RTIC
The hardware accelerated Rust RTOS
A concurrency framework for building real-time systems
Preface
This book contains user level documentation for the Real-Time Interrupt-driven Concurrency (RTIC) framework. The API reference is available here.
This is the documentation for RTIC v2.x.
Older releases: RTIC v1.x | RTIC v0.5.x (unsupported) | RTFM v0.4.x (unsupported)
Features
Is RTIC an RTOS?
A common question is whether RTIC is an RTOS or not, and depending on your background the answer may vary. From RTIC's developers point of view; RTIC is a hardware accelerated RTOS that utilizes the hardware such as the NVIC on Cortex-M MCUs, CLIC on RISC-V etc. to perform scheduling, rather than the more classical software kernel.
Another common view from the community is that RTIC is a concurrency framework as there is no software kernel and that it relies on external HALs.
RTIC - The Past, current and Future
This section gives a background to the RTIC model. Feel free to skip to section RTIC the model for a TL;DR.
The RTIC framework takes the outset from real-time systems research at Luleå University of Technology (LTU) Sweden. RTIC is inspired by the concurrency model of the Timber language, the RTFM-SRP based scheduler, the RTFM-core language and Abstract Timer implementation. For a full list of related research see RTFM and RTIC publications.
Stack Resource Policy based Scheduling
Stack Resource Policy (SRP) based concurrency and resource management is at heart of the RTIC framework. The SRP model itself extends on Priority Inheritance Protocols, and provides a set of outstanding properties for single core scheduling. To name a few:
SRP comes with a set of system-wide requirements:
SRP analysis
SRP based scheduling requires the set of static priority tasks and their access to shared resources to be known in order to compute a static ceiling (𝝅) for each resource. The static resource ceiling 𝝅(r) reflects the maximum static priority of any task that accesses the resource r .
Example
Assume two tasks A (with priority p(A) = 2 ) and B (with priority p(B) = 4 ) both accessing the shared resource R . The static ceiling of R is 4 (computed from 𝝅(R) = max(p(A) = 2, p(B) = 4) = 4 ).
A graph representation of the example:
graph LR A["p(A) = 2"] --> R B["p(B) = 4"] --> R R["𝝅(R) = 4"]
RTIC the hardware accelerated real-time scheduler
SRP itself is compatible with both dynamic and static priority scheduling. For the implementation of RTIC we leverage on the underlying hardware for accelerated static priority scheduling.
In the case of the ARM Cortex-M architecture, each interrupt vector entry v[i] is associated a function pointer ( v[i].fn ), a static priority ( v[i].priority ), an enabled- ( v[i].enabled ) and a pending-bit ( v[i].pending ).
An interrupt i is scheduled (run) by the hardware under the conditions:
The first condition (1) can be seen as a filter, allowing RTIC to take control over which tasks should be allowed to start (and which should be prevented from starting).
The SRP model for single-core static scheduling, on the other hand, states that a task should be scheduled (run) under the conditions:
The similarities are striking and it is not by chance/luck/coincidence. The hardware was cleverly designed with real-time scheduling in mind.
In order to map the SRP scheduling onto the hardware we need to take a closer look at the system ceiling (𝜫). Under SRP 𝜫 is computed as the maximum priority ceiling of the currently held resources, and will thus change dynamically during the system operation.
Example
Assume the task model above. Starting from an idle system, 𝜫 is 0, (no task is holding any resource). Assume that A is requested for execution, it will immediately be scheduled. Assume that A claims (locks) the resource R . During the claim (lock of R ) any request B will be blocked from starting (by 𝜫 = max(𝝅(R) = 4) = 4 , p(B) = 4 , thus SRP scheduling condition 1 is not met).
Mapping
The mapping of static priority SRP based scheduling to the Cortex M hardware is straightforward:
Example
For the running example, a snapshot of the ARM Cortex M Nested Vectored Interrupt Controller (NVIC) may have the following configuration (after task A has been pended for execution.)
Index | Fn | Priority | Enabled | Pending |
---|---|---|---|---|
0 | A | 2 | true | true |
1 | B | 4 | true | false |
(As discussed later, the assignment of interrupt and exception vectors is up to the user.)
A claim (lock(r)) will change the current system ceiling (𝜫) and can be implemented as a named critical section:
This amounts to a resource protection mechanism, requiring only two machine instructions on enter and one on exit the critical section, for managing the BASEPRI register. For architectures lacking BASEPRI , we can implement the system ceiling through a set of machine instructions for disabling/enabling interrupts on entry/exit for the named critical section. The number of machine instructions vary depending on the number of mask registers that needs to be updated (a single machine operation can operate on up to 32 interrupts, so for the M0/M0+ architecture a single instruction suffice). RTIC will determine the ceiling values and masking constants at compile time, thus all operations is in Rust terms zero-cost.
In this way RTIC fuses SRP based preemptive scheduling with a zero-cost hardware accelerated implementation, resulting in "best in class" guarantees and performance.
Given that the approach is dead simple, how come SRP and hardware accelerated scheduling is not adopted by any other mainstream RTOS?
The answer is simple, the commonly adopted threading model does not lend itself well to static analysis - there is no known way to extract the task/resource dependencies from the source code at compile time (thus ceilings cannot be efficiently computed and the LIFO resource locking requirement cannot be ensured). Thus, SRP based scheduling is in the general case out of reach for any thread based RTOS.
RTIC into the Future
Asynchronous programming in various forms are getting increased popularity and language support. Rust natively provides an async / await API for cooperative multitasking and the compiler generates the necessary boilerplate for storing and retrieving execution contexts (i.e., managing the set of local variables that spans each await ).
The Rust standard library provides collections for dynamically allocated data-structures which are useful to manage execution contexts at run-time. However, in the setting of resource constrained real-time systems, dynamic allocations are problematic (both regarding performance and reliability - Rust runs into a panic on an out-of-memory condition). Thus, static allocation is the preferable approach!
From a modelling perspective async/await lifts the run-to-completion requirement of SRP, and each section of code between two yield points ( await s) can be seen as an individual task. The compiler will reject any attempt to await while holding a resource (not doing so would break the strict LIFO requirement on resource usage under SRP).
So with the technical stuff out of the way, what does async/await bring to the table?
The answer is - improved ergonomics! A recurring use case is to have task perform a sequence of requests and then await their results in order to progress. Without async / await the programmer would be forced to split the task into individual sub-tasks and maintain some sort of state encoding (and manually progress by selecting sub-task). Using async/await each yield point ( await ) essentially represents a state, and the progression mechanism is built automatically for you at compile time by means of Futures .
Rust async / await support is still incomplete and/or under development. Nevertheless, it covers most common use cases and can be considered production ready.
An important property is that futures are composable, thus you can await either, all, or any combination of possible futures (allowing e.g., timeouts and/or asynchronous errors to be promptly handled).
RTIC the model
An RTIC app is a declarative and executable system model for single-core applications, defining a set of ( local and shared ) resources operated on by a set of ( init , idle , hardware and software) tasks. In short the init task runs before any other task returning a set of resources ( local and shared ). Tasks run preemptively based on their associated static priority, idle has the lowest priority (and can be used for background work, and/or to put the system to sleep until woken by some event). Hardware tasks are bound to underlying hardware interrupts, while software tasks are scheduled by asynchronous executors (one for each software task priority).
At compile time the task/resource model is analyzed under SRP and executable code generated with the following outstanding properties:
The RTIC API design ensures that both SRP requirements and Rust soundness rules are upheld at all times, thus the executable model is correct by construction. Overall, the generated code infers no additional overhead in comparison to a handwritten implementation, thus in Rust terms RTIC offers a zero-cost abstraction to concurrency.
Starting a new project
A recommendation when starting a RTIC project from scratch is to follow RTIC's defmt-app-template.
If you are targeting ARMv6-M or ARMv8-M-base architecture, check out the section Target Architecture for more information on hardware limitations to be aware of.
This will give you an RTIC application with support for RTT logging with defmt and stack overflow protection using flip-link. There is also a multitude of examples provided by the community:
For inspiration, you may look at the RTIC examples.
RTIC on RISC-V devices
Even though RTIC was initially developed for ARM Cortex-M, it is possible to use RTIC on RISC-V devices. However, the RISC-V ecosystem is more heterogeneous. To tackle this issue, currently, RTIC implements three different backends:
riscv-esp32c3-backend : This backend provides support for the ESP32-C3 SoC. In these devices, RTIC is very similar to its Cortex-M counterpart.
riscv-esp32c6-backend : This backend provides support for the ESP32-C6 SoC. In these devices, RTIC is very similar to its Cortex-M counterpart.
riscv-mecall-backend : This backend provides support for any RISC-V device. In this backend, pending tasks trigger Machine Environment Call exceptions. The handler for this exception source dispatches pending tasks according to their priority. The behavior of this backend is equivalent to riscv-clint-backend . The main difference of this backend is that all the tasks must be software tasks. Additionally, it is not required to provide a list of dispatchers in the #[app] attribute, as RTIC will generate them at compile time.
riscv-clint-backend : This backend supports devices with a CLINT peripheral. It is equivallent to riscv-mecall-backend , but instead of triggering exceptions, it triggers software interrupts via the MSIP register of the CLINT.
RTIC by example
This part of the book introduces the RTIC framework to new users by walking them through examples of increasing complexity.
All examples in this part of the book are part of the RTIC repository, found in the examples directory. The examples are runnable on QEMU (emulating a Cortex M3 target), thus no special hardware required to follow along.
Running an example
To run the examples with QEMU you will need the qemu-system-arm program. Check the embedded Rust book for instructions on how to set up an embedded development environment that includes QEMU.
To run the examples found in examples/ locally using QEMU:
cargo xtask qemu
This runs all of the examples against the default thumbv7m-none-eabi device lm3s6965 .
To limit which examples are being run, use the flag --example <example name> , the name being the filename of the example.
