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Preface
This book contains user level documentation for the Real-Time

Interrupt-driven Concurrency (RTIC) framework. The API reference is
available here.

This is the documentation for RTIC v2.x.
Older releases: RTIC v1.x | RTIC v0.5.x (unsupported) | RTFM v0.4.x

(unsupported)

clbr://internal.invalid/api/
clbr://internal.invalid/1
https://github.com/rtic-rs/rtic/tree/release/v0.5
https://github.com/rtic-rs/rtic/tree/release/v0.4


Features

Tasks as the unit of concurrency [^1]. Tasks can be event triggered
(fired in response to asynchronous stimuli) or spawned by the
application on demand.



Is RTIC an RTOS?
A common question is whether RTIC is an RTOS or not, and depending

on your background the answer may vary. From RTIC's developers point of
view; RTIC is a hardware accelerated RTOS that utilizes the hardware such
as the NVIC on Cortex-M MCUs, CLIC on RISC-V etc. to perform
scheduling, rather than the more classical software kernel.

Another common view from the community is that RTIC is a
concurrency framework as there is no software kernel and that it relies on
external HALs.



RTIC - The Past, current and Future
This section gives a background to the RTIC model. Feel free to skip to

section RTIC the model for a TL;DR.
The RTIC framework takes the outset from real-time systems research at

Luleå University of Technology (LTU) Sweden. RTIC is inspired by the
concurrency model of the Timber language, the RTFM-SRP based
scheduler, the RTFM-core language and Abstract Timer implementation.
For a full list of related research see RTFM and RTIC publications.

clbr://internal.invalid/book/OEBPS/preface.md#rtic-the-model
https://web.archive.org/web/20230325133224/http://timber-lang.org/
https://www.diva-portal.org/smash/get/diva2:1005680/FULLTEXT01.pdf
https://ltu.diva-portal.org/smash/get/diva2:1013248/FULLTEXT01.pdf
https://ltu.diva-portal.org/smash/get/diva2:1013030/FULLTEXT01.pdf
http://ltu.diva-portal.org/smash/resultList.jsf?query=RTFM&language=en&searchType=SIMPLE&noOfRows=50&sortOrder=author_sort_asc&sortOrder2=title_sort_asc&onlyFullText=false&sf=all&aq=%5B%5B%5D%5D&aqe=%5B%5D&aq2=%5B%5B%5D%5D&af=%5B%5D
http://ltu.diva-portal.org/smash/resultList.jsf?query=RTIC&language=en&searchType=SIMPLE&noOfRows=50&sortOrder=author_sort_asc&sortOrder2=title_sort_asc&onlyFullText=false&sf=all&aq=%5B%5B%5D%5D&aqe=%5B%5D&aq2=%5B%5B%5D%5D&af=%5B%5D


Stack Resource Policy based Scheduling
Stack Resource Policy (SRP) based concurrency and resource

management is at heart of the RTIC framework. The SRP model itself
extends on Priority Inheritance Protocols, and provides a set of outstanding
properties for single core scheduling. To name a few:

preemptive deadlock and race-free scheduling
resource efficiency

tasks execute on a single shared stack
tasks run-to-completion with wait free access to shared resources

predictable scheduling, with bounded priority inversion by a single
(named) critical section
theoretical underpinning amenable to static analysis (e.g., for task
response times and overall schedulability)

SRP comes with a set of system-wide requirements:

each task is associated a static priority,
tasks execute on a single-core,
tasks must be run-to-completion, and
resources must be claimed/locked in LIFO order.

https://link.springer.com/article/10.1007/BF00365393
https://ieeexplore.ieee.org/document/57058


SRP analysis
SRP based scheduling requires the set of static priority tasks and their

access to shared resources to be known in order to compute a static ceiling
(𝝅) for each resource. The static resource ceiling 𝝅(r) reflects the
maximum static priority of any task that accesses the resource r .

Example
Assume two tasks A  (with priority p(A) = 2 ) and B  (with priority 

p(B) = 4 ) both accessing the shared resource R . The static ceiling of R  is
4 (computed from 𝝅(R) = max(p(A) = 2, p(B) = 4) = 4 ).

A graph representation of the example:
graph LR 
    A["p(A) = 2"] --> R 
    B["p(B) = 4"] --> R 
    R["𝝅(R) = 4"] 



RTIC the hardware accelerated real-time
scheduler

SRP itself is compatible with both dynamic and static priority
scheduling. For the implementation of RTIC we leverage on the underlying
hardware for accelerated static priority scheduling.

In the case of the ARM Cortex-M  architecture, each interrupt vector entry
v[i]  is associated a function pointer ( v[i].fn ), a static priority
( v[i].priority ), an enabled- ( v[i].enabled ) and a pending-bit
( v[i].pending ).

An interrupt i  is scheduled (run) by the hardware under the conditions:

1. is pending and enabled and has a priority higher than the (optional 
BASEPRI) register, and

2. has the highest priority among interrupts meeting 1.
The first condition (1) can be seen as a filter, allowing RTIC to take

control over which tasks should be allowed to start (and which should be
prevented from starting).

The SRP model for single-core static scheduling, on the other hand,
states that a task should be scheduled (run) under the conditions:

1. it is requested to run and has a static priority higher than the current
system ceiling (𝜫)

2. it has the highest static priority among tasks meeting 1.
The similarities are striking and it is not by chance/luck/coincidence.

The hardware was cleverly designed with real-time scheduling in mind.
In order to map the SRP scheduling onto the hardware we need to take a

closer look at the system ceiling (𝜫). Under SRP 𝜫 is computed as the
maximum priority ceiling of the currently held resources, and will thus
change dynamically during the system operation.

Example



Assume the task model above. Starting from an idle system, 𝜫 is 0, (no
task is holding any resource). Assume that A  is requested for execution, it
will immediately be scheduled. Assume that A  claims (locks) the resource 
R . During the claim (lock of R ) any request B  will be blocked from
starting (by 𝜫 = max(𝝅(R) = 4) = 4 , p(B) = 4 , thus SRP scheduling
condition 1 is not met).



Mapping
The mapping of static priority SRP based scheduling to the Cortex M

hardware is straightforward:

each task t  are mapped to an interrupt vector index i  with a
corresponding function v[i].fn = t  and given the static priority 
v[i].priority = p(t) .
the current system ceiling is mapped to the BASEPRI  register or
implemented through masking the interrupt enable bits accordingly.

Example
For the running example, a snapshot of the ARM Cortex M Nested

Vectored Interrupt Controller (NVIC) may have the following configuration
(after task A  has been pended for execution.)

Index Fn Priority Enabled Pending
0 A 2 true true
1 B 4 true false

(As discussed later, the assignment of interrupt and exception vectors is
up to the user.)

A claim (lock(r)) will change the current system ceiling (𝜫) and can be
implemented as a named critical section:

old_ceiling = 𝜫, 𝜫 = 𝝅(r)
execute code within critical section
old_ceiling = 𝜫

This amounts to a resource protection mechanism, requiring only two
machine instructions on enter and one on exit the critical section, for
managing the BASEPRI  register. For architectures lacking BASEPRI , we can
implement the system ceiling through a set of machine instructions for
disabling/enabling interrupts on entry/exit for the named critical section.
The number of machine instructions vary depending on the number of mask

https://developer.arm.com/documentation/ddi0337/h/nested-vectored-interrupt-controller/about-the-nvic


registers that needs to be updated (a single machine operation can operate
on up to 32 interrupts, so for the M0/M0+ architecture a single instruction
suffice). RTIC will determine the ceiling values and masking constants at
compile time, thus all operations is in Rust terms zero-cost.

In this way RTIC fuses SRP based preemptive scheduling with a zero-
cost hardware accelerated implementation, resulting in "best in class"
guarantees and performance.

Given that the approach is dead simple, how come SRP and hardware
accelerated scheduling is not adopted by any other mainstream RTOS?

The answer is simple, the commonly adopted threading model does not
lend itself well to static analysis - there is no known way to extract the
task/resource dependencies from the source code at compile time (thus
ceilings cannot be efficiently computed and the LIFO resource locking
requirement cannot be ensured). Thus, SRP based scheduling is in the
general case out of reach for any thread based RTOS.



RTIC into the Future
Asynchronous programming in various forms are getting increased

popularity and language support. Rust natively provides an async / await
API for cooperative multitasking and the compiler generates the necessary
boilerplate for storing and retrieving execution contexts (i.e., managing the
set of local variables that spans each await ).

The Rust standard library provides collections for dynamically allocated
data-structures which are useful to manage execution contexts at run-time.
However, in the setting of resource constrained real-time systems, dynamic
allocations are problematic (both regarding performance and reliability -
Rust runs into a panic on an out-of-memory condition). Thus, static
allocation is the preferable approach!

From a modelling perspective async/await  lifts the run-to-completion
requirement of SRP, and each section of code between two yield points
( await s) can be seen as an individual task. The compiler will reject any
attempt to await  while holding a resource (not doing so would break the
strict LIFO requirement on resource usage under SRP).

So with the technical stuff out of the way, what does async/await  bring
to the table?

The answer is - improved ergonomics! A recurring use case is to have
task perform a sequence of requests and then await their results in order to
progress. Without async / await  the programmer would be forced to split
the task into individual sub-tasks and maintain some sort of state encoding
(and manually progress by selecting sub-task). Using async/await  each
yield point ( await ) essentially represents a state, and the progression
mechanism is built automatically for you at compile time by means of 
Futures .

Rust async / await  support is still incomplete and/or under
development. Nevertheless, it covers most common use cases and can be
considered production ready.

An important property is that futures are composable, thus you can await
either, all, or any combination of possible futures (allowing e.g., timeouts



and/or asynchronous errors to be promptly handled).



RTIC the model
An RTIC app  is a declarative and executable system model for single-

core applications, defining a set of ( local  and shared ) resources operated
on by a set of ( init , idle , hardware and software) tasks. In short the 
init  task runs before any other task returning a set of resources ( local
and shared ). Tasks run preemptively based on their associated static
priority, idle  has the lowest priority (and can be used for background
work, and/or to put the system to sleep until woken by some event).
Hardware tasks are bound to underlying hardware interrupts, while software
tasks are scheduled by asynchronous executors (one for each software task
priority).

At compile time the task/resource model is analyzed under SRP and
executable code generated with the following outstanding properties:

guaranteed race-free resource access and deadlock-free execution on a
single-shared stack (thanks to SRP)

hardware task scheduling is performed directly by the hardware,
and
software task scheduling is performed by auto generated async
executors tailored to the application.

The RTIC API design ensures that both SRP requirements and Rust
soundness rules are upheld at all times, thus the executable model is correct
by construction. Overall, the generated code infers no additional overhead
in comparison to a handwritten implementation, thus in Rust terms RTIC
offers a zero-cost abstraction to concurrency.



Starting a new project
A recommendation when starting a RTIC project from scratch is to

follow RTIC's defmt-app-template .
If you are targeting ARMv6-M or ARMv8-M-base architecture, check

out the section Target Architecture for more information on hardware
limitations to be aware of.

This will give you an RTIC application with support for RTT logging
with defmt  and stack overflow protection using flip-link . There is also a
multitude of examples provided by the community:

For inspiration, you may look at the RTIC examples.

https://github.com/rtic-rs/defmt-app-template
clbr://internal.invalid/book/OEBPS/internals/targets.md
https://github.com/knurling-rs/defmt/
https://github.com/knurling-rs/flip-link/
https://github.com/rtic-rs/rtic/tree/master/examples


RTIC on RISC-V devices
Even though RTIC was initially developed for ARM Cortex-M, it is

possible to use RTIC on RISC-V devices. However, the RISC-V ecosystem
is more heterogeneous. To tackle this issue, currently, RTIC implements
three different backends:

riscv-esp32c3-backend : This backend provides support for the
ESP32-C3 SoC. In these devices, RTIC is very similar to its Cortex-M
counterpart.

riscv-esp32c6-backend : This backend provides support for the
ESP32-C6 SoC. In these devices, RTIC is very similar to its Cortex-M
counterpart.

riscv-mecall-backend : This backend provides support for any
RISC-V device. In this backend, pending tasks trigger Machine
Environment Call exceptions. The handler for this exception source
dispatches pending tasks according to their priority. The behavior of
this backend is equivalent to riscv-clint-backend . The main
difference of this backend is that all the tasks must be software tasks.
Additionally, it is not required to provide a list of dispatchers in the #
[app]  attribute, as RTIC will generate them at compile time.

riscv-clint-backend : This backend supports devices with a
CLINT peripheral. It is equivallent to riscv-mecall-backend , but
instead of triggering exceptions, it triggers software interrupts via the 
MSIP  register of the CLINT.

clbr://internal.invalid/book/OEBPS/by-example/software_tasks.md


RTIC by example
This part of the book introduces the RTIC framework to new users by

walking them through examples of increasing complexity.
All examples in this part of the book are part of the RTIC repository,

found in the examples  directory. The examples are runnable on QEMU
(emulating a Cortex M3 target), thus no special hardware required to follow
along.

https://github.com/rtic-rs/rtic/tree/master/rtic/examples


Running an example
To run the examples with QEMU you will need the qemu-system-arm

program. Check the embedded Rust book for instructions on how to set up
an embedded development environment that includes QEMU.

To run the examples found in examples/  locally using QEMU:
cargo xtask qemu 

This runs all of the examples against the default thumbv7m-none-eabi
device lm3s6965 .

