
Introduction
This book is the primary reference for the Rust programming language.

[!NOTE] For known bugs and omissions in this book, see our
GitHub issues. If you see a case where the compiler behavior and the
text here do not agree, file an issue so we can think about which is
correct.

https://github.com/rust-lang/reference/issues

Rust releases
Rust has a new language release every six weeks. The first stable release

of the language was Rust 1.0.0, followed by Rust 1.1.0 and so on. Tools
(rustc , cargo , etc.) and documentation (Standard library, this book, etc.)
are released with the language release.

The latest release of this book, matching the latest Rust version, can
always be found at https://doc.rust-lang.org/reference/. Prior versions can
be found by adding the Rust version before the "reference" directory. For
example, the Reference for Rust 1.49.0 is located at https://doc.rust-
lang.org/1.49.0/reference/.

clbr://internal.invalid/book/OEBPS/std
https://doc.rust-lang.org/reference/
https://doc.rust-lang.org/1.49.0/reference/

What The Reference is not
This book does not serve as an introduction to the language. Background

familiarity with the language is assumed. A separate book is available to
help acquire such background familiarity.

This book also does not serve as a reference to the standard library
included in the language distribution. Those libraries are documented
separately by extracting documentation attributes from their source code.
Many of the features that one might expect to be language features are
library features in Rust, so what you're looking for may be there, not here.

Similarly, this book does not usually document the specifics of rustc as
a tool or of Cargo. rustc has its own book. Cargo has a book that contains
a reference. There are a few pages such as linkage that still describe how
rustc works.

This book also only serves as a reference to what is available in stable
Rust. For unstable features being worked on, see the Unstable Book.

Rust compilers, including rustc , will perform optimizations. The
reference does not specify what optimizations are allowed or disallowed.
Instead, think of the compiled program as a black box. You can only probe
by running it, feeding it input and observing its output. Everything that
happens that way must conform to what the reference says.

clbr://internal.invalid/book/book/index.html
clbr://internal.invalid/book/OEBPS/std
clbr://internal.invalid/book/rustc/index.html
clbr://internal.invalid/book/cargo/index.html
clbr://internal.invalid/book/cargo/reference/index.html
https://doc.rust-lang.org/nightly/unstable-book/

How to use this book
This book does not assume you are reading this book sequentially. Each

chapter generally can be read standalone, but will cross-link to other
chapters for facets of the language they refer to, but do not discuss.

There are two main ways to read this document.
The first is to answer a specific question. If you know which chapter

answers that question, you can jump to that chapter in the table of contents.
Otherwise, you can press s or click the magnifying glass on the top bar to
search for keywords related to your question. For example, say you wanted
to know when a temporary value created in a let statement is dropped. If
you didn't already know that the lifetime of temporaries is defined in the
expressions chapter, you could search "temporary let" and the first search
result will take you to that section.

The second is to generally improve your knowledge of a facet of the
language. In that case, just browse the table of contents until you see
something you want to know more about, and just start reading. If a link
looks interesting, click it, and read about that section.

That said, there is no wrong way to read this book. Read it however you
feel helps you best.

Conventions
Like all technical books, this book has certain conventions in how it

displays information. These conventions are documented here.

Statements that define a term contain that term in italics. Whenever
that term is used outside of that chapter, it is usually a link to the
section that has this definition.

An example term is an example of a term being defined.
The main text describes the latest stable edition. Differences to

previous editions are separated in edition blocks:

[!EDITION-2018] Before the 2018 edition, the behavior was
this. As of the 2018 edition, the behavior is that.

Notes that contain useful information about the state of the book or
point out useful, but mostly out of scope, information are in note
blocks.

[!NOTE] This is an example note.

Example blocks show an example that demonstrates some rule or
points out some interesting aspect. Some examples may have hidden
lines which can be viewed by clicking the eye icon that appears when
hovering or tapping the example.

[!EXAMPLE] This is a code example.
println!("hello world");

Warnings that show unsound behavior in the language or possibly
confusing interactions of language features are in a special warning
box.

[!WARNING] This is an example warning.

Code snippets inline in the text are inside <code> tags.
Longer code examples are in a syntax highlighted box that has

controls for copying, executing, and showing hidden lines in the top
right corner.
// This is a hidden line.
fn main() {
 println!("This is a code example");
}

All examples are written for the latest edition unless otherwise
stated.

The grammar and lexical productions are described in the Notation
chapter.

r[example.rule.label]

Rule identifiers appear before each language rule enclosed in
square brackets. These identifiers provide a way to refer to and link to
a specific rule in the language (e.g.). The rule identifier uses periods to
separate sections from most general to most specific

clbr://internal.invalid/book/OEBPS/notation.md
clbr://internal.invalid/book/OEBPS/example.rule.label

([destructors.scope.nesting.function-body] for example). On narrow
screens, the rule name will collapse to display [*] .

The rule name can be clicked to link to that rule.

[!WARNING] The organization of the rules is currently in
flux. For the time being, these identifier names are not stable
between releases, and links to these rules may fail if they are
changed. We intend to stabilize these once the organization has
settled so that links to the rule names will not break between
releases.

Rules that have associated tests will include a Tests link below
them (on narrow screens, the link is [T]). Clicking the link will pop
up a list of tests, which can be clicked to view the test. For example,
see [input.encoding.utf8].

Linking rules to tests is an ongoing effort. See the Test summary
chapter for an overview.

clbr://internal.invalid/book/OEBPS/test-summary.md

Contributing
We welcome contributions of all kinds.
You can contribute to this book by opening an issue or sending a pull

request to the Rust Reference repository. If this book does not answer your
question, and you think its answer is in scope of it, please do not hesitate to
file an issue or ask about it in the t-lang/doc stream on Zulip. Knowing
what people use this book for the most helps direct our attention to making
those sections the best that they can be. And of course, if you see anything
that is wrong or is non-normative but not specifically called out as such,
please also file an issue.

https://github.com/rust-lang/reference/
https://github.com/rust-lang/reference/issues
https://rust-lang.zulipchat.com/#narrow/stream/237824-t-lang.2Fdoc
https://github.com/rust-lang/reference/issues

Notation

Grammar
The following notations are used by the Lexer and Syntax grammar

snippets:

Notation Examples Meaning
CAPITAL KW_IF, INTEGER_LITERAL A token

produced by
the lexer

ItalicCamelCase LetStatement, Item A
syntactical
production

string x , while , * The exact
character(s)

x? pub ? An optional
item

x* OuterAttribute* 0 or more of
x

x+ MacroMatch+ 1 or more of
x

xa..b HEX_DIGIT1..6 a to b
repetitions
of x

Rule1 Rule2 fn Name Parameters Sequence of
rules in
order

| u8 | u16 , Block | Item Either one
or another

[] [b B] Any of the
characters
listed

Notation Examples Meaning

[-] [a - z] Any of the
characters in
the range

~[] ~[b B] Any
characters,
except those
listed

~ string ~ \n , ~ */ Any
characters,
except this
sequence

() (, Parameter)? Groups
items

U+xxxx U+0060 A single
unicode
character

<text> <any ASCII char except CR> An English
description
of what
should be
matched

Rule suffix IDENTIFIER_OR_KEYWORD
except crate

A
modification
to the
previous
rule

Sequences have a higher precedence than | alternation.

String table productions
Some rules in the grammar — notably unary operators, binary operators,

and keywords — are given in a simplified form: as a listing of printable
strings. These cases form a subset of the rules regarding the token rule, and
are assumed to be the result of a lexical-analysis phase feeding the parser,
driven by a DFA, operating over the disjunction of all such string table
entries.

When such a string in monospace font occurs inside the grammar, it is an
implicit reference to a single member of such a string table production. See
tokens for more information.

clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#borrow-operators
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#arithmetic-and-logical-binary-operators
clbr://internal.invalid/book/OEBPS/keywords.md
clbr://internal.invalid/book/OEBPS/tokens.md
clbr://internal.invalid/book/OEBPS/tokens.md

Grammar visualizations
Below each grammar block is a button to toggle the display of a syntax

diagram. A square element is a non-terminal rule, and a rounded rectangle is
a terminal.

https://en.wikipedia.org/wiki/Syntax_diagram

Common productions
The following are common definitions used in the grammar.
r[input.syntax]

@root CHAR -> <a Unicode scalar value>

NUL -> U+0000

TAB -> U+0009

LF -> U+000A

CR -> U+000D

Lexical structure

r[input]

Input format
r[input.intro] This chapter describes how a source file is interpreted as a

sequence of tokens.
See Crates and source files for a description of how programs are

organised into files.
r[input.encoding]

clbr://internal.invalid/book/OEBPS/crates-and-source-files.md

Source encoding
r[input.encoding.utf8] Each source file is interpreted as a sequence of

Unicode characters encoded in UTF-8.
r[input.encoding.invalid] It is an error if the file is not valid UTF-8.
r[input.byte-order-mark]

Byte order mark removal
If the first character in the sequence is U+FEFF (BYTE ORDER

MARK), it is removed.
r[input.crlf]

https://en.wikipedia.org/wiki/Byte_order_mark#UTF-8

CRLF normalization
Each pair of characters U+000D (CR) immediately followed by U+000A

(LF) is replaced by a single U+000A (LF).
Other occurrences of the character U+000D (CR) are left in place (they

are treated as whitespace).
r[input.shebang]

clbr://internal.invalid/book/OEBPS/whitespace.md

Shebang removal
r[input.shebang.intro] If the remaining sequence begins with the

characters #! , the characters up to and including the first U+000A (LF) are
removed from the sequence.

For example, the first line of the following file would be ignored:
#!/usr/bin/env rustx

fn main() {
 println!("Hello!");
}

r[input.shebang.inner-attribute] As an exception, if the #! characters are
followed (ignoring intervening comments or whitespace) by a [token,
nothing is removed. This prevents an inner attribute at the start of a source
file being removed.

[!NOTE] The standard library [include!] macro applies byte order
mark removal, CRLF normalization, and shebang removal to the file it
reads. The [include_str!] and [include_bytes!] macros do not.

r[input.tokenization]

clbr://internal.invalid/book/OEBPS/comments.md
clbr://internal.invalid/book/OEBPS/whitespace.md
clbr://internal.invalid/book/OEBPS/attributes.md

Tokenization
The resulting sequence of characters is then converted into tokens as

described in the remainder of this chapter.

r[lex.keywords]

Keywords
Rust divides keywords into three categories:

strict
reserved
weak

r[lex.keywords.strict]

Strict keywords
r[lex.keywords.strict.intro] These keywords can only be used in their

correct contexts. They cannot be used as the names of:

Items
Variables and function parameters
Fields and variants
Type parameters
Lifetime parameters or loop labels
Macros or attributes
Macro placeholders
Crates

r[lex.keywords.strict.list] The following keywords are in all editions:

as

break

const

continue

crate

else

enum

extern

false

fn

for

if

impl

in

let

loop

match

mod

clbr://internal.invalid/book/OEBPS/items.md
clbr://internal.invalid/book/OEBPS/variables.md
clbr://internal.invalid/book/OEBPS/items/enumerations.md
clbr://internal.invalid/book/OEBPS/types/parameters.md
clbr://internal.invalid/book/OEBPS/expressions/loop-expr.md#loop-labels
clbr://internal.invalid/book/OEBPS/macros.md
clbr://internal.invalid/book/OEBPS/attributes.md
clbr://internal.invalid/book/OEBPS/macros-by-example.md
clbr://internal.invalid/book/OEBPS/crates-and-source-files.md

move

mut

pub

ref

return

self

Self

static

struct

super

trait

true

type

unsafe

use

where

while

r[lex.keywords.strict.edition2018] The following keywords were added
beginning in the 2018 edition.

async

await

dyn

r[lex.keywords.reserved]

Reserved keywords
r[lex.keywords.reserved.intro] These keywords aren't used yet, but they

are reserved for future use. They have the same restrictions as strict
keywords. The reasoning behind this is to make current programs forward
compatible with future versions of Rust by forbidding them to use these
keywords.

r[lex.keywords.reserved.list]

abstract

become

box

do

final

macro

override

priv

typeof

unsized

virtual

yield

r[lex.keywords.reserved.edition2018] The following keywords are
reserved beginning in the 2018 edition.

try

r[lex.keywords.reserved.edition2024] The following keywords are
reserved beginning in the 2024 edition.

gen

r[lex.keywords.weak]

Weak keywords
r[lex.keywords.weak.intro] These keywords have special meaning only

in certain contexts. For example, it is possible to declare a variable or
method with the name union .

'static

macro_rules

raw

safe

union

r[lex.keywords.weak.macro_rules]

macro_rules is used to create custom macros.
r[lex.keywords.weak.union]

union is used to declare a union and is only a keyword when used in a
union declaration.

r[lex.keywords.weak.lifetime-static]

'static is used for the static lifetime and cannot be used as a
generic lifetime parameter or loop label
// error[E0262]: invalid lifetime parameter name: `'static`
fn invalid_lifetime_parameter<'static>(s: &'static str) ->
&'static str { s }

r[lex.keywords.weak.safe]

safe is used for functions and statics, which has meaning in external
blocks.

r[lex.keywords.weak.raw]

raw is used for raw borrow operators, and is only a keyword when
matching a raw borrow operator form (such as &raw const expr or
&raw mut expr).

clbr://internal.invalid/book/OEBPS/macros.md
clbr://internal.invalid/book/OEBPS/items/unions.md
clbr://internal.invalid/book/OEBPS/items/generics.md
clbr://internal.invalid/book/OEBPS/expressions/loop-expr.md#loop-labels
clbr://internal.invalid/book/OEBPS/items/external-blocks.md
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#raw-borrow-operators

r[lex.keywords.weak.dyn.edition2018]

[!EDITION-2018] In the 2015 edition, dyn is a keyword when
used in a type position followed by a path that does not start with ::
or < , a lifetime, a question mark, a for keyword or an opening
parenthesis.

Beginning in the 2018 edition, dyn has been promoted to a strict
keyword.

clbr://internal.invalid/book/OEBPS/types/trait-object.md

r[ident]

Identifiers
r[ident.syntax]

IDENTIFIER_OR_KEYWORD ->
 XID_Start XID_Continue*
 | `_` XID_Continue+

XID_Start -> <`XID_Start` defined by Unicode>

XID_Continue -> <`XID_Continue` defined by Unicode>

RAW_IDENTIFIER -> `r#` IDENTIFIER_OR_KEYWORD _except `crate`,
`self`, `super`, `Self`_

NON_KEYWORD_IDENTIFIER -> IDENTIFIER_OR_KEYWORD _except a
[strict][lex.keywords.strict] or [reserved]
[lex.keywords.reserved] keyword_

IDENTIFIER -> NON_KEYWORD_IDENTIFIER | RAW_IDENTIFIER

RESERVED_RAW_IDENTIFIER -> `r#_`

r[ident.unicode] Identifiers follow the specification in Unicode Standard
Annex #31 for Unicode version 16.0, with the additions described below.
Some examples of identifiers:

foo

_identifier

r#true

Москва

��

r[ident.profile] The profile used from UAX #31 is:

Start := XID_Start , plus the underscore character (U+005F)

https://www.unicode.org/reports/tr31/tr31-41.html
http://unicode.org/cldr/utility/list-unicodeset.jsp?a=%5B%3AXID_Start%3A%5D&abb=on&g=&i=

Continue := XID_Continue
Medial := empty

with the additional constraint that a single underscore character is not an
identifier.

[!NOTE] Identifiers starting with an underscore are typically used
to indicate an identifier that is intentionally unused, and will silence
the unused warning in rustc .

r[ident.keyword] Identifiers may not be a strict or reserved keyword
without the r# prefix described below in raw identifiers.

r[ident.zero-width-chars] Zero width non-joiner (ZWNJ U+200C) and
zero width joiner (ZWJ U+200D) characters are not allowed in identifiers.

r[ident.ascii-limitations] Identifiers are restricted to the ASCII subset of
XID_Start and XID_Continue in the following situations:

extern crate declarations (except the [AsClause] identifier)
External crate names referenced in a path
Module names loaded from the filesystem without a path attribute
no_mangle attributed items
Item names in external blocks

r[ident.normalization]

http://unicode.org/cldr/utility/list-unicodeset.jsp?a=%5B%3AXID_Continue%3A%5D&abb=on&g=&i=
clbr://internal.invalid/book/OEBPS/keywords.md#strict-keywords
clbr://internal.invalid/book/OEBPS/keywords.md#reserved-keywords
http://unicode.org/cldr/utility/list-unicodeset.jsp?a=%5B%3AXID_Start%3A%5D&abb=on&g=&i=
http://unicode.org/cldr/utility/list-unicodeset.jsp?a=%5B%3AXID_Continue%3A%5D&abb=on&g=&i=
clbr://internal.invalid/book/OEBPS/items/extern-crates.md
clbr://internal.invalid/book/OEBPS/paths.md
clbr://internal.invalid/book/OEBPS/items/modules.md
clbr://internal.invalid/book/OEBPS/items/modules.md#the-path-attribute
clbr://internal.invalid/book/OEBPS/abi.md#the-no_mangle-attribute
clbr://internal.invalid/book/OEBPS/items/external-blocks.md

Normalization
Identifiers are normalized using Normalization Form C (NFC) as

defined in Unicode Standard Annex #15. Two identifiers are equal if their
NFC forms are equal.

Procedural and declarative macros receive normalized identifiers in their
input.

r[ident.raw]

https://www.unicode.org/reports/tr15/tr15-56.html
clbr://internal.invalid/book/OEBPS/procedural-macros.md
clbr://internal.invalid/book/OEBPS/macros-by-example.md

Raw identifiers
r[ident.raw.intro] A raw identifier is like a normal identifier, but prefixed

by r# . (Note that the r# prefix is not included as part of the actual
identifier.)

r[ident.raw.allowed] Unlike a normal identifier, a raw identifier may be
any strict or reserved keyword except the ones listed above for
RAW_IDENTIFIER .

r[ident.raw.reserved] It is an error to use the
[RESERVED_RAW_IDENTIFIER] token r#_ in order to avoid confusion
with the [WildcardPattern].

r[comments]

Comments
r[comments.syntax]

@root LINE_COMMENT ->
 `//` (~[`/` `!` LF] | `//`) ~LF*
 | `//`

BLOCK_COMMENT ->
 `/*`
 (~[`*` `!`] | `**` | BlockCommentOrDoc)
 (BlockCommentOrDoc | ~`*/`)*
 `*/`
 | `/**/`
 | `/***/`

@root INNER_LINE_DOC ->
 `//!` ~[LF CR]*

INNER_BLOCK_DOC ->
 `/*!` (BlockCommentOrDoc | ~[`*/` CR])* `*/`

@root OUTER_LINE_DOC ->
 `///` (~`/` ~[LF CR]*)?

OUTER_BLOCK_DOC ->
 `/**`
 (~`*` | BlockCommentOrDoc)
 (BlockCommentOrDoc | ~[`*/` CR])*
 `*/`

@root BlockCommentOrDoc ->
 BLOCK_COMMENT
 | OUTER_BLOCK_DOC
 | INNER_BLOCK_DOC

r[comments.normal]

Non-doc comments
Comments follow the general C++ style of line (//) and block (/* ...

*/) comment forms. Nested block comments are supported.
r[comments.normal.tokenization] Non-doc comments are interpreted as

a form of whitespace.
r[comments.doc]

Doc comments
r[comments.doc.syntax] Line doc comments beginning with exactly

three slashes (///), and block doc comments (/** ... */), both outer
doc comments, are interpreted as a special syntax for doc attributes.

r[comments.doc.attributes] That is, they are equivalent to writing #

[doc="..."] around the body of the comment, i.e., /// Foo turns into #
[doc="Foo"] and /** Bar */ turns into #[doc="Bar"] . They must
therefore appear before something that accepts an outer attribute.

r[comments.doc.inner-syntax] Line comments beginning with //! and
block comments /*! ... */ are doc comments that apply to the parent of
the comment, rather than the item that follows.

r[comments.doc.inner-attributes] That is, they are equivalent to writing
#![doc="..."] around the body of the comment. //! comments are
usually used to document modules that occupy a source file.

r[comments.doc.bare-crs] The character U+000D (CR) is not allowed in
doc comments.