Assuming dependencies in place, running:
$ cargo xtask qemu --example locals
Yields this output:
Finished dev [unoptimized + debuginfo] target(s) in 0.07s Running `target/debug/xtask qemu --example locals` INFO xtask > Testing for platform: Lm3s6965, backend: Thumbv7 INFO xtask::run > 👟 Build example locals (thumbv7m-none-eabi, release, "test-critical-section,thumbv7-backend", in examples/lm3s6965) INFO xtask::run > ✅ Success. INFO xtask::run > 👟 Run example locals in QEMU (thumbv7m-none-eabi, release, "test-critical-section,thumbv7-backend", in examples/lm3s6965) INFO xtask::run > ✅ Success. INFO xtask::results > ✅ Success: Build example locals (thumbv7m-none-eabi, release, "test-critical-section,thumbv7-backend", in examples/lm3s6965) INFO xtask::results > ✅ Success: Run example locals in QEMU (thumbv7m-none-eabi, release, "test-critical-section,thumbv7-backend", in examples/lm3s6965) INFO xtask::results > 🚀🚀🚀 All tasks succeeded 🚀🚀🚀
It is great that examples are passing and this is part of the RTIC CI setup too, but for the purposes of this book we must add the --verbose flag, or -v for short to see the actual program output:
❯ cargo xtask qemu --verbose --example locals Finished dev [unoptimized + debuginfo] target(s) in 0.03s Running `target/debug/xtask qemu --example locals --verbose` DEBUG xtask > Stderr of child processes is inherited: false DEBUG xtask > Partial features: false INFO xtask > Testing for platform: Lm3s6965, backend: Thumbv7 INFO xtask::run > 👟 Build example locals (thumbv7m-none-eabi, release, "test-critical-section,thumbv7-backend", in examples/lm3s6965) INFO xtask::run > ✅ Success. INFO xtask::run > 👟 Run example locals in QEMU (thumbv7m-none-eabi, release, "test-critical-section,thumbv7-backend", in examples/lm3s6965) INFO xtask::run > ✅ Success. INFO xtask::results > ✅ Success: Build example locals (thumbv7m-none-eabi, release, "test-critical-section,thumbv7-backend", in examples/lm3s6965) cd examples/lm3s6965 && cargo build --target thumbv7m-none-eabi --features test-critical-section,thumbv7-backend --release --example locals DEBUG xtask::results > cd examples/lm3s6965 && cargo build --target thumbv7m-none-eabi --features test-critical-section,thumbv7-backend --release --example locals Stderr: Finished release [optimized] target(s) in 0.02s INFO xtask::results > ✅ Success: Run example locals in QEMU (thumbv7m-none-eabi, release, "test-critical-section,thumbv7-backend", in examples/lm3s6965) cd examples/lm3s6965 && cargo run --target thumbv7m-none-eabi --features test-critical-section,thumbv7-backend --release --example locals DEBUG xtask::results > cd examples/lm3s6965 && cargo run --target thumbv7m-none-eabi --features test-critical-section,thumbv7-backend --release --example locals Stdout: bar: local_to_bar = 1 foo: local_to_foo = 1 idle: local_to_idle = 1 Stderr: Finished release [optimized] target(s) in 0.02s Running `qemu-system-arm -cpu cortex-m3 -machine lm3s6965evb -nographic -semihosting-config enable=on,target=native -kernel target/thumbv7m-none-eabi/release/examples/locals` Timer with period zero, disabling INFO xtask::results > 🚀🚀🚀 All tasks succeeded 🚀🚀🚀
Look for the content following Stdout: towards the end ouf the output, the program output should have these lines:
bar: local_to_bar = 1 foo: local_to_foo = 1 idle: local_to_idle = 1
NOTE: For other useful options to cargo xtask , see:
cargo xtask qemu --help
The --platform flag allows changing which device examples are run on, currently lm3s6965 is the best supported, work is ongoing to increase support for other devices, including both ARM and RISC-V
The #[app] attribute and an RTIC application
Requirements on the app attribute
All RTIC applications use the app attribute ( #[app(..)] ). This attribute only applies to a mod -item containing the RTIC application.
The app attribute has a mandatory device argument that takes a path as a value. This must be a full path pointing to a peripheral access crate (PAC) generated using svd2rust v0.14.x or newer.
The app attribute will expand into a suitable entry point and thus replaces the use of the cortex_m_rt::entry attribute.
Structure and zero-cost concurrency
An RTIC app is an executable system model for single-core applications, declaring a set of local and shared resources operated on by a set of init , idle , hardware and software tasks.
At compile time the task/resource model is analyzed under the Stack Resource Policy (SRP) and executable code generated with the following outstanding properties:
Overall, the generated code infers no additional overhead in comparison to a hand-written implementation, thus in Rust terms RTIC offers a zero-cost abstraction to concurrency.
Priority
Priorities in RTIC are specified using the priority = N (where N is a positive number) argument passed to the #[task] attribute. All #[task] s can have a priority. If the priority of a task is not specified, it is set to the default value of 0.
Priorities in RTIC follow a higher value = more important scheme. For examples, a task with priority 2 will preempt a task with priority 1.
An RTIC application example
To give a taste of RTIC, the following example contains commonly used features. In the following sections we will go through each feature in detail.
//! examples/common.rs #![no_main] #![no_std] #![deny(warnings)] #![deny(unsafe_code)] #![deny(missing_docs)] use panic_semihosting as _; #[rtic::app(device = lm3s6965, dispatchers = [UART0, UART1])] mod app { use cortex_m_semihosting::{debug, hprintln}; #[shared] struct Shared {} #[local] struct Local { local_to_foo: i64, local_to_bar: i64, local_to_idle: i64, } // `#[init]` cannot access locals from the `#[local]` struct as they are initialized here. #[init] fn init(_: init::Context) -> (Shared, Local) { foo::spawn().unwrap(); bar::spawn().unwrap(); ( Shared {}, // initial values for the `#[local]` resources Local { local_to_foo: 0, local_to_bar: 0, local_to_idle: 0, }, ) } // `local_to_idle` can only be accessed from this context #[idle(local = [local_to_idle])] fn idle(cx: idle::Context) -> ! { let local_to_idle = cx.local.local_to_idle; *local_to_idle += 1; hprintln!("idle: local_to_idle = {}", local_to_idle); debug::exit(debug::EXIT_SUCCESS); // Exit QEMU simulator // error: no `local_to_foo` field in `idle::LocalResources` // _cx.local.local_to_foo += 1; // error: no `local_to_bar` field in `idle::LocalResources` // _cx.local.local_to_bar += 1; loop { cortex_m::asm::nop(); } } // `local_to_foo` can only be accessed from this context #[task(local = [local_to_foo], priority = 1)] async fn foo(cx: foo::Context) { let local_to_foo = cx.local.local_to_foo; *local_to_foo += 1; // error: no `local_to_bar` field in `foo::LocalResources` // cx.local.local_to_bar += 1; hprintln!("foo: local_to_foo = {}", local_to_foo); } // `local_to_bar` can only be accessed from this context #[task(local = [local_to_bar], priority = 1)] async fn bar(cx: bar::Context) { let local_to_bar = cx.local.local_to_bar; *local_to_bar += 1; // error: no `local_to_foo` field in `bar::LocalResources` // cx.local.local_to_foo += 1; hprintln!("bar: local_to_bar = {}", local_to_bar); } }
Hardware tasks
At its core RTIC is using a hardware interrupt controller (ARM NVIC on cortex-m) to schedule and start execution of tasks. All tasks except pre-init (a hidden "task"), #[init] and #[idle] run as interrupt handlers.
To bind a task to an interrupt, use the #[task] attribute argument binds = InterruptName . This task then becomes the interrupt handler for this hardware interrupt vector.
All tasks bound to an explicit interrupt are called hardware tasks since they start execution in reaction to a hardware event.
Specifying a non-existing interrupt name will cause a compilation error. The interrupt names are commonly defined by PAC or HAL crates.
Any available interrupt vector should work. Specific devices may bind specific interrupt priorities to specific interrupt vectors outside user code control. See for example the nRF “softdevice”.
Beware of using interrupt vectors that are used internally by hardware features; RTIC is unaware of such hardware specific details.
Example
The example below demonstrates the use of the #[task(binds = InterruptName)] attribute to declare a hardware task bound to an interrupt handler.
//! examples/hardware.rs #![no_main] #![no_std] #![deny(warnings)] #![deny(unsafe_code)] #![deny(missing_docs)] use panic_semihosting as _; #[rtic::app(device = lm3s6965)] mod app { use cortex_m_semihosting::{debug, hprintln}; use lm3s6965::Interrupt; #[shared] struct Shared {} #[local] struct Local {} #[init] fn init(_: init::Context) -> (Shared, Local) { // Pends the UART0 interrupt but its handler won't run until *after* // `init` returns because interrupts are disabled rtic::pend(Interrupt::UART0); // equivalent to NVIC::pend hprintln!("init"); (Shared {}, Local {}) } #[idle] fn idle(_: idle::Context) -> ! { // interrupts are enabled again; the `UART0` handler runs at this point hprintln!("idle"); // Some backends provide a manual way of pending an // interrupt. rtic::pend(Interrupt::UART0); loop { cortex_m::asm::nop(); debug::exit(debug::EXIT_SUCCESS); // Exit QEMU simulator } } #[task(binds = UART0, local = [times: u32 = 0])] fn uart0(cx: uart0::Context) { // Safe access to local `static mut` variable *cx.local.times += 1; hprintln!( "UART0 called {} time{}", *cx.local.times, if *cx.local.times > 1 { "s" } else { "" } ); } }
$ cargo xtask qemu --verbose --example hardware
init UART0 called 1 time idle UART0 called 2 times
Software tasks & spawn
The RTIC concept of a software task shares a lot with that of hardware tasks. The core difference is that a software task is not explicitly bound to a specific interrupt vector, but rather bound to a “dispatcher” interrupt vector running at the intended priority of the software task (see below).
Similarly to hardware tasks, the #[task] attribute used on a function declare it as a task. The absence of a binds = InterruptName argument to the attribute declares the function as a software task.
The static method task_name::spawn() spawns (starts) a software task and given that there are no higher priority tasks running the task will start executing directly.
The software task itself is given as an async Rust function, which allows the user to optionally await future events. This allows to blend reactive programming (by means of hardware tasks) with sequential programming (by means of software tasks).
While hardware tasks are assumed to run-to-completion (and return), software tasks may be started ( spawned ) once and run forever, on the condition that any loop (execution path) is broken by at least one await (yielding operation).
Dispatchers
All software tasks at the same priority level share an interrupt handler acting as an async executor dispatching the software tasks. This list of dispatchers, dispatchers = [FreeInterrupt1, FreeInterrupt2, ...] is an argument to the #[app] attribute, where you define the set of free and usable interrupts.
Each interrupt vector acting as dispatcher gets assigned to one priority level meaning that the list of dispatchers need to cover all priority levels used by software tasks.
Example: The dispatchers = argument needs to have at least 3 entries for an application using three different priorities for software tasks.
The framework will give a compilation error if there are not enough dispatchers provided, or if a clash occurs between the list of dispatchers and interrupts bound to hardware tasks.
See the following example:
//! examples/spawn.rs #![no_main] #![no_std] #![deny(warnings)] #![deny(unsafe_code)] #![deny(missing_docs)] use panic_semihosting as _; #[rtic::app(device = lm3s6965, dispatchers = [SSI0])] mod app { use cortex_m_semihosting::{debug, hprintln}; #[shared] struct Shared {} #[local] struct Local {} #[init] fn init(_: init::Context) -> (Shared, Local) { hprintln!("init"); foo::spawn().unwrap(); (Shared {}, Local {}) } #[task] async fn foo(_: foo::Context) { hprintln!("foo"); debug::exit(debug::EXIT_SUCCESS); // Exit QEMU simulator } }
$ cargo xtask qemu --verbose --example spawn
init foo
You may spawn a software task again, given that it has run-to-completion (returned).
In the below example, we spawn the software task foo from the idle task. Since the priority of the software task is 1 (higher than idle ), the dispatcher will execute foo (preempting idle ). Since foo runs-to-completion. It is ok to spawn the foo task again.
Technically the async executor will poll the foo future which in this case leaves the future in a completed state.
