on hardware you'll see the "Hello, world!"
message within the OpenOCD logs.
$ openocd
(..)
Hello, world!
(..)

You do need to enable semihosting in OpenOCD from GDB first:

https://crates.io/crates/cortex-m-semihosting

(gdb) monitor arm semihosting enable
semihosting is enabled

QEMU understands semihosting operations so the above program will
also work with qemu-system-arm without having to start a debug session.
Note that you'll need to pass the -semihosting-config flag to QEMU to
enable semihosting support; these flags are already included in the
.cargo/config.toml file of the template.
$ # this program will block the terminal
$ cargo run
 Running `qemu-system-arm (..)
Hello, world!

There's also an exit semihosting operation that can be used to terminate
the QEMU process. Important: do not use debug::exit on hardware; this
function can corrupt your OpenOCD session and you will not be able to
debug more programs until you restart it.
#![no_main]
#![no_std]

use panic_halt as _;

use cortex_m_rt::entry;
use cortex_m_semihosting::debug;

#[entry]
fn main() -> ! {
 let roses = "blue";

 if roses == "red" {
 debug::exit(debug::EXIT_SUCCESS);
 } else {
 debug::exit(debug::EXIT_FAILURE);
 }

 loop {}
}

$ cargo run
 Running `qemu-system-arm (..)

$ echo $?
1

One last tip: you can set the panicking behavior to
exit(EXIT_FAILURE) . This will let you write no_std run-pass tests that
you can run on QEMU.

For convenience, the panic-semihosting crate has an "exit" feature
that when enabled invokes exit(EXIT_FAILURE) after logging the panic
message to the host stderr.
#![no_main]
#![no_std]

use panic_semihosting as _; // features = ["exit"]

use cortex_m_rt::entry;
use cortex_m_semihosting::debug;

#[entry]
fn main() -> ! {
 let roses = "blue";

 assert_eq!(roses, "red");

 loop {}
}

$ cargo run
 Running `qemu-system-arm (..)
panicked at 'assertion failed: `(left == right)`
 left: `"blue"`,
 right: `"red"`', examples/hello.rs:15:5

$ echo $?
1

NOTE: To enable this feature on panic-semihosting , edit your
Cargo.toml dependencies section where panic-semihosting is specified
with:
panic-semihosting = { version = "VERSION", features = ["exit"]
}

where VERSION is the version desired. For more information on
dependencies features check the specifying dependencies section of the
Cargo book.

https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html

Panicking
Panicking is a core part of the Rust language. Built-in operations like

indexing are runtime checked for memory safety. When out of bounds
indexing is attempted this results in a panic.

In the standard library panicking has a defined behavior: it unwinds the
stack of the panicking thread, unless the user opted for aborting the program
on panics.

In programs without standard library, however, the panicking behavior is
left undefined. A behavior can be chosen by declaring a #

[panic_handler] function. This function must appear exactly once in the
dependency graph of a program, and must have the following signature:
fn(&PanicInfo) -> ! , where PanicInfo is a struct containing
information about the location of the panic.

Given that embedded systems range from user facing to safety critical
(cannot crash) there's no one size fits all panicking behavior but there are
plenty of commonly used behaviors. These common behaviors have been
packaged into crates that define the #[panic_handler] function. Some
examples include:

panic-abort . A panic causes the abort instruction to be executed.
panic-halt . A panic causes the program, or the current thread, to halt
by entering an infinite loop.
panic-itm . The panicking message is logged using the ITM, an ARM
Cortex-M specific peripheral.
panic-semihosting . The panicking message is logged to the host
using the semihosting technique.

You may be able to find even more crates searching for the panic-
handler keyword on crates.io.

A program can pick one of these behaviors simply by linking to the
corresponding crate. The fact that the panicking behavior is expressed in the
source of an application as a single line of code is not only useful as

https://doc.rust-lang.org/core/panic/struct.PanicInfo.html
https://crates.io/crates/panic-abort
https://crates.io/crates/panic-halt
https://crates.io/crates/panic-itm
https://crates.io/crates/panic-semihosting
https://crates.io/keywords/panic-handler

documentation but can also be used to change the panicking behavior
according to the compilation profile. For example:
#![no_main]
#![no_std]

// dev profile: easier to debug panics; can put a breakpoint
on `rust_begin_unwind`
#[cfg(debug_assertions)]
use panic_halt as _;

// release profile: minimize the binary size of the
application
#[cfg(not(debug_assertions))]
use panic_abort as _;

// ..

In this example the crate links to the panic-halt crate when built with
the dev profile (cargo build), but links to the panic-abort crate when
built with the release profile (cargo build --release).

The use panic_abort as _; form of the use statement is used to
ensure the panic_abort panic handler is included in our final
executable while making it clear to the compiler that we won't
explicitly use anything from the crate. Without the as _ rename, the
compiler would warn that we have an unused import. Sometimes you
might see extern crate panic_abort instead, which is an older style
used before the 2018 edition of Rust, and should now only be used for
"sysroot" crates (those distributed with Rust itself) such as
proc_macro , alloc , std , and test .

An example
Here's an example that tries to index an array beyond its length. The

operation results in a panic.
#![no_main]
#![no_std]

use panic_semihosting as _;

use cortex_m_rt::entry;

#[entry]
fn main() -> ! {
 let xs = [0, 1, 2];
 let i = xs.len();
 let _y = xs[i]; // out of bounds access

 loop {}
}

This example chose the panic-semihosting behavior which prints the
panic message to the host console using semihosting.
$ cargo run
 Running `qemu-system-arm -cpu cortex-m3 -machine
lm3s6965evb (..)
panicked at 'index out of bounds: the len is 3 but the index
is 4', src/main.rs:12:13

You can try changing the behavior to panic-halt and confirm that no
message is printed in that case.

Exceptions
Exceptions, and interrupts, are a hardware mechanism by which the

processor handles asynchronous events and fatal errors (e.g. executing an
invalid instruction). Exceptions imply preemption and involve exception
handlers, subroutines executed in response to the signal that triggered the
event.

The cortex-m-rt crate provides an exception attribute to declare
exception handlers.
// Exception handler for the SysTick (System Timer) exception
#[exception]
fn SysTick() {
 // ..
}

Other than the exception attribute exception handlers look like plain
functions but there's one more difference: exception handlers can not be
called by software. Following the previous example, the statement
SysTick(); would result in a compilation error.

This behavior is pretty much intended and it's required to provide a
feature: static mut variables declared inside exception handlers are safe
to use.
#[exception]
fn SysTick() {
 static mut COUNT: u32 = 0;

 // `COUNT` has transformed to type `&mut u32` and it's
safe to use
 *COUNT += 1;
}

As you may know, using static mut variables in a function makes it
non-reentrant. It's undefined behavior to call a non-reentrant function,

https://docs.rs/cortex-m-rt-macros/latest/cortex_m_rt_macros/attr.exception.html
https://en.wikipedia.org/wiki/Reentrancy_(computing)

directly or indirectly, from more than one exception / interrupt handler or
from main and one or more exception / interrupt handlers.

Safe Rust must never result in undefined behavior so non-reentrant
functions must be marked as unsafe . Yet I just told that exception

handlers can safely use static mut variables. How is this possible? This is
possible because exception handlers can not be called by software thus
reentrancy is not possible. These handlers are called by the hardware itself
which is assumed to be physically non-concurrent.

As a result, in the context of exception handlers in embedded systems,
the absence of concurrent invocations of the same handler ensures that there
are no reentrancy issues, even if the handler uses static mutable variables.

In a multicore system, where multiple processor cores are executing
code concurrently, the potential for reentrancy issues becomes relevant
again, even within exception handlers. While each core may have its own
set of exception handlers, there can still be scenarios where multiple cores
attempt to execute the same exception handler simultaneously.
To address this concern in a multicore environment, proper synchronization
mechanisms need to be employed within the exception handlers to ensure
that access to shared resources is properly coordinated among the cores.
This typically involves the use of techniques such as locks, semaphores, or
atomic operations to prevent data races and maintain data integrity

Note that the exception attribute transforms definitions of static
variables inside the function by wrapping them into unsafe blocks
and providing us with new appropriate variables of type &mut of the
same name. Thus we can dereference the reference via * to access the
values of the variables without needing to wrap them in an unsafe
block.

A complete example
Here's an example that uses the system timer to raise a SysTick

exception roughly every second. The SysTick exception handler keeps
track of how many times it has been called in the COUNT variable and then
prints the value of COUNT to the host console using semihosting.

NOTE: You can run this example on any Cortex-M device; you can
also run it on QEMU

#![deny(unsafe_code)]
#![no_main]
#![no_std]

use panic_halt as _;

use core::fmt::Write;

use cortex_m::peripheral::syst::SystClkSource;
use cortex_m_rt::{entry, exception};
use cortex_m_semihosting::{
 debug,
 hio::{self, HostStream},
};

#[entry]
fn main() -> ! {
 let p = cortex_m::Peripherals::take().unwrap();
 let mut syst = p.SYST;

 // configures the system timer to trigger a SysTick
exception every second
 syst.set_clock_source(SystClkSource::Core);
 // this is configured for the LM3S6965 which has a default
CPU clock of 12 MHz
 syst.set_reload(12_000_000);

 syst.clear_current();
 syst.enable_counter();
 syst.enable_interrupt();

 loop {}
}

#[exception]
fn SysTick() {
 static mut COUNT: u32 = 0;
 static mut STDOUT: Option<HostStream> = None;

 *COUNT += 1;

 // Lazy initialization
 if STDOUT.is_none() {
 *STDOUT = hio::hstdout().ok();
 }

 if let Some(hstdout) = STDOUT.as_mut() {
 write!(hstdout, "{}", *COUNT).ok();
 }

 // IMPORTANT omit this `if` block if running on real
hardware or your
 // debugger will end in an inconsistent state
 if *COUNT == 9 {
 // This will terminate the QEMU process
 debug::exit(debug::EXIT_SUCCESS);
 }
}

tail -n5 Cargo.toml

[dependencies]
cortex-m = "0.5.7"
cortex-m-rt = "0.6.3"

panic-halt = "0.2.0"
cortex-m-semihosting = "0.3.1"

$ cargo run --release
 Running `qemu-system-arm -cpu cortex-m3 -machine
lm3s6965evb (..)
123456789

If you run this on the Discovery board you'll see the output on the
OpenOCD console. Also, the program will not stop when the count reaches
9.

The default exception handler
What the exception attribute actually does is override the default

exception handler for a specific exception. If you don't override the handler
for a particular exception it will be handled by the DefaultHandler

function, which defaults to:
fn DefaultHandler() {
 loop {}
}

This function is provided by the cortex-m-rt crate and marked as #
[no_mangle] so you can put a breakpoint on "DefaultHandler" and catch
unhandled exceptions.

It's possible to override this DefaultHandler using the exception

attribute:
#[exception]
fn DefaultHandler(irqn: i16) {
 // custom default handler
}

The irqn argument indicates which exception is being serviced. A
negative value indicates that a Cortex-M exception is being serviced; and
zero or a positive value indicate that a device specific exception, AKA
interrupt, is being serviced.

The hard fault handler
The HardFault exception is a bit special. This exception is fired when

the program enters an invalid state so its handler can not return as that could
result in undefined behavior. Also, the runtime crate does a bit of work
before the user defined HardFault handler is invoked to improve
debuggability.

The result is that the HardFault handler must have the following
signature: fn(&ExceptionFrame) -> ! . The argument of the handler is a
pointer to registers that were pushed into the stack by the exception. These
registers are a snapshot of the processor state at the moment the exception
was triggered and are useful to diagnose a hard fault.

Here's an example that performs an illegal operation: a read to a
nonexistent memory location.

NOTE: This program won't work, i.e. it won't crash, on QEMU
because qemu-system-arm -machine lm3s6965evb doesn't check
memory loads and will happily return 0 on reads to invalid memory.

#![no_main]
#![no_std]

use panic_halt as _;

use core::fmt::Write;
use core::ptr;

use cortex_m_rt::{entry, exception, ExceptionFrame};
use cortex_m_semihosting::hio;

#[entry]
fn main() -> ! {
 // read a nonexistent memory location
 unsafe {
 ptr::read_volatile(0x3FFF_0000 as *const u32);

 }

 loop {}
}

#[exception]
fn HardFault(ef: &ExceptionFrame) -> ! {
 if let Ok(mut hstdout) = hio::hstdout() {
 writeln!(hstdout, "{:#?}", ef).ok();
 }

 loop {}
}

The HardFault handler prints the ExceptionFrame value. If you run
this you'll see something like this on the OpenOCD console.
$ openocd
(..)
ExceptionFrame {
 r0: 0x3fff0000,
 r1: 0x00000003,
 r2: 0x080032e8,
 r3: 0x00000000,
 r12: 0x00000000,
 lr: 0x080016df,
 pc: 0x080016e2,
 xpsr: 0x61000000,
}

The pc value is the value of the Program Counter at the time of the
exception and it points to the instruction that triggered the exception.

If you look at the disassembly of the program:
$ cargo objdump --bin app --release -- -d --no-show-raw-insn -
-print-imm-hex
(..)
ResetTrampoline:

 8000942: movw r0, #0xfffe
 8000946: movt r0, #0x3fff
 800094a: ldr r0, [r0]
 800094c: b #-0x4 <ResetTrampoline+0xa>

You can lookup the value of the program counter 0x0800094a in the
disassembly. You'll see that a load operation (ldr r0, [r0]) caused the
exception. The r0 field of ExceptionFrame will tell you the value of
register r0 was 0x3fff_fffe at that time.

Interrupts
Interrupts differ from exceptions in a variety of ways but their operation

and use is largely similar and they are also handled by the same interrupt
controller. Whereas exceptions are defined by the Cortex-M architecture,
interrupts are always vendor (and often even chip) specific
implementations, both in naming and functionality.

Interrupts do allow for a lot of flexibility which needs to be accounted
for when attempting to use them in an advanced way. We will not cover
those uses in this book, however it is a good idea to keep the following in
mind:

Interrupts have programmable priorities which determine their
handlers' execution order
Interrupts can nest and preempt, i.e. execution of an interrupt handler
might be interrupted by another higher-priority interrupt
In general the reason causing the interrupt to trigger needs to be
cleared to prevent re-entering the interrupt handler endlessly

The general initialization steps at runtime are always the same:

Setup the peripheral(s) to generate interrupts requests at the desired
occasions
Set the desired priority of the interrupt handler in the interrupt
controller
Enable the interrupt handler in the interrupt controller

Similarly to exceptions, the cortex-m-rt crate provides an interrupt
attribute to declare interrupt handlers. The available interrupts (and their
position in the interrupt handler table) are usually automatically generated
via svd2rust from a SVD description.
// Interrupt handler for the Timer2 interrupt
#[interrupt]
fn TIM2() {
 // ..

https://docs.rs/cortex-m-rt-macros/0.1.5/cortex_m_rt_macros/attr.interrupt.html

 // Clear reason for the generated interrupt request
}

Interrupt handlers look like plain functions (except for the lack of
arguments) similar to exception handlers. However they can not be called
directly by other parts of the firmware due to the special calling
conventions. It is however possible to generate interrupt requests in
software to trigger a diversion to the interrupt handler.