[!NOTE] It is conventional for doc comments to contain
Markdown, as expected by rustdoc . However, the comment syntax
does not respect any internal Markdown. /** `glob = "*/*.rs";`
*/ terminates the comment at the first */ , and the remaining code
would cause a syntax error. This slightly limits the content of block
doc comments compared to line doc comments.

[!NOTE] The sequence U+000D (CR) immediately followed by
U+000A (LF) would have been previously transformed into a single
U+000A (LF).

clbr://internal.invalid/book/rustdoc/the-doc-attribute.html

Examples
//! A doc comment that applies to the implicit anonymous
module of this crate

pub mod outer_module {

 //! - Inner line doc
 //!! - Still an inner line doc (but with a bang at the
beginning)

 /*! - Inner block doc */
 /*!! - Still an inner block doc (but with a bang at the
beginning) */

 // - Only a comment
 /// - Outer line doc (exactly 3 slashes)
 //// - Only a comment

 /* - Only a comment */
 /** - Outer block doc (exactly) 2 asterisks */
 /*** - Only a comment */

 pub mod inner_module {}

 pub mod nested_comments {
 /* In Rust /* we can /* nest comments */ */ */

 // All three types of block comments can contain or be
nested inside
 // any other type:

 /* /* */ /** */ /*! */ */
 /*! /* */ /** */ /*! */ */
 /** /* */ /** */ /*! */ */

 pub mod dummy_item {}
 }

 pub mod degenerate_cases {
 // empty inner line doc
 //!

 // empty inner block doc
 /*!*/

 // empty line comment
 //

 // empty outer line doc
 ///

 // empty block comment
 /**/

 pub mod dummy_item {}

 // empty 2-asterisk block isn't a doc block, it is a
block comment
 /***/

 }

 /* The next one isn't allowed because outer doc comments
 require an item that will receive the doc */

 /// Where is my item?
mod boo {}
}

r[lex.whitespace]

Whitespace
r[lex.whitespace.intro] Whitespace is any non-empty string containing

only characters that have the Pattern_White_Space Unicode property,
namely:

U+0009 (horizontal tab, '\t')
U+000A (line feed, '\n')
U+000B (vertical tab)
U+000C (form feed)
U+000D (carriage return, '\r')
U+0020 (space, ' ')
U+0085 (next line)
U+200E (left-to-right mark)
U+200F (right-to-left mark)
U+2028 (line separator)
U+2029 (paragraph separator)

r[lex.whitespace.token-sep] Rust is a "free-form" language, meaning that
all forms of whitespace serve only to separate tokens in the grammar, and
have no semantic significance.

r[lex.whitespace.replacement] A Rust program has identical meaning if
each whitespace element is replaced with any other legal whitespace
element, such as a single space character.

https://www.unicode.org/reports/tr31/

r[lex.token]

Tokens
r[lex.token.syntax]

Token ->
 IDENTIFIER_OR_KEYWORD
 | RAW_IDENTIFIER
 | CHAR_LITERAL
 | STRING_LITERAL
 | RAW_STRING_LITERAL
 | BYTE_LITERAL
 | BYTE_STRING_LITERAL
 | RAW_BYTE_STRING_LITERAL
 | C_STRING_LITERAL
 | RAW_C_STRING_LITERAL
 | INTEGER_LITERAL
 | FLOAT_LITERAL
 | LIFETIME_TOKEN
 | PUNCTUATION
 | RESERVED_TOKEN

r[lex.token.intro] Tokens are primitive productions in the grammar
defined by regular (non-recursive) languages. Rust source input can be
broken down into the following kinds of tokens:

Keywords
Identifiers
Literals
Lifetimes
Punctuation
Delimiters

Within this documentation's grammar, "simple" tokens are given in
string table production form, and appear in monospace font.

r[lex.token.literal]

clbr://internal.invalid/book/OEBPS/keywords.md
clbr://internal.invalid/book/OEBPS/identifiers.md
clbr://internal.invalid/book/OEBPS/notation.md#string-table-productions

Literals
Literals are tokens used in literal expressions.

Examples
Characters and strings

Example # set
s1

Characters Escapes

Character 'H' 0 All
Unicode

Quote &
ASCII &
Unicode

String "hello

"

0 All
Unicode

Quote &
ASCII &
Unicode

Raw
string

r#"hel

lo"#

<256 All
Unicode

N/A

Byte b'H' 0 All ASCII Quote &
Byte

Byte
string

b"hell

o"

0 All ASCII Quote &
Byte

Raw byte
string

br#"he

llo"#

<256 All ASCII N/A

C string c"hell

o"

0 All
Unicode

Quote &
Byte &
Unicode

Raw C
string

cr#"he

llo"#

<256 All
Unicode

N/A

1

The number of # s on each side of the same literal must be equivalent.

clbr://internal.invalid/book/OEBPS/expressions/literal-expr.md

[!NOTE] Character and string literal tokens never include the
sequence of U+000D (CR) immediately followed by U+000A (LF): this
pair would have been previously transformed into a single U+000A
(LF).

ASCII escapes

Name
\x41 7-bit character code (exactly 2 digits, up to 0x7F)

\n Newline

\r Carriage return

\t Tab

\\ Backslash

\0 Null

Byte escapes

Name
\x7F 8-bit character code (exactly 2 digits)

\n Newline

\r Carriage return

\t Tab

\\ Backslash

\0 Null

Unicode escapes

Name
\u{7FFF} 24-bit Unicode character code (up to 6 digits)

Quote escapes

Name
\' Single quote

\" Double quote

Numbers

Number literals2 Example Exponentiation
Decimal integer 98_222 N/A

Hex integer 0xff N/A

Octal integer 0o77 N/A

Binary integer 0b1111_0000 N/A

Floating-point 123.0E+77 Optional

2

All number literals allow _ as a visual separator: 1_234.0E+18f64
r[lex.token.literal.suffix]

Suffixes
r[lex.token.literal.literal.suffix.intro] A suffix is a sequence of characters

following the primary part of a literal (without intervening whitespace), of
the same form as a non-raw identifier or keyword.

r[lex.token.literal.suffix.syntax]
SUFFIX -> IDENTIFIER_OR_KEYWORD

SUFFIX_NO_E -> SUFFIX _not beginning with `e` or `E`_

r[lex.token.literal.suffix.validity] Any kind of literal (string, integer, etc)
with any suffix is valid as a token.

A literal token with any suffix can be passed to a macro without
producing an error. The macro itself will decide how to interpret such a

token and whether to produce an error or not. In particular, the literal
fragment specifier for by-example macros matches literal tokens with
arbitrary suffixes.
macro_rules! blackhole { ($tt:tt) => () }
macro_rules! blackhole_lit { ($l:literal) => () }

blackhole!("string"suffix); // OK
blackhole_lit!(1suffix); // OK

r[lex.token.literal.suffix.parse] However, suffixes on literal tokens which
are interpreted as literal expressions or patterns are restricted. Any suffixes
are rejected on non-numeric literal tokens, and numeric literal tokens are
accepted only with suffixes from the list below.

Integer Floating-
point

u8 , i8 , u16 , i16 , u32 , i32 , u64 , i64 , u128 ,
i128 , usize , isize

f32 , f64

Character and string literals
r[lex.token.literal.char]

Character literals
r[lex.token.literal.char.syntax]

CHAR_LITERAL ->
 `'`
 (~[`'` `\` LF CR TAB] | QUOTE_ESCAPE | ASCII_ESCAPE |
UNICODE_ESCAPE)
 `'` SUFFIX?

QUOTE_ESCAPE -> `\'` | `\"`

ASCII_ESCAPE ->
 `\x` OCT_DIGIT HEX_DIGIT
 | `\n` | `\r` | `\t` | `\\` | `\0`

UNICODE_ESCAPE ->
 `\u{` (HEX_DIGIT `_`*){1..6} `}`

r[lex.token.literal.char.intro] A character literal is a single Unicode
character enclosed within two U+0027 (single-quote) characters, with the
exception of U+0027 itself, which must be escaped by a preceding U+005C
character (\).

r[lex.token.literal.str]

String literals
r[lex.token.literal.str.syntax]

STRING_LITERAL ->
 `"` (
 ~[`"` `\` CR]
 | QUOTE_ESCAPE
 | ASCII_ESCAPE
 | UNICODE_ESCAPE
 | STRING_CONTINUE
)* `"` SUFFIX?

STRING_CONTINUE -> `\` LF

r[lex.token.literal.str.intro] A string literal is a sequence of any Unicode
characters enclosed within two U+0022 (double-quote) characters, with the
exception of U+0022 itself, which must be escaped by a preceding U+005C
character (\).

r[lex.token.literal.str.linefeed] Line-breaks, represented by the character
U+000A (LF), are allowed in string literals. When an unescaped U+005C
character (\) occurs immediately before a line break, the line break does
not appear in the string represented by the token. See String continuation
escapes for details. The character U+000D (CR) may not appear in a string
literal other than as part of such a string continuation escape.

r[lex.token.literal.char-escape]

Character escapes

clbr://internal.invalid/book/OEBPS/expressions/literal-expr.md#string-continuation-escapes

r[lex.token.literal.char-escape.intro] Some additional escapes are
available in either character or non-raw string literals. An escape starts with
a U+005C (\) and continues with one of the following forms:

r[lex.token.literal.char-escape.ascii]

A 7-bit code point escape starts with U+0078 (x) and is followed by
exactly two hex digits with value up to 0x7F . It denotes the ASCII
character with value equal to the provided hex value. Higher values are
not permitted because it is ambiguous whether they mean Unicode
code points or byte values.

r[lex.token.literal.char-escape.unicode]

A 24-bit code point escape starts with U+0075 (u) and is followed by
up to six hex digits surrounded by braces U+007B ({) and U+007D
(}). It denotes the Unicode code point equal to the provided hex value.

r[lex.token.literal.char-escape.whitespace]

A whitespace escape is one of the characters U+006E (n), U+0072
(r), or U+0074 (t), denoting the Unicode values U+000A (LF),
U+000D (CR) or U+0009 (HT) respectively.

r[lex.token.literal.char-escape.null]

The null escape is the character U+0030 (0) and denotes the Unicode
value U+0000 (NUL).

r[lex.token.literal.char-escape.slash]

The backslash escape is the character U+005C (\) which must be
escaped in order to denote itself.

r[lex.token.literal.str-raw]

Raw string literals
r[lex.token.literal.str-raw.syntax]

RAW_STRING_LITERAL -> `r` RAW_STRING_CONTENT SUFFIX?

RAW_STRING_CONTENT ->
 `"` (~CR)*? `"`
 | `#` RAW_STRING_CONTENT `#`

r[lex.token.literal.str-raw.intro] Raw string literals do not process any
escapes. They start with the character U+0072 (r), followed by fewer than
256 of the character U+0023 (#) and a U+0022 (double-quote) character.

r[lex.token.literal.str-raw.body] The raw string body can contain any
sequence of Unicode characters other than U+000D (CR). It is terminated
only by another U+0022 (double-quote) character, followed by the same
number of U+0023 (#) characters that preceded the opening U+0022

(double-quote) character.
r[lex.token.literal.str-raw.content] All Unicode characters contained in

the raw string body represent themselves, the characters U+0022 (double-
quote) (except when followed by at least as many U+0023 (#) characters as
were used to start the raw string literal) or U+005C (\) do not have any
special meaning.

Examples for string literals:
"foo"; r"foo"; // foo
"\"foo\""; r#""foo""#; // "foo"

"foo #\"# bar";
r##"foo #"# bar"##; // foo #"# bar

"\x52"; "R"; r"R"; // R
"\\x52"; r"\x52"; // \x52

Byte and byte string literals
r[lex.token.byte]

Byte literals
r[lex.token.byte.syntax]

BYTE_LITERAL ->
 `b'` (ASCII_FOR_CHAR | BYTE_ESCAPE) `'` SUFFIX?

ASCII_FOR_CHAR ->
 <any ASCII (i.e. 0x00 to 0x7F) except `'`, `\`, LF, CR, or
TAB>

BYTE_ESCAPE ->
 `\x` HEX_DIGIT HEX_DIGIT
 | `\n` | `\r` | `\t` | `\\` | `\0` | `\'` | `\"`

r[lex.token.byte.intro] A byte literal is a single ASCII character (in the
U+0000 to U+007F range) or a single escape preceded by the characters
U+0062 (b) and U+0027 (single-quote), and followed by the character
U+0027 . If the character U+0027 is present within the literal, it must be
escaped by a preceding U+005C (\) character. It is equivalent to a u8
unsigned 8-bit integer number literal.

r[lex.token.str-byte]

Byte string literals
r[lex.token.str-byte.syntax]

BYTE_STRING_LITERAL ->
 `b"` (ASCII_FOR_STRING | BYTE_ESCAPE | STRING_CONTINUE)*
`"` SUFFIX?

ASCII_FOR_STRING ->
 <any ASCII (i.e 0x00 to 0x7F) except `"`, `\`, or CR>

r[lex.token.str-byte.intro] A non-raw byte string literal is a sequence of
ASCII characters and escapes, preceded by the characters U+0062 (b) and
U+0022 (double-quote), and followed by the character U+0022 . If the
character U+0022 is present within the literal, it must be escaped by a
preceding U+005C (\) character. Alternatively, a byte string literal can be a
raw byte string literal, defined below.

r[lex.token.str-byte.linefeed] Line-breaks, represented by the character
U+000A (LF), are allowed in byte string literals. When an unescaped
U+005C character (\) occurs immediately before a line break, the line
break does not appear in the string represented by the token. See String
continuation escapes for details. The character U+000D (CR) may not

clbr://internal.invalid/book/OEBPS/expressions/literal-expr.md#string-continuation-escapes

appear in a byte string literal other than as part of such a string continuation
escape.

r[lex.token.str-byte.escape] Some additional escapes are available in
either byte or non-raw byte string literals. An escape starts with a U+005C
(\) and continues with one of the following forms:

r[lex.token.str-byte.escape-byte]

A byte escape escape starts with U+0078 (x) and is followed by
exactly two hex digits. It denotes the byte equal to the provided hex
value.

r[lex.token.str-byte.escape-whitespace]

A whitespace escape is one of the characters U+006E (n), U+0072
(r), or U+0074 (t), denoting the bytes values 0x0A (ASCII LF),
0x0D (ASCII CR) or 0x09 (ASCII HT) respectively.

r[lex.token.str-byte.escape-null]

The null escape is the character U+0030 (0) and denotes the byte
value 0x00 (ASCII NUL).

r[lex.token.str-byte.escape-slash]

The backslash escape is the character U+005C (\) which must be
escaped in order to denote its ASCII encoding 0x5C .

r[lex.token.str-byte-raw]

Raw byte string literals
r[lex.token.str-byte-raw.syntax]

RAW_BYTE_STRING_LITERAL ->
 `br` RAW_BYTE_STRING_CONTENT SUFFIX?

RAW_BYTE_STRING_CONTENT ->
 `"` ASCII_FOR_RAW*? `"`
 | `#` RAW_BYTE_STRING_CONTENT `#`

ASCII_FOR_RAW ->
 <any ASCII (i.e. 0x00 to 0x7F) except CR>

r[lex.token.str-byte-raw.intro] Raw byte string literals do not process any
escapes. They start with the character U+0062 (b), followed by U+0072
(r), followed by fewer than 256 of the character U+0023 (#), and a
U+0022 (double-quote) character.

r[lex.token.str-byte-raw.body] The raw string body can contain any
sequence of ASCII characters other than U+000D (CR). It is terminated only
by another U+0022 (double-quote) character, followed by the same number
of U+0023 (#) characters that preceded the opening U+0022 (double-quote)
character. A raw byte string literal can not contain any non-ASCII byte.

r[lex.token.literal.str-byte-raw.content] All characters contained in the
raw string body represent their ASCII encoding, the characters U+0022
(double-quote) (except when followed by at least as many U+0023 (#)
characters as were used to start the raw string literal) or U+005C (\) do not
have any special meaning.

Examples for byte string literals:
b"foo"; br"foo"; // foo
b"\"foo\""; br#""foo""#; // "foo"

b"foo #\"# bar";
br##"foo #"# bar"##; // foo #"# bar

b"\x52"; b"R"; br"R"; // R
b"\\x52"; br"\x52"; // \x52

C string and raw C string literals
r[lex.token.str-c]

C string literals
r[lex.token.str-c.syntax]

C_STRING_LITERAL ->
 `c"` (

 ~[`"` `\` CR NUL]
 | BYTE_ESCAPE _except `\0` or `\x00`_
 | UNICODE_ESCAPE _except `\u{0}`, `\u{00}`, …,
`\u{000000}`_
 | STRING_CONTINUE
)* `"` SUFFIX?

r[lex.token.str-c.intro] A C string literal is a sequence of Unicode
characters and escapes, preceded by the characters U+0063 (c) and
U+0022 (double-quote), and followed by the character U+0022 . If the
character U+0022 is present within the literal, it must be escaped by a
preceding U+005C (\) character. Alternatively, a C string literal can be a
raw C string literal, defined below.

r[lex.token.str-c.null] C strings are implicitly terminated by byte 0x00 ,
so the C string literal c"" is equivalent to manually constructing a &CStr
from the byte string literal b"\x00" . Other than the implicit terminator,
byte 0x00 is not permitted within a C string.

r[lex.token.str-c.linefeed] Line-breaks, represented by the character
U+000A (LF), are allowed in C string literals. When an unescaped U+005C
character (\) occurs immediately before a line break, the line break does
not appear in the string represented by the token. See String continuation
escapes for details. The character U+000D (CR) may not appear in a C
string literal other than as part of such a string continuation escape.

r[lex.token.str-c.escape] Some additional escapes are available in non-
raw C string literals. An escape starts with a U+005C (\) and continues
with one of the following forms:

r[lex.token.str-c.escape-byte]

A byte escape escape starts with U+0078 (x) and is followed by
exactly two hex digits. It denotes the byte equal to the provided hex
value.

r[lex.token.str-c.escape-unicode]

clbr://internal.invalid/book/OEBPS/expressions/literal-expr.md#string-continuation-escapes

A 24-bit code point escape starts with U+0075 (u) and is followed by
up to six hex digits surrounded by braces U+007B ({) and U+007D
(}). It denotes the Unicode code point equal to the provided hex value,
encoded as UTF-8.

r[lex.token.str-c.escape-whitespace]

A whitespace escape is one of the characters U+006E (n), U+0072
(r), or U+0074 (t), denoting the bytes values 0x0A (ASCII LF),
0x0D (ASCII CR) or 0x09 (ASCII HT) respectively.

r[lex.token.str-c.escape-slash]

The backslash escape is the character U+005C (\) which must be
escaped in order to denote its ASCII encoding 0x5C .

r[lex.token.str-c.char-unicode] A C string represents bytes with no
defined encoding, but a C string literal may contain Unicode characters
above U+007F . Such characters will be replaced with the bytes of that
character's UTF-8 representation.

The following C string literals are equivalent:
c"æ"; // LATIN SMALL LETTER AE (U+00E6)
c"\u{00E6}";
c"\xC3\xA6";

r[lex.token.str-c.edition2021]

[!EDITION-2021] C string literals are accepted in the 2021 edition
or later. In earlier additions the token c"" is lexed as c "" .

r[lex.token.str-c-raw]

Raw C string literals
r[lex.token.str-c-raw.syntax]

RAW_C_STRING_LITERAL ->
 `cr` RAW_C_STRING_CONTENT SUFFIX?