//! examples/spawn_loop.rs #![no_main] #![no_std] #![deny(warnings)] #![deny(unsafe_code)] #![deny(missing_docs)] use panic_semihosting as _; #[rtic::app(device = lm3s6965, dispatchers = [SSI0])] mod app { use cortex_m_semihosting::{debug, hprintln}; #[shared] struct Shared {} #[local] struct Local {} #[init] fn init(_: init::Context) -> (Shared, Local) { hprintln!("init"); (Shared {}, Local {}) } #[idle] fn idle(_: idle::Context) -> ! { for _ in 0..3 { foo::spawn().unwrap(); hprintln!("idle"); } debug::exit(debug::EXIT_SUCCESS); // Exit QEMU simulator loop {} } #[task(priority = 1)] async fn foo(_: foo::Context) { hprintln!("foo"); } }
$ cargo xtask qemu --verbose --example spawn_loop
init foo idle foo idle foo idle
An attempt to spawn an already spawned task (running) task will result in an error. Notice, the that the error is reported before the foo task is actually run. This is since, the actual execution of the software task is handled by the dispatcher interrupt ( SSIO ), which is not enabled until we exit the init task. (Remember, init runs in a critical section, i.e. all interrupts being disabled.)
Technically, a spawn to a future that is not in completed state is considered an error.
//! examples/spawn_err.rs #![no_main] #![no_std] #![deny(warnings)] #![deny(unsafe_code)] #![deny(missing_docs)] use panic_semihosting as _; #[rtic::app(device = lm3s6965, dispatchers = [SSI0])] mod app { use cortex_m_semihosting::{debug, hprintln}; #[shared] struct Shared {} #[local] struct Local {} #[init] fn init(_: init::Context) -> (Shared, Local) { hprintln!("init"); foo::spawn().unwrap(); match foo::spawn() { Ok(_) => {} Err(()) => hprintln!("Cannot spawn a spawned (running) task!"), } (Shared {}, Local {}) } #[task] async fn foo(_: foo::Context) { hprintln!("foo"); debug::exit(debug::EXIT_SUCCESS); // Exit QEMU simulator } }
$ cargo xtask qemu --verbose --example spawn_err
init Cannot spawn a spawned (running) task! foo
Passing arguments
You can also pass arguments at spawn as follows.
//! examples/spawn_arguments.rs #![no_main] #![no_std] #![deny(warnings)] #![deny(unsafe_code)] #![deny(missing_docs)] use panic_semihosting as _; #[rtic::app(device = lm3s6965, dispatchers = [SSI0])] mod app { use cortex_m_semihosting::{debug, hprintln}; #[shared] struct Shared {} #[local] struct Local {} #[init] fn init(_: init::Context) -> (Shared, Local) { foo::spawn(1, 1).unwrap(); assert!(foo::spawn(1, 4).is_err()); // The capacity of `foo` is reached (Shared {}, Local {}) } #[task] async fn foo(_c: foo::Context, x: i32, y: u32) { hprintln!("foo {}, {}", x, y); debug::exit(debug::EXIT_SUCCESS); // Exit QEMU simulator } }
$ cargo xtask qemu --verbose --example spawn_arguments
foo 1, 1
Divergent tasks
A task can have one of two signatures: async fn({name}::Context, ..) or async fn({name}::Context, ..) -> ! . The latter defines a divergent task — one that never returns. The key advantage of divergent tasks is that they receive a 'static context, and local resources have 'static lifetime. Additionally, using this signature makes the task’s intent explicit, clearly distinguishing between short-lived tasks and those that run indefinitely. Be mindful not to starve other tasks at the same priority level by ensuring you yield control with .await .
Priority zero tasks
In RTIC tasks run preemptively to each other, with priority zero (0) the lowest priority. You can use priority zero tasks for background work, without any strict real-time requirements.
Conceptually, one can see such tasks as running in the main thread of the application, thus the resources associated are not required the Send bound.
//! examples/zero-prio-task.rs #![no_main] #![no_std] #![deny(warnings)] #![deny(unsafe_code)] #![deny(missing_docs)] use core::marker::PhantomData; use panic_semihosting as _; /// Does not impl send pub struct NotSend { _0: PhantomData<*const ()>, } #[rtic::app(device = lm3s6965, peripherals = true)] mod app { use super::NotSend; use core::marker::PhantomData; use cortex_m_semihosting::{debug, hprintln}; #[shared] struct Shared { x: NotSend, } #[local] struct Local { y: NotSend, } #[init] fn init(_cx: init::Context) -> (Shared, Local) { hprintln!("init"); async_task::spawn().unwrap(); async_task2::spawn().unwrap(); ( Shared { x: NotSend { _0: PhantomData }, }, Local { y: NotSend { _0: PhantomData }, }, ) } #[task(priority = 0, shared = [x], local = [y])] async fn async_task(_: async_task::Context) { hprintln!("hello from async"); } #[task(priority = 0, shared = [x])] async fn async_task2(_: async_task2::Context) { hprintln!("hello from async2"); debug::exit(debug::EXIT_SUCCESS); // Exit QEMU simulator } }
$ cargo xtask qemu --verbose --example zero-prio-task
init hello from async hello from async2
Notice: software task at zero priority cannot co-exist with the [idle] task. The reason is that idle is running as a non-returning Rust function at priority zero. Thus there would be no way for an executor at priority zero to give control to software tasks at the same priority.
Application side safety: Technically, the RTIC framework ensures that poll is never executed on any software task with completed future, thus adhering to the soundness rules of async Rust.
Resource usage
The RTIC framework manages shared and task local resources allowing persistent data storage and safe accesses without the use of unsafe code.
RTIC resources are visible only to functions declared within the #[app] module and the framework gives the user complete control (on a per-task basis) over resource accessibility.
Declaration of system-wide resources is done by annotating two struct s within the #[app] module with the attribute #[local] and #[shared] . Each field in these structures corresponds to a different resource (identified by field name). The difference between these two sets of resources will be covered below.
Each task must declare the resources it intends to access in its corresponding metadata attribute using the local and shared arguments. Each argument takes a list of resource identifiers. The listed resources are made available to the context under the local and shared fields of the Context structure.
The init task returns the initial values for the system-wide ( #[shared] and #[local] ) resources.
#[local] resources
#[local] resources are locally accessible to a specific task, meaning that only that task can access the resource and does so without locks or critical sections. This allows for the resources, commonly drivers or large objects, to be initialized in #[init] and then be passed to a specific task.
Thus, a task #[local] resource can only be accessed by one singular task. Attempting to assign the same #[local] resource to more than one task is a compile-time error.
Types of #[local] resources must implement a Send trait as they are being sent from init to a target task, crossing a thread boundary.
The example application shown below contains three tasks foo , bar and idle , each having access to its own #[local] resource.
//! examples/locals.rs #![no_main] #![no_std] #![deny(warnings)] #![deny(unsafe_code)] #![deny(missing_docs)] use panic_semihosting as _; #[rtic::app(device = lm3s6965, dispatchers = [UART0, UART1])] mod app { use cortex_m_semihosting::{debug, hprintln}; #[shared] struct Shared {} #[local] struct Local { local_to_foo: i64, local_to_bar: i64, local_to_idle: i64, } // `#[init]` cannot access locals from the `#[local]` struct as they are initialized here. #[init] fn init(_: init::Context) -> (Shared, Local) { foo::spawn().unwrap(); bar::spawn().unwrap(); ( Shared {}, // initial values for the `#[local]` resources Local { local_to_foo: 0, local_to_bar: 0, local_to_idle: 0, }, ) } // `local_to_idle` can only be accessed from this context #[idle(local = [local_to_idle])] fn idle(cx: idle::Context) -> ! { let local_to_idle = cx.local.local_to_idle; *local_to_idle += 1; hprintln!("idle: local_to_idle = {}", local_to_idle); debug::exit(debug::EXIT_SUCCESS); // Exit QEMU simulator // error: no `local_to_foo` field in `idle::LocalResources` // _cx.local.local_to_foo += 1; // error: no `local_to_bar` field in `idle::LocalResources` // _cx.local.local_to_bar += 1; loop { cortex_m::asm::nop(); } } // `local_to_foo` can only be accessed from this context #[task(local = [local_to_foo], priority = 1)] async fn foo(cx: foo::Context) { let local_to_foo = cx.local.local_to_foo; *local_to_foo += 1; // error: no `local_to_bar` field in `foo::LocalResources` // cx.local.local_to_bar += 1; hprintln!("foo: local_to_foo = {}", local_to_foo); } // `local_to_bar` can only be accessed from this context #[task(local = [local_to_bar], priority = 1)] async fn bar(cx: bar::Context) { let local_to_bar = cx.local.local_to_bar; *local_to_bar += 1; // error: no `local_to_foo` field in `bar::LocalResources` // cx.local.local_to_foo += 1; hprintln!("bar: local_to_bar = {}", local_to_bar); } }
Running the example:
$ cargo xtask qemu --verbose --example locals
bar: local_to_bar = 1 foo: local_to_foo = 1 idle: local_to_idle = 1
Local resources in #[init] and #[idle] have 'static lifetimes. This is safe since both tasks are not re-entrant.
Task local initialized resources
Local resources can also be specified directly in the resource claim like so: #[task(local = [my_var: TYPE = INITIAL_VALUE, ...])] ; this allows for creating locals which do no need to be initialized in #[init] .
Types of #[task(local = [..])] resources have to be neither Send nor Sync as they are not crossing any thread boundary.
In the example below the different uses and lifetimes are shown:
//! examples/declared_locals.rs #![no_main] #![no_std] #![deny(warnings)] #![deny(unsafe_code)] #![deny(missing_docs)] use panic_semihosting as _; #[rtic::app(device = lm3s6965)] mod app { use cortex_m_semihosting::debug; #[shared] struct Shared {} #[local] struct Local {} #[init(local = [a: u32 = 0])] fn init(cx: init::Context) -> (Shared, Local) { // Locals in `#[init]` have 'static lifetime let _a: &'static mut u32 = cx.local.a; debug::exit(debug::EXIT_SUCCESS); // Exit QEMU simulator (Shared {}, Local {}) } #[idle(local = [a: u32 = 0])] fn idle(cx: idle::Context) -> ! { // Locals in `#[idle]` have 'static lifetime let _a: &'static mut u32 = cx.local.a; loop {} } #[task(binds = UART0, local = [a: u32 = 0])] fn foo(cx: foo::Context) { // Locals in `#[task]`s have a local lifetime let _a: &mut u32 = cx.local.a; // error: explicit lifetime required in the type of `cx` // let _a: &'static mut u32 = cx.local.a; } }
You can run the application, but as the example is designed merely to showcase the lifetime properties there is no output (it suffices to build the application).
$ cargo build --target thumbv7m-none-eabi --example declared_locals
#[shared] resources and lock
Critical sections are required to access #[shared] resources in a data race-free manner and to achieve this the shared field of the passed Context implements the Mutex trait for each shared resource accessible to the task. This trait has only one method, lock, which runs its closure argument in a critical section.
The critical section created by the lock API is based on dynamic priorities: it temporarily raises the dynamic priority of the context to a ceiling priority that prevents other tasks from preempting the critical section. This synchronization protocol is known as the Immediate Ceiling Priority Protocol (ICPP), and complies with Stack Resource Policy (SRP) based scheduling of RTIC.
In the example below we have three interrupt handlers with priorities ranging from one to three. The two handlers with the lower priorities contend for a shared resource and need to succeed in locking the resource in order to access its data. The highest priority handler, which does not access the shared resource, is free to preempt a critical section created by the lowest priority handler.