Similar to exception handlers it is also possible to declare static mut
variables inside the interrupt handlers for safe state keeping.
#[interrupt]
fn TIM2() {
 static mut COUNT: u32 = 0;

 // `COUNT` has type `&mut u32` and it's safe to use
 *COUNT += 1;
}

For a more detailed description about the mechanisms demonstrated here
please refer to the exceptions section.

clbr://internal.invalid/book/OEBPS/start/exceptions.md

IO
TODO Cover memory mapped I/O using registers.

Peripherals

What are Peripherals?
Most Microcontrollers have more than just a CPU, RAM, or Flash

Memory - they contain sections of silicon which are used for interacting with
systems outside of the microcontroller, as well as directly and indirectly
interacting with their surroundings in the world via sensors, motor controllers,
or human interfaces such as a display or keyboard. These components are
collectively known as Peripherals.

These peripherals are useful because they allow a developer to offload
processing to them, avoiding having to handle everything in software. Similar
to how a desktop developer would offload graphics processing to a video
card, embedded developers can offload some tasks to peripherals allowing the
CPU to spend its time doing something else important, or doing nothing in
order to save power.

If you look at the main circuit board in an old-fashioned home computer
from the 1970s or 1980s (and actually, the desktop PCs of yesterday are not so
far removed from the embedded systems of today) you would expect to see:

A processor
A RAM chip
A ROM chip
An I/O controller

The RAM chip, ROM chip and I/O controller (the peripheral in this
system) would be joined to the processor through a series of parallel traces
known as a 'bus'. This bus carries address information, which selects which
device on the bus the processor wishes to communicate with, and a data bus
which carries the actual data. In our embedded microcontrollers, the same
principles apply - it's just that everything is packed on to a single piece of
silicon.

However, unlike graphics cards, which typically have a Software API like
Vulkan, Metal, or OpenGL, peripherals are exposed to our Microcontroller
with a hardware interface, which is mapped to a chunk of the memory.

Linear and Real Memory Space
On a microcontroller, writing some data to some other arbitrary address,

such as 0x4000_0000 or 0x0000_0000 , may also be a completely valid
action.

On a desktop system, access to memory is tightly controlled by the MMU,
or Memory Management Unit. This component has two major
responsibilities: enforcing access permission to sections of memory
(preventing one process from reading or modifying the memory of another
process); and re-mapping segments of the physical memory to virtual memory
ranges used in software. Microcontrollers do not typically have an MMU, and
instead only use real physical addresses in software.

Although 32 bit microcontrollers have a real and linear address space from
0x0000_0000 , and 0xFFFF_FFFF , they generally only use a few hundred
kilobytes of that range for actual memory. This leaves a significant amount of
address space remaining. In earlier chapters, we were talking about RAM
being located at address 0x2000_0000 . If our RAM was 64 KiB long (i.e.
with a maximum address of 0xFFFF) then addresses 0x2000_0000 to
0x2000_FFFF would correspond to our RAM. When we write to a variable
which lives at address 0x2000_1234 , what happens internally is that some
logic detects the upper portion of the address (0x2000 in this example) and
then activates the RAM so that it can act upon the lower portion of the address
(0x1234 in this case). On a Cortex-M we also have our Flash ROM mapped in
at address 0x0000_0000 up to, say, address 0x0007_FFFF (if we have a 512
KiB Flash ROM). Rather than ignore all remaining space between these two
regions, Microcontroller designers instead mapped the interface for
peripherals in certain memory locations. This ends up looking something like
this:

Nordic nRF52832 Datasheet (pdf)

http://infocenter.nordicsemi.com/pdf/nRF52832_PS_v1.1.pdf

Memory Mapped Peripherals
Interaction with these peripherals is simple at a first glance - write the right

data to the correct address. For example, sending a 32 bit word over a serial
port could be as direct as writing that 32 bit word to a certain memory
address. The Serial Port Peripheral would then take over and send out the data
automatically.

Configuration of these peripherals works similarly. Instead of calling a
function to configure a peripheral, a chunk of memory is exposed which
serves as the hardware API. Write 0x8000_0000 to a SPI Frequency
Configuration Register, and the SPI port will send data at 8 Megabits per
second. Write 0x0200_0000 to the same address, and the SPI port will send
data at 125 Kilobits per second. These configuration registers look a little bit
like this:

Nordic nRF52832 Datasheet (pdf)
This interface is how interactions with the hardware are made, no matter

what language is used, whether that language is Assembly, C, or Rust.

http://infocenter.nordicsemi.com/pdf/nRF52832_PS_v1.1.pdf

A First Attempt

The Registers
Let's look at the 'SysTick' peripheral - a simple timer which comes with

every Cortex-M processor core. Typically you'll be looking these up in the
chip manufacturer's data sheet or Technical Reference Manual, but this
example is common to all ARM Cortex-M cores, let's look in the ARM
reference manual. We see there are four registers:

Offset Name Description Width
0x00 SYST_CSR Control and Status

Register
32 bits

0x04 SYST_RVR Reload Value Register 32 bits
0x08 SYST_CVR Current Value Register 32 bits
0x0C SYST_CALIB Calibration Value Register 32 bits

http://infocenter.arm.com/help/topic/com.arm.doc.dui0553a/Babieigh.html

The C Approach
In Rust, we can represent a collection of registers in exactly the same

way as we do in C - with a struct .
#[repr(C)]
struct SysTick {
 pub csr: u32,
 pub rvr: u32,
 pub cvr: u32,
 pub calib: u32,
}

The qualifier #[repr(C)] tells the Rust compiler to lay this structure
out like a C compiler would. That's very important, as Rust allows structure
fields to be re-ordered, while C does not. You can imagine the debugging
we'd have to do if these fields were silently re-arranged by the compiler!
With this qualifier in place, we have our four 32-bit fields which correspond
to the table above. But of course, this struct is of no use by itself - we
need a variable.
let systick = 0xE000_E010 as *mut SysTick;
let time = unsafe { (*systick).cvr };

Volatile Accesses
Now, there are a couple of problems with the approach above.

1. We have to use unsafe every time we want to access our Peripheral.
2. We've got no way of specifying which registers are read-only or read-

write.
3. Any piece of code anywhere in your program could access the

hardware through this structure.
4. Most importantly, it doesn't actually work...
Now, the problem is that compilers are clever. If you make two writes to

the same piece of RAM, one after the other, the compiler can notice this and
just skip the first write entirely. In C, we can mark variables as volatile to
ensure that every read or write occurs as intended. In Rust, we instead mark
the accesses as volatile, not the variable.
let systick = unsafe { &mut *(0xE000_E010 as *mut SysTick) };
let time = unsafe { core::ptr::read_volatile(&mut systick.cvr)
};

So, we've fixed one of our four problems, but now we have even more
unsafe code! Fortunately, there's a third party crate which can help -
volatile_register .
use volatile_register::{RW, RO};

#[repr(C)]
struct SysTick {
 pub csr: RW<u32>,
 pub rvr: RW<u32>,
 pub cvr: RW<u32>,
 pub calib: RO<u32>,
}

fn get_systick() -> &'static mut SysTick {
 unsafe { &mut *(0xE000_E010 as *mut SysTick) }
}

https://crates.io/crates/volatile_register

fn get_time() -> u32 {
 let systick = get_systick();
 systick.cvr.read()
}

Now, the volatile accesses are performed automatically through the
read and write methods. It's still unsafe to perform writes, but to be fair,
hardware is a bunch of mutable state and there's no way for the compiler to
know whether these writes are actually safe, so this is a good default
position.

The Rusty Wrapper
We need to wrap this struct up into a higher-layer API that is safe for

our users to call. As the driver author, we manually verify the unsafe code is
correct, and then present a safe API for our users so they don't have to
worry about it (provided they trust us to get it right!).

One example might be:
use volatile_register::{RW, RO};

pub struct SystemTimer {
 p: &'static mut RegisterBlock
}

#[repr(C)]
struct RegisterBlock {
 pub csr: RW<u32>,
 pub rvr: RW<u32>,
 pub cvr: RW<u32>,
 pub calib: RO<u32>,
}

impl SystemTimer {
 pub fn new() -> SystemTimer {
 SystemTimer {
 p: unsafe { &mut *(0xE000_E010 as *mut
RegisterBlock) }
 }
 }

 pub fn get_time(&self) -> u32 {
 self.p.cvr.read()
 }

 pub fn set_reload(&mut self, reload_value: u32) {
 unsafe { self.p.rvr.write(reload_value) }

 }
}

pub fn example_usage() -> String {
 let mut st = SystemTimer::new();
 st.set_reload(0x00FF_FFFF);
 format!("Time is now 0x{:08x}", st.get_time())
}

Now, the problem with this approach is that the following code is
perfectly acceptable to the compiler:
fn thread1() {
 let mut st = SystemTimer::new();
 st.set_reload(2000);
}

fn thread2() {
 let mut st = SystemTimer::new();
 st.set_reload(1000);
}

Our &mut self argument to the set_reload function checks that there
are no other references to that particular SystemTimer struct, but they don't
stop the user creating a second SystemTimer which points to the exact
same peripheral! Code written in this fashion will work if the author is
diligent enough to spot all of these 'duplicate' driver instances, but once the
code is spread out over multiple modules, drivers, developers, and days, it
gets easier and easier to make these kinds of mistakes.

Mutable Global State
Unfortunately, hardware is basically nothing but mutable global state,

which can feel very frightening for a Rust developer. Hardware exists
independently from the structures of the code we write, and can be modified
at any time by the real world.

What should our rules be?
How can we reliably interact with these peripherals?

1. Always use volatile methods to read or write to peripheral memory,
as it can change at any time

2. In software, we should be able to share any number of read-only
accesses to these peripherals

3. If some software should have read-write access to a peripheral, it
should hold the only reference to that peripheral

The Borrow Checker
The last two of these rules sound suspiciously similar to what the

Borrow Checker does already!
Imagine if we could pass around ownership of these peripherals, or offer

immutable or mutable references to them?
Well, we can, but for the Borrow Checker, we need to have exactly one

instance of each peripheral, so Rust can handle this correctly. Well, luckily
in the hardware, there is only one instance of any given peripheral, but how
can we expose that in the structure of our code?

Singletons
In software engineering, the singleton pattern is a software design

pattern that restricts the instantiation of a class to one object.
Wikipedia: Singleton Pattern

https://en.wikipedia.org/wiki/Singleton_pattern

But why can't we just use global variable(s)?
We could make everything a public static, like this

static mut THE_SERIAL_PORT: SerialPort = SerialPort;

fn main() {
 let _ = unsafe {
 THE_SERIAL_PORT.read_speed();
 };
}

But this has a few problems. It is a mutable global variable, and in Rust,
these are always unsafe to interact with. These variables are also visible
across your whole program, which means the borrow checker is unable to
help you track references and ownership of these variables.

How do we do this in Rust?
Instead of just making our peripheral a global variable, we might instead

decide to make a structure, in this case called PERIPHERALS , which contains
an Option<T> for each of our peripherals.
struct Peripherals {
 serial: Option<SerialPort>,
}
impl Peripherals {
 fn take_serial(&mut self) -> SerialPort {
 let p = replace(&mut self.serial, None);
 p.unwrap()
 }
}
static mut PERIPHERALS: Peripherals = Peripherals {
 serial: Some(SerialPort),
};

This structure allows us to obtain a single instance of our peripheral. If
we try to call take_serial() more than once, our code will panic!
fn main() {
 let serial_1 = unsafe { PERIPHERALS.take_serial() };
 // This panics!
 // let serial_2 = unsafe { PERIPHERALS.take_serial() };
}

Although interacting with this structure is unsafe , once we have the
SerialPort it contained, we no longer need to use unsafe , or the
PERIPHERALS structure at all.

This has a small runtime overhead because we must wrap the
SerialPort structure in an option, and we'll need to call take_serial()
once, however this small up-front cost allows us to leverage the borrow
checker throughout the rest of our program.

Existing library support
Although we created our own Peripherals structure above, it is not

necessary to do this for your code. the cortex_m crate contains a macro
called singleton!() that will perform this action for you.
use cortex_m::singleton;

fn main() {
 // OK if `main` is executed only once
 let x: &'static mut bool =
 singleton!(: bool = false).unwrap();
}

cortex_m docs
Additionally, if you use cortex-m-rtic , the entire process of defining

and obtaining these peripherals are abstracted for you, and you are instead
handed a Peripherals structure that contains a non- Option<T> version of
all of the items you define.
// cortex-m-rtic v0.5.x
#[rtic::app(device = lm3s6965, peripherals = true)]
const APP: () = {
 #[init]
 fn init(cx: init::Context) {
 static mut X: u32 = 0;

 // Cortex-M peripherals
 let core: cortex_m::Peripherals = cx.core;

 // Device specific peripherals
 let device: lm3s6965::Peripherals = cx.device;
 }
}

https://docs.rs/cortex-m/latest/cortex_m/macro.singleton.html
https://github.com/rtic-rs/cortex-m-rtic

But why?
But how do these Singletons make a noticeable difference in how our

Rust code works?
impl SerialPort {
 const SER_PORT_SPEED_REG: *mut u32 = 0x4000_1000 as _;

 fn read_speed(
 &self // <------ This is really, really important
) -> u32 {
 unsafe {
 ptr::read_volatile(Self::SER_PORT_SPEED_REG)
 }
 }
}

There are two important factors in play here:

Because we are using a singleton, there is only one way or place to
obtain a SerialPort structure
To call the read_speed() method, we must have ownership or a
reference to a SerialPort structure

These two factors put together means that it is only possible to access
the hardware if we have appropriately satisfied the borrow checker,
meaning that at no point do we have multiple mutable references to the
same hardware!
fn main() {
 // missing reference to `self`! Won't work.
 // SerialPort::read_speed();

 let serial_1 = unsafe { PERIPHERALS.take_serial() };

 // you can only read what you have access to
 let _ = serial_1.read_speed();
}

Treat your hardware like data
Additionally, because some references are mutable, and some are

immutable, it becomes possible to see whether a function or method could
potentially modify the state of the hardware. For example,

This is allowed to change hardware settings:
fn setup_spi_port(
 spi: &mut SpiPort,
 cs_pin: &mut GpioPin
) -> Result<()> {
 // ...
}

This isn't:
fn read_button(gpio: &GpioPin) -> bool {
 // ...
}

This allows us to enforce whether code should or should not make
changes to hardware at compile time, rather than at runtime. As a note, this
generally only works across one application, but for bare metal systems, our
software will be compiled into a single application, so this is not usually a
restriction.

Static Guarantees
Rust's type system prevents data races at compile time (see Send and

Sync traits). The type system can also be used to check other properties at
compile time; reducing the need for runtime checks in some cases.

When applied to embedded programs these static checks can be used, for
example, to enforce that configuration of I/O interfaces is done properly.
For instance, one can design an API where it is only possible to initialize a
serial interface by first configuring the pins that will be used by the
interface.

One can also statically check that operations, like setting a pin low, can
only be performed on correctly configured peripherals. For example, trying
to change the output state of a pin configured in floating input mode would
raise a compile error.