To limit which examples are being run, use the flag --example 

<example name> , the name being the filename of the example.
Assuming dependencies in place, running:

$ cargo xtask qemu --example locals 

Yields this output:
   Finished dev [unoptimized + debuginfo] target(s) in 0.07s 
    Running `target/debug/xtask qemu --example locals` 
INFO  xtask > Testing for platform: Lm3s6965, backend: Thumbv7 
INFO  xtask::run > 👟  Build example locals (thumbv7m-none-
eabi, release, "test-critical-section,thumbv7-backend", in 
examples/lm3s6965) 
INFO  xtask::run > ✅ Success. 
INFO  xtask::run > 👟 Run example locals in QEMU (thumbv7m-
none-eabi, release, "test-critical-section,thumbv7-backend", 
in examples/lm3s6965) 
INFO  xtask::run > ✅ Success. 
INFO  xtask::results > ✅  Success: Build example locals 
(thumbv7m-none-eabi, release, "test-critical-section,thumbv7-
backend", in examples/lm3s6965) 
INFO  xtask::results > ✅ Success: Run example locals in QEMU 
(thumbv7m-none-eabi, release, "test-critical-section,thumbv7-
backend", in examples/lm3s6965) 
INFO  xtask::results > 🚀🚀🚀 All tasks succeeded 🚀🚀🚀 

https://rust-embedded.github.io/book/intro/install.html


It is great that examples are passing and this is part of the RTIC CI setup
too, but for the purposes of this book we must add the --verbose  flag, or -
v  for short to see the actual program output:
❯ cargo xtask qemu --verbose --example locals 
    Finished dev [unoptimized + debuginfo] target(s) in 0.03s 
     Running `target/debug/xtask qemu --example locals --
verbose` 
 DEBUG xtask > Stderr of child processes is inherited: false 
 DEBUG xtask > Partial features: false 
 INFO  xtask > Testing for platform: Lm3s6965, backend: 
Thumbv7 
 INFO  xtask::run > 👟  Build example locals (thumbv7m-none-
eabi, release, "test-critical-section,thumbv7-backend", in 
examples/lm3s6965) 
 INFO  xtask::run > ✅ Success. 
 INFO  xtask::run > 👟 Run example locals in QEMU (thumbv7m-
none-eabi, release, "test-critical-section,thumbv7-backend", 
in examples/lm3s6965) 
 INFO  xtask::run > ✅ Success. 
 INFO  xtask::results > ✅  Success: Build example locals 
(thumbv7m-none-eabi, release, "test-critical-section,thumbv7-
backend", in examples/lm3s6965) 
    cd examples/lm3s6965 && cargo build --target thumbv7m-
none-eabi --features test-critical-section,thumbv7-backend --
release --example locals 
 DEBUG xtask::results > 
cd examples/lm3s6965 && cargo build --target thumbv7m-none-
eabi --features test-critical-section,thumbv7-backend --
release --example locals 
Stderr: 
    Finished release [optimized] target(s) in 0.02s 
 INFO  xtask::results > ✅ Success: Run example locals in QEMU 
(thumbv7m-none-eabi, release, "test-critical-section,thumbv7-
backend", in examples/lm3s6965) 
    cd examples/lm3s6965 && cargo run --target thumbv7m-none-



eabi --features test-critical-section,thumbv7-backend --
release --example locals 
 DEBUG xtask::results > 
cd examples/lm3s6965 && cargo run --target thumbv7m-none-eabi 
--features test-critical-section,thumbv7-backend --release --
example locals 
Stdout: 
bar: local_to_bar = 1 
foo: local_to_foo = 1 
idle: local_to_idle = 1 
 
Stderr: 
    Finished release [optimized] target(s) in 0.02s 
     Running `qemu-system-arm -cpu cortex-m3 -machine 
lm3s6965evb -nographic -semihosting-config 
enable=on,target=native -kernel target/thumbv7m-none-
eabi/release/examples/locals` 
Timer with period zero, disabling 
 
 INFO  xtask::results > 🚀🚀🚀 All tasks succeeded 🚀🚀🚀 

Look for the content following Stdout:  towards the end ouf the output,
the program output should have these lines:
bar: local_to_bar = 1 
foo: local_to_foo = 1 
idle: local_to_idle = 1 

NOTE: For other useful options to cargo xtask , see:
cargo xtask qemu --help 

The --platform  flag allows changing which device examples are
run on, currently lm3s6965  is the best supported, work is ongoing to
increase support for other devices, including both ARM and RISC-V



The #[app] attribute and an RTIC
application



Requirements on the app attribute
All RTIC applications use the app  attribute ( #[app(..)] ). This

attribute only applies to a mod -item containing the RTIC application.
The app  attribute has a mandatory device  argument that takes a path as

a value. This must be a full path pointing to a peripheral access crate
(PAC) generated using svd2rust  v0.14.x or newer.

The app  attribute will expand into a suitable entry point and thus
replaces the use of the cortex_m_rt::entry  attribute.

clbr://internal.invalid/api/rtic_macros/attr.app.html
https://crates.io/crates/svd2rust
https://docs.rs/cortex-m-rt-macros/latest/cortex_m_rt_macros/attr.entry.html


Structure and zero-cost concurrency
An RTIC app  is an executable system model for single-core

applications, declaring a set of local  and shared  resources operated on by
a set of init , idle , hardware and software tasks.

init  runs before any other task, and returns the local  and shared
resources.
Tasks (both hardware and software) run preemptively based on their
associated static priority.
Hardware tasks are bound to underlying hardware interrupts.
Software tasks are schedulied by an set of asynchronous executors, one
for each software task priority.
idle  has the lowest priority, and can be used for background work,
and/or to put the system to sleep until it is woken by some event.

At compile time the task/resource model is analyzed under the Stack
Resource Policy (SRP) and executable code generated with the following
outstanding properties:

Guaranteed race-free resource access and deadlock-free execution on a
single-shared stack.
Hardware task scheduling is performed directly by the hardware.
Software task scheduling is performed by auto generated async
executors tailored to the application.

Overall, the generated code infers no additional overhead in comparison
to a hand-written implementation, thus in Rust terms RTIC offers a zero-
cost abstraction to concurrency.



Priority
Priorities in RTIC are specified using the priority = N  (where N is a

positive number) argument passed to the #[task]  attribute. All #[task] s
can have a priority. If the priority of a task is not specified, it is set to the
default value of 0.

Priorities in RTIC follow a higher value = more important scheme. For
examples, a task with priority 2 will preempt a task with priority 1.



An RTIC application example
To give a taste of RTIC, the following example contains commonly used

features. In the following sections we will go through each feature in detail.
//! examples/common.rs 
 
#![no_main] 
#![no_std] 
#![deny(warnings)] 
#![deny(unsafe_code)] 
#![deny(missing_docs)] 
 
use panic_semihosting as _; 
 
#[rtic::app(device = lm3s6965, dispatchers = [UART0, UART1])] 
mod app { 
    use cortex_m_semihosting::{debug, hprintln}; 
 
    #[shared] 
    struct Shared {} 
 
    #[local] 
    struct Local { 
        local_to_foo: i64, 
        local_to_bar: i64, 
        local_to_idle: i64, 
    } 
 
    // `#[init]` cannot access locals from the `#[local]` 
struct as they are initialized here. 
    #[init] 
    fn init(_: init::Context) -> (Shared, Local) { 
        foo::spawn().unwrap(); 
        bar::spawn().unwrap(); 
 



        ( 
            Shared {}, 
            // initial values for the `#[local]` resources 
            Local { 
                local_to_foo: 0, 
                local_to_bar: 0, 
                local_to_idle: 0, 
            }, 
        ) 
    } 
 
    // `local_to_idle` can only be accessed from this context 
    #[idle(local = [local_to_idle])] 
    fn idle(cx: idle::Context) -> ! { 
        let local_to_idle = cx.local.local_to_idle; 
        *local_to_idle += 1; 
 
        hprintln!("idle: local_to_idle = {}", local_to_idle); 
 
        debug::exit(debug::EXIT_SUCCESS); // Exit QEMU 
simulator 
 
        // error: no `local_to_foo` field in 
`idle::LocalResources` 
        // _cx.local.local_to_foo += 1; 
 
        // error: no `local_to_bar` field in 
`idle::LocalResources` 
        // _cx.local.local_to_bar += 1; 
 
        loop { 
            cortex_m::asm::nop(); 
        } 
    } 
 
    // `local_to_foo` can only be accessed from this context 



    #[task(local = [local_to_foo], priority = 1)] 
    async fn foo(cx: foo::Context) { 
        let local_to_foo = cx.local.local_to_foo; 
        *local_to_foo += 1; 
 
        // error: no `local_to_bar` field in 
`foo::LocalResources` 
        // cx.local.local_to_bar += 1; 
 
        hprintln!("foo: local_to_foo = {}", local_to_foo); 
    } 
 
    // `local_to_bar` can only be accessed from this context 
    #[task(local = [local_to_bar], priority = 1)] 
    async fn bar(cx: bar::Context) { 
        let local_to_bar = cx.local.local_to_bar; 
        *local_to_bar += 1; 
 
        // error: no `local_to_foo` field in 
`bar::LocalResources` 
        // cx.local.local_to_foo += 1; 
 
        hprintln!("bar: local_to_bar = {}", local_to_bar); 
    } 
} 



Hardware tasks
At its core RTIC is using a hardware interrupt controller (ARM NVIC on

cortex-m) to schedule and start execution of tasks. All tasks except pre-
init  (a hidden "task"), #[init]  and #[idle]  run as interrupt handlers.

To bind a task to an interrupt, use the #[task]  attribute argument binds 
= InterruptName . This task then becomes the interrupt handler for this
hardware interrupt vector.

All tasks bound to an explicit interrupt are called hardware tasks since
they start execution in reaction to a hardware event.

Specifying a non-existing interrupt name will cause a compilation error.
The interrupt names are commonly defined by PAC or HAL crates.

Any available interrupt vector should work. Specific devices may bind
specific interrupt priorities to specific interrupt vectors outside user code
control. See for example the nRF “softdevice”.

Beware of using interrupt vectors that are used internally by hardware
features; RTIC is unaware of such hardware specific details.

https://developer.arm.com/documentation/100166/0001/Nested-Vectored-Interrupt-Controller/NVIC-functional-description/NVIC-interrupts
https://docs.rust-embedded.org/book/start/registers.html
https://github.com/rtic-rs/rtic/issues/434


Example
The example below demonstrates the use of the #[task(binds = 

InterruptName)]  attribute to declare a hardware task bound to an interrupt
handler.
//! examples/hardware.rs 
 
#![no_main] 
#![no_std] 
#![deny(warnings)] 
#![deny(unsafe_code)] 
#![deny(missing_docs)] 
 
use panic_semihosting as _; 
 
#[rtic::app(device = lm3s6965)] 
mod app { 
    use cortex_m_semihosting::{debug, hprintln}; 
    use lm3s6965::Interrupt; 
 
    #[shared] 
    struct Shared {} 
 
    #[local] 
    struct Local {} 
 
    #[init] 
    fn init(_: init::Context) -> (Shared, Local) { 
        // Pends the UART0 interrupt but its handler won't run 
until *after* 
        // `init` returns because interrupts are disabled 
        rtic::pend(Interrupt::UART0); // equivalent to 
NVIC::pend 
 
        hprintln!("init"); 



 
        (Shared {}, Local {}) 
    } 
 
    #[idle] 
    fn idle(_: idle::Context) -> ! { 
        // interrupts are enabled again; the `UART0` handler 
runs at this point 
 
        hprintln!("idle"); 
 
        // Some backends provide a manual way of pending an 
        // interrupt. 
        rtic::pend(Interrupt::UART0); 
 
        loop { 
            cortex_m::asm::nop(); 
            debug::exit(debug::EXIT_SUCCESS); // Exit QEMU 
simulator 
        } 
    } 
 
    #[task(binds = UART0, local = [times: u32 = 0])] 
    fn uart0(cx: uart0::Context) { 
        // Safe access to local `static mut` variable 
        *cx.local.times += 1; 
 
        hprintln!( 
            "UART0 called {} time{}", 
            *cx.local.times, 
            if *cx.local.times > 1 { "s" } else { "" } 
        ); 
    } 
} 

$ cargo xtask qemu --verbose --example hardware 



init 
UART0 called 1 time 
idle 
UART0 called 2 times 



Software tasks & spawn
The RTIC concept of a software task shares a lot with that of hardware

tasks. The core difference is that a software task is not explicitly bound to a
specific interrupt vector, but rather bound to a “dispatcher” interrupt vector
running at the intended priority of the software task (see below).

Similarly to hardware tasks, the #[task]  attribute used on a function
declare it as a task. The absence of a binds = InterruptName  argument to
the attribute declares the function as a software task.

The static method task_name::spawn()  spawns (starts) a software task
and given that there are no higher priority tasks running the task will start
executing directly.

The software task itself is given as an async  Rust function, which
allows the user to optionally await  future events. This allows to blend
reactive programming (by means of hardware tasks) with sequential
programming (by means of software tasks).

While hardware tasks are assumed to run-to-completion (and return),
software tasks may be started ( spawned ) once and run forever, on the
condition that any loop (execution path) is broken by at least one await
(yielding operation).

clbr://internal.invalid/book/OEBPS/by-example/hardware_tasks.md


Dispatchers
All software tasks at the same priority level share an interrupt handler

acting as an async executor dispatching the software tasks. This list of
dispatchers, dispatchers = [FreeInterrupt1, FreeInterrupt2, ...]
is an argument to the #[app]  attribute, where you define the set of free and
usable interrupts.

Each interrupt vector acting as dispatcher gets assigned to one priority
level meaning that the list of dispatchers need to cover all priority levels
used by software tasks.

Example: The dispatchers =  argument needs to have at least 3 entries
for an application using three different priorities for software tasks.

The framework will give a compilation error if there are not enough
dispatchers provided, or if a clash occurs between the list of dispatchers and
interrupts bound to hardware tasks.