RAW_C_STRING_CONTENT ->

 `"` (~[CR NUL])*? `"`
 | `#` RAW_C_STRING_CONTENT `#`

r[lex.token.str-c-raw.intro] Raw C string literals do not process any
escapes. They start with the character U+0063 (c), followed by U+0072
(r), followed by fewer than 256 of the character U+0023 (#), and a
U+0022 (double-quote) character.

r[lex.token.str-c-raw.body] The raw C string body can contain any
sequence of Unicode characters other than U+0000 (NUL) and U+000D
(CR). It is terminated only by another U+0022 (double-quote) character,
followed by the same number of U+0023 (#) characters that preceded the
opening U+0022 (double-quote) character.

r[lex.token.str-c-raw.content] All characters contained in the raw C string
body represent themselves in UTF-8 encoding. The characters U+0022

(double-quote) (except when followed by at least as many U+0023 (#)
characters as were used to start the raw C string literal) or U+005C (\) do
not have any special meaning.

r[lex.token.str-c-raw.edition2021]

[!EDITION-2021] Raw C string literals are accepted in the 2021
edition or later. In earlier additions the token cr"" is lexed as cr "" ,
and cr#""# is lexed as cr #""# (which is non-grammatical).

Examples for C string and raw C string literals
c"foo"; cr"foo"; // foo
c"\"foo\""; cr#""foo""#; // "foo"

c"foo #\"# bar";
cr##"foo #"# bar"##; // foo #"# bar

c"\x52"; c"R"; cr"R"; // R
c"\\x52"; cr"\x52"; // \x52

r[lex.token.literal.num]

Number literals

A number literal is either an integer literal or a floating-point literal.
The grammar for recognizing the two kinds of literals is mixed.

r[lex.token.literal.int]

Integer literals
r[lex.token.literal.int.syntax]

INTEGER_LITERAL ->
 (DEC_LITERAL | BIN_LITERAL | OCT_LITERAL | HEX_LITERAL)
SUFFIX_NO_E?

DEC_LITERAL -> DEC_DIGIT (DEC_DIGIT|`_`)*

BIN_LITERAL -> `0b` (BIN_DIGIT|`_`)* BIN_DIGIT (BIN_DIGIT|`_`)*

OCT_LITERAL -> `0o` (OCT_DIGIT|`_`)* OCT_DIGIT (OCT_DIGIT|`_`)*

HEX_LITERAL -> `0x` (HEX_DIGIT|`_`)* HEX_DIGIT (HEX_DIGIT|`_`)*

BIN_DIGIT -> [`0`-`1`]

OCT_DIGIT -> [`0`-`7`]

DEC_DIGIT -> [`0`-`9`]

HEX_DIGIT -> [`0`-`9` `a`-`f` `A`-`F`]

r[lex.token.literal.int.kind] An integer literal has one of four forms:
r[lex.token.literal.int.kind-dec]

A decimal literal starts with a decimal digit and continues with any
mixture of decimal digits and underscores.

r[lex.token.literal.int.kind-hex]

A hex literal starts with the character sequence U+0030 U+0078 (0x)
and continues as any mixture (with at least one digit) of hex digits and
underscores.

r[lex.token.literal.int.kind-oct]

An octal literal starts with the character sequence U+0030 U+006F
(0o) and continues as any mixture (with at least one digit) of octal
digits and underscores.

r[lex.token.literal.int.kind-bin]

A binary literal starts with the character sequence U+0030 U+0062
(0b) and continues as any mixture (with at least one digit) of binary
digits and underscores.

r[lex.token.literal.int.restriction] Like any literal, an integer literal may
be followed (immediately, without any spaces) by a suffix as described
above. The suffix may not begin with e or E , as that would be interpreted
as the exponent of a floating-point literal. See Integer literal expressions for
the effect of these suffixes.

Examples of integer literals which are accepted as literal expressions:
#![allow(overflowing_literals)]
123;
123i32;
123u32;
123_u32;

0xff;
0xff_u8;
0x01_f32; // integer 7986, not floating-point 1.0
0x01_e3; // integer 483, not floating-point 1000.0

0o70;
0o70_i16;

0b1111_1111_1001_0000;
0b1111_1111_1001_0000i64;
0b________1;

clbr://internal.invalid/book/OEBPS/expressions/literal-expr.md#integer-literal-expressions

0usize;

// These are too big for their type, but are accepted as
literal expressions.
128_i8;
256_u8;

// This is an integer literal, accepted as a floating-point
literal expression.
5f32;

Note that -1i8 , for example, is analyzed as two tokens: - followed by
1i8 .

Examples of integer literals which are not accepted as literal
expressions:
#[cfg(false)] {
0invalidSuffix;
123AFB43;
0b010a;
0xAB_CD_EF_GH;
0b1111_f32;
}

r[lex.token.literal.int.tuple-field]

Tuple index
r[lex.token.literal.int.tuple-field.syntax]

TUPLE_INDEX -> INTEGER_LITERAL

r[lex.token.literal.int.tuple-field.intro] A tuple index is used to refer to
the fields of tuples, tuple structs, and tuple variants.

r[lex.token.literal.int.tuple-field.eq] Tuple indices are compared with the
literal token directly. Tuple indices start with 0 and each successive index
increments the value by 1 as a decimal value. Thus, only decimal values
will match, and the value must not have any extra 0 prefix characters.

clbr://internal.invalid/book/OEBPS/types/tuple.md
clbr://internal.invalid/book/OEBPS/items/structs.md
clbr://internal.invalid/book/OEBPS/items/enumerations.md

let example = ("dog", "cat", "horse");
let dog = example.0;
let cat = example.1;
// The following examples are invalid.
let cat = example.01; // ERROR no field named `01`
let horse = example.0b10; // ERROR no field named `0b10`

[!NOTE] Tuple indices may include certain suffixes, but this is not
intended to be valid, and may be removed in a future version. See
https://github.com/rust-lang/rust/issues/60210 for more information.

r[lex.token.literal.float]

Floating-point literals
r[lex.token.literal.float.syntax]

FLOAT_LITERAL ->
 DEC_LITERAL `.` _not immediately followed by `.`, `_` or
an XID_Start character_
 | DEC_LITERAL `.` DEC_LITERAL SUFFIX_NO_E?
 | DEC_LITERAL (`.` DEC_LITERAL)? FLOAT_EXPONENT SUFFIX?

FLOAT_EXPONENT ->
 (`e`|`E`) (`+`|`-`)? (DEC_DIGIT|`_`)* DEC_DIGIT
(DEC_DIGIT|`_`)*

r[lex.token.literal.float.form] A floating-point literal has one of two
forms:

A decimal literal followed by a period character U+002E (.). This is
optionally followed by another decimal literal, with an optional
exponent.
A single decimal literal followed by an exponent.

r[lex.token.literal.float.suffix] Like integer literals, a floating-point literal
may be followed by a suffix, so long as the pre-suffix part does not end with
U+002E (.). The suffix may not begin with e or E if the literal does not
include an exponent. See Floating-point literal expressions for the effect of
these suffixes.

https://github.com/rust-lang/rust/issues/60210
clbr://internal.invalid/book/OEBPS/expressions/literal-expr.md#floating-point-literal-expressions

Examples of floating-point literals which are accepted as literal
expressions:
123.0f64;
0.1f64;
0.1f32;
12E+99_f64;
let x: f64 = 2.;

This last example is different because it is not possible to use the suffix
syntax with a floating point literal end.token.ing in a period. 2.f64 would
attempt to call a method named f64 on 2 .

Note that -1.0 , for example, is analyzed as two tokens: - followed by
1.0 .

Examples of floating-point literals which are not accepted as literal
expressions:
#[cfg(false)] {
2.0f80;
2e5f80;
2e5e6;
2.0e5e6;
1.3e10u64;
}

r[lex.token.literal.reserved]

Reserved forms similar to number literals
r[lex.token.literal.reserved.syntax]

RESERVED_NUMBER ->
 BIN_LITERAL [`2`-`9`]
 | OCT_LITERAL [`8`-`9`]
 | (BIN_LITERAL | OCT_LITERAL | HEX_LITERAL) `.` _not
immediately followed by `.`, `_` or an XID_Start character_
 | (BIN_LITERAL | OCT_LITERAL) (`e`|`E`)
 | `0b` `_`* <end of input or not BIN_DIGIT>
 | `0o` `_`* <end of input or not OCT_DIGIT>
 | `0x` `_`* <end of input or not HEX_DIGIT>

 | DEC_LITERAL (`.` DEC_LITERAL)? (`e` | `E`) (`+` | `-`)?
<end of input or not DEC_DIGIT>

r[lex.token.literal.reserved.intro] The following lexical forms similar to
number literals are reserved forms. Due to the possible ambiguity these
raise, they are rejected by the tokenizer instead of being interpreted as
separate tokens.

r[lex.token.literal.reserved.out-of-range]

An unsuffixed binary or octal literal followed, without intervening
whitespace, by a decimal digit out of the range for its radix.

r[lex.token.literal.reserved.period]

An unsuffixed binary, octal, or hexadecimal literal followed, without
intervening whitespace, by a period character (with the same
restrictions on what follows the period as for floating-point literals).

r[lex.token.literal.reserved.exp]

An unsuffixed binary or octal literal followed, without intervening
whitespace, by the character e or E .

r[lex.token.literal.reserved.empty-with-radix]

Input which begins with one of the radix prefixes but is not a valid
binary, octal, or hexadecimal literal (because it contains no digits).

r[lex.token.literal.reserved.empty-exp]

Input which has the form of a floating-point literal with no digits in the
exponent.

Examples of reserved forms:
0b0102; // this is not `0b010` followed by `2`
0o1279; // this is not `0o127` followed by `9`
0x80.0; // this is not `0x80` followed by `.` and `0`
0b101e; // this is not a suffixed literal, or `0b101` followed
by `e`
0b; // this is not an integer literal, or `0` followed by

`b`
0b_; // this is not an integer literal, or `0` followed by
`b_`
2e; // this is not a floating-point literal, or `2`
followed by `e`
2.0e; // this is not a floating-point literal, or `2.0`
followed by `e`
2em; // this is not a suffixed literal, or `2` followed by
`em`
2.0em; // this is not a suffixed literal, or `2.0` followed
by `em`

r[lex.token.life]

Lifetimes and loop labels
r[lex.token.life.syntax]

LIFETIME_TOKEN ->
 `'` IDENTIFIER_OR_KEYWORD _not immediately followed by
`'`_
 | `'_` _not immediately followed by `'`_
 | RAW_LIFETIME

LIFETIME_OR_LABEL ->
 `'` NON_KEYWORD_IDENTIFIER _not immediately followed by
`'`_
 | RAW_LIFETIME

RAW_LIFETIME ->
 `'r#` IDENTIFIER_OR_KEYWORD _except `crate`, `self`,
`super`, `Self` and not immediately followed by `'`_

RESERVED_RAW_LIFETIME -> `'r#_` _not immediately followed by
`'`_

r[lex.token.life.intro] Lifetime parameters and loop labels use
LIFETIME_OR_LABEL tokens. Any LIFETIME_TOKEN will be
accepted by the lexer, and for example, can be used in macros.

r[lex.token.life.raw.intro] A raw lifetime is like a normal lifetime, but its
identifier is prefixed by r# . (Note that the r# prefix is not included as part
of the actual lifetime.)

r[lex.token.life.raw.allowed] Unlike a normal lifetime, a raw lifetime
may be any strict or reserved keyword except the ones listed above for
RAW_LIFETIME .

r[lex.token.life.raw.reserved] It is an error to use the
RESERVED_RAW_LIFETIME token 'r#_ in order to avoid confusion
with the placeholder lifetime.

r[lex.token.life.raw.edition2021]

clbr://internal.invalid/book/OEBPS/expressions/loop-expr.md
clbr://internal.invalid/book/OEBPS/lifetime-elision.md

[!EDITION-2021] Raw lifetimes are accepted in the 2021 edition
or later. In earlier additions the token 'r#lt is lexed as 'r # lt .

r[lex.token.punct]

Punctuation
r[lex.token.punct.syntax]

PUNCTUATION ->
 `=`
 | `<`
 | `<=`
 | `==`
 | `!=`
 | `>=`
 | `>`
 | `&&`
 | `||`
 | `!`
 | `~`
 | `+`
 | `-`
 | `*`
 | `/`
 | `%`
 | `^`
 | `&`
 | `|`
 | `<<`
 | `>>`
 | `+=`
 | `-=`
 | `*=`
 | `/=`
 | `%=`
 | `^=`
 | `&=`
 | `|=`
 | `<<=`
 | `>>=`

 | `@`
 | `.`
 | `..`
 | `...`
 | `..=`
 | `,`
 | `;`
 | `:`
 | `::`
 | `->`
 | `<-`
 | `=>`
 | `#`
 | `$`
 | `?`
 | `_`
 | `{`
 | `}`
 | `[`
 | `]`
 | `(`
 | `)`

r[lex.token.punct.intro] Punctuation symbol tokens are listed here for
completeness. Their individual usages and meanings are defined in the
linked pages.

Symbol Name Usage
+ Plus Addition, Trait Bounds, Macro Kleene

Matcher
- Minus Subtraction, Negation

* Star Multiplication, Dereference, Raw
Pointers, Macro Kleene Matcher, Use
wildcards

/ Slash Division

clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#arithmetic-and-logical-binary-operators
clbr://internal.invalid/book/OEBPS/trait-bounds.md
clbr://internal.invalid/book/OEBPS/macros-by-example.md
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#arithmetic-and-logical-binary-operators
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#negation-operators
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#arithmetic-and-logical-binary-operators
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#the-dereference-operator
clbr://internal.invalid/book/OEBPS/types/pointer.md#raw-pointers-const-and-mut
clbr://internal.invalid/book/OEBPS/macros-by-example.md
clbr://internal.invalid/book/OEBPS/items/use-declarations.md
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#arithmetic-and-logical-binary-operators

Symbol Name Usage
% Percent Remainder

^ Caret Bitwise and Logical XOR

! Not Bitwise and Logical NOT, Macro Calls,
Inner Attributes, Never Type, Negative
impls

& And Bitwise and Logical AND, Borrow,
References, Reference patterns

| Or Bitwise and Logical OR, Closures,
Patterns in match, if let, and while let

&& AndAnd Lazy AND, Borrow, References,
Reference patterns

|| OrOr Lazy OR, Closures

<< Shl Shift Left, Nested Generics

>> Shr Shift Right, Nested Generics

+= PlusEq Addition assignment

-= MinusEq Subtraction assignment

*= StarEq Multiplication assignment

/= SlashEq Division assignment

%= PercentEq Remainder assignment

^= CaretEq Bitwise XOR assignment

&= AndEq Bitwise And assignment

|= OrEq Bitwise Or assignment

<<= ShlEq Shift Left assignment

>>= ShrEq Shift Right assignment, Nested Generics

= Eq Assignment, Attributes, Various type
definitions

clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#arithmetic-and-logical-binary-operators
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#arithmetic-and-logical-binary-operators
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#negation-operators
clbr://internal.invalid/book/OEBPS/macros-by-example.md
clbr://internal.invalid/book/OEBPS/attributes.md
clbr://internal.invalid/book/OEBPS/types/never.md
clbr://internal.invalid/book/OEBPS/items/implementations.md
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#arithmetic-and-logical-binary-operators
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#borrow-operators
clbr://internal.invalid/book/OEBPS/types/pointer.md
clbr://internal.invalid/book/OEBPS/patterns.md#reference-patterns
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#arithmetic-and-logical-binary-operators
clbr://internal.invalid/book/OEBPS/expressions/closure-expr.md
clbr://internal.invalid/book/OEBPS/expressions/match-expr.md
clbr://internal.invalid/book/OEBPS/expressions/if-expr.md#if-let-patterns
clbr://internal.invalid/book/OEBPS/expressions/loop-expr.md#while-let-patterns
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#lazy-boolean-operators
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#borrow-operators
clbr://internal.invalid/book/OEBPS/types/pointer.md
clbr://internal.invalid/book/OEBPS/patterns.md#reference-patterns
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#lazy-boolean-operators
clbr://internal.invalid/book/OEBPS/expressions/closure-expr.md
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#arithmetic-and-logical-binary-operators
clbr://internal.invalid/book/OEBPS/items/generics.md
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#arithmetic-and-logical-binary-operators
clbr://internal.invalid/book/OEBPS/items/generics.md
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#compound-assignment-expressions
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#compound-assignment-expressions
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#compound-assignment-expressions
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#compound-assignment-expressions
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#compound-assignment-expressions
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#compound-assignment-expressions
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#compound-assignment-expressions
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#compound-assignment-expressions
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#compound-assignment-expressions
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#compound-assignment-expressions
clbr://internal.invalid/book/OEBPS/items/generics.md
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#assignment-expressions
clbr://internal.invalid/book/OEBPS/attributes.md

Symbol Name Usage
== EqEq Equal

!= Ne Not Equal

> Gt Greater than, Generics, Paths

< Lt Less than, Generics, Paths

>= Ge Greater than or equal to, Generics

<= Le Less than or equal to

@ At Subpattern binding

_ Underscore Wildcard patterns, Inferred types,
Unnamed items in constants, extern
crates, use declarations, and
destructuring assignment

. Dot Field access, Tuple index

.. DotDot Range, Struct expressions, Patterns,
Range Patterns

... DotDotDot Variadic functions, Range patterns

..= DotDotEq Inclusive Range, Range patterns

, Comma Various separators

; Semi Terminator for various items and
statements, Array types

: Colon Various separators

:: PathSep Path separator

-> RArrow Function return type, Closure return
type, Function pointer type

=> FatArrow Match arms, Macros

<- LArrow The left arrow symbol has been unused
since before Rust 1.0, but it is still
treated as a single token

clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#comparison-operators
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#comparison-operators
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#comparison-operators
clbr://internal.invalid/book/OEBPS/items/generics.md
clbr://internal.invalid/book/OEBPS/paths.md
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#comparison-operators
clbr://internal.invalid/book/OEBPS/items/generics.md
clbr://internal.invalid/book/OEBPS/paths.md
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#comparison-operators
clbr://internal.invalid/book/OEBPS/items/generics.md
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#comparison-operators
clbr://internal.invalid/book/OEBPS/patterns.md#identifier-patterns
clbr://internal.invalid/book/OEBPS/patterns.md#wildcard-pattern
clbr://internal.invalid/book/OEBPS/types/inferred.md
clbr://internal.invalid/book/OEBPS/items/constant-items.md
clbr://internal.invalid/book/OEBPS/items/extern-crates.md
clbr://internal.invalid/book/OEBPS/items/use-declarations.md
clbr://internal.invalid/book/OEBPS/expressions/underscore-expr.md
clbr://internal.invalid/book/OEBPS/expressions/field-expr.md
clbr://internal.invalid/book/OEBPS/expressions/tuple-expr.md#tuple-indexing-expressions
clbr://internal.invalid/book/OEBPS/expressions/range-expr.md
clbr://internal.invalid/book/OEBPS/expressions/struct-expr.md
clbr://internal.invalid/book/OEBPS/patterns.md
clbr://internal.invalid/book/OEBPS/patterns.md#range-patterns
clbr://internal.invalid/book/OEBPS/items/external-blocks.md
clbr://internal.invalid/book/OEBPS/patterns.md#range-patterns
clbr://internal.invalid/book/OEBPS/expressions/range-expr.md
clbr://internal.invalid/book/OEBPS/patterns.md#range-patterns
clbr://internal.invalid/book/OEBPS/types/array.md
clbr://internal.invalid/book/OEBPS/paths.md
clbr://internal.invalid/book/OEBPS/items/functions.md
clbr://internal.invalid/book/OEBPS/expressions/closure-expr.md
clbr://internal.invalid/book/OEBPS/types/function-pointer.md
clbr://internal.invalid/book/OEBPS/expressions/match-expr.md
clbr://internal.invalid/book/OEBPS/macros-by-example.md

Symbol Name Usage
Pound Attributes

$ Dollar Macros

? Question Question mark operator, Questionably
sized, Macro Kleene Matcher

~ Tilde The tilde operator has been unused since
before Rust 1.0, but its token may still
be used

r[lex.token.delim]

clbr://internal.invalid/book/OEBPS/attributes.md
clbr://internal.invalid/book/OEBPS/macros-by-example.md
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#the-question-mark-operator
clbr://internal.invalid/book/OEBPS/trait-bounds.md#sized
clbr://internal.invalid/book/OEBPS/macros-by-example.md

Delimiters
Bracket punctuation is used in various parts of the grammar. An open

bracket must always be paired with a close bracket. Brackets and the tokens
within them are referred to as "token trees" in macros. The three types of
brackets are:

Bracket Type
{ } Curly braces

[] Square brackets

() Parentheses

r[lex.token.reserved]

clbr://internal.invalid/book/OEBPS/macros-by-example.md

Reserved tokens
r[lex.token.reserved.intro] Several token forms are reserved for future

use. It is an error for the source input to match one of these forms.
r[lex.token.reserved.syntax]

RESERVED_TOKEN ->
 RESERVED_GUARDED_STRING_LITERAL
 | RESERVED_NUMBER
 | RESERVED_POUNDS
 | RESERVED_RAW_IDENTIFIER
 | RESERVED_RAW_LIFETIME
 | RESERVED_TOKEN_DOUBLE_QUOTE
 | RESERVED_TOKEN_LIFETIME
 | RESERVED_TOKEN_POUND
 | RESERVED_TOKEN_SINGLE_QUOTE

r[lex.token.reserved-prefix]

Reserved prefixes
r[lex.token.reserved-prefix.syntax]

RESERVED_TOKEN_DOUBLE_QUOTE ->
 (IDENTIFIER_OR_KEYWORD _except `b` or `c` or `r` or `br`
or `cr`_ | `_`) `"`

RESERVED_TOKEN_SINGLE_QUOTE ->
 (IDENTIFIER_OR_KEYWORD _except `b`_ | `_`) `'`

RESERVED_TOKEN_POUND ->
 (IDENTIFIER_OR_KEYWORD _except `r` or `br` or `cr`_ | `_`
) `#`

RESERVED_TOKEN_LIFETIME ->
 `'` (IDENTIFIER_OR_KEYWORD _except `r`_ | `_`) `#`

r[lex.token.reserved-prefix.intro] Some lexical forms known as reserved
prefixes are reserved for future use.

r[lex.token.reserved-prefix.id] Source input which would otherwise be
lexically interpreted as a non-raw identifier (or a keyword or _) which is
immediately followed by a # , ' , or " character (without intervening
whitespace) is identified as a reserved prefix.

r[lex.token.reserved-prefix.raw-token] Note that raw identifiers, raw
string literals, and raw byte string literals may contain a # character but are
not interpreted as containing a reserved prefix.

r[lex.token.reserved-prefix.strings] Similarly the r , b , br , c , and cr
prefixes used in raw string literals, byte literals, byte string literals, raw byte
string literals, C string literals, and raw C string literals are not interpreted
as reserved prefixes.

r[lex.token.reserved-prefix.life] Source input which would otherwise be
lexically interpreted as a non-raw lifetime (or a keyword or _) which is
immediately followed by a # character (without intervening whitespace) is
identified as a reserved lifetime prefix.

r[lex.token.reserved-prefix.edition2021]

[!EDITION-2021] Starting with the 2021 edition, reserved prefixes
are reported as an error by the lexer (in particular, they cannot be
passed to macros).