And, as seen in the previous chapter, the concept of ownership can be
applied to peripherals to ensure that only certain parts of a program can
modify a peripheral. This access control makes software easier to reason
about compared to the alternative of treating peripherals as global mutable
state.

https://doc.rust-lang.org/core/marker/trait.Send.html
https://doc.rust-lang.org/core/marker/trait.Sync.html

Typestate Programming
The concept of typestates describes the encoding of information about

the current state of an object into the type of that object. Although this can
sound a little arcane, if you have used the Builder Pattern in Rust, you have
already started using Typestate Programming!
pub mod foo_module {
 #[derive(Debug)]
 pub struct Foo {
 inner: u32,
 }

 pub struct FooBuilder {
 a: u32,
 b: u32,
 }

 impl FooBuilder {
 pub fn new(starter: u32) -> Self {
 Self {
 a: starter,
 b: starter,
 }
 }

 pub fn double_a(self) -> Self {
 Self {
 a: self.a * 2,
 b: self.b,
 }
 }

 pub fn into_foo(self) -> Foo {
 Foo {

https://en.wikipedia.org/wiki/Typestate_analysis
https://doc.rust-lang.org/1.0.0/style/ownership/builders.html

 inner: self.a + self.b,
 }
 }
 }
}

fn main() {
 let x = foo_module::FooBuilder::new(10)
 .double_a()
 .into_foo();

 println!("{:#?}", x);
}

In this example, there is no direct way to create a Foo object. We must
create a FooBuilder , and properly initialize it before we can obtain the
Foo object we want.

This minimal example encodes two states:

FooBuilder , which represents an "unconfigured", or "configuration in
process" state
Foo , which represents a "configured", or "ready to use" state.

Strong Types
Because Rust has a Strong Type System, there is no easy way to

magically create an instance of Foo , or to turn a FooBuilder into a Foo
without calling the into_foo() method. Additionally, calling the
into_foo() method consumes the original FooBuilder structure, meaning
it can not be reused without the creation of a new instance.

This allows us to represent the states of our system as types, and to
include the necessary actions for state transitions into the methods that
exchange one type for another. By creating a FooBuilder , and exchanging
it for a Foo object, we have walked through the steps of a basic state
machine.

https://en.wikipedia.org/wiki/Strong_and_weak_typing

Peripherals as State Machines
The peripherals of a microcontroller can be thought of as set of state

machines. For example, the configuration of a simplified GPIO pin could be
represented as the following tree of states:

Disabled
Enabled

Configured as Output

Output: High
Output: Low

Configured as Input

Input: High Resistance
Input: Pulled Low
Input: Pulled High

If the peripheral starts in the Disabled mode, to move to the Input:
High Resistance mode, we must perform the following steps:

1. Disabled
2. Enabled
3. Configured as Input
4. Input: High Resistance
If we wanted to move from Input: High Resistance to Input:

Pulled Low , we must perform the following steps:

1. Input: High Resistance
2. Input: Pulled Low
Similarly, if we want to move a GPIO pin from configured as Input:

Pulled Low to Output: High , we must perform the following steps:

1. Input: Pulled Low

https://en.wikipedia.org/wiki/General-purpose_input/output

2. Configured as Input
3. Configured as Output
4. Output: High

Hardware Representation
Typically the states listed above are set by writing values to given

registers mapped to a GPIO peripheral. Let's define an imaginary GPIO
Configuration Register to illustrate this:

Name Bit
Number(s)

Value Meaning Notes

enable 0 0 disabled Disables
the GPIO

1 enabled Enables
the GPIO

direction 1 0 input Sets the
direction
to Input

1 output Sets the
direction

to Output
input_mode 2..3 00 hi-z Sets the

input as
high

resistance
01 pull-low Input pin

is pulled
low

10 pull-high Input pin
is pulled

high
11 n/a Invalid

state. Do
not set

Name Bit
Number(s)

Value Meaning Notes

output_mode 4 0 set-low Output
pin is

driven
low

1 set-high Output
pin is

driven
high

input_status 5 x in-val 0 if input
is < 1.5v,
1 if input

>= 1.5v

We could expose the following structure in Rust to control this GPIO:
/// GPIO interface
struct GpioConfig {
 /// GPIO Configuration structure generated by svd2rust
 periph: GPIO_CONFIG,
}

impl GpioConfig {
 pub fn set_enable(&mut self, is_enabled: bool) {
 self.periph.modify(|_r, w| {
 w.enable().set_bit(is_enabled)
 });
 }

 pub fn set_direction(&mut self, is_output: bool) {
 self.periph.modify(|_r, w| {
 w.direction().set_bit(is_output)
 });
 }

 pub fn set_input_mode(&mut self, variant: InputMode) {
 self.periph.modify(|_r, w| {
 w.input_mode().variant(variant)
 });
 }

 pub fn set_output_mode(&mut self, is_high: bool) {
 self.periph.modify(|_r, w| {
 w.output_mode.set_bit(is_high)
 });
 }

 pub fn get_input_status(&self) -> bool {
 self.periph.read().input_status().bit_is_set()
 }
}

However, this would allow us to modify certain registers that do not
make sense. For example, what happens if we set the output_mode field
when our GPIO is configured as an input?

In general, use of this structure would allow us to reach states not
defined by our state machine above: e.g. an output that is pulled low, or an
input that is set high. For some hardware, this may not matter. On other
hardware, it could cause unexpected or undefined behavior!

Although this interface is convenient to write, it doesn't enforce the
design contracts set out by our hardware implementation.

Design Contracts
In our last chapter, we wrote an interface that didn't enforce design

contracts. Let's take another look at our imaginary GPIO configuration
register:

Name Bit
Number(s)

Value Meaning Notes

enable 0 0 disabled Disables
the GPIO

1 enabled Enables
the GPIO

direction 1 0 input Sets the
direction
to Input

1 output Sets the
direction

to Output
input_mode 2..3 00 hi-z Sets the

input as
high

resistance
01 pull-low Input pin

is pulled
low

10 pull-high Input pin
is pulled

high
11 n/a Invalid

state. Do
not set

Name Bit
Number(s)

Value Meaning Notes

output_mode 4 0 set-low Output
pin is

driven
low

1 set-high Output
pin is

driven
high

input_status 5 x in-val 0 if input
is < 1.5v,
1 if input

>= 1.5v

If we instead checked the state before making use of the underlying
hardware, enforcing our design contracts at runtime, we might write code
that looks like this instead:
/// GPIO interface
struct GpioConfig {
 /// GPIO Configuration structure generated by svd2rust
 periph: GPIO_CONFIG,
}

impl GpioConfig {
 pub fn set_enable(&mut self, is_enabled: bool) {
 self.periph.modify(|_r, w| {
 w.enable().set_bit(is_enabled)
 });
 }

 pub fn set_direction(&mut self, is_output: bool) ->
Result<(), ()> {
 if self.periph.read().enable().bit_is_clear() {

 // Must be enabled to set direction
 return Err(());
 }

 self.periph.modify(|r, w| {
 w.direction().set_bit(is_output)
 });

 Ok(())
 }

 pub fn set_input_mode(&mut self, variant: InputMode) ->
Result<(), ()> {
 if self.periph.read().enable().bit_is_clear() {
 // Must be enabled to set input mode
 return Err(());
 }

 if self.periph.read().direction().bit_is_set() {
 // Direction must be input
 return Err(());
 }

 self.periph.modify(|_r, w| {
 w.input_mode().variant(variant)
 });

 Ok(())
 }

 pub fn set_output_status(&mut self, is_high: bool) ->
Result<(), ()> {
 if self.periph.read().enable().bit_is_clear() {
 // Must be enabled to set output status
 return Err(());
 }

 if self.periph.read().direction().bit_is_clear() {
 // Direction must be output
 return Err(());
 }

 self.periph.modify(|_r, w| {
 w.output_mode.set_bit(is_high)
 });

 Ok(())
 }

 pub fn get_input_status(&self) -> Result<bool, ()> {
 if self.periph.read().enable().bit_is_clear() {
 // Must be enabled to get status
 return Err(());
 }

 if self.periph.read().direction().bit_is_set() {
 // Direction must be input
 return Err(());
 }

 Ok(self.periph.read().input_status().bit_is_set())
 }
}

Because we need to enforce the restrictions on the hardware, we end up
doing a lot of runtime checking which wastes time and resources, and this
code will be much less pleasant for the developer to use.

Type States
But what if instead, we used Rust's type system to enforce the state

transition rules? Take this example:
/// GPIO interface
struct GpioConfig<ENABLED, DIRECTION, MODE> {
 /// GPIO Configuration structure generated by svd2rust
 periph: GPIO_CONFIG,
 enabled: ENABLED,
 direction: DIRECTION,
 mode: MODE,
}

// Type states for MODE in GpioConfig
struct Disabled;
struct Enabled;
struct Output;
struct Input;
struct PulledLow;
struct PulledHigh;
struct HighZ;
struct DontCare;

/// These functions may be used on any GPIO Pin
impl<EN, DIR, IN_MODE> GpioConfig<EN, DIR, IN_MODE> {
 pub fn into_disabled(self) -> GpioConfig<Disabled,
DontCare, DontCare> {
 self.periph.modify(|_r, w| w.enable.disabled());
 GpioConfig {
 periph: self.periph,
 enabled: Disabled,
 direction: DontCare,
 mode: DontCare,
 }
 }

 pub fn into_enabled_input(self) -> GpioConfig<Enabled,
Input, HighZ> {
 self.periph.modify(|_r, w| {
 w.enable.enabled()
 .direction.input()
 .input_mode.high_z()
 });
 GpioConfig {
 periph: self.periph,
 enabled: Enabled,
 direction: Input,
 mode: HighZ,
 }
 }

 pub fn into_enabled_output(self) -> GpioConfig<Enabled,
Output, DontCare> {
 self.periph.modify(|_r, w| {
 w.enable.enabled()
 .direction.output()
 .input_mode.set_high()
 });
 GpioConfig {
 periph: self.periph,
 enabled: Enabled,
 direction: Output,
 mode: DontCare,
 }
 }
}

/// This function may be used on an Output Pin
impl GpioConfig<Enabled, Output, DontCare> {
 pub fn set_bit(&mut self, set_high: bool) {
 self.periph.modify(|_r, w|

w.output_mode.set_bit(set_high));
 }
}

/// These methods may be used on any enabled input GPIO
impl<IN_MODE> GpioConfig<Enabled, Input, IN_MODE> {
 pub fn bit_is_set(&self) -> bool {
 self.periph.read().input_status.bit_is_set()
 }

 pub fn into_input_high_z(self) -> GpioConfig<Enabled,
Input, HighZ> {
 self.periph.modify(|_r, w| w.input_mode().high_z());
 GpioConfig {
 periph: self.periph,
 enabled: Enabled,
 direction: Input,
 mode: HighZ,
 }
 }

 pub fn into_input_pull_down(self) -> GpioConfig<Enabled,
Input, PulledLow> {
 self.periph.modify(|_r, w| w.input_mode().pull_low());
 GpioConfig {
 periph: self.periph,
 enabled: Enabled,
 direction: Input,
 mode: PulledLow,
 }
 }

 pub fn into_input_pull_up(self) -> GpioConfig<Enabled,
Input, PulledHigh> {
 self.periph.modify(|_r, w|
w.input_mode().pull_high());

 GpioConfig {
 periph: self.periph,
 enabled: Enabled,
 direction: Input,
 mode: PulledHigh,
 }
 }
}

Now let's see what the code using this would look like:
/*
 * Example 1: Unconfigured to High-Z input
 */
let pin: GpioConfig<Disabled, _, _> = get_gpio();

// Can't do this, pin isn't enabled!
// pin.into_input_pull_down();

// Now turn the pin from unconfigured to a high-z input
let input_pin = pin.into_enabled_input();

// Read from the pin
let pin_state = input_pin.bit_is_set();

// Can't do this, input pins don't have this interface!
// input_pin.set_bit(true);

/*
 * Example 2: High-Z input to Pulled Low input
 */
let pulled_low = input_pin.into_input_pull_down();
let pin_state = pulled_low.bit_is_set();

/*
 * Example 3: Pulled Low input to Output, set high
 */

let output_pin = pulled_low.into_enabled_output();
output_pin.set_bit(true);

// Can't do this, output pins don't have this interface!
// output_pin.into_input_pull_down();

This is definitely a convenient way to store the state of the pin, but why
do it this way? Why is this better than storing the state as an enum inside of
our GpioConfig structure?

Compile Time Functional Safety
Because we are enforcing our design constraints entirely at compile

time, this incurs no runtime cost. It is impossible to set an output mode
when you have a pin in an input mode. Instead, you must walk through the
states by converting it to an output pin, and then setting the output mode.
Because of this, there is no runtime penalty due to checking the current
state before executing a function.

Also, because these states are enforced by the type system, there is no
longer room for errors by consumers of this interface. If they try to perform
an illegal state transition, the code will not compile!

Zero Cost Abstractions
Type states are also an excellent example of Zero Cost Abstractions - the

ability to move certain behaviors to compile time execution or analysis.
These type states contain no actual data, and are instead used as markers.
Since they contain no data, they have no actual representation in memory at
runtime:
use core::mem::size_of;

let _ = size_of::<Enabled>(); // == 0
let _ = size_of::<Input>(); // == 0
let _ = size_of::<PulledHigh>(); // == 0
let _ = size_of::<GpioConfig<Enabled, Input, PulledHigh>>();
// == 0

Zero Sized Types
struct Enabled;

Structures defined like this are called Zero Sized Types, as they contain
no actual data. Although these types act "real" at compile time - you can
copy them, move them, take references to them, etc., however the optimizer
will completely strip them away.

In this snippet of code:
pub fn into_input_high_z(self) -> GpioConfig<Enabled, Input,
HighZ> {
 self.periph.modify(|_r, w| w.input_mode().high_z());
 GpioConfig {
 periph: self.periph,
 enabled: Enabled,
 direction: Input,
 mode: HighZ,
 }
}

The GpioConfig we return never exists at runtime. Calling this function
will generally boil down to a single assembly instruction - storing a
constant register value to a register location. This means that the type state
interface we've developed is a zero cost abstraction - it uses no more CPU,
RAM, or code space tracking the state of GpioConfig , and renders to the
same machine code as a direct register access.

Nesting
In general, these abstractions may be nested as deeply as you would like.

As long as all components used are zero sized types, the whole structure
will not exist at runtime.

For complex or deeply nested structures, it may be tedious to define all
possible combinations of state. In these cases, macros may be used to
generate all implementations.

Portability
In embedded environments portability is a very important topic: Every

vendor and even each family from a single manufacturer offers different
peripherals and capabilities and similarly the ways to interact with the
peripherals will vary.

A common way to equalize such differences is via a layer called Hardware
Abstraction layer or HAL.

Hardware abstractions are sets of routines in software that emulate
some platform-specific details, giving programs direct access to the
hardware resources.

They often allow programmers to write device-independent, high
performance applications by providing standard operating system (OS)
calls to hardware.

Wikipedia: Hardware Abstraction Layer

Embedded systems are a bit special in this regard since we typically do not
have operating systems and user installable software but firmware images
which are compiled as a whole as well as a number of other constraints. So
while the traditional approach as defined by Wikipedia could potentially work
it is likely not the most productive approach to ensure portability.