See the following example:
//! examples/spawn.rs 
 
#![no_main] 
#![no_std] 
#![deny(warnings)] 
#![deny(unsafe_code)] 
#![deny(missing_docs)] 
 
use panic_semihosting as _; 
 
#[rtic::app(device = lm3s6965, dispatchers = [SSI0])] 
mod app { 
    use cortex_m_semihosting::{debug, hprintln}; 
 
    #[shared] 
    struct Shared {} 
 
    #[local] 



    struct Local {} 
 
    #[init] 
    fn init(_: init::Context) -> (Shared, Local) { 
        hprintln!("init"); 
        foo::spawn().unwrap(); 
 
        (Shared {}, Local {}) 
    } 
 
    #[task] 
    async fn foo(_: foo::Context) { 
        hprintln!("foo"); 
 
        debug::exit(debug::EXIT_SUCCESS); // Exit QEMU 
simulator 
    } 
} 

$ cargo xtask qemu --verbose --example spawn 

init 
foo 

You may spawn  a software task again, given that it has run-to-
completion (returned).

In the below example, we spawn  the software task foo  from the idle
task. Since the priority of the software task is 1 (higher than idle ), the
dispatcher will execute foo  (preempting idle ). Since foo  runs-to-
completion. It is ok to spawn  the foo  task again.

Technically the async executor will poll  the foo  future which in this
case leaves the future in a completed state.
//! examples/spawn_loop.rs 
 
#![no_main] 
#![no_std] 



#![deny(warnings)] 
#![deny(unsafe_code)] 
#![deny(missing_docs)] 
 
use panic_semihosting as _; 
 
#[rtic::app(device = lm3s6965, dispatchers = [SSI0])] 
mod app { 
    use cortex_m_semihosting::{debug, hprintln}; 
 
    #[shared] 
    struct Shared {} 
 
    #[local] 
    struct Local {} 
 
    #[init] 
    fn init(_: init::Context) -> (Shared, Local) { 
        hprintln!("init"); 
 
        (Shared {}, Local {}) 
    } 
 
    #[idle] 
    fn idle(_: idle::Context) -> ! { 
        for _ in 0..3 { 
            foo::spawn().unwrap(); 
            hprintln!("idle"); 
        } 
        debug::exit(debug::EXIT_SUCCESS); // Exit QEMU 
simulator 
        loop {} 
    } 
 
    #[task(priority = 1)] 
    async fn foo(_: foo::Context) { 



        hprintln!("foo"); 
    } 
} 

$ cargo xtask qemu --verbose --example spawn_loop 

init 
foo 
idle 
foo 
idle 
foo 
idle 

An attempt to spawn  an already spawned task (running) task will result
in an error. Notice, the that the error is reported before the foo  task is
actually run. This is since, the actual execution of the software task is
handled by the dispatcher interrupt ( SSIO ), which is not enabled until we
exit the init  task. (Remember, init  runs in a critical section, i.e. all
interrupts being disabled.)

Technically, a spawn  to a future that is not in completed state is
considered an error.
//! examples/spawn_err.rs 
 
#![no_main] 
#![no_std] 
#![deny(warnings)] 
#![deny(unsafe_code)] 
#![deny(missing_docs)] 
 
use panic_semihosting as _; 
 
#[rtic::app(device = lm3s6965, dispatchers = [SSI0])] 
mod app { 
    use cortex_m_semihosting::{debug, hprintln}; 
 
    #[shared] 



    struct Shared {} 
 
    #[local] 
    struct Local {} 
 
    #[init] 
    fn init(_: init::Context) -> (Shared, Local) { 
        hprintln!("init"); 
        foo::spawn().unwrap(); 
        match foo::spawn() { 
            Ok(_) => {} 
            Err(()) => hprintln!("Cannot spawn a spawned 
(running) task!"), 
        } 
 
        (Shared {}, Local {}) 
    } 
 
    #[task] 
    async fn foo(_: foo::Context) { 
        hprintln!("foo"); 
 
        debug::exit(debug::EXIT_SUCCESS); // Exit QEMU 
simulator 
    } 
} 

$ cargo xtask qemu --verbose --example spawn_err 

init 
Cannot spawn a spawned (running) task! 
foo 



Passing arguments
You can also pass arguments at spawn as follows.

//! examples/spawn_arguments.rs 
 
#![no_main] 
#![no_std] 
#![deny(warnings)] 
#![deny(unsafe_code)] 
#![deny(missing_docs)] 
 
use panic_semihosting as _; 
 
#[rtic::app(device = lm3s6965, dispatchers = [SSI0])] 
mod app { 
    use cortex_m_semihosting::{debug, hprintln}; 
 
    #[shared] 
    struct Shared {} 
 
    #[local] 
    struct Local {} 
 
    #[init] 
    fn init(_: init::Context) -> (Shared, Local) { 
        foo::spawn(1, 1).unwrap(); 
        assert!(foo::spawn(1, 4).is_err()); // The capacity of 
`foo` is reached 
 
        (Shared {}, Local {}) 
    } 
 
    #[task] 
    async fn foo(_c: foo::Context, x: i32, y: u32) { 
        hprintln!("foo {}, {}", x, y); 



        debug::exit(debug::EXIT_SUCCESS); // Exit QEMU 
simulator 
    } 
} 

$ cargo xtask qemu --verbose --example spawn_arguments 

foo 1, 1 



Divergent tasks
A task can have one of two signatures: async fn({name}::Context, 

..)  or async fn({name}::Context, ..) -> ! . The latter defines a
divergent task — one that never returns. The key advantage of divergent
tasks is that they receive a 'static  context, and local  resources have 
'static  lifetime. Additionally, using this signature makes the task’s intent
explicit, clearly distinguishing between short-lived tasks and those that run
indefinitely. Be mindful not to starve other tasks at the same priority level
by ensuring you yield control with .await .



Priority zero tasks
In RTIC tasks run preemptively to each other, with priority zero (0) the

lowest priority. You can use priority zero tasks for background work,
without any strict real-time requirements.

Conceptually, one can see such tasks as running in the main  thread of
the application, thus the resources associated are not required the Send
bound.
//! examples/zero-prio-task.rs 
 
#![no_main] 
#![no_std] 
#![deny(warnings)] 
#![deny(unsafe_code)] 
#![deny(missing_docs)] 
 
use core::marker::PhantomData; 
use panic_semihosting as _; 
 
/// Does not impl send 
pub struct NotSend { 
    _0: PhantomData<*const ()>, 
} 
 
#[rtic::app(device = lm3s6965, peripherals = true)] 
mod app { 
    use super::NotSend; 
    use core::marker::PhantomData; 
    use cortex_m_semihosting::{debug, hprintln}; 
 
    #[shared] 
    struct Shared { 
        x: NotSend, 
    } 
 

https://doc.rust-lang.org/nomicon/send-and-sync.html


    #[local] 
    struct Local { 
        y: NotSend, 
    } 
 
    #[init] 
    fn init(_cx: init::Context) -> (Shared, Local) { 
        hprintln!("init"); 
 
        async_task::spawn().unwrap(); 
        async_task2::spawn().unwrap(); 
 
        ( 
            Shared { 
                x: NotSend { _0: PhantomData }, 
            }, 
            Local { 
                y: NotSend { _0: PhantomData }, 
            }, 
        ) 
    } 
 
    #[task(priority = 0, shared = [x], local = [y])] 
    async fn async_task(_: async_task::Context) { 
        hprintln!("hello from async"); 
    } 
 
    #[task(priority = 0, shared = [x])] 
    async fn async_task2(_: async_task2::Context) { 
        hprintln!("hello from async2"); 
 
        debug::exit(debug::EXIT_SUCCESS); // Exit QEMU 
simulator 
    } 
} 



$ cargo xtask qemu --verbose --example zero-prio-task 

init 
hello from async 
hello from async2 

Notice: software task at zero priority cannot co-exist with the [idle]
task. The reason is that idle  is running as a non-returning Rust
function at priority zero. Thus there would be no way for an executor
at priority zero to give control to software tasks at the same priority.

Application side safety: Technically, the RTIC framework ensures that 
poll  is never executed on any software task with completed future, thus
adhering to the soundness rules of async Rust.



Resource usage
The RTIC framework manages shared and task local resources allowing

persistent data storage and safe accesses without the use of unsafe  code.
RTIC resources are visible only to functions declared within the #[app]

module and the framework gives the user complete control (on a per-task
basis) over resource accessibility.

Declaration of system-wide resources is done by annotating two 
struct s within the #[app]  module with the attribute #[local]  and #
[shared] . Each field in these structures corresponds to a different resource
(identified by field name). The difference between these two sets of
resources will be covered below.

Each task must declare the resources it intends to access in its
corresponding metadata attribute using the local  and shared  arguments.
Each argument takes a list of resource identifiers. The listed resources are
made available to the context under the local  and shared  fields of the 
Context  structure.

The init  task returns the initial values for the system-wide ( #[shared]
and #[local] ) resources.



#[local] resources
#[local]  resources are locally accessible to a specific task, meaning

that only that task can access the resource and does so without locks or
critical sections. This allows for the resources, commonly drivers or large
objects, to be initialized in #[init]  and then be passed to a specific task.

Thus, a task #[local]  resource can only be accessed by one singular
task. Attempting to assign the same #[local]  resource to more than one
task is a compile-time error.

Types of #[local]  resources must implement a Send  trait as they are
being sent from init  to a target task, crossing a thread boundary.

The example application shown below contains three tasks foo , bar
and idle , each having access to its own #[local]  resource.
//! examples/locals.rs 
 
#![no_main] 
#![no_std] 
#![deny(warnings)] 
#![deny(unsafe_code)] 
#![deny(missing_docs)] 
 
use panic_semihosting as _; 
 
#[rtic::app(device = lm3s6965, dispatchers = [UART0, UART1])] 
mod app { 
    use cortex_m_semihosting::{debug, hprintln}; 
 
    #[shared] 
    struct Shared {} 
 
    #[local] 
    struct Local { 
        local_to_foo: i64, 

https://doc.rust-lang.org/stable/core/marker/trait.Send.html


        local_to_bar: i64, 
        local_to_idle: i64, 
    } 
 
    // `#[init]` cannot access locals from the `#[local]` 
struct as they are initialized here. 
    #[init] 
    fn init(_: init::Context) -> (Shared, Local) { 
        foo::spawn().unwrap(); 
        bar::spawn().unwrap(); 
 
        ( 
            Shared {}, 
            // initial values for the `#[local]` resources 
            Local { 
                local_to_foo: 0, 
                local_to_bar: 0, 
                local_to_idle: 0, 
            }, 
        ) 
    } 
 
    // `local_to_idle` can only be accessed from this context 
    #[idle(local = [local_to_idle])] 
    fn idle(cx: idle::Context) -> ! { 
        let local_to_idle = cx.local.local_to_idle; 
        *local_to_idle += 1; 
 
        hprintln!("idle: local_to_idle = {}", local_to_idle); 
 
        debug::exit(debug::EXIT_SUCCESS); // Exit QEMU 
simulator 
 
        // error: no `local_to_foo` field in 
`idle::LocalResources` 
        // _cx.local.local_to_foo += 1; 



 
        // error: no `local_to_bar` field in 
`idle::LocalResources` 
        // _cx.local.local_to_bar += 1; 
 
        loop { 
            cortex_m::asm::nop(); 
        } 
    } 
 
    // `local_to_foo` can only be accessed from this context 
    #[task(local = [local_to_foo], priority = 1)] 
    async fn foo(cx: foo::Context) { 
        let local_to_foo = cx.local.local_to_foo; 
        *local_to_foo += 1; 
 
        // error: no `local_to_bar` field in 
`foo::LocalResources` 
        // cx.local.local_to_bar += 1; 
 
        hprintln!("foo: local_to_foo = {}", local_to_foo); 
    } 
 
    // `local_to_bar` can only be accessed from this context 
    #[task(local = [local_to_bar], priority = 1)] 
    async fn bar(cx: bar::Context) { 
        let local_to_bar = cx.local.local_to_bar; 
        *local_to_bar += 1; 
 
        // error: no `local_to_foo` field in 
`bar::LocalResources` 
        // cx.local.local_to_foo += 1; 
 
        hprintln!("bar: local_to_bar = {}", local_to_bar); 
    } 
} 



Running the example:
$ cargo xtask qemu --verbose --example locals 

bar: local_to_bar = 1 
foo: local_to_foo = 1 
idle: local_to_idle = 1 

Local resources in #[init]  and #[idle]  have 'static  lifetimes. This
is safe since both tasks are not re-entrant.

Task local initialized resources
Local resources can also be specified directly in the resource claim like

so: #[task(local = [my_var: TYPE = INITIAL_VALUE, ...])] ; this
allows for creating locals which do no need to be initialized in #[init] .

Types of #[task(local = [..])]  resources have to be neither Send
nor Sync  as they are not crossing any thread boundary.

In the example below the different uses and lifetimes are shown:
//! examples/declared_locals.rs 
 
#![no_main] 
#![no_std] 
#![deny(warnings)] 
#![deny(unsafe_code)] 
#![deny(missing_docs)] 
 
use panic_semihosting as _; 
 
#[rtic::app(device = lm3s6965)] 
mod app { 
    use cortex_m_semihosting::debug; 
 
    #[shared] 
    struct Shared {} 
 
    #[local] 

https://doc.rust-lang.org/stable/core/marker/trait.Send.html
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    struct Local {} 
 
    #[init(local = [a: u32 = 0])] 
    fn init(cx: init::Context) -> (Shared, Local) { 
        // Locals in `#[init]` have 'static lifetime 
        let _a: &'static mut u32 = cx.local.a; 
 
        debug::exit(debug::EXIT_SUCCESS); // Exit QEMU 
simulator 
 
        (Shared {}, Local {}) 
    } 
 
    #[idle(local = [a: u32 = 0])] 
    fn idle(cx: idle::Context) -> ! { 
        // Locals in `#[idle]` have 'static lifetime 
        let _a: &'static mut u32 = cx.local.a; 
 
        loop {} 
    } 
 
    #[task(binds = UART0, local = [a: u32 = 0])] 
    fn foo(cx: foo::Context) { 
        // Locals in `#[task]`s have a local lifetime 
        let _a: &mut u32 = cx.local.a; 
 
        // error: explicit lifetime required in the type of 
`cx` 
        // let _a: &'static mut u32 = cx.local.a; 
    } 
} 

You can run the application, but as the example is designed merely to
showcase the lifetime properties there is no output (it suffices to build the
application).