//! examples/lock.rs #![no_main] #![no_std] #![deny(warnings)] #![deny(unsafe_code)] #![deny(missing_docs)] use panic_semihosting as _; #[rtic::app(device = lm3s6965, dispatchers = [GPIOA, GPIOB, GPIOC])] mod app { use cortex_m_semihosting::{debug, hprintln}; #[shared] struct Shared { shared: u32, } #[local] struct Local {} #[init] fn init(_: init::Context) -> (Shared, Local) { foo::spawn().unwrap(); (Shared { shared: 0 }, Local {}) } // when omitted priority is assumed to be `1` #[task(shared = [shared])] async fn foo(mut c: foo::Context) { hprintln!("A"); // the lower priority task requires a critical section to access the data c.shared.shared.lock(|shared| { // data can only be modified within this critical section (closure) *shared += 1; // bar will *not* run right now due to the critical section bar::spawn().unwrap(); hprintln!("B - shared = {}", *shared); // baz does not contend for `shared` so it's allowed to run now baz::spawn().unwrap(); }); // critical section is over: bar can now start hprintln!("E"); debug::exit(debug::EXIT_SUCCESS); // Exit QEMU simulator } #[task(priority = 2, shared = [shared])] async fn bar(mut c: bar::Context) { // the higher priority task does still need a critical section let shared = c.shared.shared.lock(|shared| { *shared += 1; *shared }); hprintln!("D - shared = {}", shared); } #[task(priority = 3)] async fn baz(_: baz::Context) { hprintln!("C"); } }
$ cargo xtask qemu --verbose --example lock
A B - shared = 1 C D - shared = 2 E
Types of #[shared] resources have to be Send.
Multi-lock
As an extension to lock , and to reduce rightward drift, locks can be taken as tuples. The following examples show this in use:
//! examples/mutlilock.rs #![no_main] #![no_std] #![deny(warnings)] #![deny(unsafe_code)] #![deny(missing_docs)] use panic_semihosting as _; #[rtic::app(device = lm3s6965, dispatchers = [GPIOA])] mod app { use cortex_m_semihosting::{debug, hprintln}; #[shared] struct Shared { shared1: u32, shared2: u32, shared3: u32, } #[local] struct Local {} #[init] fn init(_: init::Context) -> (Shared, Local) { locks::spawn().unwrap(); ( Shared { shared1: 0, shared2: 0, shared3: 0, }, Local {}, ) } // when omitted priority is assumed to be `1` #[task(shared = [shared1, shared2, shared3])] async fn locks(c: locks::Context) { let s1 = c.shared.shared1; let s2 = c.shared.shared2; let s3 = c.shared.shared3; (s1, s2, s3).lock(|s1, s2, s3| { *s1 += 1; *s2 += 1; *s3 += 1; hprintln!("Multiple locks, s1: {}, s2: {}, s3: {}", *s1, *s2, *s3); }); debug::exit(debug::EXIT_SUCCESS); // Exit QEMU simulator } }
$ cargo xtask qemu --verbose --example multilock
Multiple locks, s1: 1, s2: 1, s3: 1
Only shared (&-) access
By default, the framework assumes that all tasks require exclusive mutable access ( &mut- ) to resources, but it is possible to specify that a task only requires shared access ( &- ) to a resource using the &resource_name syntax in the shared list.
The advantage of specifying shared access ( &- ) to a resource is that no locks are required to access the resource even if the resource is contended by more than one task running at different priorities. The downside is that the task only gets a shared reference ( &- ) to the resource, limiting the operations it can perform on it, but where a shared reference is enough this approach reduces the number of required locks. In addition to simple immutable data, this shared access can be useful where the resource type safely implements interior mutability, with appropriate locking or atomic operations of its own.
Note that in this release of RTIC it is not possible to request both exclusive access ( &mut- ) and shared access ( &- ) to the same resource from different tasks. Attempting to do so will result in a compile error.
In the example below a key (e.g. a cryptographic key) is loaded (or created) at runtime (returned by init ) and then used from two tasks that run at different priorities without any kind of lock.
//! examples/only-shared-access.rs #![no_main] #![no_std] #![deny(warnings)] #![deny(unsafe_code)] #![deny(missing_docs)] use panic_semihosting as _; #[rtic::app(device = lm3s6965, dispatchers = [UART0, UART1])] mod app { use cortex_m_semihosting::{debug, hprintln}; #[shared] struct Shared { key: u32, } #[local] struct Local {} #[init] fn init(_: init::Context) -> (Shared, Local) { foo::spawn().unwrap(); bar::spawn().unwrap(); (Shared { key: 0xdeadbeef }, Local {}) } #[task(shared = [&key])] async fn foo(cx: foo::Context) { let key: &u32 = cx.shared.key; hprintln!("foo(key = {:#x})", key); debug::exit(debug::EXIT_SUCCESS); // Exit QEMU simulator } #[task(priority = 2, shared = [&key])] async fn bar(cx: bar::Context) { hprintln!("bar(key = {:#x})", cx.shared.key); } }
$ cargo xtask qemu --verbose --example only-shared-access
bar(key = 0xdeadbeef) foo(key = 0xdeadbeef)
Lock-free access of shared resources
A critical section is not required to access a #[shared] resource that's only accessed by tasks running at the same priority. In this case, you can opt out of the lock API by adding the #[lock_free] field-level attribute to the resource declaration (see example below).
To adhere to the Rust aliasing rule, a resource may be either accessed through multiple immutable references or a singe mutable reference (but not both at the same time).
Using #[lock_free] on resources shared by tasks running at different priorities will result in a compile-time error -- not using the lock API would violate the aforementioned alias rule. Similarly, for each priority there can be only a single software task accessing a shared resource (as an async task may yield execution to other software or hardware tasks running at the same priority). However, under this single-task restriction, we make the observation that the resource is in effect no longer shared but rather local . Thus, using a #[lock_free] shared resource will result in a compile-time error -- where applicable, use a #[local] resource instead.
//! examples/lock-free.rs #![no_main] #![no_std] #![deny(warnings)] #![deny(unsafe_code)] #![deny(missing_docs)] use panic_semihosting as _; #[rtic::app(device = lm3s6965)] mod app { use cortex_m_semihosting::{debug, hprintln}; use lm3s6965::Interrupt; #[shared] struct Shared { #[lock_free] // <- lock-free shared resource counter: u64, } #[local] struct Local {} #[init] fn init(_: init::Context) -> (Shared, Local) { rtic::pend(Interrupt::UART0); (Shared { counter: 0 }, Local {}) } #[task(binds = UART0, shared = [counter])] // <- same priority fn foo(c: foo::Context) { rtic::pend(Interrupt::UART1); *c.shared.counter += 1; // <- no lock API required let counter = *c.shared.counter; hprintln!(" foo = {}", counter); } #[task(binds = UART1, shared = [counter])] // <- same priority fn bar(c: bar::Context) { rtic::pend(Interrupt::UART0); *c.shared.counter += 1; // <- no lock API required let counter = *c.shared.counter; hprintln!(" bar = {}", counter); debug::exit(debug::EXIT_SUCCESS); // Exit QEMU simulator } }
$ cargo xtask qemu --verbose --example lock-free
foo = 1 bar = 2
App initialization and the #[init] task
An RTIC application requires an init task setting up the system. The corresponding init function must have the signature fn(init::Context) -> (Shared, Local) , where Shared and Local are resource structures defined by the user.
The init task executes after system reset, [after an optionally defined pre-init code section]1 and an always occurring internal RTIC initialization.
The init and optional pre-init tasks runs with interrupts disabled and have exclusive access to Cortex-M (the bare_metal::CriticalSection token is available as cs ).
Device specific peripherals are available through the core and device fields of init::Context .
https://docs.rs/cortex-m-rt/latest/cortex_m_rt/attr.pre_init.html
Example
The example below shows the types of the core , device and cs fields, and showcases the use of a local variable with 'static lifetime. Such variables can be delegated from the init task to other tasks of the RTIC application.
The device field is only available when the peripherals argument is set to the default value true . In the rare case you want to implement an ultra-slim application you can explicitly set peripherals to false .
//! examples/init.rs #![no_main] #![no_std] #![deny(warnings)] #![deny(unsafe_code)] #![deny(missing_docs)] use panic_semihosting as _; #[rtic::app(device = lm3s6965, peripherals = true)] mod app { use cortex_m_semihosting::{debug, hprintln}; #[shared] struct Shared {} #[local] struct Local {} #[init(local = [x: u32 = 0])] fn init(cx: init::Context) -> (Shared, Local) { // Cortex-M peripherals let _core: cortex_m::Peripherals = cx.core; // Device specific peripherals let _device: lm3s6965::Peripherals = cx.device; // Locals in `init` have 'static lifetime let _x: &'static mut u32 = cx.local.x; // Access to the critical section token, // to indicate that this is a critical section let _cs_token: bare_metal::CriticalSection = cx.cs; hprintln!("init"); debug::exit(debug::EXIT_SUCCESS); // Exit QEMU simulator (Shared {}, Local {}) } }
Running the example will print init to the console and then exit the QEMU process.
$ cargo xtask qemu --verbose --example init
init
The background task #[idle]
A function marked with the idle attribute can optionally appear in the module. This becomes the special idle task and must have signature fn(idle::Context) -> ! .
When present, the runtime will execute the idle task after init . Unlike init , idle will run with interrupts enabled and must never return, as the -> ! function signature indicates. The Rust type ! means “never”.
Like in init , locally declared resources will have 'static lifetimes that are safe to access.
The example below shows that idle runs after init .
//! examples/idle.rs #![no_main] #![no_std] #![deny(warnings)] #![deny(unsafe_code)] #![deny(missing_docs)] use panic_semihosting as _; #[rtic::app(device = lm3s6965)] mod app { use cortex_m_semihosting::{debug, hprintln}; #[shared] struct Shared {} #[local] struct Local {} #[init] fn init(_: init::Context) -> (Shared, Local) { hprintln!("init"); (Shared {}, Local {}) } #[idle(local = [x: u32 = 0])] fn idle(cx: idle::Context) -> ! { // Locals in idle have lifetime 'static let _x: &'static mut u32 = cx.local.x; hprintln!("idle"); debug::exit(debug::EXIT_SUCCESS); // Exit QEMU simulator loop { cortex_m::asm::nop(); } } }
$ cargo xtask qemu --verbose --example idle
init idle
By default, the RTIC idle task does not try to optimize for any specific targets.
A common useful optimization is to enable the SLEEPONEXIT and allow the MCU to enter sleep when reaching idle .
Caution: some hardware unless configured disables the debug unit during sleep mode.
Consult your hardware specific documentation as this is outside the scope of RTIC.
The following example shows how to enable sleep by setting the SLEEPONEXIT and providing a custom idle task replacing the default nop() with wfi().
//! examples/idle-wfi.rs #![no_main] #![no_std] #![deny(warnings)] #![deny(unsafe_code)] #![deny(missing_docs)] use panic_semihosting as _; #[rtic::app(device = lm3s6965)] mod app { use cortex_m_semihosting::{debug, hprintln}; #[shared] struct Shared {} #[local] struct Local {} #[init] fn init(mut cx: init::Context) -> (Shared, Local) { hprintln!("init"); // Set the ARM SLEEPONEXIT bit to go to sleep after handling interrupts // See https://developer.arm.com/docs/100737/0100/power-management/sleep-mode/sleep-on-exit-bit cx.core.SCB.set_sleepdeep(); (Shared {}, Local {}) } #[idle(local = [x: u32 = 0])] fn idle(cx: idle::Context) -> ! { // Locals in idle have lifetime 'static let _x: &'static mut u32 = cx.local.x; hprintln!("idle"); debug::exit(debug::EXIT_SUCCESS); // Exit QEMU simulator loop { // Now Wait For Interrupt is used instead of a busy-wait loop // to allow MCU to sleep between interrupts // https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Instruction-Details/Alphabetical-list-of-instructions/WFI rtic::export::wfi() } } }
$ cargo xtask qemu --verbose --example idle-wfi
init idle
Notice: The idle task cannot be used together with software tasks running at priority zero. The reason is that idle is running as a non-returning Rust function at priority zero. Thus there would be no way for an executor at priority zero to give control to software tasks at the same priority.