How do we do this in Rust? Enter embedded-hal...

https://en.wikipedia.org/wiki/Hardware_abstraction
https://crates.io/crates/embedded-hal

What is embedded-hal?
In a nutshell it is a set of traits which define implementation contracts

between HAL implementations, drivers and applications (or firmwares).
Those contracts include both capabilities (i.e. if a trait is implemented for a
certain type, the HAL implementation provides a certain capability) and
methods (i.e. if you can construct a type implementing a trait it is guaranteed
that you have the methods specified in the trait available).

A typical layering might look like this:

Peripheral Access Crate

Hardware Abstraction Layer Impl Driver

Driver

Application

Board Support Crate

U
se

s
Im

pl
em

en
ts

Hardware Abstraction Layer Traits

Microcontroller

Some of the defined traits in embedded-hal are:

GPIO (input and output pins)
Serial communication
I2C
SPI
Timers/Countdowns
Analog Digital Conversion

The main reason for having the embedded-hal traits and crates
implementing and using them is to keep complexity in check. If you consider
that an application might have to implement the use of the peripheral in the
hardware as well as the application and potentially drivers for additional

https://crates.io/crates/embedded-hal
https://crates.io/crates/embedded-hal

hardware components, then it should be easy to see that the re-usability is
very limited. Expressed mathematically, if M is the number of peripheral
HAL implementations and N the number of drivers then if we were to
reinvent the wheel for every application then we would end up with M*N
implementations while by using the API provided by the embedded-hal traits
will make the implementation complexity approach M+N. Of course there're
additional benefits to be had, such as less trial-and-error due to a well-defined
and ready-to-use APIs.

https://crates.io/crates/embedded-hal

Users of the embedded-hal
As said above there are three main users of the HAL:

HAL implementation
A HAL implementation provides the interfacing between the hardware and

the users of the HAL traits. Typical implementations consist of three parts:

One or more hardware specific types
Functions to create and initialize such a type, often providing various
configuration options (speed, operation mode, use pins, etc.)
one or more trait impl of embedded-hal traits for that type

Such a HAL implementation can come in various flavours:

Via low-level hardware access, e.g. via registers
Via operating system, e.g. by using the sysfs under Linux
Via adapter, e.g. a mock of types for unit testing
Via driver for hardware adapters, e.g. I2C multiplexer or GPIO expander

Driver
A driver implements a set of custom functionality for an internal or

external component, connected to a peripheral implementing the embedded-
hal traits. Typical examples for such drivers include various sensors
(temperature, magnetometer, accelerometer, light), display devices (LED
arrays, LCD displays) and actuators (motors, transmitters).

A driver has to be initialized with an instance of type that implements a
certain trait of the embedded-hal which is ensured via trait bound and
provides its own type instance with a custom set of methods allowing to
interact with the driven device.

Application
The application binds the various parts together and ensures that the

desired functionality is achieved. When porting between different systems,
this is the part which requires the most adaptation efforts, since the
application needs to correctly initialize the real hardware via the HAL
implementation and the initialisation of different hardware differs, sometimes

https://crates.io/crates/embedded-hal
https://crates.io/crates/embedded-hal
https://crates.io/crates/embedded-hal
https://crates.io/crates/embedded-hal

drastically so. Also the user choice often plays a big role, since components
can be physically connected to different terminals, hardware buses sometimes
need external hardware to match the configuration or there are different trade-
offs to be made in the use of internal peripherals (e.g. multiple timers with
different capabilities are available or peripherals conflict with others).

Concurrency
Concurrency happens whenever different parts of your program might

execute at different times or out of order. In an embedded context, this
includes:

interrupt handlers, which run whenever the associated interrupt
happens,
various forms of multithreading, where your microprocessor regularly
swaps between parts of your program,
and in some systems, multiple-core microprocessors, where each core
can be independently running a different part of your program at the
same time.

Since many embedded programs need to deal with interrupts,
concurrency will usually come up sooner or later, and it's also where many
subtle and difficult bugs can occur. Luckily, Rust provides a number of
abstractions and safety guarantees to help us write correct code.

No Concurrency
The simplest concurrency for an embedded program is no concurrency:

your software consists of a single main loop which just keeps running, and
there are no interrupts at all. Sometimes this is perfectly suited to the
problem at hand! Typically your loop will read some inputs, perform some
processing, and write some outputs.
#[entry]
fn main() {
 let peripherals = setup_peripherals();
 loop {
 let inputs = read_inputs(&peripherals);
 let outputs = process(inputs);
 write_outputs(&peripherals, outputs);
 }
}

Since there's no concurrency, there's no need to worry about sharing data
between parts of your program or synchronising access to peripherals. If
you can get away with such a simple approach this can be a great solution.

Global Mutable Data
Unlike non-embedded Rust, we will not usually have the luxury of

creating heap allocations and passing references to that data into a newly-
created thread. Instead, our interrupt handlers might be called at any time
and must know how to access whatever shared memory we are using. At
the lowest level, this means we must have statically allocated mutable
memory, which both the interrupt handler and the main code can refer to.

In Rust, such static mut variables are always unsafe to read or write,
because without taking special care, you might trigger a race condition,
where your access to the variable is interrupted halfway through by an
interrupt which also accesses that variable.

For an example of how this behaviour can cause subtle errors in your
code, consider an embedded program which counts rising edges of some
input signal in each one-second period (a frequency counter):
static mut COUNTER: u32 = 0;

#[entry]
fn main() -> ! {
 set_timer_1hz();
 let mut last_state = false;
 loop {
 let state = read_signal_level();
 if state && !last_state {
 // DANGER - Not actually safe! Could cause data
races.
 unsafe { COUNTER += 1 };
 }
 last_state = state;
 }
}

#[interrupt]
fn timer() {

https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html#accessing-or-modifying-a-mutable-static-variable

 unsafe { COUNTER = 0; }
}

Each second, the timer interrupt sets the counter back to 0. Meanwhile,
the main loop continually measures the signal, and incremements the
counter when it sees a change from low to high. We've had to use unsafe
to access COUNTER , as it's static mut , and that means we're promising the
compiler we won't cause any undefined behaviour. Can you spot the race
condition? The increment on COUNTER is not guaranteed to be atomic — in
fact, on most embedded platforms, it will be split into a load, then the
increment, then a store. If the interrupt fired after the load but before the
store, the reset back to 0 would be ignored after the interrupt returns — and
we would count twice as many transitions for that period.

Critical Sections
So, what can we do about data races? A simple approach is to use

critical sections, a context where interrupts are disabled. By wrapping the
access to COUNTER in main in a critical section, we can be sure the timer
interrupt will not fire until we're finished incrementing COUNTER :
static mut COUNTER: u32 = 0;

#[entry]
fn main() -> ! {
 set_timer_1hz();
 let mut last_state = false;
 loop {
 let state = read_signal_level();
 if state && !last_state {
 // New critical section ensures synchronised
access to COUNTER
 cortex_m::interrupt::free(|_| {
 unsafe { COUNTER += 1 };
 });
 }
 last_state = state;
 }
}

#[interrupt]
fn timer() {
 unsafe { COUNTER = 0; }
}

In this example, we use cortex_m::interrupt::free , but other
platforms will have similar mechanisms for executing code in a critical
section. This is also the same as disabling interrupts, running some code,
and then re-enabling interrupts.

Note we didn't need to put a critical section inside the timer interrupt, for
two reasons:

Writing 0 to COUNTER can't be affected by a race since we don't read it
It will never be interrupted by the main thread anyway

If COUNTER was being shared by multiple interrupt handlers that might
preempt each other, then each one might require a critical section as well.

This solves our immediate problem, but we're still left writing a lot of
unsafe code which we need to carefully reason about, and we might be
using critical sections needlessly. Since each critical section temporarily
pauses interrupt processing, there is an associated cost of some extra code
size and higher interrupt latency and jitter (interrupts may take longer to be
processed, and the time until they are processed will be more variable).
Whether this is a problem depends on your system, but in general, we'd like
to avoid it.

It's worth noting that while a critical section guarantees no interrupts will
fire, it does not provide an exclusivity guarantee on multi-core systems!
The other core could be happily accessing the same memory as your core,
even without interrupts. You will need stronger synchronisation primitives
if you are using multiple cores.

Atomic Access
On some platforms, special atomic instructions are available, which

provide guarantees about read-modify-write operations. Specifically for
Cortex-M: thumbv6 (Cortex-M0, Cortex-M0+) only provide atomic load
and store instructions, while thumbv7 (Cortex-M3 and above) provide full
Compare and Swap (CAS) instructions. These CAS instructions give an
alternative to the heavy-handed disabling of all interrupts: we can attempt
the increment, it will succeed most of the time, but if it was interrupted it
will automatically retry the entire increment operation. These atomic
operations are safe even across multiple cores.
use core::sync::atomic::{AtomicUsize, Ordering};

static COUNTER: AtomicUsize = AtomicUsize::new(0);

#[entry]
fn main() -> ! {
 set_timer_1hz();
 let mut last_state = false;
 loop {
 let state = read_signal_level();
 if state && !last_state {
 // Use `fetch_add` to atomically add 1 to COUNTER
 COUNTER.fetch_add(1, Ordering::Relaxed);
 }
 last_state = state;
 }
}

#[interrupt]
fn timer() {
 // Use `store` to write 0 directly to COUNTER
 COUNTER.store(0, Ordering::Relaxed)
}

This time COUNTER is a safe static variable. Thanks to the
AtomicUsize type COUNTER can be safely modified from both the interrupt
handler and the main thread without disabling interrupts. When possible,
this is a better solution — but it may not be supported on your platform.

A note on Ordering : this affects how the compiler and hardware may
reorder instructions, and also has consequences on cache visibility.
Assuming that the target is a single core platform Relaxed is sufficient and
the most efficient choice in this particular case. Stricter ordering will cause
the compiler to emit memory barriers around the atomic operations;
depending on what you're using atomics for you may or may not need this!
The precise details of the atomic model are complicated and best described
elsewhere.

For more details on atomics and ordering, see the nomicon.

https://doc.rust-lang.org/core/sync/atomic/enum.Ordering.html
https://doc.rust-lang.org/nomicon/atomics.html

Abstractions, Send, and Sync
None of the above solutions are especially satisfactory. They require

unsafe blocks which must be very carefully checked and are not
ergonomic. Surely we can do better in Rust!

We can abstract our counter into a safe interface which can be safely
used anywhere else in our code. For this example, we'll use the critical-
section counter, but you could do something very similar with atomics.
use core::cell::UnsafeCell;
use cortex_m::interrupt;

// Our counter is just a wrapper around UnsafeCell<u32>, which
is the heart
// of interior mutability in Rust. By using interior
mutability, we can have
// COUNTER be `static` instead of `static mut`, but still able
to mutate
// its counter value.
struct CSCounter(UnsafeCell<u32>);

const CS_COUNTER_INIT: CSCounter =
CSCounter(UnsafeCell::new(0));

impl CSCounter {
 pub fn reset(&self, _cs: &interrupt::CriticalSection) {
 // By requiring a CriticalSection be passed in, we
know we must
 // be operating inside a CriticalSection, and so can
confidently
 // use this unsafe block (required to call
UnsafeCell::get).
 unsafe { *self.0.get() = 0 };
 }

 pub fn increment(&self, _cs: &interrupt::CriticalSection)

{
 unsafe { *self.0.get() += 1 };
 }
}

// Required to allow static CSCounter. See explanation below.
unsafe impl Sync for CSCounter {}

// COUNTER is no longer `mut` as it uses interior mutability;
// therefore it also no longer requires unsafe blocks to
access.
static COUNTER: CSCounter = CS_COUNTER_INIT;

#[entry]
fn main() -> ! {
 set_timer_1hz();
 let mut last_state = false;
 loop {
 let state = read_signal_level();
 if state && !last_state {
 // No unsafe here!
 interrupt::free(|cs| COUNTER.increment(cs));
 }
 last_state = state;
 }
}

#[interrupt]
fn timer() {
 // We do need to enter a critical section here just to
obtain a valid
 // cs token, even though we know no other interrupt could
pre-empt
 // this one.
 interrupt::free(|cs| COUNTER.reset(cs));

 // We could use unsafe code to generate a fake
CriticalSection if we
 // really wanted to, avoiding the overhead:
 // let cs = unsafe { interrupt::CriticalSection::new() };
}

We've moved our unsafe code to inside our carefully-planned
abstraction, and now our application code does not contain any unsafe
blocks.

This design requires that the application pass a CriticalSection token
in: these tokens are only safely generated by interrupt::free , so by
requiring one be passed in, we ensure we are operating inside a critical
section, without having to actually do the lock ourselves. This guarantee is
provided statically by the compiler: there won't be any runtime overhead
associated with cs . If we had multiple counters, they could all be given the
same cs , without requiring multiple nested critical sections.

This also brings up an important topic for concurrency in Rust: the Send
and Sync traits. To summarise the Rust book, a type is Send when it can
safely be moved to another thread, while it is Sync when it can be safely
shared between multiple threads. In an embedded context, we consider
interrupts to be executing in a separate thread to the application code, so
variables accessed by both an interrupt and the main code must be Sync.

For most types in Rust, both of these traits are automatically derived for
you by the compiler. However, because CSCounter contains an
UnsafeCell , it is not Sync, and therefore we could not make a static
CSCounter : static variables must be Sync, since they can be accessed by
multiple threads.

To tell the compiler we have taken care that the CSCounter is in fact
safe to share between threads, we implement the Sync trait explicitly. As
with the previous use of critical sections, this is only safe on single-core
platforms: with multiple cores, you would need to go to greater lengths to
ensure safety.

https://doc.rust-lang.org/nomicon/send-and-sync.html
https://doc.rust-lang.org/core/cell/struct.UnsafeCell.html

Mutexes
We've created a useful abstraction specific to our counter problem, but

there are many common abstractions used for concurrency.
One such synchronisation primitive is a mutex, short for mutual

exclusion. These constructs ensure exclusive access to a variable, such as
our counter. A thread can attempt to lock (or acquire) the mutex, and either
succeeds immediately, or blocks waiting for the lock to be acquired, or
returns an error that the mutex could not be locked. While that thread holds
the lock, it is granted access to the protected data. When the thread is done,
it unlocks (or releases) the mutex, allowing another thread to lock it. In
Rust, we would usually implement the unlock using the Drop trait to ensure
it is always released when the mutex goes out of scope.

Using a mutex with interrupt handlers can be tricky: it is not normally
acceptable for the interrupt handler to block, and it would be especially
disastrous for it to block waiting for the main thread to release a lock, since
we would then deadlock (the main thread will never release the lock
because execution stays in the interrupt handler). Deadlocking is not
considered unsafe: it is possible even in safe Rust.

To avoid this behaviour entirely, we could implement a mutex which
requires a critical section to lock, just like our counter example. So long as
the critical section must last as long as the lock, we can be sure we have
exclusive access to the wrapped variable without even needing to track the
lock/unlock state of the mutex.