$ cargo build --target thumbv7m-none-eabi --example 
declared_locals 



#[shared] resources and lock
Critical sections are required to access #[shared]  resources in a data

race-free manner and to achieve this the shared  field of the passed 
Context  implements the Mutex  trait for each shared resource accessible to
the task. This trait has only one method, lock , which runs its closure
argument in a critical section.

The critical section created by the lock  API is based on dynamic
priorities: it temporarily raises the dynamic priority of the context to a
ceiling priority that prevents other tasks from preempting the critical
section. This synchronization protocol is known as the Immediate Ceiling
Priority Protocol (ICPP), and complies with Stack Resource Policy (SRP)
based scheduling of RTIC.

In the example below we have three interrupt handlers with priorities
ranging from one to three. The two handlers with the lower priorities
contend for a shared  resource and need to succeed in locking the resource
in order to access its data. The highest priority handler, which does not
access the shared  resource, is free to preempt a critical section created by
the lowest priority handler.
//! examples/lock.rs 
 
#![no_main] 
#![no_std] 
#![deny(warnings)] 
#![deny(unsafe_code)] 
#![deny(missing_docs)] 
 
use panic_semihosting as _; 
 
#[rtic::app(device = lm3s6965, dispatchers = [GPIOA, GPIOB, 
GPIOC])] 
mod app { 
    use cortex_m_semihosting::{debug, hprintln}; 
 

clbr://internal.invalid/api/rtic/trait.Mutex.html
clbr://internal.invalid/api/rtic/trait.Mutex.html#method.lock
https://en.wikipedia.org/wiki/Priority_ceiling_protocol
https://en.wikipedia.org/wiki/Stack_Resource_Policy


    #[shared] 
    struct Shared { 
        shared: u32, 
    } 
 
    #[local] 
    struct Local {} 
 
    #[init] 
    fn init(_: init::Context) -> (Shared, Local) { 
        foo::spawn().unwrap(); 
 
        (Shared { shared: 0 }, Local {}) 
    } 
 
    // when omitted priority is assumed to be `1` 
    #[task(shared = [shared])] 
    async fn foo(mut c: foo::Context) { 
        hprintln!("A"); 
 
        // the lower priority task requires a critical section 
to access the data 
        c.shared.shared.lock(|shared| { 
            // data can only be modified within this critical 
section (closure) 
            *shared += 1; 
 
            // bar will *not* run right now due to the 
critical section 
            bar::spawn().unwrap(); 
 
            hprintln!("B - shared = {}", *shared); 
 
            // baz does not contend for `shared` so it's 
allowed to run now 
            baz::spawn().unwrap(); 



        }); 
 
        // critical section is over: bar can now start 
 
        hprintln!("E"); 
 
        debug::exit(debug::EXIT_SUCCESS); // Exit QEMU 
simulator 
    } 
 
    #[task(priority = 2, shared = [shared])] 
    async fn bar(mut c: bar::Context) { 
        // the higher priority task does still need a critical 
section 
        let shared = c.shared.shared.lock(|shared| { 
            *shared += 1; 
 
            *shared 
        }); 
 
        hprintln!("D - shared = {}", shared); 
    } 
 
    #[task(priority = 3)] 
    async fn baz(_: baz::Context) { 
        hprintln!("C"); 
    } 
} 

$ cargo xtask qemu --verbose --example lock 

A 
B - shared = 1 
C 
D - shared = 2 
E 

Types of #[shared]  resources have to be Send .

https://doc.rust-lang.org/stable/core/marker/trait.Send.html


Multi-lock
As an extension to lock , and to reduce rightward drift, locks can be

taken as tuples. The following examples show this in use:
//! examples/mutlilock.rs 
 
#![no_main] 
#![no_std] 
#![deny(warnings)] 
#![deny(unsafe_code)] 
#![deny(missing_docs)] 
 
use panic_semihosting as _; 
 
#[rtic::app(device = lm3s6965, dispatchers = [GPIOA])] 
mod app { 
    use cortex_m_semihosting::{debug, hprintln}; 
 
    #[shared] 
    struct Shared { 
        shared1: u32, 
        shared2: u32, 
        shared3: u32, 
    } 
 
    #[local] 
    struct Local {} 
 
    #[init] 
    fn init(_: init::Context) -> (Shared, Local) { 
        locks::spawn().unwrap(); 
 
        ( 
            Shared { 
                shared1: 0, 



                shared2: 0, 
                shared3: 0, 
            }, 
            Local {}, 
        ) 
    } 
 
    // when omitted priority is assumed to be `1` 
    #[task(shared = [shared1, shared2, shared3])] 
    async fn locks(c: locks::Context) { 
        let s1 = c.shared.shared1; 
        let s2 = c.shared.shared2; 
        let s3 = c.shared.shared3; 
 
        (s1, s2, s3).lock(|s1, s2, s3| { 
            *s1 += 1; 
            *s2 += 1; 
            *s3 += 1; 
 
            hprintln!("Multiple locks, s1: {}, s2: {}, s3: 
{}", *s1, *s2, *s3); 
        }); 
 
        debug::exit(debug::EXIT_SUCCESS); // Exit QEMU 
simulator 
    } 
} 

$ cargo xtask qemu --verbose --example multilock 

Multiple locks, s1: 1, s2: 1, s3: 1 



Only shared (&-) access
By default, the framework assumes that all tasks require exclusive

mutable access ( &mut- ) to resources, but it is possible to specify that a task
only requires shared access ( &- ) to a resource using the &resource_name
syntax in the shared  list.

The advantage of specifying shared access ( &- ) to a resource is that no
locks are required to access the resource even if the resource is contended
by more than one task running at different priorities. The downside is that
the task only gets a shared reference ( &- ) to the resource, limiting the
operations it can perform on it, but where a shared reference is enough this
approach reduces the number of required locks. In addition to simple
immutable data, this shared access can be useful where the resource type
safely implements interior mutability, with appropriate locking or atomic
operations of its own.

Note that in this release of RTIC it is not possible to request both
exclusive access ( &mut- ) and shared access ( &- ) to the same resource from
different tasks. Attempting to do so will result in a compile error.

In the example below a key (e.g. a cryptographic key) is loaded (or
created) at runtime (returned by init ) and then used from two tasks that
run at different priorities without any kind of lock.
//! examples/only-shared-access.rs 
 
#![no_main] 
#![no_std] 
#![deny(warnings)] 
#![deny(unsafe_code)] 
#![deny(missing_docs)] 
 
use panic_semihosting as _; 
 
#[rtic::app(device = lm3s6965, dispatchers = [UART0, UART1])] 
mod app { 
    use cortex_m_semihosting::{debug, hprintln}; 



 
    #[shared] 
    struct Shared { 
        key: u32, 
    } 
 
    #[local] 
    struct Local {} 
 
    #[init] 
    fn init(_: init::Context) -> (Shared, Local) { 
        foo::spawn().unwrap(); 
        bar::spawn().unwrap(); 
 
        (Shared { key: 0xdeadbeef }, Local {}) 
    } 
 
    #[task(shared = [&key])] 
    async fn foo(cx: foo::Context) { 
        let key: &u32 = cx.shared.key; 
        hprintln!("foo(key = {:#x})", key); 
 
        debug::exit(debug::EXIT_SUCCESS); // Exit QEMU 
simulator 
    } 
 
    #[task(priority = 2, shared = [&key])] 
    async fn bar(cx: bar::Context) { 
        hprintln!("bar(key = {:#x})", cx.shared.key); 
    } 
} 

$ cargo xtask qemu --verbose --example only-shared-access 

bar(key = 0xdeadbeef) 
foo(key = 0xdeadbeef) 



Lock-free access of shared resources
A critical section is not required to access a #[shared]  resource that's

only accessed by tasks running at the same priority. In this case, you can opt
out of the lock  API by adding the #[lock_free]  field-level attribute to
the resource declaration (see example below).

To adhere to the Rust aliasing rule, a resource may be either accessed
through multiple immutable references or a singe mutable reference (but
not both at the same time).

Using #[lock_free]  on resources shared by tasks running at different
priorities will result in a compile-time error -- not using the lock  API
would violate the aforementioned alias rule. Similarly, for each priority
there can be only a single software task accessing a shared resource (as an 
async  task may yield execution to other software or hardware tasks
running at the same priority). However, under this single-task restriction,
we make the observation that the resource is in effect no longer shared  but
rather local . Thus, using a #[lock_free]  shared resource will result in a
compile-time error -- where applicable, use a #[local]  resource instead.
//! examples/lock-free.rs 
 
#![no_main] 
#![no_std] 
#![deny(warnings)] 
#![deny(unsafe_code)] 
#![deny(missing_docs)] 
 
use panic_semihosting as _; 
 
#[rtic::app(device = lm3s6965)] 
mod app { 
    use cortex_m_semihosting::{debug, hprintln}; 
    use lm3s6965::Interrupt; 
 
    #[shared] 

https://doc.rust-lang.org/nomicon/aliasing.html


    struct Shared { 
        #[lock_free] // <- lock-free shared resource 
        counter: u64, 
    } 
 
    #[local] 
    struct Local {} 
 
    #[init] 
    fn init(_: init::Context) -> (Shared, Local) { 
        rtic::pend(Interrupt::UART0); 
 
        (Shared { counter: 0 }, Local {}) 
    } 
 
    #[task(binds = UART0, shared = [counter])] // <- same 
priority 
    fn foo(c: foo::Context) { 
        rtic::pend(Interrupt::UART1); 
 
        *c.shared.counter += 1; // <- no lock API required 
        let counter = *c.shared.counter; 
        hprintln!("  foo = {}", counter); 
    } 
 
    #[task(binds = UART1, shared = [counter])] // <- same 
priority 
    fn bar(c: bar::Context) { 
        rtic::pend(Interrupt::UART0); 
        *c.shared.counter += 1; // <- no lock API required 
        let counter = *c.shared.counter; 
        hprintln!("  bar = {}", counter); 
 
        debug::exit(debug::EXIT_SUCCESS); // Exit QEMU 
simulator 



    } 
} 

$ cargo xtask qemu --verbose --example lock-free 

  foo = 1 
  bar = 2 



App initialization and the #[init]
task

An RTIC application requires an init  task setting up the system. The
corresponding init  function must have the signature fn(init::Context) 
-> (Shared, Local) , where Shared  and Local  are resource structures
defined by the user.

The init  task executes after system reset, [after an optionally defined 
pre-init  code section]1 and an always occurring internal RTIC
initialization.

The init  and optional pre-init  tasks runs with interrupts disabled
and have exclusive access to Cortex-M (the 
bare_metal::CriticalSection  token is available as cs ).

Device specific peripherals are available through the core  and device
fields of init::Context .
1

https://docs.rs/cortex-m-rt/latest/cortex_m_rt/attr.pre_init.html

https://docs.rs/cortex-m-rt/latest/cortex_m_rt/attr.pre_init.html


Example
The example below shows the types of the core , device  and cs  fields,

and showcases the use of a local  variable with 'static  lifetime. Such
variables can be delegated from the init  task to other tasks of the RTIC
application.

The device  field is only available when the peripherals  argument is
set to the default value true . In the rare case you want to implement an
ultra-slim application you can explicitly set peripherals  to false .
//! examples/init.rs 
 
#![no_main] 
#![no_std] 
#![deny(warnings)] 
#![deny(unsafe_code)] 
#![deny(missing_docs)] 
 
use panic_semihosting as _; 
 
#[rtic::app(device = lm3s6965, peripherals = true)] 
mod app { 
    use cortex_m_semihosting::{debug, hprintln}; 
 
    #[shared] 
    struct Shared {} 
 
    #[local] 
    struct Local {} 
 
    #[init(local = [x: u32 = 0])] 
    fn init(cx: init::Context) -> (Shared, Local) { 
        // Cortex-M peripherals 
        let _core: cortex_m::Peripherals = cx.core; 
 



        // Device specific peripherals 
        let _device: lm3s6965::Peripherals = cx.device; 
 
        // Locals in `init` have 'static lifetime 
        let _x: &'static mut u32 = cx.local.x; 
 
        // Access to the critical section token, 
        // to indicate that this is a critical section 
        let _cs_token: bare_metal::CriticalSection = cx.cs; 
 
        hprintln!("init"); 
 
        debug::exit(debug::EXIT_SUCCESS); // Exit QEMU 
simulator 
 
        (Shared {}, Local {}) 
    } 
} 

Running the example will print init  to the console and then exit the
QEMU process.
$ cargo xtask qemu --verbose --example init 

init 



The background task #[idle]
A function marked with the idle  attribute can optionally appear in the

module. This becomes the special idle task and must have signature 
fn(idle::Context) -> ! .

When present, the runtime will execute the idle  task after init .
Unlike init , idle  will run with interrupts enabled and must never return,
as the -> !  function signature indicates. The Rust type !  means “never”.

Like in init , locally declared resources will have 'static  lifetimes
that are safe to access.