Before the 2021 edition, reserved prefixes are accepted by the lexer
and interpreted as multiple tokens (for example, one token for the
identifier or keyword, followed by a # token).

Examples accepted in all editions:
macro_rules! lexes {($($_:tt)*) => {}}
lexes!{a #foo}
lexes!{continue 'foo}
lexes!{match "..." {}}
lexes!{r#let#foo} // three tokens: r#let # foo
lexes!{'prefix #lt}

Examples accepted before the 2021 edition but rejected later:
macro_rules! lexes {($($_:tt)*) => {}}
lexes!{a#foo}
lexes!{continue'foo}
lexes!{match"..." {}}
lexes!{'prefix#lt}

r[lex.token.reserved-guards]

Reserved guards
r[lex.token.reserved-guards.syntax]

RESERVED_GUARDED_STRING_LITERAL -> `#`+ STRING_LITERAL

RESERVED_POUNDS -> `#`{2..}

r[lex.token.reserved-guards.intro] The reserved guards are syntax
reserved for future use, and will generate a compile error if used.

r[lex.token.reserved-guards.string-literal] The reserved guarded string
literal is a token of one or more U+0023 (#) immediately followed by a
[STRING_LITERAL].

r[lex.token.reserved-guards.pounds] The reserved pounds is a token of
two or more U+0023 (#).

r[lex.token.reserved-guards.edition2024]

[!EDITION-2024] Before the 2024 edition, reserved guards are
accepted by the lexer and interpreted as multiple tokens. For example,
the #"foo"# form is interpreted as three tokens. ## is interpreted as
two tokens.

r[macro]

Macros
r[macro.intro] The functionality and syntax of Rust can be extended with

custom definitions called macros. They are given names, and invoked
through a consistent syntax: some_extension!(...) .

There are two ways to define new macros:

Macros by Example define new syntax in a higher-level, declarative
way.
Procedural Macros define function-like macros, custom derives, and
custom attributes using functions that operate on input tokens.

r[macro.invocation]

clbr://internal.invalid/book/OEBPS/macros-by-example.md
clbr://internal.invalid/book/OEBPS/procedural-macros.md

Macro Invocation
r[macro.invocation.syntax]

MacroInvocation ->
 SimplePath `!` DelimTokenTree

DelimTokenTree ->
 `(` TokenTree* `)`
 | `[` TokenTree* `]`
 | `{` TokenTree* `}`

TokenTree ->
 Token _except [delimiters][lex.token.delim]_ |
DelimTokenTree

MacroInvocationSemi ->
 SimplePath `!` `(` TokenTree* `)` `;`
 | SimplePath `!` `[` TokenTree* `]` `;`
 | SimplePath `!` `{` TokenTree* `}`

r[macro.invocation.intro] A macro invocation expands a macro at
compile time and replaces the invocation with the result of the macro.
Macros may be invoked in the following situations:

r[macro.invocation.expr]

Expressions and statements
r[macro.invocation.pattern]

Patterns
r[macro.invocation.type]

Types
r[macro.invocation.item]

Items including associated items
r[macro.invocation.nested]

clbr://internal.invalid/book/OEBPS/expressions.md
clbr://internal.invalid/book/OEBPS/statements.md
clbr://internal.invalid/book/OEBPS/patterns.md
clbr://internal.invalid/book/OEBPS/types.md
clbr://internal.invalid/book/OEBPS/items.md
clbr://internal.invalid/book/OEBPS/items/associated-items.md

macro_rules transcribers
r[macro.invocation.extern]

External blocks
r[macro.invocation.item-statement] When used as an item or a statement,

the [MacroInvocationSemi] form is used where a semicolon is required at
the end when not using curly braces. Visibility qualifiers are never allowed
before a macro invocation or macro_rules definition.
// Used as an expression.
let x = vec![1,2,3];

// Used as a statement.
println!("Hello!");

// Used in a pattern.
macro_rules! pat {
 ($i:ident) => (Some($i))
}

if let pat!(x) = Some(1) {
 assert_eq!(x, 1);
}

// Used in a type.
macro_rules! Tuple {
 { $A:ty, $B:ty } => { ($A, $B) };
}

type N2 = Tuple!(i32, i32);

// Used as an item.
use std::cell::RefCell;
thread_local!(static FOO: RefCell<u32> = RefCell::new(1));

// Used as an associated item.

clbr://internal.invalid/book/OEBPS/macros-by-example.md
clbr://internal.invalid/book/OEBPS/items/external-blocks.md
clbr://internal.invalid/book/OEBPS/visibility-and-privacy.md
clbr://internal.invalid/book/OEBPS/macros-by-example.md

macro_rules! const_maker {
 ($t:ty, $v:tt) => { const CONST: $t = $v; };
}
trait T {
 const_maker!{i32, 7}
}

// Macro calls within macros.
macro_rules! example {
 () => { println!("Macro call in a macro!") };
}
// Outer macro `example` is expanded, then inner macro
`println` is expanded.
example!();

r[macro.decl]

Macros By Example
r[macro.decl.syntax]

MacroRulesDefinition ->
 `macro_rules` `!` IDENTIFIER MacroRulesDef

MacroRulesDef ->
 `(` MacroRules `)` `;`
 | `[` MacroRules `]` `;`
 | `{` MacroRules `}`

MacroRules ->
 MacroRule (`;` MacroRule)* `;`?

MacroRule ->
 MacroMatcher `=>` MacroTranscriber

MacroMatcher ->
 `(` MacroMatch* `)`
 | `[` MacroMatch* `]`
 | `{` MacroMatch* `}`

MacroMatch ->
 Token _except `$` and [delimiters][lex.token.delim]_
 | MacroMatcher
 | `$` (IDENTIFIER_OR_KEYWORD _except `crate`_ |
RAW_IDENTIFIER | `_`) `:` MacroFragSpec
 | `$` `(` MacroMatch+ `)` MacroRepSep? MacroRepOp

MacroFragSpec ->
 `block` | `expr` | `expr_2021` | `ident` | `item` |
`lifetime` | `literal`
 | `meta` | `pat` | `pat_param` | `path` | `stmt` | `tt` |
`ty` | `vis`

MacroRepSep -> Token _except [delimiters][lex.token.delim] and
[MacroRepOp]_

MacroRepOp -> `*` | `+` | `?`

MacroTranscriber -> DelimTokenTree

r[macro.decl.intro] macro_rules allows users to define syntax
extension in a declarative way. We call such extensions "macros by
example" or simply "macros".

Each macro by example has a name, and one or more rules. Each rule
has two parts: a matcher, describing the syntax that it matches, and a
transcriber, describing the syntax that will replace a successfully matched
invocation. Both the matcher and the transcriber must be surrounded by
delimiters. Macros can expand to expressions, statements, items (including
traits, impls, and foreign items), types, or patterns.

r[macro.decl.transcription]

Transcribing
r[macro.decl.transcription.intro] When a macro is invoked, the macro

expander looks up macro invocations by name, and tries each macro rule in
turn. It transcribes the first successful match; if this results in an error, then
future matches are not tried.

r[macro.decl.transcription.lookahead] When matching, no lookahead is
performed; if the compiler cannot unambiguously determine how to parse
the macro invocation one token at a time, then it is an error. In the following
example, the compiler does not look ahead past the identifier to see if the
following token is a) , even though that would allow it to parse the
invocation unambiguously:
macro_rules! ambiguity {
 ($($i:ident)* $j:ident) => { };
}

ambiguity!(error); // Error: local ambiguity

r[macro.decl.transcription.syntax] In both the matcher and the
transcriber, the $ token is used to invoke special behaviours from the
macro engine (described below in Metavariables and Repetitions). Tokens
that aren't part of such an invocation are matched and transcribed literally,
with one exception. The exception is that the outer delimiters for the
matcher will match any pair of delimiters. Thus, for instance, the matcher
(()) will match {()} but not {{}} . The character $ cannot be matched
or transcribed literally.

r[macro.decl.transcription.fragment]

Forwarding a matched fragment
When forwarding a matched fragment to another macro-by-example,

matchers in the second macro will see an opaque AST of the fragment type.
The second macro can't use literal tokens to match the fragments in the
matcher, only a fragment specifier of the same type. The ident , lifetime ,
and tt fragment types are an exception, and can be matched by literal
tokens. The following illustrates this restriction:

macro_rules! foo {
 ($l:expr) => { bar!($l); }
// ERROR: ^^ no rules expected this token in
macro call
}

macro_rules! bar {
 (3) => {}
}

foo!(3);

The following illustrates how tokens can be directly matched after
matching a tt fragment:
// compiles OK
macro_rules! foo {
 ($l:tt) => { bar!($l); }
}

macro_rules! bar {
 (3) => {}
}

foo!(3);

r[macro.decl.meta]

Metavariables
r[macro.decl.meta.intro] In the matcher, $ name : fragment-specifier

matches a Rust syntax fragment of the kind specified and binds it to the
metavariable $name.

r[macro.decl.meta.specifier] Valid fragment specifiers are:

block : a [BlockExpression]
expr : an [Expression]
expr_2021 : an [Expression] except [UnderscoreExpression] and
[ConstBlockExpression] (see [macro.decl.meta.edition2024])
ident : an [IDENTIFIER_OR_KEYWORD], [RAW_IDENTIFIER],
or $crate
item : an [Item]
lifetime : a [LIFETIME_TOKEN]
literal : matches - ?[LiteralExpression]
meta : an [Attr], the contents of an attribute
pat : a [Pattern] (see [macro.decl.meta.edition2021])
pat_param : a [PatternNoTopAlt]
path : a [TypePath] style path
stmt : a [Statement][grammar-Statement] without the trailing
semicolon (except for item statements that require semicolons)
tt : a [TokenTree] (a single token or tokens in matching delimiters
() , [] , or {})
ty : a [Type][grammar-Type]
vis : a possibly empty [Visibility] qualifier

r[macro.decl.meta.transcription] In the transcriber, metavariables are
referred to simply by $name, since the fragment kind is specified in the
matcher. Metavariables are replaced with the syntax element that matched
them. Metavariables can be transcribed more than once or not at all.

r[macro.decl.meta.dollar-crate] The keyword metavariable $crate can
be used to refer to the current crate.

clbr://internal.invalid/book/OEBPS/macro.decl.hygiene.crate
clbr://internal.invalid/book/OEBPS/tokens.md
clbr://internal.invalid/book/OEBPS/macro.decl.hygiene.crate

r[macro.decl.meta.edition2021]

[!EDITION-2021] Starting with the 2021 edition, pat fragment-
specifiers match top-level or-patterns (that is, they accept [Pattern]).

Before the 2021 edition, they match exactly the same fragments as
pat_param (that is, they accept [PatternNoTopAlt]).

The relevant edition is the one in effect for the macro_rules!
definition.

r[macro.decl.meta.edition2024]

[!EDITION-2024] Before the 2024 edition, expr fragment
specifiers do not match [UnderscoreExpression] or
[ConstBlockExpression] at the top level. They are allowed within
subexpressions.

The expr_2021 fragment specifier exists to maintain backwards
compatibility with editions before 2024.

r[macro.decl.repetition]

Repetitions
r[macro.decl.repetition.intro] In both the matcher and transcriber,

repetitions are indicated by placing the tokens to be repeated inside $(…) ,
followed by a repetition operator, optionally with a separator token
between.

r[macro.decl.repetition.separator] The separator token can be any token
other than a delimiter or one of the repetition operators, but ; and , are the
most common. For instance, $($i:ident),* represents any number of
identifiers separated by commas. Nested repetitions are permitted.

r[macro.decl.repetition.operators] The repetition operators are:

* --- indicates any number of repetitions.
+ --- indicates any number but at least one.
? --- indicates an optional fragment with zero or one occurrence.

r[macro.decl.repetition.optional-restriction] Since ? represents at most
one occurrence, it cannot be used with a separator.

r[macro.decl.repetition.fragment] The repeated fragment both matches
and transcribes to the specified number of the fragment, separated by the
separator token. Metavariables are matched to every repetition of their
corresponding fragment. For instance, the $($i:ident),* example
above matches $i to all of the identifiers in the list.

During transcription, additional restrictions apply to repetitions so that
the compiler knows how to expand them properly:

1. A metavariable must appear in exactly the same number, kind, and
nesting order of repetitions in the transcriber as it did in the matcher.
So for the matcher $($i:ident),*, the transcribers => { $i }, => {
$($($i)*)* }, and => { $($i)+ } are all illegal, but => { $(
$i);* } is correct and replaces a comma-separated list of identifiers
with a semicolon-separated list.

2. Each repetition in the transcriber must contain at least one
metavariable to decide how many times to expand it. If multiple

metavariables appear in the same repetition, they must be bound to the
same number of fragments. For instance, ($($i:ident),* ; $(
$j:ident),*) => (($(($i,$j)),*)) must bind the same
number of $i fragments as $j fragments. This means that invoking the
macro with (a, b, c; d, e, f) is legal and expands to ((a,d),
(b,e), (c,f)), but (a, b, c; d, e) is illegal because it does not
have the same number. This requirement applies to every layer of
nested repetitions.

r[macro.decl.scope]

Scoping, Exporting, and Importing
r[macro.decl.scope.intro] For historical reasons, the scoping of macros

by example does not work entirely like items. Macros have two forms of
scope: textual scope, and path-based scope. Textual scope is based on the
order that things appear in source files, or even across multiple files, and is
the default scoping. It is explained further below. Path-based scope works
exactly the same way that item scoping does. The scoping, exporting, and
importing of macros is controlled largely by attributes.

r[macro.decl.scope.unqualified] When a macro is invoked by an
unqualified identifier (not part of a multi-part path), it is first looked up in
textual scoping. If this does not yield any results, then it is looked up in
path-based scoping. If the macro's name is qualified with a path, then it is
only looked up in path-based scoping.
use lazy_static::lazy_static; // Path-based import.

macro_rules! lazy_static { // Textual definition.
 (lazy) => {};
}

lazy_static!{lazy} // Textual lookup finds our macro first.
self::lazy_static!{} // Path-based lookup ignores our macro,
finds imported one.

r[macro.decl.scope.textual]

Textual Scope
r[macro.decl.scope.textual.intro] Textual scope is based largely on the

order that things appear in source files, and works similarly to the scope of
local variables declared with let except it also applies at the module level.
When macro_rules! is used to define a macro, the macro enters the scope
after the definition (note that it can still be used recursively, since names are
looked up from the invocation site), up until its surrounding scope, typically
a module, is closed. This can enter child modules and even span across
multiple files:

//// src/lib.rs
mod has_macro {
 // m!{} // Error: m is not in scope.

 macro_rules! m {
 () => {};
 }
 m!{} // OK: appears after declaration of m.

 mod uses_macro;
}

// m!{} // Error: m is not in scope.

//// src/has_macro/uses_macro.rs

m!{} // OK: appears after declaration of m in src/lib.rs

r[macro.decl.scope.textual.shadow] It is not an error to define a macro
multiple times; the most recent declaration will shadow the previous one
unless it has gone out of scope.
macro_rules! m {
 (1) => {};
}

m!(1);

mod inner {
 m!(1);

 macro_rules! m {
 (2) => {};
 }
 // m!(1); // Error: no rule matches '1'
 m!(2);

 macro_rules! m {
 (3) => {};
 }
 m!(3);
}

m!(1);

Macros can be declared and used locally inside functions as well, and
work similarly:
fn foo() {
 // m!(); // Error: m is not in scope.
 macro_rules! m {
 () => {};
 }
 m!();
}

// m!(); // Error: m is not in scope.

r[macro.decl.scope.macro_use]

The macro_use attribute
r[macro.decl.scope.macro_use.mod-decl] The macro_use attribute has

two purposes. First, it can be used to make a module's macro scope not end
when the module is closed, by applying it to a module:
#[macro_use]
mod inner {
 macro_rules! m {
 () => {};
 }
}

m!();

r[macro.decl.scope.macro_use.prelude] Second, it can be used to import
macros from another crate, by attaching it to an extern crate declaration

appearing in the crate's root module. Macros imported this way are
imported into the macro_use prelude, not textually, which means that they
can be shadowed by any other name. While macros imported by #

[macro_use] can be used before the import statement, in case of a conflict,
the last macro imported wins. Optionally, a list of macros to import can be
specified using the [MetaListIdents] syntax; this is not supported when #
[macro_use] is applied to a module.
#[macro_use(lazy_static)] // Or #[macro_use] to import all
macros.
extern crate lazy_static;

lazy_static!{}
// self::lazy_static!{} // Error: lazy_static is not defined in
`self`

r[macro.decl.scope.macro_use.export] Macros to be imported with #

[macro_use] must be exported with #[macro_export] , which is described
below.

r[macro.decl.scope.path]

Path-Based Scope
r[macro.decl.scope.path.intro] By default, a macro has no path-based

scope. However, if it has the #[macro_export] attribute, then it is declared
in the crate root scope and can be referred to normally as such:
self::m!();
m!(); // OK: Path-based lookup finds m in the current module.

mod inner {
 super::m!();
 crate::m!();
}

mod mac {
 #[macro_export]
 macro_rules! m {

clbr://internal.invalid/book/OEBPS/names/preludes.md#macro_use-prelude

 () => {};
 }
}

r[macro.decl.scope.path.export] Macros labeled with #[macro_export]
are always pub and can be referred to by other crates, either by path or by
#[macro_use] as described above.

r[macro.decl.hygiene]

Hygiene
r[macro.decl.hygiene.intro] Macros by example have mixed-site hygiene.