This is in fact done for us in the cortex_m crate! We could have written
our counter using it:
use core::cell::Cell;
use cortex_m::interrupt::Mutex;

static COUNTER: Mutex<Cell<u32>> = Mutex::new(Cell::new(0));

#[entry]
fn main() -> ! {
 set_timer_1hz();

https://doc.rust-lang.org/core/ops/trait.Drop.html

 let mut last_state = false;
 loop {
 let state = read_signal_level();
 if state && !last_state {
 interrupt::free(|cs|

COUNTER.borrow(cs).set(COUNTER.borrow(cs).get() + 1));
 }
 last_state = state;
 }
}

#[interrupt]
fn timer() {
 // We still need to enter a critical section here to
satisfy the Mutex.
 interrupt::free(|cs| COUNTER.borrow(cs).set(0));
}

We're now using Cell , which along with its sibling RefCell is used to
provide safe interior mutability. We've already seen UnsafeCell which is
the bottom layer of interior mutability in Rust: it allows you to obtain
multiple mutable references to its value, but only with unsafe code. A Cell
is like an UnsafeCell but it provides a safe interface: it only permits taking
a copy of the current value or replacing it, not taking a reference, and since
it is not Sync, it cannot be shared between threads. These constraints mean
it's safe to use, but we couldn't use it directly in a static variable as a
static must be Sync.

So why does the example above work? The Mutex<T> implements Sync
for any T which is Send — such as a Cell . It can do this safely because it
only gives access to its contents during a critical section. We're therefore
able to get a safe counter with no unsafe code at all!

This is great for simple types like the u32 of our counter, but what about
more complex types which are not Copy? An extremely common example

https://doc.rust-lang.org/core/cell/struct.Cell.html

in an embedded context is a peripheral struct, which generally is not Copy.
For that, we can turn to RefCell .

Sharing Peripherals
Device crates generated using svd2rust and similar abstractions

provide safe access to peripherals by enforcing that only one instance of the
peripheral struct can exist at a time. This ensures safety, but makes it
difficult to access a peripheral from both the main thread and an interrupt
handler.

To safely share peripheral access, we can use the Mutex we saw before.
We'll also need to use RefCell , which uses a runtime check to ensure only
one reference to a peripheral is given out at a time. This has more overhead
than the plain Cell , but since we are giving out references rather than
copies, we must be sure only one exists at a time.

Finally, we'll also have to account for somehow moving the peripheral
into the shared variable after it has been initialised in the main code. To do
this we can use the Option type, initialised to None and later set to the
instance of the peripheral.
use core::cell::RefCell;
use cortex_m::interrupt::{self, Mutex};
use stm32f4::stm32f405;

static MY_GPIO: Mutex<RefCell<Option<stm32f405::GPIOA>>> =
 Mutex::new(RefCell::new(None));

#[entry]
fn main() -> ! {
 // Obtain the peripheral singletons and configure it.
 // This example is from an svd2rust-generated crate, but
 // most embedded device crates will be similar.
 let dp = stm32f405::Peripherals::take().unwrap();
 let gpioa = &dp.GPIOA;

 // Some sort of configuration function.
 // Assume it sets PA0 to an input and PA1 to an output.
 configure_gpio(gpioa);

https://doc.rust-lang.org/core/cell/struct.RefCell.html

 // Store the GPIOA in the mutex, moving it.
 interrupt::free(|cs|
MY_GPIO.borrow(cs).replace(Some(dp.GPIOA)));
 // We can no longer use `gpioa` or `dp.GPIOA`, and instead
have to
 // access it via the mutex.

 // Be careful to enable the interrupt only after setting
MY_GPIO:
 // otherwise the interrupt might fire while it still
contains None,
 // and as-written (with `unwrap()`), it would panic.
 set_timer_1hz();
 let mut last_state = false;
 loop {
 // We'll now read state as a digital input, via the
mutex
 let state = interrupt::free(|cs| {
 let gpioa = MY_GPIO.borrow(cs).borrow();

gpioa.as_ref().unwrap().idr.read().idr0().bit_is_set()
 });

 if state && !last_state {
 // Set PA1 high if we've seen a rising edge on
PA0.
 interrupt::free(|cs| {
 let gpioa = MY_GPIO.borrow(cs).borrow();
 gpioa.as_ref().unwrap().odr.modify(|_, w|
w.odr1().set_bit());
 });
 }
 last_state = state;
 }
}

#[interrupt]
fn timer() {
 // This time in the interrupt we'll just clear PA0.
 interrupt::free(|cs| {
 // We can use `unwrap()` because we know the interrupt
wasn't enabled
 // until after MY_GPIO was set; otherwise we should
handle the potential
 // for a None value.
 let gpioa = MY_GPIO.borrow(cs).borrow();
 gpioa.as_ref().unwrap().odr.modify(|_, w|
w.odr1().clear_bit());
 });
}

That's quite a lot to take in, so let's break down the important lines.
static MY_GPIO: Mutex<RefCell<Option<stm32f405::GPIOA>>> =
 Mutex::new(RefCell::new(None));

Our shared variable is now a Mutex around a RefCell which contains
an Option . The Mutex ensures we only have access during a critical
section, and therefore makes the variable Sync, even though a plain
RefCell would not be Sync. The RefCell gives us interior mutability with
references, which we'll need to use our GPIOA . The Option lets us initialise
this variable to something empty, and only later actually move the variable
in. We cannot access the peripheral singleton statically, only at runtime, so
this is required.
interrupt::free(|cs|
MY_GPIO.borrow(cs).replace(Some(dp.GPIOA)));

Inside a critical section we can call borrow() on the mutex, which gives
us a reference to the RefCell . We then call replace() to move our new
value into the RefCell .
interrupt::free(|cs| {
 let gpioa = MY_GPIO.borrow(cs).borrow();

 gpioa.as_ref().unwrap().odr.modify(|_, w|
w.odr1().set_bit());
});

Finally, we use MY_GPIO in a safe and concurrent fashion. The critical
section prevents the interrupt firing as usual, and lets us borrow the mutex.
The RefCell then gives us an &Option<GPIOA> , and tracks how long it
remains borrowed - once that reference goes out of scope, the RefCell will
be updated to indicate it is no longer borrowed.

Since we can't move the GPIOA out of the &Option , we need to convert
it to an &Option<&GPIOA> with as_ref() , which we can finally unwrap()
to obtain the &GPIOA which lets us modify the peripheral.

If we need a mutable reference to a shared resource, then borrow_mut
and deref_mut should be used instead. The following code shows an
example using the TIM2 timer.
use core::cell::RefCell;
use core::ops::DerefMut;
use cortex_m::interrupt::{self, Mutex};
use cortex_m::asm::wfi;
use stm32f4::stm32f405;

static G_TIM: Mutex<RefCell<Option<Timer<stm32::TIM2>>>> =
 Mutex::new(RefCell::new(None));

#[entry]
fn main() -> ! {
 let mut cp = cm::Peripherals::take().unwrap();
 let dp = stm32f405::Peripherals::take().unwrap();

 // Some sort of timer configuration function.
 // Assume it configures the TIM2 timer, its NVIC
interrupt,
 // and finally starts the timer.
 let tim = configure_timer_interrupt(&mut cp, dp);

 interrupt::free(|cs| {
 G_TIM.borrow(cs).replace(Some(tim));
 });

 loop {
 wfi();
 }
}

#[interrupt]
fn timer() {
 interrupt::free(|cs| {
 if let Some(ref mut tim)) =
G_TIM.borrow(cs).borrow_mut().deref_mut() {
 tim.start(1.hz());
 }
 });
}

Whew! This is safe, but it is also a little unwieldy. Is there anything else
we can do?

RTIC
One alternative is the RTIC framework, short for Real Time Interrupt-

driven Concurrency. It enforces static priorities and tracks accesses to
static mut variables ("resources") to statically ensure that shared
resources are always accessed safely, without requiring the overhead of
always entering critical sections and using reference counting (as in
RefCell). This has a number of advantages such as guaranteeing no
deadlocks and giving extremely low time and memory overhead.

The framework also includes other features like message passing, which
reduces the need for explicit shared state, and the ability to schedule tasks
to run at a given time, which can be used to implement periodic tasks.
Check out the documentation for more information!

https://github.com/rtic-rs/cortex-m-rtic
https://rtic.rs/

Real Time Operating Systems
Another common model for embedded concurrency is the real-time

operating system (RTOS). While currently less well explored in Rust, they
are widely used in traditional embedded development. Open source
examples include FreeRTOS and ChibiOS. These RTOSs provide support
for running multiple application threads which the CPU swaps between,
either when the threads yield control (called cooperative multitasking) or
based on a regular timer or interrupts (preemptive multitasking). The RTOS
typically provide mutexes and other synchronisation primitives, and often
interoperate with hardware features such as DMA engines.

At the time of writing, there are not many Rust RTOS examples to point
to, but it's an interesting area so watch this space!

https://freertos.org/
http://chibios.org/

Multiple Cores
It is becoming more common to have two or more cores in embedded

processors, which adds an extra layer of complexity to concurrency. All the
examples using a critical section (including the
cortex_m::interrupt::Mutex) assume the only other execution thread is
the interrupt thread, but on a multi-core system that's no longer true.
Instead, we'll need synchronisation primitives designed for multiple cores
(also called SMP, for symmetric multi-processing).

These typically use the atomic instructions we saw earlier, since the
processing system will ensure that atomicity is maintained over all cores.

Covering these topics in detail is currently beyond the scope of this
book, but the general patterns are the same as for the single-core case.

Collections
Eventually you'll want to use dynamic data structures (AKA collections)

in your program. std provides a set of common collections: Vec , String ,
HashMap , etc. All the collections implemented in std use a global dynamic
memory allocator (AKA the heap).

As core is, by definition, free of memory allocations these
implementations are not available there, but they can be found in the alloc
crate that's shipped with the compiler.

If you need collections, a heap allocated implementation is not your only
option. You can also use fixed capacity collections; one such
implementation can be found in the heapless crate.

In this section, we'll explore and compare these two implementations.

https://doc.rust-lang.org/std/vec/struct.Vec.html
https://doc.rust-lang.org/std/string/struct.String.html
https://doc.rust-lang.org/std/collections/struct.HashMap.html
https://crates.io/crates/heapless

Using alloc
The alloc crate is shipped with the standard Rust distribution. To

import the crate you can directly use it without declaring it as a
dependency in your Cargo.toml file.
#![feature(alloc)]

extern crate alloc;

use alloc::vec::Vec;

To be able to use any collection you'll first need use the
global_allocator attribute to declare the global allocator your program
will use. It's required that the allocator you select implements the
GlobalAlloc trait.

For completeness and to keep this section as self-contained as possible
we'll implement a simple bump pointer allocator and use that as the global
allocator. However, we strongly suggest you use a battle tested allocator
from crates.io in your program instead of this allocator.
// Bump pointer allocator implementation

use core::alloc::{GlobalAlloc, Layout};
use core::cell::UnsafeCell;
use core::ptr;

use cortex_m::interrupt;

// Bump pointer allocator for *single* core systems
struct BumpPointerAlloc {
 head: UnsafeCell<usize>,
 end: usize,
}

unsafe impl Sync for BumpPointerAlloc {}

https://doc.rust-lang.org/core/alloc/trait.GlobalAlloc.html

unsafe impl GlobalAlloc for BumpPointerAlloc {
 unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
 // `interrupt::free` is a critical section that makes
our allocator safe
 // to use from within interrupts
 interrupt::free(|_| {
 let head = self.head.get();
 let size = layout.size();
 let align = layout.align();
 let align_mask = !(align - 1);

 // move start up to the next alignment boundary
 let start = (*head + align - 1) & align_mask;

 if start + size > self.end {
 // a null pointer signal an Out Of Memory
condition
 ptr::null_mut()
 } else {
 *head = start + size;
 start as *mut u8
 }
 })
 }

 unsafe fn dealloc(&self, _: *mut u8, _: Layout) {
 // this allocator never deallocates memory
 }
}

// Declaration of the global memory allocator
// NOTE the user must ensure that the memory region
`[0x2000_0100, 0x2000_0200]`
// is not used by other parts of the program
#[global_allocator]
static HEAP: BumpPointerAlloc = BumpPointerAlloc {

 head: UnsafeCell::new(0x2000_0100),
 end: 0x2000_0200,
};

Apart from selecting a global allocator the user will also have to define
how Out Of Memory (OOM) errors are handled using the unstable
alloc_error_handler attribute.
#![feature(alloc_error_handler)]

use cortex_m::asm;

#[alloc_error_handler]
fn on_oom(_layout: Layout) -> ! {
 asm::bkpt();

 loop {}
}

Once all that is in place, the user can finally use the collections in
alloc .
#[entry]
fn main() -> ! {
 let mut xs = Vec::new();

 xs.push(42);
 assert!(xs.pop(), Some(42));

 loop {
 // ..
 }
}

If you have used the collections in the std crate then these will be
familiar as they are exact same implementation.

Using heapless
heapless requires no setup as its collections don't depend on a global

memory allocator. Just use its collections and proceed to instantiate them:
// heapless version: v0.4.x
use heapless::Vec;
use heapless::consts::*;

#[entry]
fn main() -> ! {
 let mut xs: Vec<_, U8> = Vec::new();

 xs.push(42).unwrap();
 assert_eq!(xs.pop(), Some(42));
 loop {}
}

You'll note two differences between these collections and the ones in
alloc .

First, you have to declare upfront the capacity of the collection.
heapless collections never reallocate and have fixed capacities; this
capacity is part of the type signature of the collection. In this case we have
declared that xs has a capacity of 8 elements that is the vector can, at most,
hold 8 elements. This is indicated by the U8 (see typenum) in the type
signature.

Second, the push method, and many other methods, return a Result .
Since the heapless collections have fixed capacity all operations that
insert elements into the collection can potentially fail. The API reflects this
problem by returning a Result indicating whether the operation succeeded
or not. In contrast, alloc collections will reallocate themselves on the heap
to increase their capacity.

As of version v0.4.x all heapless collections store all their elements
inline. This means that an operation like let x =

https://crates.io/crates/typenum

heapless::Vec::new(); will allocate the collection on the stack, but it's
also possible to allocate the collection on a static variable, or even on the
heap (Box<Vec<_, _>>).

Trade-offs
Keep these in mind when choosing between heap allocated, relocatable

collections and fixed capacity collections.

Out Of Memory and error handling
With heap allocations Out Of Memory is always a possibility and can

occur in any place where a collection may need to grow: for example, all
alloc::Vec.push invocations can potentially generate an OOM condition.
Thus some operations can implicitly fail. Some alloc collections expose
try_reserve methods that let you check for potential OOM conditions
when growing the collection but you need be proactive about using them.

If you exclusively use heapless collections and you don't use a
memory allocator for anything else then an OOM condition is impossible.
Instead, you'll have to deal with collections running out of capacity on a
case by case basis. That is you'll have deal with all the Result s returned by
methods like Vec.push .

OOM failures can be harder to debug than say unwrap -ing on all
Result s returned by heapless::Vec.push because the observed location
of failure may not match with the location of the cause of the problem. For
example, even vec.reserve(1) can trigger an OOM if the allocator is
nearly exhausted because some other collection was leaking memory
(memory leaks are possible in safe Rust).