The example below shows that idle  runs after init .
//! examples/idle.rs 
 
#![no_main] 
#![no_std] 
#![deny(warnings)] 
#![deny(unsafe_code)] 
#![deny(missing_docs)] 
 
use panic_semihosting as _; 
 
#[rtic::app(device = lm3s6965)] 
mod app { 
    use cortex_m_semihosting::{debug, hprintln}; 
 
    #[shared] 
    struct Shared {} 
 
    #[local] 
    struct Local {} 
 
    #[init] 
    fn init(_: init::Context) -> (Shared, Local) { 

https://doc.rust-lang.org/core/primitive.never.html


        hprintln!("init"); 
 
        (Shared {}, Local {}) 
    } 
 
    #[idle(local = [x: u32 = 0])] 
    fn idle(cx: idle::Context) -> ! { 
        // Locals in idle have lifetime 'static 
        let _x: &'static mut u32 = cx.local.x; 
 
        hprintln!("idle"); 
 
        debug::exit(debug::EXIT_SUCCESS); // Exit QEMU 
simulator 
 
        loop { 
            cortex_m::asm::nop(); 
        } 
    } 
} 

$ cargo xtask qemu --verbose --example idle 

init 
idle 

By default, the RTIC idle  task does not try to optimize for any specific
targets.

A common useful optimization is to enable the SLEEPONEXIT and
allow the MCU to enter sleep when reaching idle .

Caution: some hardware unless configured disables the debug unit
during sleep mode.

Consult your hardware specific documentation as this is outside the
scope of RTIC.

The following example shows how to enable sleep by setting the 
SLEEPONEXIT  and providing a custom idle  task replacing the default 

https://developer.arm.com/docs/100737/0100/power-management/sleep-mode/sleep-on-exit-bit
https://developer.arm.com/docs/100737/0100/power-management/sleep-mode/sleep-on-exit-bit


nop()  with wfi() .
//! examples/idle-wfi.rs 
 
#![no_main] 
#![no_std] 
#![deny(warnings)] 
#![deny(unsafe_code)] 
#![deny(missing_docs)] 
 
use panic_semihosting as _; 
 
#[rtic::app(device = lm3s6965)] 
mod app { 
    use cortex_m_semihosting::{debug, hprintln}; 
 
    #[shared] 
    struct Shared {} 
 
    #[local] 
    struct Local {} 
 
    #[init] 
    fn init(mut cx: init::Context) -> (Shared, Local) { 
        hprintln!("init"); 
 
        // Set the ARM SLEEPONEXIT bit to go to sleep after 
handling interrupts 
        // See 
https://developer.arm.com/docs/100737/0100/power-
management/sleep-mode/sleep-on-exit-bit 
        cx.core.SCB.set_sleepdeep(); 
 
        (Shared {}, Local {}) 
    } 
 

https://developer.arm.com/documentation/dui0662/b/The-Cortex-M0--Instruction-Set/Miscellaneous-instructions/NOP
https://developer.arm.com/documentation/dui0662/b/The-Cortex-M0--Instruction-Set/Miscellaneous-instructions/WFI


    #[idle(local = [x: u32 = 0])] 
    fn idle(cx: idle::Context) -> ! { 
        // Locals in idle have lifetime 'static 
        let _x: &'static mut u32 = cx.local.x; 
 
        hprintln!("idle"); 
 
        debug::exit(debug::EXIT_SUCCESS); // Exit QEMU 
simulator 
 
        loop { 
            // Now Wait For Interrupt is used instead of a 
busy-wait loop 
            // to allow MCU to sleep between interrupts 
            // 
https://developer.arm.com/documentation/ddi0406/c/Application-
Level-Architecture/Instruction-Details/Alphabetical-list-of-
instructions/WFI 
            rtic::export::wfi() 
        } 
    } 
} 

$ cargo xtask qemu --verbose --example idle-wfi 

init 
idle 

Notice: The idle  task cannot be used together with software tasks
running at priority zero. The reason is that idle  is running as a non-
returning Rust function at priority zero. Thus there would be no way
for an executor at priority zero to give control to software tasks at the
same priority.



Communication over channels.
Channels can be used to communicate data between running tasks. The

channel is essentially a wait queue, allowing tasks with multiple producers
and a single receiver. A channel is constructed in the init  task and backed
by statically allocated memory. Send and receive endpoints are distributed
to software tasks:
... 
const CAPACITY: usize = 5; 
#[init] 
    fn init(_: init::Context) -> (Shared, Local) { 
        let (s, r) = make_channel!(u32, CAPACITY); 
        receiver::spawn(r).unwrap(); 
        sender1::spawn(s.clone()).unwrap(); 
        sender2::spawn(s.clone()).unwrap(); 
        ... 

In this case the channel holds data of u32  type with a capacity of 5
elements.

Channels can also be used from hardware tasks, but only in a non-
async  manner using the Try API.



Sending data
The send  method post a message on the channel as shown below:

#[task] 
async fn sender1(_c: sender1::Context, mut sender: 
Sender<'static, u32, CAPACITY>) { 
    hprintln!("Sender 1 sending: 1"); 
    sender.send(1).await.unwrap(); 
} 



Receiving data
The receiver can await  incoming messages:

#[task] 
async fn receiver(_c: receiver::Context, mut receiver: 
Receiver<'static, u32, CAPACITY>) { 
    while let Ok(val) = receiver.recv().await { 
        hprintln!("Receiver got: {}", val); 
        ... 
    } 
} 

Channels are implemented using a small (global) Critical Section (CS)
for protection against race-conditions. The user must provide an CS
implementation. Compiling the examples given the --features test-

critical-section  gives one possible implementation.
For a complete example:

//! examples/async-channel.rs 
 
#![no_main] 
#![no_std] 
#![deny(warnings)] 
#![deny(unsafe_code)] 
#![deny(missing_docs)] 
 
use panic_semihosting as _; 
 
#[rtic::app(device = lm3s6965, dispatchers = [SSI0])] 
mod app { 
    use cortex_m_semihosting::{debug, hprintln}; 
    use rtic_sync::{channel::*, make_channel}; 
 
    #[shared] 
    struct Shared {} 
 



    #[local] 
    struct Local {} 
 
    const CAPACITY: usize = 5; 
    #[init] 
    fn init(_: init::Context) -> (Shared, Local) { 
        let (s, r) = make_channel!(u32, CAPACITY); 
 
        receiver::spawn(r).unwrap(); 
        sender1::spawn(s.clone()).unwrap(); 
        sender2::spawn(s.clone()).unwrap(); 
        sender3::spawn(s).unwrap(); 
 
        (Shared {}, Local {}) 
    } 
 
    #[task] 
    async fn receiver(_c: receiver::Context, mut receiver: 
Receiver<'static, u32, CAPACITY>) { 
        while let Ok(val) = receiver.recv().await { 
            hprintln!("Receiver got: {}", val); 
            if val == 3 { 
                debug::exit(debug::EXIT_SUCCESS); // Exit QEMU 
simulator 
            } 
        } 
    } 
 
    #[task] 
    async fn sender1(_c: sender1::Context, mut sender: 
Sender<'static, u32, CAPACITY>) { 
        hprintln!("Sender 1 sending: 1"); 
        sender.send(1).await.unwrap(); 
    } 
 
    #[task] 



    async fn sender2(_c: sender2::Context, mut sender: 
Sender<'static, u32, CAPACITY>) { 
        hprintln!("Sender 2 sending: 2"); 
        sender.send(2).await.unwrap(); 
    } 
 
    #[task] 
    async fn sender3(_c: sender3::Context, mut sender: 
Sender<'static, u32, CAPACITY>) { 
        hprintln!("Sender 3 sending: 3"); 
        sender.send(3).await.unwrap(); 
    } 
} 

$ cargo xtask qemu --verbose --example async-channel --
features test-critical-section 

Sender 1 sending: 1 
Sender 2 sending: 2 
Sender 3 sending: 3 
Receiver got: 1 
Receiver got: 2 
Receiver got: 3 

Also sender endpoint can be awaited. In case the channel capacity has
not yet been reached, await -ing the sender can progress immediately,
while in the case the capacity is reached, the sender is blocked until there is
free space in the queue. In this way data is never lost.

In the following example the CAPACITY  has been reduced to 1, forcing
sender tasks to wait until the data in the channel has been received.
//! examples/async-channel-done.rs 
 
#![no_main] 
#![no_std] 
#![deny(warnings)] 
#![deny(unsafe_code)] 
#![deny(missing_docs)] 



 
use panic_semihosting as _; 
 
#[rtic::app(device = lm3s6965, dispatchers = [SSI0])] 
mod app { 
    use cortex_m_semihosting::{debug, hprintln}; 
    use rtic_sync::{channel::*, make_channel}; 
 
    #[shared] 
    struct Shared {} 
 
    #[local] 
    struct Local {} 
 
    const CAPACITY: usize = 1; 
    #[init] 
    fn init(_: init::Context) -> (Shared, Local) { 
        let (s, r) = make_channel!(u32, CAPACITY); 
 
        receiver::spawn(r).unwrap(); 
        sender1::spawn(s.clone()).unwrap(); 
        sender2::spawn(s.clone()).unwrap(); 
        sender3::spawn(s).unwrap(); 
 
        (Shared {}, Local {}) 
    } 
 
    #[task] 
    async fn receiver(_c: receiver::Context, mut receiver: 
Receiver<'static, u32, CAPACITY>) { 
        while let Ok(val) = receiver.recv().await { 
            hprintln!("Receiver got: {}", val); 
            if val == 3 { 
                debug::exit(debug::EXIT_SUCCESS); // Exit QEMU 
simulator 
            } 



        } 
    } 
 
    #[task] 
    async fn sender1(_c: sender1::Context, mut sender: 
Sender<'static, u32, CAPACITY>) { 
        hprintln!("Sender 1 sending: 1"); 
        sender.send(1).await.unwrap(); 
        hprintln!("Sender 1 done"); 
    } 
 
    #[task] 
    async fn sender2(_c: sender2::Context, mut sender: 
Sender<'static, u32, CAPACITY>) { 
        hprintln!("Sender 2 sending: 2"); 
        sender.send(2).await.unwrap(); 
        hprintln!("Sender 2 done"); 
    } 
 
    #[task] 
    async fn sender3(_c: sender3::Context, mut sender: 
Sender<'static, u32, CAPACITY>) { 
        hprintln!("Sender 3 sending: 3"); 
        sender.send(3).await.unwrap(); 
        hprintln!("Sender 3 done"); 
    } 
} 

Looking at the output, we find that Sender 2  will wait until the data
sent by Sender 1  as been received.

NOTICE Software tasks at the same priority are executed
asynchronously to each other, thus NO strict order can be assumed.
(The presented order here applies only to the current implementation,
and may change between RTIC framework releases.)



$ cargo xtask qemu --verbose --example async-channel-done --
features test-critical-section 
Sender 1 sending: 1 
Sender 1 done 
Sender 2 sending: 2 
Sender 3 sending: 3 
Receiver got: 1 
Sender 2 done 
Receiver got: 2 
Sender 3 done 
Receiver got: 3 



Error handling
In case all senders have been dropped await -ing on an empty receiver

channel results in an error. This allows to gracefully implement different
types of shutdown operations.
//! examples/async-channel-no-sender.rs 
 
#![no_main] 
#![no_std] 
#![deny(warnings)] 
#![deny(unsafe_code)] 
#![deny(missing_docs)] 
 
use panic_semihosting as _; 
 
#[rtic::app(device = lm3s6965, dispatchers = [SSI0])] 
mod app { 
    use cortex_m_semihosting::{debug, hprintln}; 
    use rtic_sync::{channel::*, make_channel}; 
 
    #[shared] 
    struct Shared {} 
 
    #[local] 
    struct Local {} 
 
    const CAPACITY: usize = 1; 
    #[init] 
    fn init(_: init::Context) -> (Shared, Local) { 
        let (_s, r) = make_channel!(u32, CAPACITY); 
 
        receiver::spawn(r).unwrap(); 
 
        (Shared {}, Local {}) 
    } 



 
    #[task] 
    async fn receiver(_c: receiver::Context, mut receiver: 
Receiver<'static, u32, CAPACITY>) { 
        hprintln!("Receiver got: {:?}", 
receiver.recv().await); 
 
        debug::exit(debug::EXIT_SUCCESS); // Exit QEMU 
simulator 
    } 
} 

$ cargo xtask qemu --verbose --example async-channel-no-sender 
--features test-critical-section 

Receiver got: Err(NoSender) 

Similarly, await -ing on a send channel results in an error in case the
receiver has been dropped. This allows to gracefully implement application
level error handling.