Communication over channels.
Channels can be used to communicate data between running tasks. The channel is essentially a wait queue, allowing tasks with multiple producers and a single receiver. A channel is constructed in the init task and backed by statically allocated memory. Send and receive endpoints are distributed to software tasks:
... const CAPACITY: usize = 5; #[init] fn init(_: init::Context) -> (Shared, Local) { let (s, r) = make_channel!(u32, CAPACITY); receiver::spawn(r).unwrap(); sender1::spawn(s.clone()).unwrap(); sender2::spawn(s.clone()).unwrap(); ...
In this case the channel holds data of u32 type with a capacity of 5 elements.
Channels can also be used from hardware tasks, but only in a non- async manner using the Try API.
Sending data
The send method post a message on the channel as shown below:
#[task] async fn sender1(_c: sender1::Context, mut sender: Sender<'static, u32, CAPACITY>) { hprintln!("Sender 1 sending: 1"); sender.send(1).await.unwrap(); }
Receiving data
The receiver can await incoming messages:
#[task] async fn receiver(_c: receiver::Context, mut receiver: Receiver<'static, u32, CAPACITY>) { while let Ok(val) = receiver.recv().await { hprintln!("Receiver got: {}", val); ... } }
Channels are implemented using a small (global) Critical Section (CS) for protection against race-conditions. The user must provide an CS implementation. Compiling the examples given the --features test-critical-section gives one possible implementation.
For a complete example:
//! examples/async-channel.rs #![no_main] #![no_std] #![deny(warnings)] #![deny(unsafe_code)] #![deny(missing_docs)] use panic_semihosting as _; #[rtic::app(device = lm3s6965, dispatchers = [SSI0])] mod app { use cortex_m_semihosting::{debug, hprintln}; use rtic_sync::{channel::*, make_channel}; #[shared] struct Shared {} #[local] struct Local {} const CAPACITY: usize = 5; #[init] fn init(_: init::Context) -> (Shared, Local) { let (s, r) = make_channel!(u32, CAPACITY); receiver::spawn(r).unwrap(); sender1::spawn(s.clone()).unwrap(); sender2::spawn(s.clone()).unwrap(); sender3::spawn(s).unwrap(); (Shared {}, Local {}) } #[task] async fn receiver(_c: receiver::Context, mut receiver: Receiver<'static, u32, CAPACITY>) { while let Ok(val) = receiver.recv().await { hprintln!("Receiver got: {}", val); if val == 3 { debug::exit(debug::EXIT_SUCCESS); // Exit QEMU simulator } } } #[task] async fn sender1(_c: sender1::Context, mut sender: Sender<'static, u32, CAPACITY>) { hprintln!("Sender 1 sending: 1"); sender.send(1).await.unwrap(); } #[task] async fn sender2(_c: sender2::Context, mut sender: Sender<'static, u32, CAPACITY>) { hprintln!("Sender 2 sending: 2"); sender.send(2).await.unwrap(); } #[task] async fn sender3(_c: sender3::Context, mut sender: Sender<'static, u32, CAPACITY>) { hprintln!("Sender 3 sending: 3"); sender.send(3).await.unwrap(); } }
$ cargo xtask qemu --verbose --example async-channel --features test-critical-section
Sender 1 sending: 1 Sender 2 sending: 2 Sender 3 sending: 3 Receiver got: 1 Receiver got: 2 Receiver got: 3
Also sender endpoint can be awaited. In case the channel capacity has not yet been reached, await -ing the sender can progress immediately, while in the case the capacity is reached, the sender is blocked until there is free space in the queue. In this way data is never lost.
In the following example the CAPACITY has been reduced to 1, forcing sender tasks to wait until the data in the channel has been received.
//! examples/async-channel-done.rs #![no_main] #![no_std] #![deny(warnings)] #![deny(unsafe_code)] #![deny(missing_docs)] use panic_semihosting as _; #[rtic::app(device = lm3s6965, dispatchers = [SSI0])] mod app { use cortex_m_semihosting::{debug, hprintln}; use rtic_sync::{channel::*, make_channel}; #[shared] struct Shared {} #[local] struct Local {} const CAPACITY: usize = 1; #[init] fn init(_: init::Context) -> (Shared, Local) { let (s, r) = make_channel!(u32, CAPACITY); receiver::spawn(r).unwrap(); sender1::spawn(s.clone()).unwrap(); sender2::spawn(s.clone()).unwrap(); sender3::spawn(s).unwrap(); (Shared {}, Local {}) } #[task] async fn receiver(_c: receiver::Context, mut receiver: Receiver<'static, u32, CAPACITY>) { while let Ok(val) = receiver.recv().await { hprintln!("Receiver got: {}", val); if val == 3 { debug::exit(debug::EXIT_SUCCESS); // Exit QEMU simulator } } } #[task] async fn sender1(_c: sender1::Context, mut sender: Sender<'static, u32, CAPACITY>) { hprintln!("Sender 1 sending: 1"); sender.send(1).await.unwrap(); hprintln!("Sender 1 done"); } #[task] async fn sender2(_c: sender2::Context, mut sender: Sender<'static, u32, CAPACITY>) { hprintln!("Sender 2 sending: 2"); sender.send(2).await.unwrap(); hprintln!("Sender 2 done"); } #[task] async fn sender3(_c: sender3::Context, mut sender: Sender<'static, u32, CAPACITY>) { hprintln!("Sender 3 sending: 3"); sender.send(3).await.unwrap(); hprintln!("Sender 3 done"); } }
Looking at the output, we find that Sender 2 will wait until the data sent by Sender 1 as been received.
NOTICE Software tasks at the same priority are executed asynchronously to each other, thus NO strict order can be assumed. (The presented order here applies only to the current implementation, and may change between RTIC framework releases.)
$ cargo xtask qemu --verbose --example async-channel-done --features test-critical-section Sender 1 sending: 1 Sender 1 done Sender 2 sending: 2 Sender 3 sending: 3 Receiver got: 1 Sender 2 done Receiver got: 2 Sender 3 done Receiver got: 3
Error handling
In case all senders have been dropped await -ing on an empty receiver channel results in an error. This allows to gracefully implement different types of shutdown operations.
//! examples/async-channel-no-sender.rs #![no_main] #![no_std] #![deny(warnings)] #![deny(unsafe_code)] #![deny(missing_docs)] use panic_semihosting as _; #[rtic::app(device = lm3s6965, dispatchers = [SSI0])] mod app { use cortex_m_semihosting::{debug, hprintln}; use rtic_sync::{channel::*, make_channel}; #[shared] struct Shared {} #[local] struct Local {} const CAPACITY: usize = 1; #[init] fn init(_: init::Context) -> (Shared, Local) { let (_s, r) = make_channel!(u32, CAPACITY); receiver::spawn(r).unwrap(); (Shared {}, Local {}) } #[task] async fn receiver(_c: receiver::Context, mut receiver: Receiver<'static, u32, CAPACITY>) { hprintln!("Receiver got: {:?}", receiver.recv().await); debug::exit(debug::EXIT_SUCCESS); // Exit QEMU simulator } }
$ cargo xtask qemu --verbose --example async-channel-no-sender --features test-critical-section
Receiver got: Err(NoSender)
Similarly, await -ing on a send channel results in an error in case the receiver has been dropped. This allows to gracefully implement application level error handling.
The resulting error returns the data back to the sender, allowing the sender to take appropriate action (e.g., storing the data to later retry sending it).
//! examples/async-channel-no-receiver.rs #![no_main] #![no_std] #![deny(warnings)] #![deny(unsafe_code)] #![deny(missing_docs)] use panic_semihosting as _; #[rtic::app(device = lm3s6965, dispatchers = [SSI0])] mod app { use cortex_m_semihosting::{debug, hprintln}; use rtic_sync::{channel::*, make_channel}; #[shared] struct Shared {} #[local] struct Local {} const CAPACITY: usize = 1; #[init] fn init(_: init::Context) -> (Shared, Local) { let (s, _r) = make_channel!(u32, CAPACITY); sender1::spawn(s.clone()).unwrap(); (Shared {}, Local {}) } #[task] async fn sender1(_c: sender1::Context, mut sender: Sender<'static, u32, CAPACITY>) { hprintln!("Sender 1 sending: 1 {:?}", sender.send(1).await); debug::exit(debug::EXIT_SUCCESS); // Exit QEMU simulator } }
$ cargo xtask qemu --verbose --example async-channel-no-receiver --features test-critical-section
Sender 1 sending: 1 Err(NoReceiver(1))
Try API
Using the Try API, you can send or receive data from or to a channel without requiring that the operation succeeds, and in non- async contexts.
This API is exposed through Receiver::try_recv and Sender::try_send .
//! examples/async-channel-try.rs #![no_main] #![no_std] #![deny(warnings)] #![deny(unsafe_code)] #![deny(missing_docs)] use panic_semihosting as _; #[rtic::app(device = lm3s6965, dispatchers = [SSI0])] mod app { use cortex_m_semihosting::{debug, hprintln}; use rtic_sync::{channel::*, make_channel}; #[shared] struct Shared {} #[local] struct Local { sender: Sender<'static, u32, CAPACITY>, } const CAPACITY: usize = 1; #[init] fn init(_: init::Context) -> (Shared, Local) { let (s, r) = make_channel!(u32, CAPACITY); receiver::spawn(r).unwrap(); sender1::spawn(s.clone()).unwrap(); (Shared {}, Local { sender: s.clone() }) } #[task] async fn receiver(_c: receiver::Context, mut receiver: Receiver<'static, u32, CAPACITY>) { while let Ok(val) = receiver.recv().await { hprintln!("Receiver got: {}", val); } } #[task] async fn sender1(_c: sender1::Context, mut sender: Sender<'static, u32, CAPACITY>) { hprintln!("Sender 1 sending: 1"); sender.send(1).await.unwrap(); hprintln!("Sender 1 try sending: 2 {:?}", sender.try_send(2)); debug::exit(debug::EXIT_SUCCESS); // Exit QEMU simulator } // This interrupt is never triggered, but is used to demonstrate that // one can (try to) send data into a channel from a hardware task. #[task(binds = GPIOA, local = [sender])] fn hw_task(cx: hw_task::Context) { cx.local.sender.try_send(3).ok(); } }
$ cargo xtask qemu --verbose --example async-channel-try --features test-critical-section
Sender 1 sending: 1 Sender 1 try sending: 2 Err(Full(2))
Delay and Timeout using Monotonics
A convenient way to express miniminal timing requirements is by delaying progression.
This can be achieved by instantiating a monotonic timer (for implementations, see rtic-monotonics):
... #[init] fn init(cx: init::Context) -> (Shared, Local) { hprintln!("init"); Mono::start(cx.core.SYST, 12_000_000); ...