Memory usage
Reasoning about memory usage of heap allocated collections is hard

because the capacity of long lived collections can change at runtime. Some
operations may implicitly reallocate the collection increasing its memory
usage, and some collections expose methods like shrink_to_fit that can
potentially reduce the memory used by the collection -- ultimately, it's up to
the allocator to decide whether to actually shrink the memory allocation or
not. Additionally, the allocator may have to deal with memory
fragmentation which can increase the apparent memory usage.

On the other hand if you exclusively use fixed capacity collections, store
most of them in static variables and set a maximum size for the call stack
then the linker will detect if you try to use more memory than what's
physically available.

Furthermore, fixed capacity collections allocated on the stack will be
reported by -Z emit-stack-sizes flag which means that tools that
analyze stack usage (like stack-sizes) will include them in their analysis.

However, fixed capacity collections can not be shrunk which can result
in lower load factors (the ratio between the size of the collection and its
capacity) than what relocatable collections can achieve.

Worst Case Execution Time (WCET)
If you are building time sensitive applications or hard real time

applications then you care, maybe a lot, about the worst case execution time
of the different parts of your program.

The alloc collections can reallocate so the WCET of operations that
may grow the collection will also include the time it takes to reallocate the
collection, which itself depends on the runtime capacity of the collection.
This makes it hard to determine the WCET of, for example, the
alloc::Vec.push operation as it depends on both the allocator being used
and its runtime capacity.

On the other hand fixed capacity collections never reallocate so all
operations have a predictable execution time. For example,
heapless::Vec.push executes in constant time.

Ease of use
alloc requires setting up a global allocator whereas heapless does

not. However, heapless requires you to pick the capacity of each
collection that you instantiate.

The alloc API will be familiar to virtually every Rust developer. The
heapless API tries to closely mimic the alloc API but it will never be
exactly the same due to its explicit error handling -- some developers may
feel the explicit error handling is excessive or too cumbersome.

https://doc.rust-lang.org/beta/unstable-book/compiler-flags/emit-stack-sizes.html
https://crates.io/crates/stack-sizes

Design Patterns
This chapter aims to collect various useful design patterns for embedded

Rust.

HAL Design Patterns
This is a set of common and recommended patterns for writing hardware

abstraction layers (HALs) for microcontrollers in Rust. These patterns are
intended to be used in addition to the existing Rust API Guidelines when
writing HALs for microcontrollers.

Checklist

Naming
Interoperability
Predictability
GPIO

https://rust-lang.github.io/api-guidelines/
clbr://internal.invalid/book/OEBPS/design-patterns/hal/checklist.md
clbr://internal.invalid/book/OEBPS/design-patterns/hal/naming.md
clbr://internal.invalid/book/OEBPS/design-patterns/hal/interoperability.md
clbr://internal.invalid/book/OEBPS/design-patterns/hal/predictability.md
clbr://internal.invalid/book/OEBPS/design-patterns/hal/gpio.md

HAL Design Patterns Checklist
Naming (crate aligns with Rust naming conventions)

 The crate is named appropriately (C-CRATE-NAME)
Interoperability (crate interacts nicely with other library
functionality)

 Wrapper types provide a destructor method (C-FREE)
 HALs reexport their register access crate (C-REEXPORT-

PAC)
 Types implement the embedded-hal traits (C-HAL-TRAITS)

Predictability (crate enables legible code that acts how it looks)

 Constructors are used instead of extension traits (C-CTOR)
GPIO Interfaces (GPIO Interfaces follow a common pattern)

 Pin types are zero-sized by default (C-ZST-PIN)
 Pin types provide methods to erase pin and port (C-ERASED-

PIN)
 Pin state should be encoded as type parameters (C-PIN-

STATE)

clbr://internal.invalid/book/OEBPS/design-patterns/hal/gpio.md#c-zst-pin
clbr://internal.invalid/book/OEBPS/design-patterns/hal/gpio.md#c-erased-pin
clbr://internal.invalid/book/OEBPS/design-patterns/hal/gpio.md#c-pin-state

Naming

The crate is named appropriately (C-CRATE-
NAME)

HAL crates should be named after the chip or family of chips they aim
to support. Their name should end with -hal to distinguish them from
register access crates. The name should not contain underscores (use dashes
instead).

Interoperability

Wrapper types provide a destructor method (C-
FREE)

Any non- Copy wrapper type provided by the HAL should provide a
free method that consumes the wrapper and returns back the raw
peripheral (and possibly other objects) it was created from.

The method should shut down and reset the peripheral if necessary.
Calling new with the raw peripheral returned by free should not fail due
to an unexpected state of the peripheral.

If the HAL type requires other non- Copy objects to be constructed (for
example I/O pins), any such object should be released and returned by
free as well. free should return a tuple in that case.

For example:
pub struct TIMER0;
pub struct Timer(TIMER0);

impl Timer {
 pub fn new(periph: TIMER0) -> Self {
 Self(periph)
 }

 pub fn free(self) -> TIMER0 {
 self.0
 }
}

HALs reexport their register access crate (C-
REEXPORT-PAC)

HALs can be written on top of svd2rust-generated PACs, or on top of
other crates that provide raw register access. HALs should always reexport
the register access crate they are based on in their crate root.

A PAC should be reexported under the name pac , regardless of the
actual name of the crate, as the name of the HAL should already make it
clear what PAC is being accessed.

https://github.com/rust-embedded/svd2rust

Types implement the embedded-hal traits (C-HAL-
TRAITS)

Types provided by the HAL should implement all applicable traits
provided by the embedded-hal crate.

Multiple traits may be implemented for the same type.

https://github.com/rust-embedded/embedded-hal

Predictability

Constructors are used instead of extension traits
(C-CTOR)

All peripherals to which the HAL adds functionality should be wrapped
in a new type, even if no additional fields are required for that functionality.

Extension traits implemented for the raw peripheral should be avoided.

Methods are decorated with #[inline] where
appropriate (C-INLINE)

The Rust compiler does not by default perform full inlining across crate
boundaries. As embedded applications are sensitive to unexpected code size
increases, #[inline] should be used to guide the compiler as follows:

All "small" functions should be marked #[inline] . What qualifies as
"small" is subjective, but generally all functions that are expected to
compile down to single-digit instruction sequences qualify as small.
Functions that are very likely to take constant values as parameters
should be marked as #[inline] . This enables the compiler to
compute even complicated initialization logic at compile time,
provided the function inputs are known.

Recommendations for GPIO
Interfaces

Pin types are zero-sized by default (C-ZST-PIN)
GPIO Interfaces exposed by the HAL should provide dedicated zero-

sized types for each pin on every interface or port, resulting in a zero-cost
GPIO abstraction when all pin assignments are statically known.

Each GPIO Interface or Port should implement a split method
returning a struct with every pin.

Example:
pub struct PA0;
pub struct PA1;
// ...

pub struct PortA;

impl PortA {
 pub fn split(self) -> PortAPins {
 PortAPins {
 pa0: PA0,
 pa1: PA1,
 // ...
 }
 }
}

pub struct PortAPins {
 pub pa0: PA0,
 pub pa1: PA1,
 // ...
}

Pin types provide methods to erase pin and port
(C-ERASED-PIN)

Pins should provide type erasure methods that move their properties
from compile time to runtime, and allow more flexibility in applications.

Example:
/// Port A, pin 0.
pub struct PA0;

impl PA0 {
 pub fn erase_pin(self) -> PA {
 PA { pin: 0 }
 }
}

/// A pin on port A.
pub struct PA {
 /// The pin number.
 pin: u8,
}

impl PA {
 pub fn erase_port(self) -> Pin {
 Pin {
 port: Port::A,
 pin: self.pin,
 }
 }
}

pub struct Pin {
 port: Port,
 pin: u8,
 // (these fields can be packed to reduce the memory

footprint)
}

enum Port {
 A,
 B,
 C,
 D,
}

Pin state should be encoded as type parameters
(C-PIN-STATE)

Pins may be configured as input or output with different characteristics
depending on the chip or family. This state should be encoded in the type
system to prevent use of pins in incorrect states.

Additional, chip-specific state (eg. drive strength) may also be encoded
in this way, using additional type parameters.

Methods for changing the pin state should be provided as into_input
and into_output methods.

Additionally, with_{input,output}_state methods should be
provided that temporarily reconfigure a pin in a different state without
moving it.

The following methods should be provided for every pin type (that is,
both erased and non-erased pin types should provide the same API):

pub fn into_input<N: InputState>(self, input: N) -> Pin<N>

pub fn into_output<N: OutputState>(self, output: N) ->

Pin<N>

pub fn with_input_state<N: InputState, R>(
 &mut self,
 input: N,
 f: impl FnOnce(&mut PA1<N>) -> R,
) -> R

pub fn with_output_state<N: OutputState, R>(
 &mut self,
 output: N,
 f: impl FnOnce(&mut PA1<N>) -> R,
) -> R

Pin state should be bounded by sealed traits. Users of the HAL should
have no need to add their own state. The traits can provide HAL-specific
methods required to implement the pin state API.

Example:

use std::marker::PhantomData;
mod sealed {
 pub trait Sealed {}
}

pub trait PinState: sealed::Sealed {}
pub trait OutputState: sealed::Sealed {}
pub trait InputState: sealed::Sealed {
 // ...
}

pub struct Output<S: OutputState> {
 _p: PhantomData<S>,
}

impl<S: OutputState> PinState for Output<S> {}
impl<S: OutputState> sealed::Sealed for Output<S> {}

pub struct PushPull;
pub struct OpenDrain;

impl OutputState for PushPull {}
impl OutputState for OpenDrain {}
impl sealed::Sealed for PushPull {}
impl sealed::Sealed for OpenDrain {}

pub struct Input<S: InputState> {
 _p: PhantomData<S>,
}

impl<S: InputState> PinState for Input<S> {}
impl<S: InputState> sealed::Sealed for Input<S> {}

pub struct Floating;
pub struct PullUp;

pub struct PullDown;

impl InputState for Floating {}
impl InputState for PullUp {}
impl InputState for PullDown {}
impl sealed::Sealed for Floating {}
impl sealed::Sealed for PullUp {}
impl sealed::Sealed for PullDown {}

pub struct PA1<S: PinState> {
 _p: PhantomData<S>,
}

impl<S: PinState> PA1<S> {
 pub fn into_input<N: InputState>(self, input: N) ->
PA1<Input<N>> {
 todo!()
 }

 pub fn into_output<N: OutputState>(self, output: N) ->
PA1<Output<N>> {
 todo!()
 }

 pub fn with_input_state<N: InputState, R>(
 &mut self,
 input: N,
 f: impl FnOnce(&mut PA1<N>) -> R,
) -> R {
 todo!()
 }

 pub fn with_output_state<N: OutputState, R>(
 &mut self,
 output: N,
 f: impl FnOnce(&mut PA1<N>) -> R,

) -> R {
 todo!()
 }
}

// Same for `PA` and `Pin`, and other pin types.

Tips for embedded C developers
This chapter collects a variety of tips that might be useful to experienced

embedded C developers looking to start writing Rust. It will especially
highlight how things you might already be used to in C are different in
Rust.

Preprocessor
In embedded C it is very common to use the preprocessor for a variety of

purposes, such as:

Compile-time selection of code blocks with #ifdef
Compile-time array sizes and computations
Macros to simplify common patterns (to avoid function call overhead)

In Rust there is no preprocessor, and so many of these use cases are
addressed differently. In the rest of this section we cover various
alternatives to using the preprocessor.

Compile-Time Code Selection
The closest match to #ifdef ... #endif in Rust are Cargo features.

These are a little more formal than the C preprocessor: all possible features
are explicitly listed per crate, and can only be either on or off. Features are
turned on when you list a crate as a dependency, and are additive: if any
crate in your dependency tree enables a feature for another crate, that
feature will be enabled for all users of that crate.

For example, you might have a crate which provides a library of signal
processing primitives. Each one might take some extra time to compile or
declare some large table of constants which you'd like to avoid. You could
declare a Cargo feature for each component in your Cargo.toml :
[features]
FIR = []
IIR = []

Then, in your code, use #[cfg(feature="FIR")] to control what is
included.
/// In your top-level lib.rs

#[cfg(feature="FIR")]
pub mod fir;

https://doc.rust-lang.org/cargo/reference/manifest.html#the-features-section

#[cfg(feature="IIR")]
pub mod iir;

You can similarly include code blocks only if a feature is not enabled, or
if any combination of features are or are not enabled.

Additionally, Rust provides a number of automatically-set conditions
you can use, such as target_arch to select different code based on
architecture. For full details of the conditional compilation support, refer to
the conditional compilation chapter of the Rust reference.

The conditional compilation will only apply to the next statement or
block. If a block can not be used in the current scope then the cfg attribute
will need to be used multiple times. It's worth noting that most of the time it
is better to simply include all the code and allow the compiler to remove
dead code when optimising: it's simpler for you and your users, and in
general the compiler will do a good job of removing unused code.

Compile-Time Sizes and Computation
Rust supports const fn , functions which are guaranteed to be evaluable

at compile-time and can therefore be used where constants are required,
such as in the size of arrays. This can be used alongside features mentioned
above, for example:
const fn array_size() -> usize {
 #[cfg(feature="use_more_ram")]
 { 1024 }
 #[cfg(not(feature="use_more_ram"))]
 { 128 }
}

static BUF: [u32; array_size()] = [0u32; array_size()];

These are new to stable Rust as of 1.31, so documentation is still sparse.
The functionality available to const fn is also very limited at the time of
writing; in future Rust releases it is expected to expand on what is permitted
in a const fn .

Macros

https://doc.rust-lang.org/reference/conditional-compilation.html

Rust provides an extremely powerful macro system. While the C
preprocessor operates almost directly on the text of your source code, the
Rust macro system operates at a higher level. There are two varieties of
Rust macro: macros by example and procedural macros. The former are
simpler and most common; they look like function calls and can expand to a
complete expression, statement, item, or pattern. Procedural macros are
more complex but permit extremely powerful additions to the Rust
language: they can transform arbitrary Rust syntax into new Rust syntax.

In general, where you might have used a C preprocessor macro, you
probably want to see if a macro-by-example can do the job instead. They
can be defined in your crate and easily used by your own crate or exported
for other users. Be aware that since they must expand to complete
expressions, statements, items, or patterns, some use cases of C
preprocessor macros will not work, for example a macro that expands to
part of a variable name or an incomplete set of items in a list.

As with Cargo features, it is worth considering if you even need the
macro. In many cases a regular function is easier to understand and will be
inlined to the same code as a macro. The #[inline] and #

[inline(always)] attributes give you further control over this process,
although care should be taken here as well — the compiler will
automatically inline functions from the same crate where appropriate, so
forcing it to do so inappropriately might actually lead to decreased
performance.

Explaining the entire Rust macro system is out of scope for this tips
page, so you are encouraged to consult the Rust documentation for full
details.

https://doc.rust-lang.org/book/ch19-06-macros.html
https://doc.rust-lang.org/reference/attributes.html#inline-attribute

Build System
Most Rust crates are built using Cargo (although it is not required). This

takes care of many difficult problems with traditional build systems.
However, you may wish to customise the build process. Cargo provides
build.rs scripts for this purpose. They are Rust scripts which can interact
with the Cargo build system as required.