The resulting error returns the data back to the sender, allowing the
sender to take appropriate action (e.g., storing the data to later retry sending
it).
//! examples/async-channel-no-receiver.rs 
 
#![no_main] 
#![no_std] 
#![deny(warnings)] 
#![deny(unsafe_code)] 
#![deny(missing_docs)] 
 
use panic_semihosting as _; 
 
#[rtic::app(device = lm3s6965, dispatchers = [SSI0])] 
mod app { 
    use cortex_m_semihosting::{debug, hprintln}; 
    use rtic_sync::{channel::*, make_channel}; 



 
    #[shared] 
    struct Shared {} 
 
    #[local] 
    struct Local {} 
 
    const CAPACITY: usize = 1; 
    #[init] 
    fn init(_: init::Context) -> (Shared, Local) { 
        let (s, _r) = make_channel!(u32, CAPACITY); 
 
        sender1::spawn(s.clone()).unwrap(); 
 
        (Shared {}, Local {}) 
    } 
 
    #[task] 
    async fn sender1(_c: sender1::Context, mut sender: 
Sender<'static, u32, CAPACITY>) { 
        hprintln!("Sender 1 sending: 1 {:?}", 
sender.send(1).await); 
        debug::exit(debug::EXIT_SUCCESS); // Exit QEMU 
simulator 
    } 
} 

$ cargo xtask qemu --verbose --example async-channel-no-
receiver --features test-critical-section 

Sender 1 sending: 1 Err(NoReceiver(1)) 



Try API
Using the Try API, you can send or receive data from or to a channel

without requiring that the operation succeeds, and in non- async  contexts.
This API is exposed through Receiver::try_recv  and 

Sender::try_send .
//! examples/async-channel-try.rs 
 
#![no_main] 
#![no_std] 
#![deny(warnings)] 
#![deny(unsafe_code)] 
#![deny(missing_docs)] 
 
use panic_semihosting as _; 
 
#[rtic::app(device = lm3s6965, dispatchers = [SSI0])] 
mod app { 
    use cortex_m_semihosting::{debug, hprintln}; 
    use rtic_sync::{channel::*, make_channel}; 
 
    #[shared] 
    struct Shared {} 
 
    #[local] 
    struct Local { 
        sender: Sender<'static, u32, CAPACITY>, 
    } 
 
    const CAPACITY: usize = 1; 
    #[init] 
    fn init(_: init::Context) -> (Shared, Local) { 
        let (s, r) = make_channel!(u32, CAPACITY); 
 



        receiver::spawn(r).unwrap(); 
        sender1::spawn(s.clone()).unwrap(); 
 
        (Shared {}, Local { sender: s.clone() }) 
    } 
 
    #[task] 
    async fn receiver(_c: receiver::Context, mut receiver: 
Receiver<'static, u32, CAPACITY>) { 
        while let Ok(val) = receiver.recv().await { 
            hprintln!("Receiver got: {}", val); 
        } 
    } 
 
    #[task] 
    async fn sender1(_c: sender1::Context, mut sender: 
Sender<'static, u32, CAPACITY>) { 
        hprintln!("Sender 1 sending: 1"); 
        sender.send(1).await.unwrap(); 
        hprintln!("Sender 1 try sending: 2 {:?}", 
sender.try_send(2)); 
        debug::exit(debug::EXIT_SUCCESS); // Exit QEMU 
simulator 
    } 
 
    // This interrupt is never triggered, but is used to 
demonstrate that 
    // one can (try to) send data into a channel from a 
hardware task. 
    #[task(binds = GPIOA, local = [sender])] 
    fn hw_task(cx: hw_task::Context) { 
        cx.local.sender.try_send(3).ok(); 
    } 
} 



$ cargo xtask qemu --verbose --example async-channel-try --
features test-critical-section 

Sender 1 sending: 1 
Sender 1 try sending: 2 Err(Full(2)) 



Delay and Timeout using
Monotonics

A convenient way to express miniminal timing requirements is by
delaying progression.

This can be achieved by instantiating a monotonic timer (for
implementations, see rtic-monotonics ):
... 
    #[init] 
    fn init(cx: init::Context) -> (Shared, Local) { 
        hprintln!("init"); 
 
        Mono::start(cx.core.SYST, 12_000_000); 
        ... 

A software task can await  the delay to expire:
#[task] 
async fn foo(_cx: foo::Context) { 
    ... 
    Mono::delay(100.millis()).await; 
    ... 
} 
 

A complete example

Interested in contributing new implementations of Monotonic , or
more information about the inner workings of monotonics? Check out
the Implementing a Monotonic  chapter!

https://github.com/rtic-rs/rtic/tree/master/rtic-monotonics
https://docs.rs/rtic-time/latest/rtic_time/trait.Monotonic.html
clbr://internal.invalid/book/OEBPS/monotonic_impl.md


Timeout
Rust Future s (underlying Rust async / await ) are composable. This

makes it possible to select  in between Futures  that have completed.
A common use case is transactions with an associated timeout. In the

examples shown below, we introduce a fake HAL device that performs
some imagined transaction when you call hal_get(n).await . We have
modelled the time it takes based on the input parameter ( n ) as 350ms + n 
* 100ms .

Using the select_biased  macro from the futures  crate it may look
like this:
        // Call hal with short relative timeout using 
`select_biased` 
        select_biased! { 
            v = hal_get(1).fuse() => hprintln!("hal returned 
{}", v), 
            _ = Mono::delay(200.millis()).fuse() =>  hprintln!
("timeout", ), // this will finish first 
        } 
 
        // Call hal with long relative timeout using 
`select_biased` 
        select_biased! { 
            v = hal_get(1).fuse() => hprintln!("hal returned 
{}", v), // hal finish first 
            _ = Mono::delay(1000.millis()).fuse() => 
hprintln!("timeout", ), 
        } 

Assuming the hal_get  will take 450ms to finish, a short timeout of
200ms will expire before hal_get  can complete.

Extending the timeout to 1000ms would cause hal_get  will to complete
first.

https://doc.rust-lang.org/std/future/trait.Future.html


Using select_biased  any number of futures can be combined, so its
very powerful. However, as the timeout pattern is frequently used, more
ergonomic support is baked into RTIC, provided by the rtic-monotonics
and rtic-time  crates. Here's another example, using Mono::delay_until
and Mono::timeout_after :
        // get the current time instance 
        let mut instant = Mono::now(); 
 
        // do this 3 times 
        for n in 0..3 { 
            // absolute point in time without drift 
            instant += 1000.millis(); 
            Mono::delay_until(instant).await; 
 
            // absolute point in time for timeout 
            let timeout = instant + 500.millis(); 
            hprintln!("now is {:?}, timeout at {:?}", 
Mono::now(), timeout); 
 
            match Mono::timeout_at(timeout, hal_get(n)).await 
{ 
                Ok(v) => hprintln!("hal returned {} at time 
{:?}", v, Mono::now()), 
                _ => hprintln!("timeout"), 
            } 
        } 

In cases where you want exact control over time without drift we can use
exact points in time using Instant , and spans of time using Duration .
Operations on the Instant  and Duration  types come from the fugit
crate.

let mut instant = Mono::now()  sets the starting time of execution.
We want to call hal_get  every 1000ms relative to this starting time. We

accomplish this by incrementing our instant  by 1000 ms and then using

https://github.com/rtic-rs/rtic/tree/master/rtic-monotonics
https://github.com/rtic-rs/rtic/tree/master/rtic-time
https://crates.io/crates/fugit


Mono::delay_until(instant).await . Any additional delays incurred as
we iterate around this loop are compensated for by delaying until 'previous
+ 1000' as opposed to 'now + 1000' (which would cause our loop timing to
drift).

To show an alternative to the select!  async timeout example above, we
define a future point in time as timeout , and call 
Mono::timeout_at(timeout, hal_get(n)).await .

For the first iteration of the loop, with n == 0 , the hal_get  will take
350ms (as described above), and finishes before the timeout. For the second
iteration, the delay is 450ms, which still finishes before the timeout. For the
third iteration, with n == 2 , hal_get  will take 550ms to finish, in which
case we will run into a timeout.

A complete example



The minimal app
This is the smallest possible RTIC application:

//! examples/smallest.rs 
 
#![no_main] 
#![no_std] 
#![deny(warnings)] 
#![deny(unsafe_code)] 
#![deny(missing_docs)] 
 
use panic_semihosting as _; // panic handler 
use rtic::app; 
 
#[app(device = lm3s6965)] 
mod app { 
    use cortex_m_semihosting::debug; 
 
    #[shared] 
    struct Shared {} 
 
    #[local] 
    struct Local {} 
 
    #[init] 
    fn init(_: init::Context) -> (Shared, Local) { 
        debug::exit(debug::EXIT_SUCCESS); // Exit QEMU 
simulator 
        (Shared {}, Local {}) 
    } 
} 

RTIC is designed with resource efficiency in mind. RTIC itself does not
rely on any dynamic memory allocation, thus RAM requirement is



dependent only on the application. The flash memory footprint is below
1kB including the interrupt vector table.

For a minimal example you can expect something like:
$ cargo size --example smallest --target thumbv7m-none-eabi --
release 

Finished release [optimized] target(s) in 0.07s 
   text    data     bss     dec     hex filename 
    924       0       0     924     39c smallest 



Tips & tricks
In this section we will explore common tips & tricks related to using

RTIC.



Resource de-structure-ing
Destructuring task resources might help readability if a task takes

multiple resources. Here are two examples on how to split up the resource
struct:
//! examples/destructure.rs 
 
#![no_main] 
#![no_std] 
#![deny(warnings)] 
#![deny(unsafe_code)] 
#![deny(missing_docs)] 
 
use panic_semihosting as _; 
 
#[rtic::app(device = lm3s6965, dispatchers = [UART0])] 
mod app { 
    use cortex_m_semihosting::{debug, hprintln}; 
 
    #[shared] 
    struct Shared { 
        a: u32, 
        b: u32, 
        c: u32, 
    } 
 
    #[local] 
    struct Local {} 
 
    #[init] 
    fn init(_: init::Context) -> (Shared, Local) { 
        foo::spawn().unwrap(); 
        bar::spawn().unwrap(); 
 



        (Shared { a: 0, b: 1, c: 2 }, Local {}) 
    } 
 
    #[idle] 
    fn idle(_: idle::Context) -> ! { 
        debug::exit(debug::EXIT_SUCCESS); // Exit QEMU 
simulator 
        loop {} 
    } 
 
    // Direct destructure 
    #[task(shared = [&a, &b, &c], priority = 1)] 
    async fn foo(cx: foo::Context) { 
        let a = cx.shared.a; 
        let b = cx.shared.b; 
        let c = cx.shared.c; 
 
        hprintln!("foo: a = {}, b = {}, c = {}", a, b, c); 
    } 
 
    // De-structure-ing syntax 
    #[task(shared = [&a, &b, &c], priority = 1)] 
    async fn bar(cx: bar::Context) { 
        let bar::SharedResources { a, b, c, .. } = cx.shared; 
 
        hprintln!("bar: a = {}, b = {}, c = {}", a, b, c); 
    } 
} 

$ cargo xtask qemu --verbose --example destructure 

bar: a = 0, b = 1, c = 2 
foo: a = 0, b = 1, c = 2 



Using indirection for faster
message passing

Message passing always involves copying the payload from the sender
into a static variable and then from the static variable into the receiver. Thus
sending a large buffer, like a [u8; 128] , as a message involves two
expensive memcpy s.

Indirection can minimize message passing overhead: instead of sending
the buffer by value, one can send an owning pointer into the buffer.

One can use a global memory allocator to achieve indirection
( alloc::Box , alloc::Rc , etc.), which requires using the nightly channel
as of Rust v1.37.0, or one can use a statically allocated memory pool like 
heapless::Pool .

As this example of approach goes completely outside of RTIC resource
model with shared and local the program would rely on the correctness of
the memory allocator, in this case heapless::pool .

Here's an example where heapless::Pool  is used to "box" buffers of
128 bytes.
//! examples/pool.rs 
 
#![no_main] 
#![no_std] 
#![deny(warnings)] 
 
use panic_semihosting as _; 
use rtic::app; 
 
// thumbv6-none-eabi does not support pool 
// This might be better worked around in the build system, 
// but for proof of concept, let's try having one example 
// being different for different backends 

https://docs.rs/heapless/latest/heapless/pool/index.html


// 
https://docs.rs/heapless/0.8.0/heapless/pool/index.html#target
-support 
cfg_if::cfg_if! { 
    if #[cfg(feature = "thumbv6-backend")] { 
        // Copy of the smallest.rs example 
        #[app(device = lm3s6965)] 
        mod app { 
            use cortex_m_semihosting::debug; 
 
            #[shared] 
            struct Shared {} 
 
            #[local] 
            struct Local {} 
 
            #[init] 
            fn init(_: init::Context) -> (Shared, Local) { 
                debug::exit(debug::EXIT_SUCCESS); // Exit QEMU 
simulator 
                (Shared {}, Local {}) 
            } 
        } 
    } else { 
        // Run actual pool example 
        use heapless::{ 
            box_pool, 
            pool::boxed::{Box, BoxBlock}, 
        }; 
 
        // Declare a pool containing 8-byte memory blocks 
        box_pool!(P: u8); 
 
        const POOL_CAPACITY: usize = 512; 
 
        #[app(device = lm3s6965, dispatchers = [SSI0, QEI0])] 



        mod app { 
            use crate::{Box, BoxBlock, POOL_CAPACITY}; 
            use cortex_m_semihosting::debug; 
            use lm3s6965::Interrupt; 
 
            // Import the memory pool into scope 
            use crate::P; 
 
            #[shared] 
            struct Shared {} 
 
            #[local] 
            struct Local {} 
 
            const BLOCK: BoxBlock<u8> = BoxBlock::new(); 
 
            #[init(local = [memory: [BoxBlock<u8>; 
POOL_CAPACITY] = [BLOCK; POOL_CAPACITY]])] 
            fn init(cx: init::Context) -> (Shared, Local) { 
                for block in cx.local.memory { 
                    // Give the 'static memory to the pool 
                    P.manage(block); 
                } 
 
                rtic::pend(Interrupt::I2C0); 
 
                (Shared {}, Local {}) 
            } 
 
            #[task(binds = I2C0, priority = 2)] 
            fn i2c0(_: i2c0::Context) { 
                // Claim 128 u8 blocks 
                let x = P.alloc(128).unwrap(); 
 
                // .. send it to the `foo` task 
                foo::spawn(x).ok().unwrap(); 



 
                // send another 128 u8 blocks to the task 
`bar` 
                
bar::spawn(P.alloc(128).unwrap()).ok().unwrap(); 
            } 
 
            #[task] 
            async fn foo(_: foo::Context, _x: Box<P>) { 
                // explicitly return the block to the pool 
                drop(_x); 
 
                debug::exit(debug::EXIT_SUCCESS); // Exit QEMU 
simulator 
            } 
 
            #[task(priority = 2)] 
            async fn bar(_: bar::Context, _x: Box<P>) { 
                // this is done automatically so we can omit 
the call to `drop` 
                // drop(_x); 
            } 
        } 
    } 
} 

$ cargo xtask qemu --verbose --example pool 

 



'static super-powers
In #[init] , #[idle]  and divergent software tasks local  resources

have 'static  lifetime.
Useful when pre-allocating and/or splitting resources between tasks,

drivers or some other object. This comes in handy when drivers, such as
USB drivers, need to allocate memory and when using splittable data
structures such as heapless::spsc::Queue .