This means that loop labels, block labels, and local variables are looked up
at the macro definition site while other symbols are looked up at the macro
invocation site. For example:
let x = 1;
fn func() {
 unreachable!("this is never called")
}

macro_rules! check {
 () => {
 assert_eq!(x, 1); // Uses `x` from the definition
site.
 func(); // Uses `func` from the invocation
site.
 };
}

{
 let x = 2;
 fn func() { /* does not panic */ }
 check!();
}

Labels and local variables defined in macro expansion are not shared
between invocations, so this code doesn’t compile:
macro_rules! m {
 (define) => {
 let x = 1;
 };
 (refer) => {
 dbg!(x);
 };
}

clbr://internal.invalid/book/OEBPS/expressions/loop-expr.md#loop-labels
clbr://internal.invalid/book/OEBPS/expressions/loop-expr.md#labelled-block-expressions

m!(define);
m!(refer);

r[macro.decl.hygiene.crate] A special case is the $crate metavariable.
It refers to the crate defining the macro, and can be used at the start of the
path to look up items or macros which are not in scope at the invocation
site.
//// Definitions in the `helper_macro` crate.
#[macro_export]
macro_rules! helped {
 // () => { helper!() } // This might lead to an error due
to 'helper' not being in scope.
 () => { $crate::helper!() }
}

#[macro_export]
macro_rules! helper {
 () => { () }
}

//// Usage in another crate.
// Note that `helper_macro::helper` is not imported!
use helper_macro::helped;

fn unit() {
 helped!();
}

Note that, because $crate refers to the current crate, it must be used
with a fully qualified module path when referring to non-macro items:
pub mod inner {
 #[macro_export]
 macro_rules! call_foo {
 () => { $crate::inner::foo() };
 }

 pub fn foo() {}
}

r[macro.decl.hygiene.vis] Additionally, even though $crate allows a
macro to refer to items within its own crate when expanding, its use has no
effect on visibility. An item or macro referred to must still be visible from
the invocation site. In the following example, any attempt to invoke
call_foo!() from outside its crate will fail because foo() is not public.
#[macro_export]
macro_rules! call_foo {
 () => { $crate::foo() };
}

fn foo() {}

Version differences: Prior to Rust 1.30, $crate and
local_inner_macros (below) were unsupported. They were added
alongside path-based imports of macros (described above), to ensure
that helper macros did not need to be manually imported by users of a
macro-exporting crate. Crates written for earlier versions of Rust that
use helper macros need to be modified to use $crate or
local_inner_macros to work well with path-based imports.

r[macro.decl.hygiene.local_inner_macros] When a macro is exported,
the #[macro_export] attribute can have the local_inner_macros

keyword added to automatically prefix all contained macro invocations with
$crate:: . This is intended primarily as a tool to migrate code written
before $crate was added to the language to work with Rust 2018's path-
based imports of macros. Its use is discouraged in new code.
#[macro_export(local_inner_macros)]
macro_rules! helped {
 () => { helper!() } // Automatically converted to
$crate::helper!().
}

#[macro_export]
macro_rules! helper {
 () => { () }
}

r[macro.decl.follow-set]

Follow-set Ambiguity Restrictions
r[macro.decl.follow-set.intro] The parser used by the macro system is

reasonably powerful, but it is limited in order to prevent ambiguity in
current or future versions of the language.

r[macro.decl.follow-set.token-restriction] In particular, in addition to the
rule about ambiguous expansions, a nonterminal matched by a metavariable
must be followed by a token which has been decided can be safely used
after that kind of match.

As an example, a macro matcher like $i:expr [,] could in theory be
accepted in Rust today, since [,] cannot be part of a legal expression and
therefore the parse would always be unambiguous. However, because [can
start trailing expressions, [is not a character which can safely be ruled out
as coming after an expression. If [,] were accepted in a later version of
Rust, this matcher would become ambiguous or would misparse, breaking
working code. Matchers like $i:expr, or $i:expr; would be legal,
however, because , and ; are legal expression separators. The specific
rules are:

r[macro.decl.follow-set.token-expr-stmt]

expr and stmt may only be followed by one of: => , , , or ; .
r[macro.decl.follow-set.token-pat_param]

pat_param may only be followed by one of: => , , , = , | , if , or in .
r[macro.decl.follow-set.token-pat]

pat may only be followed by one of: => , , , = , if , or in .
r[macro.decl.follow-set.token-path-ty]

path and ty may only be followed by one of: => , , , = , | , ; , : , > ,
>> , [, { , as , where , or a macro variable of block fragment
specifier.

r[macro.decl.follow-set.token-vis]

vis may only be followed by one of: , , an identifier other than a non-
raw priv , any token that can begin a type, or a metavariable with a
ident , ty , or path fragment specifier.

r[macro.decl.follow-set.token-other]

All other fragment specifiers have no restrictions.
r[macro.decl.follow-set.edition2021]

[!EDITION-2021] Before the 2021 edition, pat may also be
followed by | .

r[macro.decl.follow-set.repetition] When repetitions are involved, then
the rules apply to every possible number of expansions, taking separators
into account. This means:

If the repetition includes a separator, that separator must be able to
follow the contents of the repetition.
If the repetition can repeat multiple times (* or +), then the contents
must be able to follow themselves.
The contents of the repetition must be able to follow whatever comes
before, and whatever comes after must be able to follow the contents
of the repetition.
If the repetition can match zero times (* or ?), then whatever comes
after must be able to follow whatever comes before.

For more detail, see the formal specification.

clbr://internal.invalid/book/OEBPS/macro-ambiguity.md

r[macro.proc]

Procedural Macros
r[macro.proc.intro] Procedural macros allow creating syntax extensions

as execution of a function. Procedural macros come in one of three flavors:

Function-like macros - custom!(...)
Derive macros - #[derive(CustomDerive)]
Attribute macros - #[CustomAttribute]

Procedural macros allow you to run code at compile time that operates
over Rust syntax, both consuming and producing Rust syntax. You can sort
of think of procedural macros as functions from an AST to another AST.

r[macro.proc.def] Procedural macros must be defined in the root of a
crate with the crate type of proc-macro . The macros may not be used from
the crate where they are defined, and can only be used when imported in
another crate.

[!NOTE] When using Cargo, Procedural macro crates are defined
with the proc-macro key in your manifest:
[lib]
proc-macro = true

r[macro.proc.result] As functions, they must either return syntax, panic,
or loop endlessly. Returned syntax either replaces or adds the syntax
depending on the kind of procedural macro. Panics are caught by the
compiler and are turned into a compiler error. Endless loops are not caught
by the compiler which hangs the compiler.

Procedural macros run during compilation, and thus have the same
resources that the compiler has. For example, standard input, error, and
output are the same that the compiler has access to. Similarly, file access is
the same. Because of this, procedural macros have the same security
concerns that Cargo's build scripts have.

r[macro.proc.error] Procedural macros have two ways of reporting
errors. The first is to panic. The second is to emit a [compile_error]
macro invocation.

clbr://internal.invalid/book/OEBPS/linkage.md
clbr://internal.invalid/book/cargo/reference/build-scripts.html

r[macro.proc.proc_macro]

The proc_macro crate
r[macro.proc.proc_macro.intro] Procedural macro crates almost always

will link to the compiler-provided proc_macro crate. The proc_macro

crate provides types required for writing procedural macros and facilities to
make it easier.

r[macro.proc.proc_macro.token-stream] This crate primarily contains a
TokenStream type. Procedural macros operate over token streams instead
of AST nodes, which is a far more stable interface over time for both the
compiler and for procedural macros to target. A token stream is roughly
equivalent to Vec<TokenTree> where a TokenTree can roughly be thought
of as lexical token. For example foo is an Ident token, . is a Punct
token, and 1.2 is a Literal token. The TokenStream type, unlike
Vec<TokenTree> , is cheap to clone.

r[macro.proc.proc_macro.span] All tokens have an associated Span . A
Span is an opaque value that cannot be modified but can be manufactured.
Span s represent an extent of source code within a program and are
primarily used for error reporting. While you cannot modify a Span itself,
you can always change the Span associated with any token, such as
through getting a Span from another token.

r[macro.proc.hygiene]

clbr://internal.invalid/book/OEBPS/proc_macro
clbr://internal.invalid/book/OEBPS/proc_macro::TokenStream

Procedural macro hygiene
Procedural macros are unhygienic. This means they behave as if the

output token stream was simply written inline to the code it's next to. This
means that it's affected by external items and also affects external imports.

Macro authors need to be careful to ensure their macros work in as many
contexts as possible given this limitation. This often includes using absolute
paths to items in libraries (for example, ::std::option::Option instead
of Option) or by ensuring that generated functions have names that are
unlikely to clash with other functions (like __internal_foo instead of
foo).

r[macro.proc.function]

Function-like procedural macros
r[macro.proc.function.intro] Function-like procedural macros are

procedural macros that are invoked using the macro invocation operator
(!).

r[macro.proc.function.def] These macros are defined by a public
function with the proc_macro attribute and a signature of (TokenStream)
-> TokenStream . The input TokenStream is what is inside the delimiters
of the macro invocation and the output TokenStream replaces the entire
macro invocation.

r[macro.proc.function.namespace] The proc_macro attribute defines the
macro in the macro namespace in the root of the crate.

For example, the following macro definition ignores its input and
outputs a function answer into its scope.
#![crate_type = "proc-macro"]
extern crate proc_macro;
use proc_macro::TokenStream;

#[proc_macro]
pub fn make_answer(_item: TokenStream) -> TokenStream {
 "fn answer() -> u32 { 42 }".parse().unwrap()
}

And then we use it in a binary crate to print "42" to standard output.
extern crate proc_macro_examples;
use proc_macro_examples::make_answer;

make_answer!();

fn main() {
 println!("{}", answer());
}

r[macro.proc.function.invocation] Function-like procedural macros may
be invoked in any macro invocation position, which includes statements,

clbr://internal.invalid/book/OEBPS/visibility-and-privacy.md
clbr://internal.invalid/book/OEBPS/items/functions.md
clbr://internal.invalid/book/OEBPS/attributes.md
clbr://internal.invalid/book/OEBPS/proc_macro::TokenStream
clbr://internal.invalid/book/OEBPS/proc_macro::TokenStream
clbr://internal.invalid/book/OEBPS/names/namespaces.md
clbr://internal.invalid/book/OEBPS/statements.md

expressions, patterns, type expressions, item positions, including items in
extern blocks, inherent and trait implementations, and trait definitions.

r[macro.proc.derive]

clbr://internal.invalid/book/OEBPS/expressions.md
clbr://internal.invalid/book/OEBPS/patterns.md
clbr://internal.invalid/book/OEBPS/types.md#type-expressions
clbr://internal.invalid/book/OEBPS/items.md
clbr://internal.invalid/book/OEBPS/items/external-blocks.md
clbr://internal.invalid/book/OEBPS/items/implementations.md
clbr://internal.invalid/book/OEBPS/items/traits.md

Derive macros
r[macro.proc.derive.intro] Derive macros define new inputs for the

derive attribute. These macros can create new items given the token
stream of a struct, enum, or union. They can also define derive macro helper
attributes.

r[macro.proc.derive.def] Custom derive macros are defined by a public
function with the proc_macro_derive attribute and a signature of
(TokenStream) -> TokenStream .

r[macro.proc.derive.namespace] The proc_macro_derive attribute
defines the custom derive in the macro namespace in the root of the crate.

r[macro.proc.derive.output] The input TokenStream is the token stream
of the item that has the derive attribute on it. The output TokenStream
must be a set of items that are then appended to the module or block that the
item from the input TokenStream is in.

The following is an example of a derive macro. Instead of doing
anything useful with its input, it just appends a function answer .
#![crate_type = "proc-macro"]
extern crate proc_macro;
use proc_macro::TokenStream;

#[proc_macro_derive(AnswerFn)]
pub fn derive_answer_fn(_item: TokenStream) -> TokenStream {
 "fn answer() -> u32 { 42 }".parse().unwrap()
}

And then using said derive macro:
extern crate proc_macro_examples;
use proc_macro_examples::AnswerFn;

#[derive(AnswerFn)]
struct Struct;

fn main() {

clbr://internal.invalid/book/OEBPS/attributes/derive.md
clbr://internal.invalid/book/OEBPS/items.md
clbr://internal.invalid/book/OEBPS/items/structs.md
clbr://internal.invalid/book/OEBPS/items/enumerations.md
clbr://internal.invalid/book/OEBPS/items/unions.md
clbr://internal.invalid/book/OEBPS/visibility-and-privacy.md
clbr://internal.invalid/book/OEBPS/items/functions.md
clbr://internal.invalid/book/OEBPS/names/namespaces.md
clbr://internal.invalid/book/OEBPS/proc_macro::TokenStream
clbr://internal.invalid/book/OEBPS/proc_macro::TokenStream
clbr://internal.invalid/book/OEBPS/items/modules.md
clbr://internal.invalid/book/OEBPS/expressions/block-expr.md
clbr://internal.invalid/book/OEBPS/proc_macro::TokenStream

 assert_eq!(42, answer());
}

r[macro.proc.derive.attributes]

Derive macro helper attributes
r[macro.proc.derive.attributes.intro] Derive macros can add additional

attributes into the scope of the item they are on. Said attributes are called
derive macro helper attributes. These attributes are inert, and their only
purpose is to be fed into the derive macro that defined them. That said, they
can be seen by all macros.

r[macro.proc.derive.attributes.def] The way to define helper attributes is
to put an attributes key in the proc_macro_derive macro with a comma
separated list of identifiers that are the names of the helper attributes.

For example, the following derive macro defines a helper attribute
helper , but ultimately doesn't do anything with it.
#![crate_type="proc-macro"]
extern crate proc_macro;
use proc_macro::TokenStream;

#[proc_macro_derive(HelperAttr, attributes(helper))]
pub fn derive_helper_attr(_item: TokenStream) -> TokenStream {
 TokenStream::new()
}

And then usage on the derive macro on a struct:
#[derive(HelperAttr)]
struct Struct {
 #[helper] field: ()
}

r[macro.proc.attribute]

clbr://internal.invalid/book/OEBPS/attributes.md
clbr://internal.invalid/book/OEBPS/items.md
clbr://internal.invalid/book/OEBPS/attributes.md#active-and-inert-attributes

Attribute macros
r[macro.proc.attribute.intro] Attribute macros define new outer attributes

which can be attached to items, including items in extern blocks, inherent
and trait implementations, and trait definitions.

r[macro.proc.attribute.def] Attribute macros are defined by a public
function with the proc_macro_attribute attribute that has a signature of
(TokenStream, TokenStream) -> TokenStream . The first TokenStream
is the delimited token tree following the attribute's name, not including the
outer delimiters. If the attribute is written as a bare attribute name, the
attribute TokenStream is empty. The second TokenStream is the rest of the
item including other attributes on the item. The returned TokenStream
replaces the item with an arbitrary number of items.

r[macro.proc.attribute.namespace] The proc_macro_attribute attribute
defines the attribute in the macro namespace in the root of the crate.

For example, this attribute macro takes the input stream and returns it as
is, effectively being the no-op of attributes.
#![crate_type = "proc-macro"]
extern crate proc_macro;
use proc_macro::TokenStream;

#[proc_macro_attribute]
pub fn return_as_is(_attr: TokenStream, item: TokenStream) ->
TokenStream {
 item
}

This following example shows the stringified TokenStream s that the
attribute macros see. The output will show in the output of the compiler.
The output is shown in the comments after the function prefixed with
"out:".
// my-macro/src/lib.rs
extern crate proc_macro;
use proc_macro::TokenStream;

clbr://internal.invalid/book/OEBPS/attributes.md
clbr://internal.invalid/book/OEBPS/items.md
clbr://internal.invalid/book/OEBPS/items/external-blocks.md
clbr://internal.invalid/book/OEBPS/items/implementations.md
clbr://internal.invalid/book/OEBPS/items/traits.md
clbr://internal.invalid/book/OEBPS/visibility-and-privacy.md
clbr://internal.invalid/book/OEBPS/items/functions.md
clbr://internal.invalid/book/OEBPS/attributes.md
clbr://internal.invalid/book/OEBPS/proc_macro::TokenStream
clbr://internal.invalid/book/OEBPS/proc_macro::TokenStream
clbr://internal.invalid/book/OEBPS/proc_macro::TokenStream
clbr://internal.invalid/book/OEBPS/items.md
clbr://internal.invalid/book/OEBPS/attributes.md
clbr://internal.invalid/book/OEBPS/items.md
clbr://internal.invalid/book/OEBPS/proc_macro::TokenStream
clbr://internal.invalid/book/OEBPS/items.md
clbr://internal.invalid/book/OEBPS/items.md
clbr://internal.invalid/book/OEBPS/names/namespaces.md
clbr://internal.invalid/book/OEBPS/proc_macro::TokenStream

#[proc_macro_attribute]
pub fn show_streams(attr: TokenStream, item: TokenStream) ->
TokenStream {
 println!("attr: \"{attr}\"");
 println!("item: \"{item}\"");
 item
}
// src/lib.rs
extern crate my_macro;

use my_macro::show_streams;

// Example: Basic function
#[show_streams]
fn invoke1() {}
// out: attr: ""
// out: item: "fn invoke1() {}"

// Example: Attribute with input
#[show_streams(bar)]
fn invoke2() {}
// out: attr: "bar"
// out: item: "fn invoke2() {}"

// Example: Multiple tokens in the input
#[show_streams(multiple => tokens)]
fn invoke3() {}
// out: attr: "multiple => tokens"
// out: item: "fn invoke3() {}"

// Example:
#[show_streams { delimiters }]
fn invoke4() {}
// out: attr: "delimiters"
// out: item: "fn invoke4() {}"

r[macro.proc.token]

Declarative macro tokens and procedural macro
tokens

r[macro.proc.token.intro] Declarative macro_rules macros and
procedural macros use similar, but different definitions for tokens (or rather
TokenTree s.)

r[macro.proc.token.macro_rules] Token trees in macro_rules

(corresponding to tt matchers) are defined as

Delimited groups ((...) , {...} , etc)
All operators supported by the language, both single-character and
multi-character ones (+ , +=).

Note that this set doesn't include the single quote ' .
Literals ("string" , 1 , etc)

Note that negation (e.g. -1) is never a part of such literal tokens,
but a separate operator token.

Identifiers, including keywords (ident , r#ident , fn)
Lifetimes ('ident)
Metavariable substitutions in macro_rules (e.g. $my_expr in
macro_rules! mac { ($my_expr: expr) => { $my_expr } } after
the mac 's expansion, which will be considered a single token tree
regardless of the passed expression)

r[macro.proc.token.tree] Token trees in procedural macros are defined as

Delimited groups ((...) , {...} , etc)
All punctuation characters used in operators supported by the language
(+ , but not +=), and also the single quote ' character (typically used
in lifetimes, see below for lifetime splitting and joining behavior)
Literals ("string" , 1 , etc)

clbr://internal.invalid/book/OEBPS/proc_macro::TokenTree

Negation (e.g. -1) is supported as a part of integer and floating
point literals.

Identifiers, including keywords (ident , r#ident , fn)
r[macro.proc.token.conversion.intro] Mismatches between these two

definitions are accounted for when token streams are passed to and from
procedural macros.
Note that the conversions below may happen lazily, so they might not
happen if the tokens are not actually inspected.

r[macro.proc.token.conversion.to-proc_macro] When passed to a proc-
macro

All multi-character operators are broken into single characters.
Lifetimes are broken into a ' character and an identifier.
The keyword metavariable $crate is passed as a single identifier.
All other metavariable substitutions are represented as their underlying
token streams.