Common use cases for build scripts include:

provide build-time information, for example statically embedding the
build date or Git commit hash into your executable
generate linker scripts at build time depending on selected features or
other logic
change the Cargo build configuration
add extra static libraries to link against

At present there is no support for post-build scripts, which you might
traditionally have used for tasks like automatic generation of binaries from
the build objects or printing build information.

Cross-Compiling
Using Cargo for your build system also simplifies cross-compiling. In

most cases it suffices to tell Cargo --target thumbv6m-none-eabi and
find a suitable executable in target/thumbv6m-none-eabi/debug/myapp .

For platforms not natively supported by Rust, you will need to build
libcore for that target yourself. On such platforms, Xargo can be used as a
stand-in for Cargo which automatically builds libcore for you.

https://doc.rust-lang.org/cargo/reference/build-scripts.html
https://github.com/japaric/xargo

Iterators vs Array Access
In C you are probably used to accessing arrays directly by their index:

int16_t arr[16];
int i;
for(i=0; i<sizeof(arr)/sizeof(arr[0]); i++) {
 process(arr[i]);
}

In Rust this is an anti-pattern: indexed access can be slower (as it needs
to be bounds checked) and may prevent various compiler optimisations.
This is an important distinction and worth repeating: Rust will check for
out-of-bounds access on manual array indexing to guarantee memory safety,
while C will happily index outside the array.

Instead, use iterators:
let arr = [0u16; 16];
for element in arr.iter() {
 process(*element);
}

Iterators provide a powerful array of functionality you would have to
implement manually in C, such as chaining, zipping, enumerating, finding
the min or max, summing, and more. Iterator methods can also be chained,
giving very readable data processing code.

See the Iterators in the Book and Iterator documentation for more
details.

https://doc.rust-lang.org/book/ch13-02-iterators.html
https://doc.rust-lang.org/core/iter/trait.Iterator.html

References vs Pointers
In Rust, pointers (called raw pointers) exist but are only used in specific

circumstances, as dereferencing them is always considered unsafe -- Rust
cannot provide its usual guarantees about what might be behind the pointer.

In most cases, we instead use references, indicated by the & symbol, or
mutable references, indicated by &mut . References behave similarly to
pointers, in that they can be dereferenced to access the underlying values,
but they are a key part of Rust's ownership system: Rust will strictly enforce
that you may only have one mutable reference or multiple non-mutable
references to the same value at any given time.

In practice this means you have to be more careful about whether you
need mutable access to data: where in C the default is mutable and you
must be explicit about const , in Rust the opposite is true.

One situation where you might still use raw pointers is interacting
directly with hardware (for example, writing a pointer to a buffer into a
DMA peripheral register), and they are also used under the hood for all
peripheral access crates to allow you to read and write memory-mapped
registers.

https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html#dereferencing-a-raw-pointer

Volatile Access
In C, individual variables may be marked volatile , indicating to the

compiler that the value in the variable may change between accesses.
Volatile variables are commonly used in an embedded context for memory-
mapped registers.

In Rust, instead of marking a variable as volatile , we use specific
methods to perform volatile access: core::ptr::read_volatile and
core::ptr::write_volatile . These methods take a *const T or a *mut
T (raw pointers, as discussed above) and perform a volatile read or write.

For example, in C you might write:
volatile bool signalled = false;

void ISR() {
 // Signal that the interrupt has occurred
 signalled = true;
}

void driver() {
 while(true) {
 // Sleep until signalled
 while(!signalled) { WFI(); }
 // Reset signalled indicator
 signalled = false;
 // Perform some task that was waiting for the
interrupt
 run_task();
 }
}

The equivalent in Rust would use volatile methods on each access:
static mut SIGNALLED: bool = false;

#[interrupt]

https://doc.rust-lang.org/core/ptr/fn.read_volatile.html
https://doc.rust-lang.org/core/ptr/fn.write_volatile.html

fn ISR() {
 // Signal that the interrupt has occurred
 // (In real code, you should consider a higher level
primitive,
 // such as an atomic type).
 unsafe { core::ptr::write_volatile(&mut SIGNALLED, true)
};
}

fn driver() {
 loop {
 // Sleep until signalled
 while unsafe { !core::ptr::read_volatile(&SIGNALLED) }
{}
 // Reset signalled indicator
 unsafe { core::ptr::write_volatile(&mut SIGNALLED,
false) };
 // Perform some task that was waiting for the
interrupt
 run_task();
 }
}

A few things are worth noting in the code sample:

We can pass &mut SIGNALLED into the function requiring *mut T ,
since &mut T automatically converts to a *mut T (and the same for
*const T)
We need unsafe blocks for the read_volatile / write_volatile
methods, since they are unsafe functions. It is the programmer's
responsibility to ensure safe use: see the methods' documentation for
further details.

It is rare to require these functions directly in your code, as they will
usually be taken care of for you by higher-level libraries. For memory
mapped peripherals, the peripheral access crates will implement volatile

access automatically, while for concurrency primitives there are better
abstractions available (see the Concurrency chapter).

clbr://internal.invalid/book/OEBPS/concurrency/index.md

Packed and Aligned Types
In embedded C it is common to tell the compiler a variable must have a

certain alignment or a struct must be packed rather than aligned, usually to
meet specific hardware or protocol requirements.

In Rust this is controlled by the repr attribute on a struct or union. The
default representation provides no guarantees of layout, so should not be
used for code that interoperates with hardware or C. The compiler may re-
order struct members or insert padding and the behaviour may change with
future versions of Rust.
struct Foo {
 x: u16,
 y: u8,
 z: u16,
}

fn main() {
 let v = Foo { x: 0, y: 0, z: 0 };
 println!("{:p} {:p} {:p}", &v.x, &v.y, &v.z);
}

// 0x7ffecb3511d0 0x7ffecb3511d4 0x7ffecb3511d2
// Note ordering has been changed to x, z, y to improve
packing.

To ensure layouts that are interoperable with C, use repr(C) :
#[repr(C)]
struct Foo {
 x: u16,
 y: u8,
 z: u16,
}

fn main() {
 let v = Foo { x: 0, y: 0, z: 0 };

 println!("{:p} {:p} {:p}", &v.x, &v.y, &v.z);
}

// 0x7fffd0d84c60 0x7fffd0d84c62 0x7fffd0d84c64
// Ordering is preserved and the layout will not change over
time.
// `z` is two-byte aligned so a byte of padding exists between
`y` and `z`.

To ensure a packed representation, use repr(packed) :
#[repr(packed)]
struct Foo {
 x: u16,
 y: u8,
 z: u16,
}

fn main() {
 let v = Foo { x: 0, y: 0, z: 0 };
 // References must always be aligned, so to check the
addresses of the
 // struct's fields, we use `std::ptr::addr_of!()` to get a
raw pointer
 // instead of just printing `&v.x`.
 let px = std::ptr::addr_of!(v.x);
 let py = std::ptr::addr_of!(v.y);
 let pz = std::ptr::addr_of!(v.z);
 println!("{:p} {:p} {:p}", px, py, pz);
}

// 0x7ffd33598490 0x7ffd33598492 0x7ffd33598493
// No padding has been inserted between `y` and `z`, so now
`z` is unaligned.

Note that using repr(packed) also sets the alignment of the type to 1 .

Finally, to specify a specific alignment, use repr(align(n)) , where n
is the number of bytes to align to (and must be a power of two):
#[repr(C)]
#[repr(align(4096))]
struct Foo {
 x: u16,
 y: u8,
 z: u16,
}

fn main() {
 let v = Foo { x: 0, y: 0, z: 0 };
 let u = Foo { x: 0, y: 0, z: 0 };
 println!("{:p} {:p} {:p}", &v.x, &v.y, &v.z);
 println!("{:p} {:p} {:p}", &u.x, &u.y, &u.z);
}

// 0x7ffec909a000 0x7ffec909a002 0x7ffec909a004
// 0x7ffec909b000 0x7ffec909b002 0x7ffec909b004
// The two instances `u` and `v` have been placed on 4096-byte
alignments,
// evidenced by the `000` at the end of their addresses.

Note we can combine repr(C) with repr(align(n)) to obtain an
aligned and C-compatible layout. It is not permissible to combine
repr(align(n)) with repr(packed) , since repr(packed) sets the
alignment to 1 . It is also not permissible for a repr(packed) type to
contain a repr(align(n)) type.

For further details on type layouts, refer to the type layout chapter of the
Rust Reference.

https://doc.rust-lang.org/reference/type-layout.html

Other Resources

In this book:

A little C with your Rust
A little Rust with your C

The Rust Embedded FAQs
Rust Pointers for C Programmers
I used to use pointers - now what?

clbr://internal.invalid/book/OEBPS/interoperability/c-with-rust.md
clbr://internal.invalid/book/OEBPS/interoperability/rust-with-c.md
https://docs.rust-embedded.org/faq.html
http://blahg.josefsipek.net/?p=580
https://github.com/diwic/reffers-rs/blob/master/docs/Pointers.md

Interoperability
Interoperability between Rust and C code is always dependent on

transforming data between the two languages. For this purpose, there is a
dedicated module in the stdlib called std::ffi .

std::ffi provides type definitions for C primitive types, such as char ,
int , and long . It also provides some utility for converting more complex
types such as strings, mapping both &str and String to C types that are
easier and safer to handle.

As of Rust 1.30, functionalities of std::ffi are available in either
core::ffi or alloc::ffi depending on whether or not memory
allocation is involved. The cty crate and the cstr_core crate also offer
similar functionalities.

Rust type Intermediate C type
String CString char *

&str CStr const char *

() c_void void

u32 or u64 c_uint unsigned int

etc

A value of a C primitive type can be used as one of the corresponding
Rust type and vice versa, since the former is simply a type alias of the latter.
For example, the following code compiles on platforms where unsigned
int is 32-bit long.
fn foo(num: u32) {
 let c_num: c_uint = num;
 let r_num: u32 = c_num;
}

https://doc.rust-lang.org/std/ffi/index.html
https://crates.io/crates/cty
https://crates.io/crates/cstr_core

Interoperability with other build systems
A common requirement for including Rust in your embedded project is

combining Cargo with your existing build system, such as make or cmake.
We are collecting examples and use cases for this on our issue tracker in

issue #61.

https://github.com/rust-embedded/book/issues/61

Interoperability with RTOSs
Integrating Rust with an RTOS such as FreeRTOS or ChibiOS is still a

work in progress; especially calling RTOS functions from Rust can be
tricky.

We are collecting examples and use cases for this on our issue tracker in
issue #62.

https://github.com/rust-embedded/book/issues/62

A little C with your Rust
Using C or C++ inside of a Rust project consists of two major parts:

Wrapping the exposed C API for use with Rust
Building your C or C++ code to be integrated with the Rust code

As C++ does not have a stable ABI for the Rust compiler to target, it is
recommended to use the C ABI when combining Rust with C or C++.

Defining the interface
Before consuming C or C++ code from Rust, it is necessary to define (in

Rust) what data types and function signatures exist in the linked code. In C
or C++, you would include a header (.h or .hpp) file which defines this
data. In Rust, it is necessary to either manually translate these definitions to
Rust, or use a tool to generate these definitions.

First, we will cover manually translating these definitions from C/C++ to
Rust.

Wrapping C functions and Datatypes
Typically, libraries written in C or C++ will provide a header file

defining all types and functions used in public interfaces. An example file
may look like this:
/* File: cool.h */
typedef struct CoolStruct {
 int x;
 int y;
} CoolStruct;

void cool_function(int i, char c, CoolStruct* cs);

When translated to Rust, this interface would look as such:
/* File: cool_bindings.rs */
#[repr(C)]
pub struct CoolStruct {
 pub x: cty::c_int,
 pub y: cty::c_int,
}

extern "C" {
 pub fn cool_function(
 i: cty::c_int,
 c: cty::c_char,
 cs: *mut CoolStruct

);
}

Let's take a look at this definition one piece at a time, to explain each of
the parts.
#[repr(C)]
pub struct CoolStruct { ... }

By default, Rust does not guarantee order, padding, or the size of data
included in a struct . In order to guarantee compatibility with C code, we
include the #[repr(C)] attribute, which instructs the Rust compiler to
always use the same rules C does for organizing data within a struct.
pub x: cty::c_int,
pub y: cty::c_int,

Due to the flexibility of how C or C++ defines an int or char , it is
recommended to use primitive data types defined in cty , which will map
types from C to types in Rust.
extern "C" { pub fn cool_function(...); }

This statement defines the signature of a function that uses the C ABI,
called cool_function . By defining the signature without defining the body
of the function, the definition of this function will need to be provided
elsewhere, or linked into the final library or binary from a static library.
 i: cty::c_int,
 c: cty::c_char,
 cs: *mut CoolStruct

Similar to our datatype above, we define the datatypes of the function
arguments using C-compatible definitions. We also retain the same
argument names, for clarity.

We have one new type here, *mut CoolStruct . As C does not have a
concept of Rust's references, which would look like this: &mut

CoolStruct , we instead have a raw pointer. As dereferencing this pointer is
unsafe , and the pointer may in fact be a null pointer, care must be taken
to ensure the guarantees typical of Rust when interacting with C or C++
code.

Automatically generating the interface
Rather than manually generating these interfaces, which may be tedious

and error prone, there is a tool called bindgen which will perform these
conversions automatically. For instructions of the usage of bindgen, please
refer to the bindgen user's manual, however the typical process consists of
the following:

1. Gather all C or C++ headers defining interfaces or datatypes you
would like to use with Rust.

2. Write a bindings.h file, which #include "..."'s each of the files you
gathered in step one.

3. Feed this bindings.h file, along with any compilation flags used to
compile your code into bindgen. Tip: use
Builder.ctypes_prefix("cty") / --ctypes-prefix=cty and
Builder.use_core() / --use-core to make the generated code #!
[no_std] compatible.

4. bindgen will produce the generated Rust code to the output of the
terminal window. This output may be piped to a file in your project,
such as bindings.rs. You may use this file in your Rust project to
interact with C/C++ code compiled and linked as an external library.
Tip: don't forget to use the cty crate if your types in the generated
bindings are prefixed with cty.

https://github.com/rust-lang/rust-bindgen
https://github.com/rust-lang/rust-bindgen
https://rust-lang.github.io/rust-bindgen/
https://crates.io/crates/cty

Building your C/C++ code
As the Rust compiler does not directly know how to compile C or C++

code (or code from any other language, which presents a C interface), it is
necessary to compile your non-Rust code ahead of time.

For embedded projects, this most commonly means compiling the
C/C++ code to a static archive (such as cool-library.a), which can then
be combined with your Rust code at the final linking step.

If the library you would like to use is already distributed as a static
archive, it is not necessary to rebuild your code. Just convert the provided
interface header file as described above, and include the static archive at
compile/link time.

If your code exists as a source project, it will be necessary to compile
your C/C++ code to a static library, either by triggering your existing build
system (such as make , CMake , etc.), or by porting the necessary
compilation steps to use a tool called the cc crate. For both of these steps,
it is necessary to use a build.rs script.