In the following example two different tasks share a 
heapless::spsc::Queue  for lock-free access to the shared queue.
//! examples/static-resources-in-init.rs 
 
#![no_main] 
#![no_std] 
#![deny(warnings)] 
#![deny(unsafe_code)] 
#![deny(missing_docs)] 
 
use panic_semihosting as _; 
 
#[rtic::app(device = lm3s6965, dispatchers = [UART0])] 
mod app { 
    use cortex_m_semihosting::{debug, hprintln}; 
    use heapless::spsc::{Consumer, Producer, Queue}; 
 
    #[shared] 
    struct Shared {} 
 
    #[local] 
    struct Local { 
        p: Producer<'static, u32, 5>, 
        c: Consumer<'static, u32, 5>, 
    } 

https://docs.rs/heapless/0.7.5/heapless/spsc/struct.Queue.html
https://docs.rs/heapless/0.7.5/heapless/spsc/struct.Queue.html


 
    #[init(local = [q: Queue<u32, 5> = Queue::new()])] 
    fn init(cx: init::Context) -> (Shared, Local) { 
        // q has 'static life-time so after the split and 
return of `init` 
        // it will continue to exist and be allocated 
        let (p, c) = cx.local.q.split(); 
 
        foo::spawn().unwrap(); 
 
        (Shared {}, Local { p, c }) 
    } 
 
    #[idle(local = [c])] 
    fn idle(c: idle::Context) -> ! { 
        loop { 
            // Lock-free access to the same underlying queue! 
            if let Some(data) = c.local.c.dequeue() { 
                hprintln!("received message: {}", data); 
 
                // Run foo until data 
                if data == 3 { 
                    debug::exit(debug::EXIT_SUCCESS); // Exit 
QEMU simulator 
                } else { 
                    foo::spawn().unwrap(); 
                } 
            } 
        } 
    } 
 
    #[task(local = [p, state: u32 = 0], priority = 1)] 
    async fn foo(c: foo::Context) { 
        *c.local.state += 1; 
 
        // Lock-free access to the same underlying queue! 



        c.local.p.enqueue(*c.local.state).unwrap(); 
    } 
} 

Running this program produces the expected output.
$ cargo xtask qemu --verbose --example static-resources-in-
init 

received message: 1 
received message: 2 
received message: 3 



Inspecting generated code
#[rtic::app]  is a procedural macro that produces support code. If for

some reason you need to inspect the code generated by this macro you have
two options:

You can inspect the file rtic-expansion.rs  inside the target
directory.
Use the cargo-expand  sub-command

https://crates.io/crates/cargo-expand


Using generated rtic-expansion.rs
Locating this file depends on how building is performed.
Using e.g. cargo xtask build-example  within the main RTIC repo

will place the file based on "platform" used:
$ cargo xtask example-build --example smallest 
$ cargo xtask example-build --example monotonic --platform 
esp32-c3 
 
$ fd -u rtic-expansion.rs 
examples/esp32c3/target/rtic-expansion.rs 
examples/lm3s6965/target/rtic-expansion.rs 

In the regular cargo project case it goes directly in the target  folder.
This file contains the expansion of the #[rtic::app]  item (not your

whole program!) of the last built (via cargo build  or cargo check ) RTIC
application. The expanded code is not pretty printed by default, so you'll
want to run rustfmt  on it before you read it.
$ cargo build --example smallest --target thumbv7m-none-eabi 

$ rustfmt target/rtic-expansion.rs 

$ tail target/rtic-expansion.rs 

#[doc = r" Implementation details"] 
mod app { 
    #[doc = r" Always include the device crate which contains 
the vector table"] 
    use lm3s6965 as _; 
    #[no_mangle] 
    unsafe extern "C" fn main() -> ! { 
        rtic::export::interrupt::disable(); 
        let mut core: rtic::export::Peripherals = 
core::mem::transmute(()); 
        core.SCB.scr.modify(|r| r | 1 << 1); 
        rtic::export::interrupt::enable(); 
        loop { 



            rtic::export::wfi() 
        } 
    } 
} 



Using cargo-expand tool
If not available, install:

$ cargo install cargo-expand 

This sub-command will expand all the macros, including the #

[rtic::app]  attribute, and modules in your crate and print the output to the
console.
# produces the same output as before 

cargo expand --example smallest | tail 



The magic behind Monotonics
Internally, all monotonics use a Timer Queue, which is a priority queue

with entries describing the time at which their respective Future s should
complete.



Implementing a Monotonic timer for scheduling
The rtic-time  framework is flexible because it can use any timer

which has compare-match and optionally supporting overflow interrupts for
scheduling. The single requirement to make a timer usable with RTIC is
implementing the rtic-time::Monotonic  trait.

For RTIC 2.0, we assume that the user has a time library, e.g. fugit , as
the basis for all time-based operations when implementing Monotonic .
These libraries make it much easier to correctly implement the Monotonic
trait, allowing the use of almost any timer in the system for scheduling.

The trait documents the requirements for each method. There are
reference implementations available in rtic-monotonics  that can be used
for inspriation.

Systick based , runs at a fixed interrupt (tick) rate - with some
overhead but simple and provides support for large time spans
RP2040 Timer , a "proper" implementation with support for waiting
for long periods without interrupts. Clearly demonstrates how to use
the TimerQueue  to handle scheduling.
nRF52 timers  implements monotonic & Timer Queue for the RTC
and normal timers in nRF52's

https://docs.rs/rtic-time/latest/rtic_time
https://docs.rs/rtic-time/latest/rtic_time/trait.Monotonic.html
https://docs.rs/fugit/
https://docs.rs/rtic-time/latest/rtic_time/trait.Monotonic.html
https://docs.rs/rtic-time/latest/rtic_time/trait.Monotonic.html
https://github.com/rtic-rs/rtic/tree/master/rtic-monotonics/
https://github.com/rtic-rs/rtic/blob/master/rtic-monotonics/src/systick.rs
https://github.com/rtic-rs/rtic/blob/master/rtic-monotonics/src/rp2040.rs
https://docs.rs/rtic-time/latest/rtic_time/struct.TimerQueue.html
https://github.com/rtic-rs/rtic/blob/master/rtic-monotonics/src/nrf.rs


Contributing
Contributing new implementations of Monotonic  can be done in

multiple ways:

Implement the trait behind a feature flag in rtic-monotonics , and
create a PR for them to be included in the main RTIC repository. This
way, the implementations of are in-tree, RTIC can guarantee their
correctness, and can update them in the case of a new release.
Implement the changes in an external repository. Doing so will not
have them included in rtic-monotonics , but may make it easier to do
so in the future.

https://github.com/rtic-rs/rtic/tree/master/rtic-monotonics/
https://github.com/rtic-rs/rtic/tree/master/rtic-monotonics/


The timer queue
The timer queue is implemented as a list based priority queue, where

list-nodes are statically allocated as part of the Future  created when 
await -ing a Future created when waiting for the monotonic. Thus, the
timer queue is infallible at run-time (its size and allocation are determined
at compile time).

Similarly the channels implementation, the timer-queue implementation
relies on a global Critical Section (CS) for race protection. For the
examples a CS implementation is provided by adding --features test-
critical-section  to the build options.



RTIC vs. the world
RTIC aims to provide the lowest level of abstraction needed for

developing robust and reliable embedded software.
It provides a minimal set of required mechanisms for safe sharing of

mutable resources among interrupts and asynchronously executing tasks.
The scheduling primitives leverages on the underlying hardware for
unparalleled performance and predictability, in effect RTIC provides in Rust
terms a zero-cost abstraction to concurrent real-time programming.



Comparison regarding safety and security
Comparing RTIC to traditional a Real-Time Operating System (RTOS)

is hard. Firstly, a traditional RTOS typically comes with no guarantees
regarding system safety, even the most hardened kernels like the formally
verified seL4 kernel. Their claims to integrity, confidentiality, and
availability regards only the kernel itself (under additional assumptions its
configuration and environment). They even state:

"An OS kernel, verified or not, does not automatically make a system
secure. In fact, any system, no matter how secure, can be used in insecure
ways." - seL4 FAQ

https://sel4.systems/
https://docs.sel4.systems/projects/sel4/frequently-asked-questions.html


Security by design
In the world of information security we commonly find:

confidentiality, protecting the information from being exposed to an
unauthorized party,
integrity, referring to accuracy and completeness of data, and
availability, referring to data being accessible to authorized users.

Obviously, a traditional OS can guarantee neither confidentiality nor
integrity, as both requires the security critical code to be trusted. Regarding
availability, this typically boils down to the usage of system resources. Any
OS that allows for dynamic allocation of resources, relies on that the
application correctly handles allocations/de-allocations, and cases of
allocation failures.

Thus their claim is correct, security is completely out of hands for the
OS, the best we can hope for is that it does not add further vulnerabilities.

RTIC on the other hand holds your back. The declarative system wide
model gives you a static set of tasks and resources, with precise control
over what data is shared and between which parties. Moreover, Rust as a
programming language comes with strong properties regarding integrity
(compile time aliasing, mutability and lifetime guarantees, together with
ensured data validity).

Using RTIC these properties propagate to the system wide model,
without interference of other applications running. The RTIC kernel is
internally infallible without any need of dynamically allocated data.



RTIC vs. Embassy



Differences
Embassy provides both Hardware Abstraction Layers, and an

executor/runtime, while RTIC aims to only provide an execution
framework. For example, embassy provides embassy-stm32  (a HAL), and 
embassy-executor  (an executor). On the other hand, RTIC provides the
framework in the form of rtic , and the user is responsible for providing a
PAC and HAL implementation (generally from the stm32-rs  project).

Additionally, RTIC aims to provide exclusive access to resources at as
low a level as possible, ideally guarded by some form of hardware
protection. This allows for access to hardware without necessarily requiring
locking mechanisms at the software level.

https://docs.rs/rtic/latest/rtic/
https://github.com/stm32-rs


Mixing use of Embassy and RTIC
Since most Embassy and RTIC libraries are runtime agnostic, many

details from one project can be used in the other. For example, using rtic-
monotonics  in an embassy-executor  powered project works, and using 
embassy-sync  (though rtic-sync  is recommended) in an RTIC project
works.

https://docs.rs/rtic-monotonics/latest/rtic_monotonics/
https://docs.rs/embassy-sync/latest/embassy_sync/
https://docs.rs/rtic-sync/latest/rtic_sync/


Awesome RTIC examples
See the rtic-rs/rtic/examples  repository for complete examples.
Pull-requests are welcome!

https://github.com/rtic-rs/rtic/tree/master/examples


Migrating from v1.0.x to v2.0.0
Migrating a project from RTIC v1.0.x  to v2.0.0  involves the

following steps:

1. v2.1.0 works on Rust Stable from 1.75 (recommended), while older
versions require a nightly compiler via the use of #!
[type_alias_impl_trait].

2. Migrating from the monotonics included in v1.0.x to rtic-time and 
rtic-monotonics, replacing spawn_after, spawn_at.

3. Software tasks are now required to be async, and using them correctly.
4. Understanding and using data types provided by rtic-sync.
For a detailed description of the changes, refer to the subchapters.
If you wish to see a code example of changes required, you can check

out the full example migration page.

TL;DR (Too Long; Didn't Read)

1. Instead of spawn_after and spawn_at, you now use the async
functions delay, delay_until (and related) with impls provided by 
rtic-monotonics.

2. Software tasks must be async fns now. Not returning from a task is
allowed so long as there is an await in the task. You can still lock
shared resources.

3. Use rtic_sync::arbiter::Arbiter to await access to a shared
resource, and rtic_sync::channel::Channel to communicate
between tasks instead of spawn-ing new ones.

https://github.com/rust-lang/rust/issues/63063
clbr://internal.invalid/book/OEBPS/migration_v1_v2/complete_example.md


Migrating to rtic-monotonics
In previous versions of rtic , monotonics were an integral, tightly

coupled part of the #[rtic::app] . In this new version, rtic-monotonics
provides them in a more decoupled way.

The #[monotonic]  attribute is no longer used. Instead, you use a 
create_X_token  from rtic-monotonics . An invocation of this macro
returns an interrupt registration token, which can be used to construct an
instance of your desired monotonic.

spawn_after  and spawn_at  are no longer available. Instead, you use
the async functions delay  and delay_until  provided by ipmlementations
of the rtic_time::Monotonic  trait, available through rtic-monotonics .

Check out the code example for an overview of the required changes.
For more information on current monotonic implementations, see the 

rtic-monotonics  documentation, and the examples.

https://github.com/rtic-rs/rtic
https://github.com/rtic-rs/rtic
https://github.com/rtic-rs/rtic
clbr://internal.invalid/book/OEBPS/migration_v1_v2/complete_example.md
https://docs.rs/rtic-monotonics
https://github.com/rtic-rs/rtic/tree/master/examples


Using async software tasks.
There have been a few changes to software tasks. They are outlined

below.

Software tasks must now be async.
All software tasks are now required to be async .