Such token streams may be wrapped into delimited groups
(Group) with implicit delimiters (Delimiter::None) when it's
necessary for preserving parsing priorities.
tt and ident substitutions are never wrapped into such groups
and always represented as their underlying token trees.

r[macro.proc.token.conversion.from-proc_macro] When emitted from a
proc macro

Punctuation characters are glued into multi-character operators when
applicable.
Single quotes ' joined with identifiers are glued into lifetimes.
Negative literals are converted into two tokens (the - and the literal)
possibly wrapped into a delimited group (Group) with implicit
delimiters (Delimiter::None) when it's necessary for preserving
parsing priorities.

r[macro.proc.token.doc-comment] Note that neither declarative nor
procedural macros support doc comment tokens (e.g. /// Doc), so they are

clbr://internal.invalid/book/OEBPS/macro.decl.hygiene.crate
clbr://internal.invalid/book/OEBPS/proc_macro::Group
clbr://internal.invalid/book/OEBPS/proc_macro::Delimiter::None
clbr://internal.invalid/book/OEBPS/proc_macro::Group
clbr://internal.invalid/book/OEBPS/proc_macro::Delimiter::None

always converted to token streams representing their equivalent #[doc =
r"str"] attributes when passed to macros.

r[crate]

Crates and source files
r[crate.syntax]

@root Crate ->
 InnerAttribute*
 Item*

[!NOTE] Although Rust, like any other language, can be
implemented by an interpreter as well as a compiler, the only existing
implementation is a compiler, and the language has always been
designed to be compiled. For these reasons, this section assumes a
compiler.

r[crate.compile-time] Rust's semantics obey a phase distinction between
compile-time and run-time.1 Semantic rules that have a static interpretation
govern the success or failure of compilation, while semantic rules that have
a dynamic interpretation govern the behavior of the program at run-time.

r[crate.unit] The compilation model centers on artifacts called crates.
Each compilation processes a single crate in source form, and if successful,
produces a single crate in binary form: either an executable or some sort of
library.2

r[crate.module] A crate is a unit of compilation and linking, as well as
versioning, distribution, and runtime loading. A crate contains a tree of
nested module scopes. The top level of this tree is a module that is
anonymous (from the point of view of paths within the module) and any
item within a crate has a canonical module path denoting its location within
the crate's module tree.

r[crate.input-source] The Rust compiler is always invoked with a single
source file as input, and always produces a single output crate. The
processing of that source file may result in other source files being loaded
as modules. Source files have the extension .rs .

r[crate.module-def] A Rust source file describes a module, the name and
location of which — in the module tree of the current crate — are defined
from outside the source file: either by an explicit [Module][grammar-
Module] item in a referencing source file, or by the name of the crate itself.

clbr://internal.invalid/book/OEBPS/items/modules.md
clbr://internal.invalid/book/OEBPS/paths.md

r[crate.inline-module] Every source file is a module, but not every
module needs its own source file: module definitions can be nested within
one file.

r[crate.items] Each source file contains a sequence of zero or more
[Item] definitions, and may optionally begin with any number of attributes
that apply to the containing module, most of which influence the behavior
of the compiler.

r[crate.attributes] The anonymous crate module can have additional
attributes that apply to the crate as a whole.

[!NOTE] The file's contents may be preceded by a shebang.

// Specify the crate name.
#![crate_name = "projx"]

// Specify the type of output artifact.
#![crate_type = "lib"]

// Turn on a warning.
// This can be done in any module, not just the anonymous
crate module.
#![warn(non_camel_case_types)]

r[crate.main]

clbr://internal.invalid/book/OEBPS/items/modules.md
clbr://internal.invalid/book/OEBPS/attributes.md
clbr://internal.invalid/book/OEBPS/input-format.md#shebang-removal

Main Functions
r[crate.main.general] A crate that contains a main function can be

compiled to an executable.
r[crate.main.restriction] If a main function is present, it must take no

arguments, must not declare any trait or lifetime bounds, must not have any
where clauses, and its return type must implement the Termination trait.
fn main() {}

fn main() -> ! {
 std::process::exit(0);
}

fn main() -> impl std::process::Termination {
 std::process::ExitCode::SUCCESS
}

r[crate.main.import] The main function may be an import, e.g. from an
external crate or from the current one.
mod foo {
 pub fn bar() {
 println!("Hello, world!");
 }
}
use foo::bar as main;

[!NOTE] Types with implementations of Termination in the
standard library include:

()

!

Infallible

ExitCode

Result<T, E> where T: Termination, E: Debug

r[crate.uncaught-foreign-unwinding]

clbr://internal.invalid/book/OEBPS/items/functions.md
clbr://internal.invalid/book/OEBPS/trait-bounds.md
clbr://internal.invalid/book/OEBPS/items/generics.md#where-clauses
std::process::Termination
std::process::Termination
clbr://internal.invalid/book/OEBPS/types/never.md
std::convert::Infallible
std::process::ExitCode

Uncaught foreign unwinding
When a "foreign" unwind (e.g. an exception thrown from C++ code, or a

panic! in Rust code using a different panic handler) propagates beyond the
main function, the process will be safely terminated. This may take the
form of an abort, in which case it is not guaranteed that any Drop calls will
be executed, and the error output may be less informative than if the
runtime had been terminated by a "native" Rust panic .

For more information, see the panic documentation.
r[crate.no_main]

The no_main attribute
The no_main attribute may be applied at the crate level to disable

emitting the main symbol for an executable binary. This is useful when
some other object being linked to defines main .

r[crate.crate_name]

clbr://internal.invalid/book/OEBPS/panic.md#unwinding-across-ffi-boundaries
clbr://internal.invalid/book/OEBPS/attributes.md

The crate_name attribute
r[crate.crate_name.general] The crate_name attribute may be applied at

the crate level to specify the name of the crate with the
[MetaNameValueStr] syntax.
#![crate_name = "mycrate"]

r[crate.crate_name.restriction] The crate name must not be empty, and
must only contain Unicode alphanumeric or _ (U+005F) characters.
1

This distinction would also exist in an interpreter. Static checks like
syntactic analysis, type checking, and lints should happen before the
program is executed regardless of when it is executed.
2

A crate is somewhat analogous to an assembly in the ECMA-335 CLI
model, a library in the SML/NJ Compilation Manager, a unit in the Owens
and Flatt module system, or a configuration in Mesa.

clbr://internal.invalid/book/OEBPS/attributes.md
char::is_alphanumeric

r[cfg]

Conditional compilation
r[cfg.syntax]

ConfigurationPredicate ->
 ConfigurationOption
 | ConfigurationAll
 | ConfigurationAny
 | ConfigurationNot
 | `true`
 | `false`

ConfigurationOption ->
 IDENTIFIER (`=` (STRING_LITERAL | RAW_STRING_LITERAL))?

ConfigurationAll ->
 `all` `(` ConfigurationPredicateList? `)`

ConfigurationAny ->
 `any` `(` ConfigurationPredicateList? `)`

ConfigurationNot ->
 `not` `(` ConfigurationPredicate `)`

ConfigurationPredicateList ->
 ConfigurationPredicate (`,` ConfigurationPredicate)* `,`?

r[cfg.general] Conditionally compiled source code is source code that is
compiled only under certain conditions.

r[cfg.attributes-macro] Source code can be made conditionally compiled
using the cfg and cfg_attr attributes and the built-in cfg macro.

r[cfg.conditional] Whether to compile can depend on the target
architecture of the compiled crate, arbitrary values passed to the compiler,
and other things further described below.

r[cfg.predicate] Each form of conditional compilation takes a
configuration predicate that evaluates to true or false. The predicate is one

clbr://internal.invalid/book/OEBPS/attributes.md

of the following:
r[cfg.predicate.option]

A configuration option. The predicate is true if the option is set, and
false if it is unset.

r[cfg.predicate.all]

all() with a comma-separated list of configuration predicates. It is
true if all of the given predicates are true, or if the list is empty.

r[cfg.predicate.any]

any() with a comma-separated list of configuration predicates. It is
true if at least one of the given predicates is true. If there are no
predicates, it is false.

r[cfg.predicate.not]

not() with a configuration predicate. It is true if its predicate is false
and false if its predicate is true.

r[cfg.predicate.literal]

true or false literals, which are always true or false respectively.
r[cfg.option-spec] Configuration options are either names or key-value

pairs, and are either set or unset.
r[cfg.option-name] Names are written as a single identifier, such as

unix .
r[cfg.option-key-value] Key-value pairs are written as an identifier, = ,

and then a string, such as target_arch = "x86_64" .

[!NOTE] Whitespace around the = is ignored, so foo="bar" and
foo = "bar" are equivalent.

r[cfg.option-key-uniqueness] Keys do not need to be unique. For
example, both feature = "std" and feature = "serde" can be set at the
same time.

r[cfg.options.set]

Set Configuration Options
r[cfg.options.general] Which configuration options are set is determined

statically during the compilation of the crate.
r[cfg.options.target] Some options are compiler-set based on data about

the compilation.
r[cfg.options.other] Other options are arbitrarily-set based on input

passed to the compiler outside of the code.
r[cfg.options.crate] It is not possible to set a configuration option from

within the source code of the crate being compiled.

[!NOTE] For rustc , arbitrary-set configuration options are set
using the --cfg flag. Configuration values for a specified target can
be displayed with rustc --print cfg --target $TARGET .

[!NOTE] Configuration options with the key feature are a
convention used by Cargo for specifying compile-time options and
optional dependencies.

r[cfg.target_arch]

target_arch
r[cfg.target_arch.gen] Key-value option set once with the target's CPU

architecture. The value is similar to the first element of the platform's target
triple, but not identical.

r[cfg.target_arch.values] Example values:

"x86"

"x86_64"

"mips"

"powerpc"

"powerpc64"

"arm"

"aarch64"

r[cfg.target_feature]

clbr://internal.invalid/book/rustc/command-line-arguments.html#--cfg-configure-the-compilation-environment
clbr://internal.invalid/book/cargo/reference/features.html

target_feature
r[cfg.target_feature.general] Key-value option set for each platform

feature available for the current compilation target.
r[cfg.target_feature.values] Example values:

"avx"

"avx2"

"crt-static"

"rdrand"

"sse"

"sse2"

"sse4.1"

See the target_feature attribute for more details on the available
features.

r[cfg.target_feature.crt_static] An additional feature of crt-static is
available to the target_feature option to indicate that a static C runtime
is available.

r[cfg.target_os]

target_os
r[cfg.target_os.general] Key-value option set once with the target's

operating system. This value is similar to the second and third element of
the platform's target triple.

r[cfg.target_os.values] Example values:

"windows"

"macos"

"ios"

"linux"

"android"

"freebsd"

"dragonfly"

clbr://internal.invalid/book/OEBPS/attributes/codegen.md#the-target_feature-attribute
clbr://internal.invalid/book/OEBPS/linkage.md#static-and-dynamic-c-runtimes

"openbsd"

"netbsd"

"none" (typical for embedded targets)
r[cfg.target_family]

target_family
r[cfg.target_family.general] Key-value option providing a more generic

description of a target, such as the family of the operating systems or
architectures that the target generally falls into. Any number of
target_family key-value pairs can be set.

r[cfg.target_family.values] Example values:

"unix"

"windows"

"wasm"

Both "unix" and "wasm"
r[cfg.target_family.unix]

unix and windows
unix is set if target_family = "unix" is set.
r[cfg.target_family.windows] windows is set if target_family =

"windows" is set.
r[cfg.target_env]

target_env
r[cfg.target_env.general] Key-value option set with further

disambiguating information about the target platform with information
about the ABI or libc used. For historical reasons, this value is only
defined as not the empty-string when actually needed for disambiguation.
Thus, for example, on many GNU platforms, this value will be empty. This
value is similar to the fourth element of the platform's target triple. One
difference is that embedded ABIs such as gnueabihf will simply define
target_env as "gnu" .

r[cfg.target_env.values] Example values:

""

"gnu"

"msvc"

"musl"

"sgx"

r[cfg.target_abi]

target_abi
r[cfg.target_abi.general] Key-value option set to further disambiguate

the target_env with information about the target ABI.
r[cfg.target_abi.disambiguation] For historical reasons, this value is only

defined as not the empty-string when actually needed for disambiguation.
Thus, for example, on many GNU platforms, this value will be empty.

r[cfg.target_abi.values] Example values:

""

"llvm"

"eabihf"

"abi64"

"sim"

"macabi"

r[cfg.target_endian]

target_endian
Key-value option set once with either a value of "little" or "big"

depending on the endianness of the target's CPU.
r[cfg.target_pointer_width]

target_pointer_width
r[cfg.target_pointer_width.general] Key-value option set once with the

target's pointer width in bits.

r[cfg.target_pointer_width.values] Example values:

"16"

"32"

"64"

r[cfg.target_vendor]

target_vendor
r[cfg.target_vendor.general] Key-value option set once with the vendor

of the target.
r[cfg.target_vendor.values] Example values:

"apple"

"fortanix"

"pc"

"unknown"

r[cfg.target_has_atomic]

target_has_atomic
r[cfg.target_has_atomic.general] Key-value option set for each bit width

that the target supports atomic loads, stores, and compare-and-swap
operations.

r[cfg.target_has_atomic.stdlib] When this cfg is present, all of the stable
[core::sync::atomic] APIs are available for the relevant atomic width.

r[cfg.target_has_atomic.values] Possible values:

"8"

"16"

"32"

"64"

"128"

"ptr"

r[cfg.test]

test
Enabled when compiling the test harness. Done with rustc by using the

--test flag. See Testing for more on testing support.
r[cfg.debug_assertions]

debug_assertions
Enabled by default when compiling without optimizations. This can be

used to enable extra debugging code in development but not in production.
For example, it controls the behavior of the standard library's
[debug_assert!] macro.

r[cfg.proc_macro]

proc_macro
Set when the crate being compiled is being compiled with the

proc_macro crate type.
r[cfg.panic]

panic
r[cfg.panic.general] Key-value option set depending on the panic

strategy. Note that more values may be added in the future.
r[cfg.panic.values] Example values:

"abort"

"unwind"

clbr://internal.invalid/book/rustc/command-line-arguments.html#--test-build-a-test-harness
clbr://internal.invalid/book/OEBPS/attributes/testing.md
clbr://internal.invalid/book/OEBPS/linkage.md
clbr://internal.invalid/book/OEBPS/panic.md#panic-strategy

Forms of conditional compilation
r[cfg.attr]

The cfg attribute
r[cfg.attr.intro] The cfg attribute conditionally includes the form to

which it is attached based on a configuration predicate.

[!EXAMPLE]
// The function is only included in the build when
compiling for macOS
#[cfg(target_os = "macos")]
fn macos_only() {
 // ...
}

// This function is only included when either foo or bar
is defined
#[cfg(any(foo, bar))]
fn needs_foo_or_bar() {
 // ...
}

// This function is only included when compiling for a
unixish OS with a 32-bit
// architecture
#[cfg(all(unix, target_pointer_width = "32"))]
fn on_32bit_unix() {
 // ...
}

// This function is only included when foo is not defined
#[cfg(not(foo))]
fn needs_not_foo() {
 // ...

clbr://internal.invalid/book/OEBPS/attributes.md

}

// This function is only included when the panic strategy
is set to unwind
#[cfg(panic = "unwind")]
fn when_unwinding() {
 // ...
}

r[cfg.attr.syntax] The syntax for the cfg attribute is:
@root CfgAttribute -> `cfg` `(` ConfigurationPredicate `)`

r[cfg.attr.allowed-positions] The cfg attribute is allowed anywhere
attributes are allowed.

r[cfg.attr.duplicates] Multiple cfg attributes may be specified. The form
to which the attribute is attached will not be included if any of the cfg
predicates are false except as described in [cfg.attr.crate-level-attrs].

r[cfg.attr.effect] If the predicate is true, the form is rewritten to not have
the cfg attribute on it. If the predicate is false, the form is removed from
the source code.

r[cfg.attr.crate-level-attrs] When a crate-level cfg has a false predicate,
the crate itself still exists. Any crate attributes preceding the cfg are kept,
and any crate attributes following the cfg are removed as well as removing
all of the following crate contents.

[!EXAMPLE] The behavior of not removing the preceding
attributes allows you to do things such as include #![no_std] to avoid
linking std even if a #![cfg(...)] has otherwise removed the
contents of the crate. For example:
// This `no_std` attribute is kept even though the crate-
level `cfg`
// attribute is false.
#![no_std]
#![cfg(false)]

// This function is not included.
pub fn example() {}

r[cfg.cfg_attr]

The cfg_attr attribute
r[cfg.cfg_attr.intro] The cfg_attr attribute conditionally includes

attributes based on a configuration predicate.

[!EXAMPLE] The following module will either be found at
linux.rs or windows.rs based on the target.
#[cfg_attr(target_os = "linux", path = "linux.rs")]
#[cfg_attr(windows, path = "windows.rs")]
mod os;

r[cfg.cfg_attr.syntax] The syntax for the cfg_attr attribute is:
@root CfgAttrAttribute -> `cfg_attr` `(` ConfigurationPredicate
`,` CfgAttrs? `)`

CfgAttrs -> Attr (`,` Attr)* `,`?

r[cfg.cfg_attr.allowed-positions] The cfg_attr attribute is allowed
anywhere attributes are allowed.

r[cfg.cfg_attr.duplicates] Multiple cfg_attr attributes may be specified.
r[cfg.cfg_attr.attr-restriction] The crate_type and crate_name

attributes cannot be used with cfg_attr .
r[cfg.cfg_attr.behavior] When the configuration predicate is true,

cfg_attr expands out to the attributes listed after the predicate.
r[cfg.cfg_attr.attribute-list] Zero, one, or more attributes may be listed.

Multiple attributes will each be expanded into separate attributes.

[!EXAMPLE]
#[cfg_attr(feature = "magic", sparkles, crackles)]
fn bewitched() {}

// When the `magic` feature flag is enabled, the above will

clbr://internal.invalid/book/OEBPS/attributes.md
clbr://internal.invalid/book/OEBPS/linkage.md
clbr://internal.invalid/book/OEBPS/crates-and-source-files.md#the-crate_name-attribute

expand to:
#[sparkles]
#[crackles]
fn bewitched() {}

[!NOTE] The cfg_attr can expand to another cfg_attr . For
example, #[cfg_attr(target_os = "linux", cfg_attr(feature =
"multithreaded", some_other_attribute))] is valid. This example
would be equivalent to #[cfg_attr(all(target_os = "linux",

feature ="multithreaded"), some_other_attribute)] .

r[cfg.macro]

The cfg macro
The built-in cfg macro takes in a single configuration predicate and

evaluates to the true literal when the predicate is true and the false literal
when it is false.

For example:
let machine_kind = if cfg!(unix) {
 "unix"
} else if cfg!(windows) {
 "windows"
} else {
 "unknown"
};

println!("I'm running on a {} machine!", machine_kind);

r[items]

Items
r[items.syntax]

Item ->
 OuterAttribute* (VisItem | MacroItem)

VisItem ->
 Visibility?
 (
 Module
 | ExternCrate
 | UseDeclaration
 | Function
 | TypeAlias
 | Struct
 | Enumeration
 | Union
 | ConstantItem
 | StaticItem
 | Trait
 | Implementation
 | ExternBlock
)

MacroItem ->
 MacroInvocationSemi
 | MacroRulesDefinition

r[items.intro] An item is a component of a crate. Items are organized
within a crate by a nested set of modules. Every crate has a single
"outermost" anonymous module; all further items within the crate have
paths within the module tree of the crate.

r[items.static-def] Items are entirely determined at compile-time,
generally remain fixed during execution, and may reside in read-only
memory.

clbr://internal.invalid/book/OEBPS/items/modules.md
clbr://internal.invalid/book/OEBPS/paths.md

r[items.kinds] There are several kinds of items:

modules
extern crate declarations
use declarations
function definitions
type definitions
struct definitions
enumeration definitions
union definitions
constant items
static items
trait definitions
implementations
extern blocks

r[items.locations] Items may be declared in the root of the crate, a
module, or a block expression.

r[items.associated-locations] A subset of items, called associated items,
may be declared in traits and implementations.

r[items.extern-locations] A subset of items, called external items, may be
declared in extern blocks.

r[items.decl-order] Items may be defined in any order, with the
exception of macro_rules which has its own scoping behavior.

r[items.name-resolution] Name resolution of item names allows items to
be defined before or after where the item is referred to in the module or
block.