A software task can await the delay to expire:
#[task] async fn foo(_cx: foo::Context) { ... Mono::delay(100.millis()).await; ... }
A complete example
//! examples/async-delay.rs #![no_main] #![no_std] #![deny(warnings)] #![deny(unsafe_code)] #![deny(missing_docs)] use panic_semihosting as _; #[rtic::app(device = lm3s6965, dispatchers = [SSI0, UART0], peripherals = true)] mod app { use cortex_m_semihosting::{debug, hprintln}; use rtic_monotonics::systick::prelude::*; systick_monotonic!(Mono, 100); #[shared] struct Shared {} #[local] struct Local {} #[init] fn init(cx: init::Context) -> (Shared, Local) { hprintln!("init"); Mono::start(cx.core.SYST, 12_000_000); foo::spawn().ok(); bar::spawn().ok(); baz::spawn().ok(); (Shared {}, Local {}) } #[task] async fn foo(_cx: foo::Context) { hprintln!("hello from foo"); Mono::delay(100.millis()).await; hprintln!("bye from foo"); } #[task] async fn bar(_cx: bar::Context) { hprintln!("hello from bar"); Mono::delay(200.millis()).await; hprintln!("bye from bar"); } #[task] async fn baz(_cx: baz::Context) { hprintln!("hello from baz"); Mono::delay(300.millis()).await; hprintln!("bye from baz"); debug::exit(debug::EXIT_SUCCESS); } }
$ cargo xtask qemu --verbose --example async-delay --features test-critical-section
init hello from bar hello from baz hello from foo bye from foo bye from bar bye from baz
Interested in contributing new implementations of Monotonic, or more information about the inner workings of monotonics? Check out the Implementing a Monotonic chapter!
Timeout
Rust Futures (underlying Rust async / await ) are composable. This makes it possible to select in between Futures that have completed.
A common use case is transactions with an associated timeout. In the examples shown below, we introduce a fake HAL device that performs some imagined transaction when you call hal_get(n).await . We have modelled the time it takes based on the input parameter ( n ) as 350ms + n * 100ms .
Using the select_biased macro from the futures crate it may look like this:
// Call hal with short relative timeout using `select_biased` select_biased! { v = hal_get(1).fuse() => hprintln!("hal returned {}", v), _ = Mono::delay(200.millis()).fuse() => hprintln!("timeout", ), // this will finish first } // Call hal with long relative timeout using `select_biased` select_biased! { v = hal_get(1).fuse() => hprintln!("hal returned {}", v), // hal finish first _ = Mono::delay(1000.millis()).fuse() => hprintln!("timeout", ), }
Assuming the hal_get will take 450ms to finish, a short timeout of 200ms will expire before hal_get can complete.
Extending the timeout to 1000ms would cause hal_get will to complete first.
Using select_biased any number of futures can be combined, so its very powerful. However, as the timeout pattern is frequently used, more ergonomic support is baked into RTIC, provided by the rtic-monotonics and rtic-time crates. Here's another example, using Mono::delay_until and Mono::timeout_after :
// get the current time instance let mut instant = Mono::now(); // do this 3 times for n in 0..3 { // absolute point in time without drift instant += 1000.millis(); Mono::delay_until(instant).await; // absolute point in time for timeout let timeout = instant + 500.millis(); hprintln!("now is {:?}, timeout at {:?}", Mono::now(), timeout); match Mono::timeout_at(timeout, hal_get(n)).await { Ok(v) => hprintln!("hal returned {} at time {:?}", v, Mono::now()), _ => hprintln!("timeout"), } }
In cases where you want exact control over time without drift we can use exact points in time using Instant , and spans of time using Duration . Operations on the Instant and Duration types come from the fugit crate.
let mut instant = Mono::now() sets the starting time of execution.
We want to call hal_get every 1000ms relative to this starting time. We accomplish this by incrementing our instant by 1000 ms and then using Mono::delay_until(instant).await . Any additional delays incurred as we iterate around this loop are compensated for by delaying until 'previous + 1000' as opposed to 'now + 1000' (which would cause our loop timing to drift).
To show an alternative to the select! async timeout example above, we define a future point in time as timeout , and call Mono::timeout_at(timeout, hal_get(n)).await .
For the first iteration of the loop, with n == 0 , the hal_get will take 350ms (as described above), and finishes before the timeout. For the second iteration, the delay is 450ms, which still finishes before the timeout. For the third iteration, with n == 2 , hal_get will take 550ms to finish, in which case we will run into a timeout.
A complete example
//! examples/async-timeout.rs #![no_main] #![no_std] #![deny(warnings)] #![deny(unsafe_code)] #![deny(missing_docs)] use cortex_m_semihosting::{debug, hprintln}; use panic_semihosting as _; use rtic_monotonics::systick::prelude::*; systick_monotonic!(Mono, 100); #[rtic::app(device = lm3s6965, dispatchers = [SSI0, UART0], peripherals = true)] mod app { use super::*; use futures::{future::FutureExt, select_biased}; #[shared] struct Shared {} #[local] struct Local {} // ANCHOR: init #[init] fn init(cx: init::Context) -> (Shared, Local) { hprintln!("init"); Mono::start(cx.core.SYST, 12_000_000); // ANCHOR_END: init foo::spawn().ok(); (Shared {}, Local {}) } #[task] async fn foo(_cx: foo::Context) { // ANCHOR: select_biased // Call hal with short relative timeout using `select_biased` select_biased! { v = hal_get(1).fuse() => hprintln!("hal returned {}", v), _ = Mono::delay(200.millis()).fuse() => hprintln!("timeout", ), // this will finish first } // Call hal with long relative timeout using `select_biased` select_biased! { v = hal_get(1).fuse() => hprintln!("hal returned {}", v), // hal finish first _ = Mono::delay(1000.millis()).fuse() => hprintln!("timeout", ), } // ANCHOR_END: select_biased // ANCHOR: timeout_after_basic // Call hal with long relative timeout using monotonic `timeout_after` match Mono::timeout_after(1000.millis(), hal_get(1)).await { Ok(v) => hprintln!("hal returned {}", v), _ => hprintln!("timeout"), } // ANCHOR_END: timeout_after_basic // ANCHOR: timeout_at_basic // get the current time instance let mut instant = Mono::now(); // do this 3 times for n in 0..3 { // absolute point in time without drift instant += 1000.millis(); Mono::delay_until(instant).await; // absolute point in time for timeout let timeout = instant + 500.millis(); hprintln!("now is {:?}, timeout at {:?}", Mono::now(), timeout); match Mono::timeout_at(timeout, hal_get(n)).await { Ok(v) => hprintln!("hal returned {} at time {:?}", v, Mono::now()), _ => hprintln!("timeout"), } } // ANCHOR_END: timeout_at_basic debug::exit(debug::EXIT_SUCCESS); } } // Emulate some hal async fn hal_get(n: u32) -> u32 { // emulate some delay time dependent on n let d = 350.millis() + n * 100.millis(); hprintln!("the hal takes a duration of {:?}", d); Mono::delay(d).await; // emulate some return value 5 }
$ cargo xtask qemu --verbose --example async-timeout --features test-critical-section
init the hal takes a duration of Duration { ticks: 45 } timeout the hal takes a duration of Duration { ticks: 45 } hal returned 5 the hal takes a duration of Duration { ticks: 45 } hal returned 5 now is Instant { ticks: 213 }, timeout at Instant { ticks: 263 } the hal takes a duration of Duration { ticks: 35 } hal returned 5 at time Instant { ticks: 249 } now is Instant { ticks: 313 }, timeout at Instant { ticks: 363 } the hal takes a duration of Duration { ticks: 45 } hal returned 5 at time Instant { ticks: 359 } now is Instant { ticks: 413 }, timeout at Instant { ticks: 463 } the hal takes a duration of Duration { ticks: 55 } timeout
The minimal app
This is the smallest possible RTIC application:
//! examples/smallest.rs #![no_main] #![no_std] #![deny(warnings)] #![deny(unsafe_code)] #![deny(missing_docs)] use panic_semihosting as _; // panic handler use rtic::app; #[app(device = lm3s6965)] mod app { use cortex_m_semihosting::debug; #[shared] struct Shared {} #[local] struct Local {} #[init] fn init(_: init::Context) -> (Shared, Local) { debug::exit(debug::EXIT_SUCCESS); // Exit QEMU simulator (Shared {}, Local {}) } }
RTIC is designed with resource efficiency in mind. RTIC itself does not rely on any dynamic memory allocation, thus RAM requirement is dependent only on the application. The flash memory footprint is below 1kB including the interrupt vector table.
For a minimal example you can expect something like:
$ cargo size --example smallest --target thumbv7m-none-eabi --release
Finished release [optimized] target(s) in 0.07s text data bss dec hex filename 924 0 0 924 39c smallest
Tips & tricks
In this section we will explore common tips & tricks related to using RTIC.
Resource de-structure-ing
Destructuring task resources might help readability if a task takes multiple resources. Here are two examples on how to split up the resource struct:
//! examples/destructure.rs #![no_main] #![no_std] #![deny(warnings)] #![deny(unsafe_code)] #![deny(missing_docs)] use panic_semihosting as _; #[rtic::app(device = lm3s6965, dispatchers = [UART0])] mod app { use cortex_m_semihosting::{debug, hprintln}; #[shared] struct Shared { a: u32, b: u32, c: u32, } #[local] struct Local {} #[init] fn init(_: init::Context) -> (Shared, Local) { foo::spawn().unwrap(); bar::spawn().unwrap(); (Shared { a: 0, b: 1, c: 2 }, Local {}) } #[idle] fn idle(_: idle::Context) -> ! { debug::exit(debug::EXIT_SUCCESS); // Exit QEMU simulator loop {} } // Direct destructure #[task(shared = [&a, &b, &c], priority = 1)] async fn foo(cx: foo::Context) { let a = cx.shared.a; let b = cx.shared.b; let c = cx.shared.c; hprintln!("foo: a = {}, b = {}, c = {}", a, b, c); } // De-structure-ing syntax #[task(shared = [&a, &b, &c], priority = 1)] async fn bar(cx: bar::Context) { let bar::SharedResources { a, b, c, .. } = cx.shared; hprintln!("bar: a = {}, b = {}, c = {}", a, b, c); } }
$ cargo xtask qemu --verbose --example destructure
bar: a = 0, b = 1, c = 2 foo: a = 0, b = 1, c = 2
Using indirection for faster message passing
Message passing always involves copying the payload from the sender into a static variable and then from the static variable into the receiver. Thus sending a large buffer, like a [u8; 128] , as a message involves two expensive memcpy s.
Indirection can minimize message passing overhead: instead of sending the buffer by value, one can send an owning pointer into the buffer.
One can use a global memory allocator to achieve indirection ( alloc::Box , alloc::Rc , etc.), which requires using the nightly channel as of Rust v1.37.0, or one can use a statically allocated memory pool like heapless::Pool.
As this example of approach goes completely outside of RTIC resource model with shared and local the program would rely on the correctness of the memory allocator, in this case heapless::pool .
Here's an example where heapless::Pool is used to "box" buffers of 128 bytes.