Required changes.
All of the tasks in your project that do not bind to an interrupt must now

be an async fn . For example:
#[task( 
    local = [ some_resource ], 
    shared = [ my_shared_resource ], 
    priority = 2 
)] 
fn my_task(cx: my_task::Context) { 
    cx.local.some_resource.do_trick(); 
    cx.shared.my_shared_resource.lock(|s| 
s.do_shared_thing()); 
} 

becomes
#[task( 
    local = [ some_resource ], 
    shared = [ my_shared_resource ], 
    priority = 2 
)] 
async fn my_task(cx: my_task::Context) { 
    cx.local.some_resource.do_trick(); 
    cx.shared.my_shared_resource.lock(|s| 
s.do_shared_thing()); 
} 



Software tasks may now run forever
The new async  software tasks are allowed to run forever, on one

precondition: there must be an await  within the infinite loop of the
task. An example of such a task:
#[task(local = [ my_channel ] )] 
async fn my_task_that_runs_forever(cx: 
my_task_that_runs_forever::Context) { 
    loop { 
        let value = cx.local.my_channel.recv().await; 
        do_something_with_value(value); 
    } 
} 



spawn_after and spawn_at have been removed.
As discussed in the Migrating to rtic-monotonics  chapter, 

spawn_after  and spawn_at  are no longer available.

clbr://internal.invalid/book/OEBPS/migration_v1_v2/monotonics.md


Using rtic-sync
rtic-sync  provides primitives that can be used for message passing

and resource sharing in async context.
The important structs are:

The Arbiter , which allows you to await access to a shared resource in
async contexts without using lock .
Channel , which allows you to communicate between tasks (both 
async  and non- async ).

For more information on these structs, see the rtic-sync  docs

https://docs.rs/rtic-sync


A complete example of migration
Below you can find the code for the implementation of the 

stm32f3_blinky  example for v1.0.x and for v2.0.0. Further down, a diff is
displayed.



v1.0.X
#![deny(unsafe_code)] 
#![deny(warnings)] 
#![no_main] 
#![no_std] 
 
use panic_rtt_target as _; 
use rtic::app; 
use rtt_target::{rprintln, rtt_init_print}; 
use stm32f3xx_hal::gpio::{Output, PushPull, PA5}; 
use stm32f3xx_hal::prelude::*; 
use systick_monotonic::{fugit::Duration, Systick}; 
 
#[app(device = stm32f3xx_hal::pac, peripherals = true, 
dispatchers = [SPI1])] 
mod app { 
    use super::*; 
 
    #[shared] 
    struct Shared {} 
 
    #[local] 
    struct Local { 
        led: PA5<Output<PushPull>>, 
        state: bool, 
    } 
 
    #[monotonic(binds = SysTick, default = true)] 
    type MonoTimer = Systick<1000>; 
 
    #[init] 
    fn init(cx: init::Context) -> (Shared, Local, 
init::Monotonics) { 
        // Setup clocks 



        let mut flash = cx.device.FLASH.constrain(); 
        let mut rcc = cx.device.RCC.constrain(); 
 
        let mono = Systick::new(cx.core.SYST, 36_000_000); 
 
        rtt_init_print!(); 
        rprintln!("init"); 
 
        let _clocks = rcc 
            .cfgr 
            .use_hse(8.MHz()) 
            .sysclk(36.MHz()) 
            .pclk1(36.MHz()) 
            .freeze(&mut flash.acr); 
 
        // Setup LED 
        let mut gpioa = cx.device.GPIOA.split(&mut rcc.ahb); 
        let mut led = gpioa 
            .pa5 
            .into_push_pull_output(&mut gpioa.moder, &mut 
gpioa.otyper); 
        led.set_high().unwrap(); 
 
        // Schedule the blinking task 
        blink::spawn_after(Duration::<u64, 1, 
1000>::from_ticks(1000)).unwrap(); 
 
        ( 
            Shared {}, 
            Local { led, state: false }, 
            init::Monotonics(mono), 
        ) 
    } 
 
    #[task(local = [led, state])] 
    fn blink(cx: blink::Context) { 



        rprintln!("blink"); 
        if *cx.local.state { 
            cx.local.led.set_high().unwrap(); 
            *cx.local.state = false; 
        } else { 
            cx.local.led.set_low().unwrap(); 
            *cx.local.state = true; 
        } 
        blink::spawn_after(Duration::<u64, 1, 
1000>::from_ticks(1000)).unwrap(); 
    } 
} 
 



V2.0.0
#![deny(unsafe_code)] 
#![deny(warnings)] 
#![no_main] 
#![no_std] 
 
use panic_rtt_target as _; 
use rtic::app; 
use rtic_monotonics::systick::prelude::*; 
use rtt_target::{rprintln, rtt_init_print}; 
use stm32f3xx_hal::gpio::{Output, PushPull, PA5}; 
use stm32f3xx_hal::prelude::*; 
 
systick_monotonic!(Mono, 1000); 
 
#[app(device = stm32f3xx_hal::pac, peripherals = true, 
dispatchers = [SPI1])] 
mod app { 
    use super::*; 
 
    #[shared] 
    struct Shared {} 
 
    #[local] 
    struct Local { 
        led: PA5<Output<PushPull>>, 
        state: bool, 
    } 
 
    #[init] 
    fn init(cx: init::Context) -> (Shared, Local) { 
        // Setup clocks 
        let mut flash = cx.device.FLASH.constrain(); 
        let mut rcc = cx.device.RCC.constrain(); 



 
        // Initialize the systick interrupt & obtain the token 
to prove that we did 
        Mono::start(cx.core.SYST, 36_000_000); // default 
STM32F303 clock-rate is 36MHz 
 
        rtt_init_print!(); 
        rprintln!("init"); 
 
        let _clocks = rcc 
            .cfgr 
            .use_hse(8.MHz()) 
            .sysclk(36.MHz()) 
            .pclk1(36.MHz()) 
            .freeze(&mut flash.acr); 
 
        // Setup LED 
        let mut gpioa = cx.device.GPIOA.split(&mut rcc.ahb); 
        let mut led = gpioa 
            .pa5 
            .into_push_pull_output(&mut gpioa.moder, &mut 
gpioa.otyper); 
        led.set_high().unwrap(); 
 
        // Schedule the blinking task 
        blink::spawn().ok(); 
 
        (Shared {}, Local { led, state: false }) 
    } 
 
    #[task(local = [led, state])] 
    async fn blink(cx: blink::Context) { 
        loop { 
            rprintln!("blink"); 
            if *cx.local.state { 
                cx.local.led.set_high().unwrap(); 



                *cx.local.state = false; 
            } else { 
                cx.local.led.set_low().unwrap(); 
                *cx.local.state = true; 
            } 
            Mono::delay(1000.millis()).await; 
        } 
    } 
} 



A diff between the two projects
Note: This diff may not be 100% accurate, but it displays the important

changes.
#![no_main] 
 #![no_std] 
  
 use panic_rtt_target as _; 
 use rtic::app; 
 use stm32f3xx_hal::gpio::{Output, PushPull, PA5}; 
 use stm32f3xx_hal::prelude::*; 
-use systick_monotonic::{fugit::Duration, Systick}; 
+use rtic_monotonics::Systick; 
  
 #[app(device = stm32f3xx_hal::pac, peripherals = true, 
dispatchers = [SPI1])] 
 mod app { 
@@ -20,16 +21,14 @@ mod app { 
         state: bool, 
     } 
  
-    #[monotonic(binds = SysTick, default = true)] 
-    type MonoTimer = Systick<1000>; 
- 
     #[init] 
     fn init(cx: init::Context) -> (Shared, Local, 
init::Monotonics) { 
         // Setup clocks 
         let mut flash = cx.device.FLASH.constrain(); 
         let mut rcc = cx.device.RCC.constrain(); 
  
-        let mono = Systick::new(cx.core.SYST, 36_000_000); 
+        let mono_token = 
rtic_monotonics::create_systick_token!(); 
+        let mono = Systick::start(cx.core.SYST, 36_000_000, 



mono_token); 
  
         let _clocks = rcc 
             .cfgr 
@@ -46,7 +45,7 @@ mod app { 
         led.set_high().unwrap(); 
  
         // Schedule the blinking task 
-        blink::spawn_after(Duration::<u64, 1, 
1000>::from_ticks(1000)).unwrap(); 
+        blink::spawn().unwrap(); 
  
         ( 
             Shared {}, 
@@ -56,14 +55,18 @@ mod app { 
     } 
  
     #[task(local = [led, state])] 
-    fn blink(cx: blink::Context) { 
-        rprintln!("blink"); 
-        if *cx.local.state { 
-            cx.local.led.set_high().unwrap(); 
-            *cx.local.state = false; 
-        } else { 
-            cx.local.led.set_low().unwrap(); 
-            *cx.local.state = true; 
-        blink::spawn_after(Duration::<u64, 1, 
1000>::from_ticks(1000)).unwrap(); 
-    } 
+    async fn blink(cx: blink::Context) { 
+        loop { 
+            // A task is now allowed to run forever, provided 
that 
+            // there is an `await` somewhere in the loop. 
+            SysTick::delay(1000.millis()).await; 
+            rprintln!("blink"); 



+            if *cx.local.state { 
+                cx.local.led.set_high().unwrap(); 
+                *cx.local.state = false; 
+            } else { 
+                cx.local.led.set_low().unwrap(); 
+                *cx.local.state = true; 
+            } 
+        } 
+    } 
 } 



Under the hood
This is chapter is currently work in progress, it will re-appear once

it is more complete
This section describes the internals of the RTIC framework at a high

level. Low level details like the parsing and code generation done by the
procedural macro ( #[app] ) will not be explained here. The focus will be
the analysis of the user specification and the data structures used by the
runtime.

We highly suggest that you read the embedonomicon section on
concurrency before you dive into this material.

https://github.com/rust-embedded/embedonomicon/pull/48


Target Architecture



Cortex-M Devices
While RTIC can currently target all Cortex-m devices there are some key architecture

differences that users should be aware of. Namely, the absence of Base Priority Mask Register
( BASEPRI ) which lends itself exceptionally well to the hardware priority ceiling support used in
RTIC, in the ARMv6-M and ARMv8-M-base architectures, which forces RTIC to use source
masking instead. For each implementation of lock and a detailed commentary of pros and cons,
see the implementation of lock in src/export.rs.

These differences influence how critical sections are realized, but functionality should be the
same except that ARMv6-M/ARMv8-M-base cannot have tasks with shared resources bound to
exception handlers, as these cannot be masked in hardware.

Table 1 below shows a list of Cortex-m processors and which type of critical section they
employ.

Table 1: Critical Section Implementation by Processor Architecture

Processor Architecture Priority Ceiling Source Masking
Cortex-M0 ARMv6-M ✓

Cortex-M0+ ARMv6-M ✓

Cortex-M3 ARMv7-M ✓

Cortex-M4 ARMv7-M ✓

Cortex-M7 ARMv7-M ✓

Cortex-M23 ARMv8-M-base ✓

Cortex-M33 ARMv8-M-main ✓

Priority Ceiling
This is covered by the Resources page of this book.

Source Masking
Without a BASEPRI  register which allows for directly setting a priority ceiling in the Nested

Vectored Interrupt Controller (NVIC), RTIC must instead rely on disabling (masking)
interrupts. Consider Figure 1 below, showing two tasks A and B where A has higher priority but
shares a resource with B.

Figure 1: Shared Resources and Source Masking
  ┌────────────────────────────────────────────────────────────────┐ 
  │                                                                │ 
  │                                                                │ 
3 │                   Pending    Preempts                          │ 
2 │             ↑- - -A- - - - -↓A─────────►                       │ 
1 │          B───────────────────► - - - - B────────►              │ 
0 │Idle┌─────►                             Resumes  ┌────────►     │ 

https://github.com/rtic-rs/rtic/blob/master/src/export.rs


  ├────┴────────────────────────────────────────────┴──────────────┤ 
  │                                                                │ 
  └────────────────────────────────────────────────────────────────┴──► Time 
                t1    t2        t3         t4 

At time t1, task B locks the shared resource by selectively disabling (using the NVIC) all
other tasks which have a priority equal to or less than any task which shares resources with B.
In effect this creates a virtual priority ceiling, mirroring the BASEPRI  approach. Task A is one
such task that shares resources with task B. At time t2, task A is either spawned by task B or
becomes pending through an interrupt condition, but does not yet preempt task B even though
its priority is greater. This is because the NVIC is preventing it from starting due to task A being
disabled. At time t3, task B releases the lock by re-enabling the tasks in the NVIC. Because task
A was pending and has a higher priority than task B, it immediately preempts task B and is free
to use the shared resource without risk of data race conditions. At time t4, task A completes and
returns the execution context to B.

Since source masking relies on use of the NVIC, core exception sources such as HardFault,
SVCall, PendSV, and SysTick cannot share data with other tasks.



RISC-V Devices
All the current RISC-V backends work in a similar way as Cortex-M devices with priority

ceiling. Therefore, the Resources page of this book is a good reference. However, some of these
backends are not full hardware implementations, but use software to emulate a physical
interrupt controller. Therefore, these backends do not implement hardware tasks, and only
software tasks are needed. Furthermore, the number of software tasks for these targets is not
bounded by the number of available physical interrupt sources.

Table 2 below compares the available RISC-V backends.

Table 2: Critical Section Implementation by Processor Architecture

Backend Compatible
targets

Backend-
specific

configuration

Hardware
Tasks

Software
Tasks

Number
of tasks
bounded
by HW

riscv-

esp32c3

-

backend

ESP32-C3
only

✓ ✓ ✓

riscv-

mecall-

backend

Any RISC-
V device

✓

riscv-

clint-

backend

Devices
with CLINT
peripheral

✓ ✓

riscv-mecall-backend
It is not necessary to provide a list of dispatchers in the #[app]  attribute, as RTIC will

generate them at compile time. Priority levels can go from 0 (for the idle  task) to 255.

riscv-clint-backend
It is not necessary to provide a list of dispatchers  in the #[app]  attribute, as RTIC will

generate them at compile time. Priority levels can go from 0 (for the idle  task) to 255.
You must include a backend -specific configuration in the #[app]  attribute so RTIC knows

the ID number used to identify the HART running your application. For example, for e310x
chips, you would configure a minimal application as follows:
#[rtic::app(device = e310x, backend = H0)] 
mod app { 
  // your application here 
} 



In this way, RTIC will always refer to HART H0 .
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