See item scopes for information on the scoping rules of items.

clbr://internal.invalid/book/OEBPS/items/modules.md
clbr://internal.invalid/book/OEBPS/items/extern-crates.md
clbr://internal.invalid/book/OEBPS/items/use-declarations.md
clbr://internal.invalid/book/OEBPS/items/functions.md
clbr://internal.invalid/book/OEBPS/items/type-aliases.md
clbr://internal.invalid/book/OEBPS/items/structs.md
clbr://internal.invalid/book/OEBPS/items/enumerations.md
clbr://internal.invalid/book/OEBPS/items/unions.md
clbr://internal.invalid/book/OEBPS/items/constant-items.md
clbr://internal.invalid/book/OEBPS/items/static-items.md
clbr://internal.invalid/book/OEBPS/items/traits.md
clbr://internal.invalid/book/OEBPS/items/implementations.md
clbr://internal.invalid/book/OEBPS/items/external-blocks.md
clbr://internal.invalid/book/OEBPS/crates-and-source-files.md
clbr://internal.invalid/book/OEBPS/items/modules.md
clbr://internal.invalid/book/OEBPS/expressions/block-expr.md
clbr://internal.invalid/book/OEBPS/items/associated-items.md
clbr://internal.invalid/book/OEBPS/items/traits.md
clbr://internal.invalid/book/OEBPS/items/implementations.md
clbr://internal.invalid/book/OEBPS/items/external-blocks.md
clbr://internal.invalid/book/OEBPS/macros-by-example.md
clbr://internal.invalid/book/OEBPS/names/name-resolution.md
clbr://internal.invalid/book/OEBPS/names/scopes.md#item-scopes

r[items.mod]

Modules
r[items.mod.syntax]

Module ->
 `unsafe`? `mod` IDENTIFIER `;`
 | `unsafe`? `mod` IDENTIFIER `{`
 InnerAttribute*
 Item*
 `}`

r[items.mod.intro] A module is a container for zero or more items.
r[items.mod.def] A module item is a module, surrounded in braces,

named, and prefixed with the keyword mod . A module item introduces a
new, named module into the tree of modules making up a crate.

r[items.mod.nesting] Modules can nest arbitrarily.
An example of a module:

mod math {
 type Complex = (f64, f64);
 fn sin(f: f64) -> f64 {
 /* ... */
unimplemented!();
 }
 fn cos(f: f64) -> f64 {
 /* ... */
unimplemented!();
 }
 fn tan(f: f64) -> f64 {
 /* ... */
unimplemented!();
 }
}

r[items.mod.namespace] Modules are defined in the type namespace of
the module or block where they are located.

clbr://internal.invalid/book/OEBPS/items.md
clbr://internal.invalid/book/OEBPS/names/namespaces.md

r[items.mod.multiple-items] It is an error to define multiple items with
the same name in the same namespace within a module. See the scopes
chapter for more details on restrictions and shadowing behavior.

r[items.mod.unsafe] The unsafe keyword is syntactically allowed to
appear before the mod keyword, but it is rejected at a semantic level. This
allows macros to consume the syntax and make use of the unsafe

keyword, before removing it from the token stream.
r[items.mod.outlined]

clbr://internal.invalid/book/OEBPS/names/scopes.md

Module Source Filenames
r[items.mod.outlined.intro] A module without a body is loaded from an

external file. When the module does not have a path attribute, the path to
the file mirrors the logical module path.

r[items.mod.outlined.search] Ancestor module path components are
directories, and the module's contents are in a file with the name of the
module plus the .rs extension. For example, the following module
structure can have this corresponding filesystem structure:

Module Path Filesystem Path File Contents
crate lib.rs mod util;

crate::util util.rs mod config;

crate::util::config util/config.rs

r[items.mod.outlined.search-mod] Module filenames may also be the
name of the module as a directory with the contents in a file named mod.rs
within that directory. The above example can alternately be expressed with
crate::util 's contents in a file named util/mod.rs . It is not allowed to
have both util.rs and util/mod.rs .

[!NOTE] Prior to rustc 1.30, using mod.rs files was the way to
load a module with nested children. It is encouraged to use the new
naming convention as it is more consistent, and avoids having many
files named mod.rs within a project.

r[items.mod.outlined.path]

The path attribute
r[items.mod.outlined.path.intro] The directories and files used for

loading external file modules can be influenced with the path attribute.
r[items.mod.outlined.path.search] For path attributes on modules not

inside inline module blocks, the file path is relative to the directory the

clbr://internal.invalid/book/OEBPS/paths.md

source file is located. For example, the following code snippet would use
the paths shown based on where it is located:
#[path = "foo.rs"]
mod c;

Source File c's File Location c's Module Path

src/a/b.rs src/a/foo.rs crate::a::b::c

src/a/mod.rs src/a/foo.rs crate::a::c

r[items.mod.outlined.path.search-nested] For path attributes inside
inline module blocks, the relative location of the file path depends on the
kind of source file the path attribute is located in. "mod-rs" source files are
root modules (such as lib.rs or main.rs) and modules with files named
mod.rs . "non-mod-rs" source files are all other module files. Paths for
path attributes inside inline module blocks in a mod-rs file are relative to
the directory of the mod-rs file including the inline module components as
directories. For non-mod-rs files, it is the same except the path starts with a
directory with the name of the non-mod-rs module. For example, the
following code snippet would use the paths shown based on where it is
located:
mod inline {
 #[path = "other.rs"]
 mod inner;
}

Source
File

inner's File Location inner's Module Path

src/a/b.

rs

src/a/b/inline/oth

er.rs

crate::a::b::inline::

inner

src/a/mo

d.rs

src/a/inline/other

.rs

crate::a::inline::in

ner

An example of combining the above rules of path attributes on inline
modules and nested modules within (applies to both mod-rs and non-mod-rs
files):
#[path = "thread_files"]
mod thread {
 // Load the `local_data` module from `thread_files/tls.rs`
relative to
 // this source file's directory.
 #[path = "tls.rs"]
 mod local_data;
}

r[items.mod.attributes]

Attributes on Modules
r[items.mod.attributes.intro] Modules, like all items, accept outer

attributes. They also accept inner attributes: either after { for a module
with a body, or at the beginning of the source file, after the optional BOM
and shebang.

r[items.mod.attributes.supported] The built-in attributes that have
meaning on a module are cfg , deprecated , doc , the lint check attributes,
path , and no_implicit_prelude . Modules also accept macro attributes.

clbr://internal.invalid/book/OEBPS/conditional-compilation.md
clbr://internal.invalid/book/OEBPS/attributes/diagnostics.md#the-deprecated-attribute
clbr://internal.invalid/book/rustdoc/the-doc-attribute.html
clbr://internal.invalid/book/OEBPS/attributes/diagnostics.md#lint-check-attributes
clbr://internal.invalid/book/OEBPS/names/preludes.md#the-no_implicit_prelude-attribute

r[items.extern-crate]

Extern crate declarations
r[items.extern-crate.syntax]

ExternCrate -> `extern` `crate` CrateRef AsClause? `;`

CrateRef -> IDENTIFIER | `self`

AsClause -> `as` (IDENTIFIER | `_`)

r[items.extern-crate.intro] An extern crate declaration specifies a
dependency on an external crate.

r[items.extern-crate.namespace] The external crate is then bound into the
declaring scope as the given identifier in the type namespace.

r[items.extern-crate.extern-prelude] Additionally, if the extern crate
appears in the crate root, then the crate name is also added to the extern
prelude, making it automatically in scope in all modules.

r[items.extern-crate.as] The as clause can be used to bind the imported
crate to a different name.

r[items.extern-crate.lookup] The external crate is resolved to a specific
soname at compile time, and a runtime linkage requirement to that soname
is passed to the linker for loading at runtime. The soname is resolved at
compile time by scanning the compiler's library path and matching the
optional crate_name provided against the crate_name attributes that were
declared on the external crate when it was compiled. If no crate_name is
provided, a default name attribute is assumed, equal to the identifier given
in the extern crate declaration.

r[items.extern-crate.self] The self crate may be imported which creates
a binding to the current crate. In this case the as clause must be used to
specify the name to bind it to.

Three examples of extern crate declarations:
extern crate pcre;

extern crate std; // equivalent to: extern crate std as std;

clbr://internal.invalid/book/OEBPS/identifiers.md
clbr://internal.invalid/book/OEBPS/names/namespaces.md
clbr://internal.invalid/book/OEBPS/names/preludes.md#extern-prelude
clbr://internal.invalid/book/OEBPS/crates-and-source-files.md#the-crate_name-attribute
clbr://internal.invalid/book/OEBPS/identifiers.md

extern crate std as ruststd; // linking to 'std' under another
name

r[items.extern-crate.name-restrictions] When naming Rust crates,
hyphens are disallowed. However, Cargo packages may make use of them.
In such case, when Cargo.toml doesn't specify a crate name, Cargo will
transparently replace - with _ (Refer to RFC 940 for more details).

Here is an example:
// Importing the Cargo package hello-world
extern crate hello_world; // hyphen replaced with an underscore

r[items.extern-crate.underscore]

https://github.com/rust-lang/rfcs/blob/master/text/0940-hyphens-considered-harmful.md

Underscore Imports
r[items.extern-crate.underscore.intro] An external crate dependency can

be declared without binding its name in scope by using an underscore with
the form extern crate foo as _ . This may be useful for crates that only
need to be linked, but are never referenced, and will avoid being reported as
unused.

r[items.extern-crate.underscore.macro_use] The macro_use attribute
works as usual and imports the macro names into the macro_use prelude.

r[items.extern-crate.no_link]

clbr://internal.invalid/book/OEBPS/macros-by-example.md#the-macro_use-attribute
clbr://internal.invalid/book/OEBPS/names/preludes.md#macro_use-prelude

The no_link attribute
The no_link attribute may be specified on an extern crate item to

prevent linking the crate into the output. This is commonly used to load a
crate to access only its macros.

r[items.use]

Use declarations
r[items.use.syntax]

UseDeclaration -> `use` UseTree `;`

UseTree ->
 (SimplePath? `::`)? `*`
 | (SimplePath? `::`)? `{` (UseTree (`,` UseTree)* `,`?)?
`}`
 | SimplePath (`as` (IDENTIFIER | `_`))?

r[items.use.intro] A use declaration creates one or more local name
bindings synonymous with some other path. Usually a use declaration is
used to shorten the path required to refer to a module item. These
declarations may appear in modules and blocks, usually at the top. A use
declaration is also sometimes called an import, or, if it is public, a re-export.

r[items.use.forms] Use declarations support a number of convenient
shortcuts:

r[items.use.forms.multiple]

Simultaneously binding a list of paths with a common prefix, using the
brace syntax use a::b::{c, d, e::f, g::h::i};

r[items.use.forms.self]

Simultaneously binding a list of paths with a common prefix and their
common parent module, using the self keyword, such as use a::b::
{self, c, d::e};

r[items.use.forms.as]

Rebinding the target name as a new local name, using the syntax use
p::q::r as x; . This can also be used with the last two features: use
a::b::{self as ab, c as abc} .

r[items.use.forms.glob]

clbr://internal.invalid/book/OEBPS/paths.md
clbr://internal.invalid/book/OEBPS/items/modules.md
clbr://internal.invalid/book/OEBPS/expressions/block-expr.md

Binding all paths matching a given prefix, using the asterisk wildcard
syntax use a::b::*; .

r[items.use.forms.nesting]

Nesting groups of the previous features multiple times, such as use
a::b::{self as ab, c, d::{*, e::f}};

An example of use declarations:
use std::collections::hash_map::{self, HashMap};

fn foo<T>(_: T){}
fn bar(map1: HashMap<String, usize>, map2:
hash_map::HashMap<String, usize>){}

fn main() {
 // use declarations can also exist inside of functions
 use std::option::Option::{Some, None};

 // Equivalent to 'foo(vec!
[std::option::Option::Some(1.0f64),
 // std::option::Option::None]);'
 foo(vec![Some(1.0f64), None]);

 // Both `hash_map` and `HashMap` are in scope.
 let map1 = HashMap::new();
 let map2 = hash_map::HashMap::new();
 bar(map1, map2);
}

r[items.use.visibility]

use Visibility
r[items.use.visibility.intro] Like items, use declarations are private to

the containing module, by default. Also like items, a use declaration can be
public, if qualified by the pub keyword. Such a use declaration serves to
re-export a name. A public use declaration can therefore redirect some
public name to a different target definition: even a definition with a private
canonical path, inside a different module.

r[items.use.visibility.unambiguous] If a sequence of such redirections
form a cycle or cannot be resolved unambiguously, they represent a
compile-time error.

An example of re-exporting:
mod quux {
 pub use self::foo::{bar, baz};
 pub mod foo {
 pub fn bar() {}
 pub fn baz() {}
 }
}

fn main() {
 quux::bar();
 quux::baz();
}

In this example, the module quux re-exports two public names defined
in foo .

r[items.use.path]

use Paths
r[items.use.path.intro] The paths that are allowed in a use item follow

the [SimplePath] grammar and are similar to the paths that may be used in
an expression. They may create bindings for:

Nameable items
Enum variants
Built-in types
Attributes
Derive macros

r[items.use.path.disallowed] They cannot import associated items,
generic parameters, local variables, paths with Self , or tool attributes.
More restrictions are described below.

r[items.use.path.namespace] use will create bindings for all namespaces
from the imported entities, with the exception that a self import will only
import from the type namespace (as described below). For example, the
following illustrates creating bindings for the same name in two
namespaces:
mod stuff {
 pub struct Foo(pub i32);
}

// Imports the `Foo` type and the `Foo` constructor.
use stuff::Foo;

fn example() {
 let ctor = Foo; // Uses `Foo` from the value namespace.
 let x: Foo = ctor(123); // Uses `Foo` From the type
namespace.
}

r[items.use.path.edition2018]

clbr://internal.invalid/book/OEBPS/paths.md
clbr://internal.invalid/book/OEBPS/items.md
clbr://internal.invalid/book/OEBPS/items/enumerations.md
clbr://internal.invalid/book/OEBPS/types.md
clbr://internal.invalid/book/OEBPS/attributes.md
clbr://internal.invalid/book/OEBPS/procedural-macros.md#derive-macros
clbr://internal.invalid/book/OEBPS/items/associated-items.md
clbr://internal.invalid/book/OEBPS/items/generics.md
clbr://internal.invalid/book/OEBPS/variables.md
clbr://internal.invalid/book/OEBPS/paths.md#self
clbr://internal.invalid/book/OEBPS/attributes.md#tool-attributes
clbr://internal.invalid/book/OEBPS/names/namespaces.md

[!EDITION-2018] In the 2015 edition, use paths are relative to the
crate root. For example:
mod foo {
 pub mod example { pub mod iter {} }
 pub mod baz { pub fn foobaz() {} }
}
mod bar {
 // Resolves `foo` from the crate root.
 use foo::example::iter;
 // The `::` prefix explicitly resolves `foo`
 // from the crate root.
 use ::foo::baz::foobaz;
}

fn main() {}

The 2015 edition does not allow use declarations to reference the
extern prelude. Thus, extern crate declarations are still required in
2015 to reference an external crate in a use declaration. Beginning
with the 2018 edition, use declarations can specify an external crate
dependency the same way extern crate can.

r[items.use.as]

clbr://internal.invalid/book/OEBPS/names/preludes.md#extern-prelude
clbr://internal.invalid/book/OEBPS/items/extern-crates.md

as renames
The as keyword can be used to change the name of an imported entity.

For example:
// Creates a non-public alias `bar` for the function `foo`.
use inner::foo as bar;

mod inner {
 pub fn foo() {}
}

r[items.use.multiple-syntax]

Brace syntax
r[items.use.multiple-syntax.intro] Braces can be used in the last segment

of the path to import multiple entities from the previous segment, or, if
there are no previous segments, from the current scope. Braces can be
nested, creating a tree of paths, where each grouping of segments is
logically combined with its parent to create a full path.
// Creates bindings to:
// - `std::collections::BTreeSet`
// - `std::collections::hash_map`
// - `std::collections::hash_map::HashMap`
use std::collections::{BTreeSet, hash_map::{self, HashMap}};

r[items.use.multiple-syntax.empty] An empty brace does not import
anything, though the leading path is validated that it is accessible.

r[items.use.multiple-syntax.edition2018]

[!EDITION-2018] In the 2015 edition, paths are relative to the crate
root, so an import such as use {foo, bar}; will import the names
foo and bar from the crate root, whereas starting in 2018, those
names are relative to the current scope.

r[items.use.self]

self imports
r[items.use.self.intro] The keyword self may be used within brace

syntax to create a binding of the parent entity under its own name.
mod stuff {
 pub fn foo() {}
 pub fn bar() {}
}
mod example {
 // Creates a binding for `stuff` and `foo`.
 use crate::stuff::{self, foo};
 pub fn baz() {
 foo();
 stuff::bar();
 }
}
fn main() {}

r[items.use.self.namespace] self only creates a binding from the type
namespace of the parent entity. For example, in the following, only the foo
mod is imported:
mod bar {
 pub mod foo {}
 pub fn foo() {}
}

// This only imports the module `foo`. The function `foo` lives
in
// the value namespace and is not imported.
use bar::foo::{self};

fn main() {
 foo(); //~ ERROR `foo` is a module
}

clbr://internal.invalid/book/OEBPS/names/namespaces.md

[!NOTE] self may also be used as the first segment of a path. The
usage of self as the first segment and inside a use brace is logically
the same; it means the current module of the parent segment, or the
current module if there is no parent segment. See self in the paths
chapter for more information on the meaning of a leading self .

r[items.use.glob]

clbr://internal.invalid/book/OEBPS/paths.md#self

Glob imports
r[items.use.glob.intro] The * character may be used as the last segment

of a use path to import all importable entities from the entity of the
preceding segment. For example:
// Creates a non-public alias to `bar`.
use foo::*;

mod foo {
 fn i_am_private() {}
 enum Example {
 V1,
 V2,
 }
 pub fn bar() {
 // Creates local aliases to `V1` and `V2`
 // of the `Example` enum.
 use Example::*;
 let x = V1;
 }
}

r[items.use.glob.shadowing] Items and named imports are allowed to
shadow names from glob imports in the same namespace. That is, if there is
a name already defined by another item in the same namespace, the glob
import will be shadowed. For example:
// This creates a binding to the `clashing::Foo` tuple struct
// constructor, but does not import its type because that
would
// conflict with the `Foo` struct defined here.
//
// Note that the order of definition here is unimportant.
use clashing::*;
struct Foo {
 field: f32,

clbr://internal.invalid/book/OEBPS/names/namespaces.md

}

fn do_stuff() {
 // Uses the constructor from `clashing::Foo`.
 let f1 = Foo(123);
 // The struct expression uses the type from
 // the `Foo` struct defined above.
 let f2 = Foo { field: 1.0 };
 // `Bar` is also in scope due to the glob import.
 let z = Bar {};
}

mod clashing {
 pub struct Foo(pub i32);
 pub struct Bar {}
}

r[items.use.glob.last-segment-only] * cannot be used as the first or
intermediate segments.

r[items.use.glob.self-import] * cannot be used to import a module's
contents into itself (such as use self::*;).

r[items.use.glob.edition2018]

[!EDITION-2018] In the 2015 edition, paths are relative to the crate
root, so an import such as use *; is valid, and it means to import
everything from the crate root. This cannot be used in the crate root
itself.

r[items.use.as-underscore]

Underscore Imports
r[items.use.as-underscore.intro] Items can be imported without binding

to a name by using an underscore with the form use path as _ . This is
particularly useful to import a trait so that its methods may be used without
importing the trait's symbol, for example if the trait's symbol may conflict
with another symbol. Another example is to link an external crate without
importing its name.

r[items.use.as-underscore.glob] Asterisk glob imports will import items
imported with _ in their unnameable form.
mod foo {
 pub trait Zoo {
 fn zoo(&self) {}
 }

 impl<T> Zoo for T {}
}

use self::foo::Zoo as _;
struct Zoo; // Underscore import avoids name conflict with
this item.

fn main() {
 let z = Zoo;
 z.zoo();
}

r[items.use.as-underscore.macro] The unique, unnameable symbols are
created after macro expansion so that macros may safely emit multiple
references to _ imports. For example, the following should not produce an
error:
macro_rules! m {
 ($item: item) => { $item $item }
}

m!(use std as _;);
// This expands to:
// use std as _;
// use std as _;

r[items.use.restrictions]

Restrictions
The following are restrictions for valid use declarations:
r[items.use.restrictions.crate]

use crate; must use as to define the name to which to bind the crate
root.

r[items.use.restrictions.self]

use {self}; is an error; there must be a leading segment when using
self .

r[items.use.restrictions.duplicate-name]

As with any item definition, use imports cannot create duplicate
bindings of the same name in the same namespace in a module or
block.

r[items.use.restrictions.macro-crate]

use paths with $crate are not allowed in a macro_rules expansion.
r[items.use.restrictions.variant]

use paths cannot refer to enum variants through a type alias. For
example:
enum MyEnum {
 MyVariant
}
type TypeAlias = MyEnum;

use MyEnum::MyVariant; //~ OK
use TypeAlias::MyVariant; //~ ERROR

r[items.use.ambiguities]

clbr://internal.invalid/book/OEBPS/macros-by-example.md
clbr://internal.invalid/book/OEBPS/items/type-aliases.md

Ambiguities
[!NOTE] This section is incomplete.

r[items.use.ambiguities.intro] Some situations are an error when there is
an ambiguity as to which name a use declaration refers. This happens
when there are two name candidates that do not resolve to the same entity.

r[items.use.ambiguities.glob] Glob imports are allowed to import
conflicting names in the same namespace as long as the name is not used.
For example:
mod foo {
 pub struct Qux;
}

mod bar {
 pub struct Qux;
}

use foo::*;
use bar::*; //~ OK, no name conflict.

fn main() {
 // This would be an error, due to the ambiguity.
 //let x = Qux;
}

Multiple glob imports are allowed to import the same name, and that
name is allowed to be used, if the imports are of the same item (following
re-exports). The visibility of the name is the maximum visibility of the
imports. For example:
mod foo {
 pub struct Qux;
}

mod bar {

 pub use super::foo::Qux;
}

// These both import the same `Qux`. The visibility of `Qux`
// is `pub` because that is the maximum visibility between
// these two `use` declarations.
pub use bar::*;
use foo::*;

fn main() {
 let _: Qux = Qux;
}

r[items.fn]

Functions
r[items.fn.syntax]

Function ->
 FunctionQualifiers `fn` IDENTIFIER GenericParams?
 `(` FunctionParameters? `)`
 FunctionReturnType? WhereClause?
 (BlockExpression | `;`)

FunctionQualifiers -> `const`? `async`?[^async-edition]
ItemSafety?[^extern-qualifiers] (`extern` Abi?)?