Rust build.rs build scripts
A build.rs script is a file written in Rust syntax, that is executed on

your compilation machine, AFTER dependencies of your project have been
built, but BEFORE your project is built.

The full reference may be found here. build.rs scripts are useful for
generating code (such as via bindgen), calling out to external build systems
such as Make , or directly compiling C/C++ through use of the cc crate.

Triggering external build systems
For projects with complex external projects or build systems, it may be

easiest to use std::process::Command to "shell out" to your other build
systems by traversing relative paths, calling a fixed command (such as make
library), and then copying the resulting static library to the proper
location in the target build directory.

https://doc.rust-lang.org/cargo/reference/build-scripts.html
https://github.com/rust-lang/rust-bindgen
https://doc.rust-lang.org/std/process/struct.Command.html

While your crate may be targeting a no_std embedded platform, your
build.rs executes only on machines compiling your crate. This means
you may use any Rust crates which will run on your compilation host.

Building C/C++ code with the cc crate
For projects with limited dependencies or complexity, or for projects

where it is difficult to modify the build system to produce a static library
(rather than a final binary or executable), it may be easier to instead utilize
the cc crate, which provides an idiomatic Rust interface to the compiler
provided by the host.

In the simplest case of compiling a single C file as a dependency to a
static library, an example build.rs script using the cc crate would look
like this:
fn main() {
 cc::Build::new()
 .file("src/foo.c")
 .compile("foo");
}

The build.rs is placed at the root of the package. Then cargo build
will compile and execute it before the build of the package. A static archive
named libfoo.a is generated and placed in the target directory.

https://github.com/alexcrichton/cc-rs
https://github.com/alexcrichton/cc-rs

A little Rust with your C
Using Rust code inside a C or C++ project mostly consists of two parts.

Creating a C-friendly API in Rust
Embedding your Rust project into an external build system

Apart from cargo and meson , most build systems don't have native
Rust support. So you're most likely best off just using cargo for compiling
your crate and any dependencies.

Setting up a project
Create a new cargo project as usual.
There are flags to tell cargo to emit a systems library, instead of its

regular rust target. This also allows you to set a different output name for
your library, if you want it to differ from the rest of your crate.
[lib]
name = "your_crate"
crate-type = ["cdylib"] # Creates dynamic lib
crate-type = ["staticlib"] # Creates static lib

Building a C API
Because C++ has no stable ABI for the Rust compiler to target, we use

C for any interoperability between different languages. This is no exception
when using Rust inside of C and C++ code.

#[no_mangle]
The Rust compiler mangles symbol names differently than native code

linkers expect. As such, any function that Rust exports to be used outside of
Rust needs to be told not to be mangled by the compiler.

extern "C"
By default, any function you write in Rust will use the Rust ABI (which

is also not stabilized). Instead, when building outwards facing FFI APIs we
need to tell the compiler to use the system ABI.

Depending on your platform, you might want to target a specific ABI
version, which are documented here.

Putting these parts together, you get a function that looks roughly like
this.
#[no_mangle]
pub extern "C" fn rust_function() {

}

Just as when using C code in your Rust project you now need to
transform data from and to a form that the rest of the application will
understand.

https://doc.rust-lang.org/reference/items/external-blocks.html

Linking and greater project context.
So then, that's one half of the problem solved. How do you use this now?
This very much depends on your project and/or build system
cargo will create a my_lib.so / my_lib.dll or my_lib.a file,

depending on your platform and settings. This library can simply be linked
by your build system.

However, calling a Rust function from C requires a header file to declare
the function signatures.

Every function in your Rust-ffi API needs to have a corresponding
header function.
#[no_mangle]
pub extern "C" fn rust_function() {}

would then become
void rust_function();

etc.
There is a tool to automate this process, called cbindgen which analyses

your Rust code and then generates headers for your C and C++ projects
from it.

At this point, using the Rust functions from C is as simple as including
the header and calling them!
#include "my-rust-project.h"
rust_function();

https://github.com/eqrion/cbindgen

Unsorted topics

Optimizations: the speed size
tradeoff

Everyone wants their program to be super fast and super small but it's
usually not possible to have both characteristics. This section discusses the
different optimization levels that rustc provides and how they affect the
execution time and binary size of a program.

No optimizations
This is the default. When you call cargo build you use the

development (AKA dev) profile. This profile is optimized for debugging
so it enables debug information and does not enable any optimizations, i.e.
it uses -C opt-level = 0 .

At least for bare metal development, debuginfo is zero cost in the sense
that it won't occupy space in Flash / ROM so we actually recommend that
you enable debuginfo in the release profile -- it is disabled by default. That
will let you use breakpoints when debugging release builds.
[profile.release]
symbols are nice and they don't increase the size on Flash
debug = true

No optimizations is great for debugging because stepping through the
code feels like you are executing the program statement by statement, plus
you can print stack variables and function arguments in GDB. When the
code is optimized, trying to print variables results in $0 = <value

optimized out> being printed.
The biggest downside of the dev profile is that the resulting binary will

be huge and slow. The size is usually more of a problem because
unoptimized binaries can occupy dozens of KiB of Flash, which your target
device may not have -- the result: your unoptimized binary doesn't fit in
your device!

Can we have smaller, debugger friendly binaries? Yes, there's a trick.

Optimizing dependencies
There's a Cargo feature named profile-overrides that lets you

override the optimization level of dependencies. You can use that feature to
optimize all dependencies for size while keeping the top crate unoptimized
and debugger friendly.

Beware that generic code can sometimes be optimized alongside the
crate where it is instantiated, rather than the crate where it is defined. If you
create an instance of a generic struct in your application and find that it

https://doc.rust-lang.org/cargo/reference/profiles.html#overrides

pulls in code with a large footprint, it may be that increasing the
optimisation level of the relevant dependencies has no effect.

Here's an example:
Cargo.toml
[package]
name = "app"
..

[profile.dev.package."*"] # +
opt-level = "z" # +

Without the override:
$ cargo size --bin app -- -A
app :
section size addr
.vector_table 1024 0x8000000
.text 9060 0x8000400
.rodata 1708 0x8002780
.data 0 0x20000000
.bss 4 0x20000000

With the override:
$ cargo size --bin app -- -A
app :
section size addr
.vector_table 1024 0x8000000
.text 3490 0x8000400
.rodata 1100 0x80011c0
.data 0 0x20000000
.bss 4 0x20000000

That's a 6 KiB reduction in Flash usage without any loss in the
debuggability of the top crate. If you step into a dependency then you'll start
seeing those <value optimized out> messages again but it's usually the
case that you want to debug the top crate and not the dependencies. And if
you do need to debug a dependency then you can use the profile-

overrides feature to exclude a particular dependency from being
optimized. See example below:
..

don't optimize the `cortex-m-rt` crate
[profile.dev.package.cortex-m-rt] # +
opt-level = 0 # +

but do optimize all the other dependencies
[profile.dev.package."*"]
codegen-units = 1 # better optimizations
opt-level = "z"

Now the top crate and cortex-m-rt are debugger friendly!

Optimize for speed
As of 2018-09-18 rustc supports three "optimize for speed" levels:

opt-level = 1 , 2 and 3 . When you run cargo build --release you
are using the release profile which defaults to opt-level = 3 .

Both opt-level = 2 and 3 optimize for speed at the expense of binary
size, but level 3 does more vectorization and inlining than level 2 . In
particular, you'll see that at opt-level equal to or greater than 2 LLVM
will unroll loops. Loop unrolling has a rather high cost in terms of Flash /
ROM (e.g. from 26 bytes to 194 for a zero this array loop) but can also
halve the execution time given the right conditions (e.g. number of
iterations is big enough).

Currently there's no way to disable loop unrolling in opt-level = 2
and 3 so if you can't afford its cost you should optimize your program for
size.

Optimize for size
As of 2018-09-18 rustc supports two "optimize for size" levels: opt-

level = "s" and "z" . These names were inherited from clang / LLVM
and are not too descriptive but "z" is meant to give the idea that it
produces smaller binaries than "s" .

If you want your release binaries to be optimized for size then change
the profile.release.opt-level setting in Cargo.toml as shown below.
[profile.release]
or "z"
opt-level = "s"

These two optimization levels greatly reduce LLVM's inline threshold, a
metric used to decide whether to inline a function or not. One of Rust
principles are zero cost abstractions; these abstractions tend to use a lot of
newtypes and small functions to hold invariants (e.g. functions that borrow
an inner value like deref , as_ref) so a low inline threshold can make
LLVM miss optimization opportunities (e.g. eliminate dead branches, inline
calls to closures).

When optimizing for size you may want to try increasing the inline
threshold to see if that has any effect on the binary size. The recommended
way to change the inline threshold is to append the -C inline-threshold
flag to the other rustflags in .cargo/config.toml .
.cargo/config.toml
this assumes that you are using the cortex-m-quickstart
template
[target.'cfg(all(target_arch = "arm", target_os = "none"))']
rustflags = [
 # ..
 "-C", "inline-threshold=123", # +
]

What value to use? As of 1.29.0 these are the inline thresholds that the
different optimization levels use:

https://github.com/rust-lang/rust/blob/1.29.0/src/librustc_codegen_llvm/back/write.rs#L2105-L2122

opt-level = 3 uses 275
opt-level = 2 uses 225
opt-level = "s" uses 75
opt-level = "z" uses 25

You should try 225 and 275 when optimizing for size.

Performing math functionality with
#[no_std]

If you want to perform math related functionality like calculating the
squareroot or the exponential of a number and you have the full standard
library available, your code might look like this:
//! Some mathematical functions with standard support
available

fn main() {
 let float: f32 = 4.82832;
 let floored_float = float.floor();

 let sqrt_of_four = floored_float.sqrt();

 let sinus_of_four = floored_float.sin();

 let exponential_of_four = floored_float.exp();
 println!("Floored test float {} to {}", float,
floored_float);
 println!("The square root of {} is {}", floored_float,
sqrt_of_four);
 println!("The sinus of four is {}", sinus_of_four);
 println!(
 "The exponential of four to the base e is {}",
 exponential_of_four
)
}

Without standard library support, these functions are not available. An
external crate like libm can be used instead. The example code would then
look like this:

https://crates.io/crates/libm

#![no_main]
#![no_std]

use panic_halt as _;

use cortex_m_rt::entry;
use cortex_m_semihosting::{debug, hprintln};
use libm::{exp, floorf, sin, sqrtf};

#[entry]
fn main() -> ! {
 let float = 4.82832;
 let floored_float = floorf(float);

 let sqrt_of_four = sqrtf(floored_float);

 let sinus_of_four = sin(floored_float.into());

 let exponential_of_four = exp(floored_float.into());
 hprintln!("Floored test float {} to {}", float,
floored_float).unwrap();
 hprintln!("The square root of {} is {}", floored_float,
sqrt_of_four).unwrap();
 hprintln!("The sinus of four is {}",
sinus_of_four).unwrap();
 hprintln!(
 "The exponential of four to the base e is {}",
 exponential_of_four
)
 .unwrap();
 // exit QEMU
 // NOTE do not run this on hardware; it can corrupt
OpenOCD state
 // debug::exit(debug::EXIT_SUCCESS);

 loop {}
}

If you need to perform more complex operations like DSP signal
processing or advanced linear algebra on your MCU, the following crates
might help you

CMSIS DSP library binding
constgebra

micromath

microfft

nalgebra

https://github.com/jacobrosenthal/cmsis-dsp-sys
https://crates.io/crates/constgebra
https://github.com/tarcieri/micromath
https://crates.io/crates/microfft
https://github.com/dimforge/nalgebra

Appendix A: Glossary
The embedded ecosystem is full of different protocols, hardware

components and vendor-specific things that use their own terms and
abbreviations. This Glossary attempts to list them with pointers for
understanding them better.

BSP
A Board Support Crate provides a high level interface configured for a

specific board. It usually depends on a HAL crate. There is a more detailed
description on the memory-mapped registers page or for a broader overview
see this video.

FPU
Floating-point Unit. A 'math processor' running only operations on

floating-point numbers.

HAL
A Hardware Abstraction Layer crate provides a developer friendly

interface to a microcontroller's features and peripherals. It is usually
implemented on top of a Peripheral Access Crate (PAC). It may also
implement traits from the embedded-hal crate. There is a more detailed
description on the memory-mapped registers page or for a broader overview
see this video.

I2C
Sometimes referred to as I²C or Inter-IC. It is a protocol meant for

hardware communication within a single integrated circuit. See here for
more details

PAC
A Peripheral Access Crate provides access to a microcontroller's

peripherals. It is one of the lower level crates and is usually generated
directly from the provided SVD, often using svd2rust. The Hardware

clbr://internal.invalid/book/OEBPS/start/registers.md
https://youtu.be/vLYit_HHPaY
https://crates.io/crates/embedded-hal
clbr://internal.invalid/book/OEBPS/start/registers.md
https://youtu.be/vLYit_HHPaY
https://en.wikipedia.org/wiki/I2c
https://github.com/rust-embedded/svd2rust/

Abstraction Layer would usually depend on this crate. There is a more
detailed description on the memory-mapped registers page or for a broader
overview see this video.

SPI
Serial Peripheral Interface. See here for more information.

SVD
System View Description is an XML file format used to describe the

programmers view of a microcontroller device. You can read more about it
on the ARM CMSIS documentation site.

UART
Universal asynchronous receiver-transmitter. See here for more

information.

USART
Universal synchronous and asynchronous receiver-transmitter. See here

for more information.

clbr://internal.invalid/book/OEBPS/start/registers.md
https://youtu.be/vLYit_HHPaY
https://en.wikipedia.org/wiki/Serial_peripheral_interface
https://www.keil.com/pack/doc/CMSIS/SVD/html/index.html
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter
https://en.wikipedia.org/wiki/Universal_synchronous_and_asynchronous_receiver-transmitter

	1. Introduction
	1.1. Hardware
	1.2. no_std
	1.3. Tooling
	1.4. Installation
	1.4.1. Linux
	1.4.2. MacOS
	1.4.3. Windows
	1.4.4. Verify Installation

	2. Getting started
	2.1. QEMU
	2.2. Hardware
	2.3. Memory-mapped Registers
	2.4. Semihosting
	2.5. Panicking
	2.6. Exceptions
	2.7. Interrupts
	2.8. IO

	3. Peripherals
	3.1. A first attempt in Rust
	3.2. The Borrow Checker
	3.3. Singletons

	4. Static Guarantees
	4.1. Typestate Programming
	4.2. Peripherals as State Machines
	4.3. Design Contracts
	4.4. Zero Cost Abstractions

	5. Portability
	6. Concurrency
	7. Collections
	8. Design Patterns
	8.1. HALs
	8.1.1. Checklist
	8.1.2. Naming
	8.1.3. Interoperability
	8.1.4. Predictability
	8.1.5. GPIO

	9. Tips for embedded C developers
	10. Interoperability
	10.1. A little C with your Rust
	10.2. A little Rust with your C

	11. Unsorted topics
	11.1. Optimizations: The speed size tradeoff
	11.2. Performing Math Functionality

	Appendix A: Glossary