//! examples/pool.rs #![no_main] #![no_std] #![deny(warnings)] use panic_semihosting as _; use rtic::app; // thumbv6-none-eabi does not support pool // This might be better worked around in the build system, // but for proof of concept, let's try having one example // being different for different backends // https://docs.rs/heapless/0.8.0/heapless/pool/index.html#target-support cfg_if::cfg_if! { if #[cfg(feature = "thumbv6-backend")] { // Copy of the smallest.rs example #[app(device = lm3s6965)] mod app { use cortex_m_semihosting::debug; #[shared] struct Shared {} #[local] struct Local {} #[init] fn init(_: init::Context) -> (Shared, Local) { debug::exit(debug::EXIT_SUCCESS); // Exit QEMU simulator (Shared {}, Local {}) } } } else { // Run actual pool example use heapless::{ box_pool, pool::boxed::{Box, BoxBlock}, }; // Declare a pool containing 8-byte memory blocks box_pool!(P: u8); const POOL_CAPACITY: usize = 512; #[app(device = lm3s6965, dispatchers = [SSI0, QEI0])] mod app { use crate::{Box, BoxBlock, POOL_CAPACITY}; use cortex_m_semihosting::debug; use lm3s6965::Interrupt; // Import the memory pool into scope use crate::P; #[shared] struct Shared {} #[local] struct Local {} const BLOCK: BoxBlock<u8> = BoxBlock::new(); #[init(local = [memory: [BoxBlock<u8>; POOL_CAPACITY] = [BLOCK; POOL_CAPACITY]])] fn init(cx: init::Context) -> (Shared, Local) { for block in cx.local.memory { // Give the 'static memory to the pool P.manage(block); } rtic::pend(Interrupt::I2C0); (Shared {}, Local {}) } #[task(binds = I2C0, priority = 2)] fn i2c0(_: i2c0::Context) { // Claim 128 u8 blocks let x = P.alloc(128).unwrap(); // .. send it to the `foo` task foo::spawn(x).ok().unwrap(); // send another 128 u8 blocks to the task `bar` bar::spawn(P.alloc(128).unwrap()).ok().unwrap(); } #[task] async fn foo(_: foo::Context, _x: Box<P>) { // explicitly return the block to the pool drop(_x); debug::exit(debug::EXIT_SUCCESS); // Exit QEMU simulator } #[task(priority = 2)] async fn bar(_: bar::Context, _x: Box<P>) { // this is done automatically so we can omit the call to `drop` // drop(_x); } } } }
$ cargo xtask qemu --verbose --example pool
'static super-powers
In #[init] , #[idle] and divergent software tasks local resources have 'static lifetime.
Useful when pre-allocating and/or splitting resources between tasks, drivers or some other object. This comes in handy when drivers, such as USB drivers, need to allocate memory and when using splittable data structures such as heapless::spsc::Queue.
In the following example two different tasks share a heapless::spsc::Queue for lock-free access to the shared queue.
//! examples/static-resources-in-init.rs #![no_main] #![no_std] #![deny(warnings)] #![deny(unsafe_code)] #![deny(missing_docs)] use panic_semihosting as _; #[rtic::app(device = lm3s6965, dispatchers = [UART0])] mod app { use cortex_m_semihosting::{debug, hprintln}; use heapless::spsc::{Consumer, Producer, Queue}; #[shared] struct Shared {} #[local] struct Local { p: Producer<'static, u32, 5>, c: Consumer<'static, u32, 5>, } #[init(local = [q: Queue<u32, 5> = Queue::new()])] fn init(cx: init::Context) -> (Shared, Local) { // q has 'static life-time so after the split and return of `init` // it will continue to exist and be allocated let (p, c) = cx.local.q.split(); foo::spawn().unwrap(); (Shared {}, Local { p, c }) } #[idle(local = [c])] fn idle(c: idle::Context) -> ! { loop { // Lock-free access to the same underlying queue! if let Some(data) = c.local.c.dequeue() { hprintln!("received message: {}", data); // Run foo until data if data == 3 { debug::exit(debug::EXIT_SUCCESS); // Exit QEMU simulator } else { foo::spawn().unwrap(); } } } } #[task(local = [p, state: u32 = 0], priority = 1)] async fn foo(c: foo::Context) { *c.local.state += 1; // Lock-free access to the same underlying queue! c.local.p.enqueue(*c.local.state).unwrap(); } }
Running this program produces the expected output.
$ cargo xtask qemu --verbose --example static-resources-in-init
received message: 1 received message: 2 received message: 3
Inspecting generated code
#[rtic::app] is a procedural macro that produces support code. If for some reason you need to inspect the code generated by this macro you have two options:
Using generated rtic-expansion.rs
Locating this file depends on how building is performed.
Using e.g. cargo xtask build-example within the main RTIC repo will place the file based on "platform" used:
$ cargo xtask example-build --example smallest $ cargo xtask example-build --example monotonic --platform esp32-c3 $ fd -u rtic-expansion.rs examples/esp32c3/target/rtic-expansion.rs examples/lm3s6965/target/rtic-expansion.rs
In the regular cargo project case it goes directly in the target folder.
This file contains the expansion of the #[rtic::app] item (not your whole program!) of the last built (via cargo build or cargo check ) RTIC application. The expanded code is not pretty printed by default, so you'll want to run rustfmt on it before you read it.
$ cargo build --example smallest --target thumbv7m-none-eabi
$ rustfmt target/rtic-expansion.rs
$ tail target/rtic-expansion.rs
#[doc = r" Implementation details"] mod app { #[doc = r" Always include the device crate which contains the vector table"] use lm3s6965 as _; #[no_mangle] unsafe extern "C" fn main() -> ! { rtic::export::interrupt::disable(); let mut core: rtic::export::Peripherals = core::mem::transmute(()); core.SCB.scr.modify(|r| r | 1 << 1); rtic::export::interrupt::enable(); loop { rtic::export::wfi() } } }
Using cargo-expand tool
If not available, install:
$ cargo install cargo-expand
This sub-command will expand all the macros, including the #[rtic::app] attribute, and modules in your crate and print the output to the console.
# produces the same output as before
cargo expand --example smallest | tail
The magic behind Monotonics
Internally, all monotonics use a Timer Queue, which is a priority queue with entries describing the time at which their respective Future s should complete.
Implementing a Monotonic timer for scheduling
The rtic-time framework is flexible because it can use any timer which has compare-match and optionally supporting overflow interrupts for scheduling. The single requirement to make a timer usable with RTIC is implementing the rtic-time::Monotonic trait.
For RTIC 2.0, we assume that the user has a time library, e.g. fugit, as the basis for all time-based operations when implementing Monotonic. These libraries make it much easier to correctly implement the Monotonic trait, allowing the use of almost any timer in the system for scheduling.
The trait documents the requirements for each method. There are reference implementations available in rtic-monotonics that can be used for inspriation.
Contributing
Contributing new implementations of Monotonic can be done in multiple ways:
The timer queue
The timer queue is implemented as a list based priority queue, where list-nodes are statically allocated as part of the Future created when await -ing a Future created when waiting for the monotonic. Thus, the timer queue is infallible at run-time (its size and allocation are determined at compile time).
Similarly the channels implementation, the timer-queue implementation relies on a global Critical Section (CS) for race protection. For the examples a CS implementation is provided by adding --features test-critical-section to the build options.
RTIC vs. the world
RTIC aims to provide the lowest level of abstraction needed for developing robust and reliable embedded software.
It provides a minimal set of required mechanisms for safe sharing of mutable resources among interrupts and asynchronously executing tasks. The scheduling primitives leverages on the underlying hardware for unparalleled performance and predictability, in effect RTIC provides in Rust terms a zero-cost abstraction to concurrent real-time programming.
Comparison regarding safety and security
Comparing RTIC to traditional a Real-Time Operating System (RTOS) is hard. Firstly, a traditional RTOS typically comes with no guarantees regarding system safety, even the most hardened kernels like the formally verified seL4 kernel. Their claims to integrity, confidentiality, and availability regards only the kernel itself (under additional assumptions its configuration and environment). They even state:
"An OS kernel, verified or not, does not automatically make a system secure. In fact, any system, no matter how secure, can be used in insecure ways." - seL4 FAQ
Security by design
In the world of information security we commonly find:
Obviously, a traditional OS can guarantee neither confidentiality nor integrity, as both requires the security critical code to be trusted. Regarding availability, this typically boils down to the usage of system resources. Any OS that allows for dynamic allocation of resources, relies on that the application correctly handles allocations/de-allocations, and cases of allocation failures.
Thus their claim is correct, security is completely out of hands for the OS, the best we can hope for is that it does not add further vulnerabilities.
RTIC on the other hand holds your back. The declarative system wide model gives you a static set of tasks and resources, with precise control over what data is shared and between which parties. Moreover, Rust as a programming language comes with strong properties regarding integrity (compile time aliasing, mutability and lifetime guarantees, together with ensured data validity).
Using RTIC these properties propagate to the system wide model, without interference of other applications running. The RTIC kernel is internally infallible without any need of dynamically allocated data.
RTIC vs. Embassy
Differences
Embassy provides both Hardware Abstraction Layers, and an executor/runtime, while RTIC aims to only provide an execution framework. For example, embassy provides embassy-stm32 (a HAL), and embassy-executor (an executor). On the other hand, RTIC provides the framework in the form of rtic, and the user is responsible for providing a PAC and HAL implementation (generally from the stm32-rs project).
Additionally, RTIC aims to provide exclusive access to resources at as low a level as possible, ideally guarded by some form of hardware protection. This allows for access to hardware without necessarily requiring locking mechanisms at the software level.
Mixing use of Embassy and RTIC
Since most Embassy and RTIC libraries are runtime agnostic, many details from one project can be used in the other. For example, using rtic-monotonics in an embassy-executor powered project works, and using embassy-sync (though rtic-sync is recommended) in an RTIC project works.
Awesome RTIC examples
See the rtic-rs/rtic/examples repository for complete examples.
Pull-requests are welcome!
Migrating from v1.0.x to v2.0.0
Migrating a project from RTIC v1.0.x to v2.0.0 involves the following steps:
For a detailed description of the changes, refer to the subchapters.
If you wish to see a code example of changes required, you can check out the full example migration page.
TL;DR (Too Long; Didn't Read)
Migrating to rtic-monotonics
In previous versions of rtic , monotonics were an integral, tightly coupled part of the #[rtic::app] . In this new version, rtic-monotonics provides them in a more decoupled way.
The #[monotonic] attribute is no longer used. Instead, you use a create_X_token from rtic-monotonics. An invocation of this macro returns an interrupt registration token, which can be used to construct an instance of your desired monotonic.
spawn_after and spawn_at are no longer available. Instead, you use the async functions delay and delay_until provided by ipmlementations of the rtic_time::Monotonic trait, available through rtic-monotonics.
Check out the code example for an overview of the required changes.
For more information on current monotonic implementations, see the rtic-monotonics documentation, and the examples.
Using async software tasks.
There have been a few changes to software tasks. They are outlined below.
Software tasks must now be async.
All software tasks are now required to be async .
Required changes.
All of the tasks in your project that do not bind to an interrupt must now be an async fn . For example:
#[task( local = [ some_resource ], shared = [ my_shared_resource ], priority = 2 )] fn my_task(cx: my_task::Context) { cx.local.some_resource.do_trick(); cx.shared.my_shared_resource.lock(|s| s.do_shared_thing()); }
becomes
#[task( local = [ some_resource ], shared = [ my_shared_resource ], priority = 2 )] async fn my_task(cx: my_task::Context) { cx.local.some_resource.do_trick(); cx.shared.my_shared_resource.lock(|s| s.do_shared_thing()); }
Software tasks may now run forever
The new async software tasks are allowed to run forever, on one precondition: there must be an await within the infinite loop of the task. An example of such a task:
#[task(local = [ my_channel ] )] async fn my_task_that_runs_forever(cx: my_task_that_runs_forever::Context) { loop { let value = cx.local.my_channel.recv().await; do_something_with_value(value); } }
spawn_after and spawn_at have been removed.
As discussed in the Migrating to rtic-monotonics chapter, spawn_after and spawn_at are no longer available.
Using rtic-sync
rtic-sync provides primitives that can be used for message passing and resource sharing in async context.
The important structs are:
For more information on these structs, see the rtic-sync docs
A complete example of migration
Below you can find the code for the implementation of the stm32f3_blinky example for v1.0.x and for v2.0.0. Further down, a diff is displayed.
v1.0.X
#![deny(unsafe_code)] #![deny(warnings)] #![no_main] #![no_std] use panic_rtt_target as _; use rtic::app; use rtt_target::{rprintln, rtt_init_print}; use stm32f3xx_hal::gpio::{Output, PushPull, PA5}; use stm32f3xx_hal::prelude::*; use systick_monotonic::{fugit::Duration, Systick}; #[app(device = stm32f3xx_hal::pac, peripherals = true, dispatchers = [SPI1])] mod app { use super::*; #[shared] struct Shared {} #[local] struct Local { led: PA5<Output<PushPull>>, state: bool, } #[monotonic(binds = SysTick, default = true)] type MonoTimer = Systick<1000>; #[init] fn init(cx: init::Context) -> (Shared, Local, init::Monotonics) { // Setup clocks let mut flash = cx.device.FLASH.constrain(); let mut rcc = cx.device.RCC.constrain(); let mono = Systick::new(cx.core.SYST, 36_000_000); rtt_init_print!(); rprintln!("init"); let _clocks = rcc .cfgr .use_hse(8.MHz()) .sysclk(36.MHz()) .pclk1(36.MHz()) .freeze(&mut flash.acr); // Setup LED let mut gpioa = cx.device.GPIOA.split(&mut rcc.ahb); let mut led = gpioa .pa5 .into_push_pull_output(&mut gpioa.moder, &mut gpioa.otyper); led.set_high().unwrap(); // Schedule the blinking task blink::spawn_after(Duration::<u64, 1, 1000>::from_ticks(1000)).unwrap(); ( Shared {}, Local { led, state: false }, init::Monotonics(mono), ) } #[task(local = [led, state])] fn blink(cx: blink::Context) { rprintln!("blink"); if *cx.local.state { cx.local.led.set_high().unwrap(); *cx.local.state = false; } else { cx.local.led.set_low().unwrap(); *cx.local.state = true; } blink::spawn_after(Duration::<u64, 1, 1000>::from_ticks(1000)).unwrap(); } }
V2.0.0
#![deny(unsafe_code)] #![deny(warnings)] #![no_main] #![no_std] use panic_rtt_target as _; use rtic::app; use rtic_monotonics::systick::prelude::*; use rtt_target::{rprintln, rtt_init_print}; use stm32f3xx_hal::gpio::{Output, PushPull, PA5}; use stm32f3xx_hal::prelude::*; systick_monotonic!(Mono, 1000); #[app(device = stm32f3xx_hal::pac, peripherals = true, dispatchers = [SPI1])] mod app { use super::*; #[shared] struct Shared {} #[local] struct Local { led: PA5<Output<PushPull>>, state: bool, } #[init] fn init(cx: init::Context) -> (Shared, Local) { // Setup clocks let mut flash = cx.device.FLASH.constrain(); let mut rcc = cx.device.RCC.constrain(); // Initialize the systick interrupt & obtain the token to prove that we did Mono::start(cx.core.SYST, 36_000_000); // default STM32F303 clock-rate is 36MHz rtt_init_print!(); rprintln!("init"); let _clocks = rcc .cfgr .use_hse(8.MHz()) .sysclk(36.MHz()) .pclk1(36.MHz()) .freeze(&mut flash.acr); // Setup LED let mut gpioa = cx.device.GPIOA.split(&mut rcc.ahb); let mut led = gpioa .pa5 .into_push_pull_output(&mut gpioa.moder, &mut gpioa.otyper); led.set_high().unwrap(); // Schedule the blinking task blink::spawn().ok(); (Shared {}, Local { led, state: false }) } #[task(local = [led, state])] async fn blink(cx: blink::Context) { loop { rprintln!("blink"); if *cx.local.state { cx.local.led.set_high().unwrap(); *cx.local.state = false; } else { cx.local.led.set_low().unwrap(); *cx.local.state = true; } Mono::delay(1000.millis()).await; } } }
A diff between the two projects
Note: This diff may not be 100% accurate, but it displays the important changes.
#![no_main] #![no_std] use panic_rtt_target as _; use rtic::app; use stm32f3xx_hal::gpio::{Output, PushPull, PA5}; use stm32f3xx_hal::prelude::*; -use systick_monotonic::{fugit::Duration, Systick}; +use rtic_monotonics::Systick; #[app(device = stm32f3xx_hal::pac, peripherals = true, dispatchers = [SPI1])] mod app { @@ -20,16 +21,14 @@ mod app { state: bool, } - #[monotonic(binds = SysTick, default = true)] - type MonoTimer = Systick<1000>; - #[init] fn init(cx: init::Context) -> (Shared, Local, init::Monotonics) { // Setup clocks let mut flash = cx.device.FLASH.constrain(); let mut rcc = cx.device.RCC.constrain(); - let mono = Systick::new(cx.core.SYST, 36_000_000); + let mono_token = rtic_monotonics::create_systick_token!(); + let mono = Systick::start(cx.core.SYST, 36_000_000, mono_token); let _clocks = rcc .cfgr @@ -46,7 +45,7 @@ mod app { led.set_high().unwrap(); // Schedule the blinking task - blink::spawn_after(Duration::<u64, 1, 1000>::from_ticks(1000)).unwrap(); + blink::spawn().unwrap(); ( Shared {}, @@ -56,14 +55,18 @@ mod app { } #[task(local = [led, state])] - fn blink(cx: blink::Context) { - rprintln!("blink"); - if *cx.local.state { - cx.local.led.set_high().unwrap(); - *cx.local.state = false; - } else { - cx.local.led.set_low().unwrap(); - *cx.local.state = true; - blink::spawn_after(Duration::<u64, 1, 1000>::from_ticks(1000)).unwrap(); - } + async fn blink(cx: blink::Context) { + loop { + // A task is now allowed to run forever, provided that + // there is an `await` somewhere in the loop. + SysTick::delay(1000.millis()).await; + rprintln!("blink"); + if *cx.local.state { + cx.local.led.set_high().unwrap(); + *cx.local.state = false; + } else { + cx.local.led.set_low().unwrap(); + *cx.local.state = true; + } + } + } }
Under the hood
This is chapter is currently work in progress, it will re-appear once it is more complete
This section describes the internals of the RTIC framework at a high level. Low level details like the parsing and code generation done by the procedural macro ( #[app] ) will not be explained here. The focus will be the analysis of the user specification and the data structures used by the runtime.
We highly suggest that you read the embedonomicon section on concurrency before you dive into this material.
Target Architecture
Cortex-M Devices
While RTIC can currently target all Cortex-m devices there are some key architecture differences that users should be aware of. Namely, the absence of Base Priority Mask Register ( BASEPRI ) which lends itself exceptionally well to the hardware priority ceiling support used in RTIC, in the ARMv6-M and ARMv8-M-base architectures, which forces RTIC to use source masking instead. For each implementation of lock and a detailed commentary of pros and cons, see the implementation of lock in src/export.rs.
These differences influence how critical sections are realized, but functionality should be the same except that ARMv6-M/ARMv8-M-base cannot have tasks with shared resources bound to exception handlers, as these cannot be masked in hardware.
Table 1 below shows a list of Cortex-m processors and which type of critical section they employ.
Table 1: Critical Section Implementation by Processor Architecture
Processor | Architecture | Priority Ceiling | Source Masking |
---|---|---|---|
Cortex-M0 | ARMv6-M | ✓ | |
Cortex-M0+ | ARMv6-M | ✓ | |
Cortex-M3 | ARMv7-M | ✓ | |
Cortex-M4 | ARMv7-M | ✓ | |
Cortex-M7 | ARMv7-M | ✓ | |
Cortex-M23 | ARMv8-M-base | ✓ | |
Cortex-M33 | ARMv8-M-main | ✓ |
Priority Ceiling
This is covered by the Resources page of this book.
Source Masking
Without a BASEPRI register which allows for directly setting a priority ceiling in the Nested Vectored Interrupt Controller (NVIC), RTIC must instead rely on disabling (masking) interrupts. Consider Figure 1 below, showing two tasks A and B where A has higher priority but shares a resource with B.
Figure 1: Shared Resources and Source Masking
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At time t1, task B locks the shared resource by selectively disabling (using the NVIC) all other tasks which have a priority equal to or less than any task which shares resources with B. In effect this creates a virtual priority ceiling, mirroring the BASEPRI approach. Task A is one such task that shares resources with task B. At time t2, task A is either spawned by task B or becomes pending through an interrupt condition, but does not yet preempt task B even though its priority is greater. This is because the NVIC is preventing it from starting due to task A being disabled. At time t3, task B releases the lock by re-enabling the tasks in the NVIC. Because task A was pending and has a higher priority than task B, it immediately preempts task B and is free to use the shared resource without risk of data race conditions. At time t4, task A completes and returns the execution context to B.
Since source masking relies on use of the NVIC, core exception sources such as HardFault, SVCall, PendSV, and SysTick cannot share data with other tasks.
RISC-V Devices
All the current RISC-V backends work in a similar way as Cortex-M devices with priority ceiling. Therefore, the Resources page of this book is a good reference. However, some of these backends are not full hardware implementations, but use software to emulate a physical interrupt controller. Therefore, these backends do not implement hardware tasks, and only software tasks are needed. Furthermore, the number of software tasks for these targets is not bounded by the number of available physical interrupt sources.
Table 2 below compares the available RISC-V backends.
Table 2: Critical Section Implementation by Processor Architecture
Backend | Compatible targets | Backend-specific configuration | Hardware Tasks | Software Tasks | Number of tasks bounded by HW |
---|---|---|---|---|---|
riscv-esp32c3-backend | ESP32-C3 only | ✓ | ✓ | ✓ | |
riscv-mecall-backend | Any RISC-V device | ✓ | |||
riscv-clint-backend | Devices with CLINT peripheral | ✓ | ✓ |
riscv-mecall-backend
It is not necessary to provide a list of dispatchers in the #[app] attribute, as RTIC will generate them at compile time. Priority levels can go from 0 (for the idle task) to 255.
riscv-clint-backend
It is not necessary to provide a list of dispatchers in the #[app] attribute, as RTIC will generate them at compile time. Priority levels can go from 0 (for the idle task) to 255.
You must include a backend -specific configuration in the #[app] attribute so RTIC knows the ID number used to identify the HART running your application. For example, for e310x chips, you would configure a minimal application as follows:
#[rtic::app(device = e310x, backend = H0)] mod app { // your application here }
In this way, RTIC will always refer to HART H0 .
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