ItemSafety -> `safe`[^extern-safe] | `unsafe`

Abi -> STRING_LITERAL | RAW_STRING_LITERAL

FunctionParameters ->
 SelfParam `,`?
 | (SelfParam `,`)? FunctionParam (`,` FunctionParam)* `,`?

SelfParam -> OuterAttribute* (ShorthandSelf | TypedSelf)

ShorthandSelf -> (`&` | `&` Lifetime)? `mut`? `self`

TypedSelf -> `mut`? `self` `:` Type

FunctionParam -> OuterAttribute* (FunctionParamPattern | `...`
| Type[^fn-param-2015])

FunctionParamPattern -> PatternNoTopAlt `:` (Type | `...`)

FunctionReturnType -> `->` Type
1

The async qualifier is not allowed in the 2015 edition.

2

The safe function qualifier is only allowed semantically within extern
blocks.
3

Relevant to editions earlier than Rust 2024: Within extern blocks, the
safe or unsafe function qualifier is only allowed when the extern is
qualified as unsafe .
4

Function parameters with only a type are only allowed in an associated
function of a trait item in the 2015 edition.

r[items.fn.intro] A function consists of a block (that's the body of the
function), along with a name, a set of parameters, and an output type. Other
than a name, all these are optional.

r[items.fn.namespace] Functions are declared with the keyword fn

which defines the given name in the value namespace of the module or
block where it is located.

r[items.fn.signature] Functions may declare a set of input variables as
parameters, through which the caller passes arguments into the function,
and the output type of the value the function will return to its caller on
completion.

r[items.fn.implicit-return] If the output type is not explicitly stated, it is
the unit type.

r[items.fn.fn-item-type] When referred to, a function yields a first-class
value of the corresponding zero-sized function item type, which when called
evaluates to a direct call to the function.

For example, this is a simple function:
fn answer_to_life_the_universe_and_everything() -> i32 {
 return 42;
}

r[items.fn.safety-qualifiers] The safe function is semantically only
allowed when used in an extern block.

r[items.fn.params]

clbr://internal.invalid/book/OEBPS/items/traits.md
clbr://internal.invalid/book/OEBPS/expressions/block-expr.md
clbr://internal.invalid/book/OEBPS/names/namespaces.md
clbr://internal.invalid/book/OEBPS/variables.md
clbr://internal.invalid/book/OEBPS/types.md#type-expressions
clbr://internal.invalid/book/OEBPS/types/tuple.md
clbr://internal.invalid/book/OEBPS/types/function-item.md
clbr://internal.invalid/book/OEBPS/items/external-blocks.md

Function parameters
r[items.fn.params.intro] Function parameters are irrefutable patterns, so

any pattern that is valid in an else-less let binding is also valid as a
parameter:
fn first((value, _): (i32, i32)) -> i32 { value }

r[items.fn.params.self-pat] If the first parameter is a [SelfParam], this
indicates that the function is a method.

r[items.fn.params.self-restriction] Functions with a self parameter may
only appear as an associated function in a trait or implementation.

r[items.fn.params.varargs] A parameter with the ... token indicates a
variadic function, and may only be used as the last parameter of an external
block function. The variadic parameter may have an optional identifier,
such as args:

r[items.fn.body]

clbr://internal.invalid/book/OEBPS/patterns.md
clbr://internal.invalid/book/OEBPS/items/associated-items.md#methods
clbr://internal.invalid/book/OEBPS/items/associated-items.md#associated-functions-and-methods
clbr://internal.invalid/book/OEBPS/items/traits.md
clbr://internal.invalid/book/OEBPS/items/implementations.md
clbr://internal.invalid/book/OEBPS/items/external-blocks.md#variadic-functions
clbr://internal.invalid/book/OEBPS/items/external-blocks.md

Function body
r[items.fn.body.intro] The body block of a function is conceptually

wrapped in another block that first binds the argument patterns and then
return s the value of the function's body. This means that the tail
expression of the block, if evaluated, ends up being returned to the caller.
As usual, an explicit return expression within the body of the function will
short-cut that implicit return, if reached.

For example, the function above behaves as if it was written as:
// argument_0 is the actual first argument passed from the
caller
let (value, _) = argument_0;
return {
 value
};

r[items.fn.body.bodyless] Functions without a body block are terminated
with a semicolon. This form may only appear in a trait or external block.

r[items.fn.generics]

clbr://internal.invalid/book/OEBPS/items/traits.md
clbr://internal.invalid/book/OEBPS/items/external-blocks.md

Generic functions
r[items.fn.generics.intro] A generic function allows one or more

parameterized types to appear in its signature. Each type parameter must be
explicitly declared in an angle-bracket-enclosed and comma-separated list,
following the function name.
// foo is generic over A and B

fn foo<A, B>(x: A, y: B) {
}

r[items.fn.generics.param-names] Inside the function signature and body,
the name of the type parameter can be used as a type name.

r[items.fn.generics.param-bounds] Trait bounds can be specified for type
parameters to allow methods with that trait to be called on values of that
type. This is specified using the where syntax:
use std::fmt::Debug;
fn foo<T>(x: T) where T: Debug {
}

r[items.fn.generics.mono] When a generic function is referenced, its type
is instantiated based on the context of the reference. For example, calling
the foo function here:
use std::fmt::Debug;

fn foo<T>(x: &[T]) where T: Debug {
 // details elided
}

foo(&[1, 2]);

will instantiate type parameter T with i32 .
r[items.fn.generics.explicit-arguments] The type parameters can also be

explicitly supplied in a trailing path component after the function name.
This might be necessary if there is not sufficient context to determine the
type parameters. For example, mem::size_of::<u32>() == 4 .

clbr://internal.invalid/book/OEBPS/items/traits.md
clbr://internal.invalid/book/OEBPS/paths.md

r[items.fn.extern]

Extern function qualifier
r[items.fn.extern.intro] The extern function qualifier allows providing

function definitions that can be called with a particular ABI:
extern "ABI" fn foo() { /* ... */ }

r[items.fn.extern.def] These are often used in combination with external
block items which provide function declarations that can be used to call
functions without providing their definition:
unsafe extern "ABI" {
 unsafe fn foo(); /* no body */
 safe fn bar(); /* no body */
}
unsafe { foo() };
bar();

r[items.fn.extern.default-abi] When "extern" Abi?* is omitted from
FunctionQualifiers in function items, the ABI "Rust" is assigned. For
example:
fn foo() {}

is equivalent to:
extern "Rust" fn foo() {}

r[items.fn.extern.foreign-call] Functions can be called by foreign code,
and using an ABI that differs from Rust allows, for example, to provide
functions that can be called from other programming languages like C:
// Declares a function with the "C" ABI
extern "C" fn new_i32() -> i32 { 0 }

// Declares a function with the "stdcall" ABI
#[cfg(any(windows, target_arch = "x86"))]
extern "stdcall" fn new_i32_stdcall() -> i32 { 0 }

r[items.fn.extern.default-extern] Just as with external block, when the
extern keyword is used and the "ABI" is omitted, the ABI used defaults to
"C" . That is, this:

clbr://internal.invalid/book/OEBPS/items/external-blocks.md
clbr://internal.invalid/book/OEBPS/items/external-blocks.md

extern fn new_i32() -> i32 { 0 }
let fptr: extern fn() -> i32 = new_i32;

is equivalent to:
extern "C" fn new_i32() -> i32 { 0 }
let fptr: extern "C" fn() -> i32 = new_i32;

r[items.fn.extern.unwind]

Unwinding
r[items.fn.extern.unwind.intro] Most ABI strings come in two variants,

one with an -unwind suffix and one without. The Rust ABI always
permits unwinding, so there is no Rust-unwind ABI. The choice of ABI,
together with the runtime panic handler, determines the behavior when
unwinding out of a function.

r[items.fn.extern.unwind.behavior] The table below indicates the
behavior of an unwinding operation reaching each type of ABI boundary
(function declaration or definition using the corresponding ABI string).
Note that the Rust runtime is not affected by, and cannot have an effect on,
any unwinding that occurs entirely within another language's runtime, that
is, unwinds that are thrown and caught without reaching a Rust ABI
boundary.

The panic -unwind column refers to panicking via the panic! macro
and similar standard library mechanisms, as well as to any other Rust
operations that cause a panic, such as out-of-bounds array indexing or
integer overflow.

The "unwinding" ABI category refers to "Rust" (the implicit ABI of
Rust functions not marked extern), "C-unwind" , and any other ABI with
-unwind in its name. The "non-unwinding" ABI category refers to all other
ABI strings, including "C" and "stdcall" .

Native unwinding is defined per-target. On targets that support throwing
and catching C++ exceptions, it refers to the mechanism used to implement
this feature. Some platforms implement a form of unwinding referred to as
"forced unwinding"; longjmp on Windows and pthread_exit in glibc

clbr://internal.invalid/book/OEBPS/panic.md#the-panic_handler-attribute
clbr://internal.invalid/book/OEBPS/panic.md
https://rust-lang.github.io/rfcs/2945-c-unwind-abi.html#forced-unwinding

are implemented this way. Forced unwinding is explicitly excluded from the
"Native unwind" column in the table.

panic
runtime

ABI panic-unwind Native unwind
(unforced)

panic=

unwind

unwinding unwind unwind

panic=

unwind

non-
unwinding

abort (see notes
below)

undefined
behavior

panic=

abort

unwinding panic aborts
without unwinding

abort

panic=

abort

non-
unwinding

panic aborts
without unwinding

undefined
behavior

r[items.fn.extern.abort] With panic=unwind , when a panic is turned
into an abort by a non-unwinding ABI boundary, either no destructors
(Drop calls) will run, or all destructors up until the ABI boundary will run.
It is unspecified which of those two behaviors will happen.

For other considerations and limitations regarding unwinding across FFI
boundaries, see the relevant section in the Panic documentation.

r[items.fn.const]

clbr://internal.invalid/book/OEBPS/behavior-considered-undefined.md
clbr://internal.invalid/book/OEBPS/behavior-considered-undefined.md
clbr://internal.invalid/book/OEBPS/panic.md#unwinding-across-ffi-boundaries

Const functions
r[items.fn.const.intro] Functions qualified with the const keyword are

const functions, as are tuple struct and tuple variant constructors. Const
functions can be called from within const contexts.

r[items.fn.const.extern] Const functions may use the extern function
qualifier.

r[items.fn.const.exclusivity] Const functions are not allowed to be async.
r[items.fn.async]

clbr://internal.invalid/book/OEBPS/const_eval.md#const-functions
clbr://internal.invalid/book/OEBPS/items/structs.md
clbr://internal.invalid/book/OEBPS/items/enumerations.md
clbr://internal.invalid/book/OEBPS/const_eval.md#const-context

Async functions
r[items.fn.async.intro] Functions may be qualified as async, and this can

also be combined with the unsafe qualifier:
async fn regular_example() { }
async unsafe fn unsafe_example() { }

r[items.fn.async.future] Async functions do no work when called:
instead, they capture their arguments into a future. When polled, that future
will execute the function's body.

r[items.fn.async.desugar-brief] An async function is roughly equivalent
to a function that returns impl Future and with an async move block as
its body:
// Source
async fn example(x: &str) -> usize {
 x.len()
}

is roughly equivalent to:
use std::future::Future;
// Desugared
fn example<'a>(x: &'a str) -> impl Future<Output = usize> + 'a
{
 async move { x.len() }
}

r[items.fn.async.desugar] The actual desugaring is more complex:
r[items.fn.async.lifetime-capture]

The return type in the desugaring is assumed to capture all lifetime
parameters from the async fn declaration. This can be seen in the
desugared example above, which explicitly outlives, and hence
captures, 'a .

r[items.fn.async.param-capture]

clbr://internal.invalid/book/OEBPS/types/impl-trait.md
clbr://internal.invalid/book/OEBPS/expressions/block-expr.md#async-blocks

The async move block in the body captures all function parameters,
including those that are unused or bound to a _ pattern. This ensures
that function parameters are dropped in the same order as they would
be if the function were not async, except that the drop occurs when the
returned future has been fully awaited.

For more information on the effect of async, see async blocks.
r[items.fn.async.edition2018]

[!EDITION-2018] Async functions are only available beginning
with Rust 2018.

r[items.fn.async.safety]

Combining async and unsafe
r[items.fn.async.safety.intro] It is legal to declare a function that is both

async and unsafe. The resulting function is unsafe to call and (like any
async function) returns a future. This future is just an ordinary future and
thus an unsafe context is not required to "await" it:
// Returns a future that, when awaited, dereferences `x`.
//
// Soundness condition: `x` must be safe to dereference until
// the resulting future is complete.
async unsafe fn unsafe_example(x: *const i32) -> i32 {
 *x
}

async fn safe_example() {
 // An `unsafe` block is required to invoke the function
initially:
 let p = 22;
 let future = unsafe { unsafe_example(&p) };

 // But no `unsafe` block required here. This will
 // read the value of `p`:
 let q = future.await;
}

clbr://internal.invalid/book/OEBPS/expressions/block-expr.md#async-blocks
clbr://internal.invalid/book/OEBPS/expressions/block-expr.md#async-blocks

Note that this behavior is a consequence of the desugaring to a function
that returns an impl Future -- in this case, the function we desugar to is an
unsafe function, but the return value remains the same.

Unsafe is used on an async function in precisely the same way that it is
used on other functions: it indicates that the function imposes some
additional obligations on its caller to ensure soundness. As in any other
unsafe function, these conditions may extend beyond the initial call itself --
in the snippet above, for example, the unsafe_example function took a
pointer x as argument, and then (when awaited) dereferenced that pointer.
This implies that x would have to be valid until the future is finished
executing, and it is the caller's responsibility to ensure that.

r[items.fn.attributes]

Attributes on functions
r[items.fn.attributes.intro] Outer attributes are allowed on functions.

Inner attributes are allowed directly after the { inside its body block.
This example shows an inner attribute on a function. The function is

documented with just the word "Example".
fn documented() {
 #![doc = "Example"]
}

[!NOTE] Except for lints, it is idiomatic to only use outer attributes
on function items.

r[items.fn.attributes.builtin-attributes] The attributes that have meaning
on a function are cfg , cfg_attr , deprecated , doc , export_name ,
link_section , no_mangle , the lint check attributes, must_use , the
procedural macro attributes, the testing attributes, and the optimization hint
attributes. Functions also accept attributes macros.

r[items.fn.param-attributes]

clbr://internal.invalid/book/OEBPS/attributes.md
clbr://internal.invalid/book/OEBPS/attributes.md
clbr://internal.invalid/book/OEBPS/expressions/block-expr.md
clbr://internal.invalid/book/OEBPS/conditional-compilation.md#the-cfg-attribute
clbr://internal.invalid/book/OEBPS/conditional-compilation.md#the-cfg_attr-attribute
clbr://internal.invalid/book/OEBPS/attributes/diagnostics.md#the-deprecated-attribute
clbr://internal.invalid/book/rustdoc/the-doc-attribute.html
clbr://internal.invalid/book/OEBPS/abi.md#the-export_name-attribute
clbr://internal.invalid/book/OEBPS/abi.md#the-link_section-attribute
clbr://internal.invalid/book/OEBPS/abi.md#the-no_mangle-attribute
clbr://internal.invalid/book/OEBPS/attributes/diagnostics.md#lint-check-attributes
clbr://internal.invalid/book/OEBPS/attributes/diagnostics.md#the-must_use-attribute
clbr://internal.invalid/book/OEBPS/procedural-macros.md
clbr://internal.invalid/book/OEBPS/attributes/testing.md
clbr://internal.invalid/book/OEBPS/attributes/codegen.md#optimization-hints

Attributes on function parameters
r[items.fn.param-attributes.intro] Outer attributes are allowed on

function parameters and the permitted built-in attributes are restricted to
cfg , cfg_attr , allow , warn , deny , and forbid .
fn len(
 #[cfg(windows)] slice: &[u16],
 #[cfg(not(windows))] slice: &[u8],
) -> usize {
 slice.len()
}

r[items.fn.param-attributes.parsed-attributes] Inert helper attributes used
by procedural macro attributes applied to items are also allowed but be
careful to not include these inert attributes in your final TokenStream .

For example, the following code defines an inert
some_inert_attribute attribute that is not formally defined anywhere and
the some_proc_macro_attribute procedural macro is responsible for
detecting its presence and removing it from the output token stream.
#[some_proc_macro_attribute]
fn foo_oof(#[some_inert_attribute] arg: u8) {
}

clbr://internal.invalid/book/OEBPS/attributes.md
clbr://internal.invalid/book/OEBPS/attributes.md#built-in-attributes-index

r[items.type]

Type aliases
r[items.type.syntax]

TypeAlias ->
 `type` IDENTIFIER GenericParams? (`:` TypeParamBounds)?
 WhereClause?
 (`=` Type WhereClause?)? `;`

r[items.type.intro] A type alias defines a new name for an existing type
in the type namespace of the module or block where it is located. Type
aliases are declared with the keyword type . Every value has a single,
specific type, but may implement several different traits, and may be
compatible with several different type constraints.

For example, the following defines the type Point as a synonym for the
type (u8, u8) , the type of pairs of unsigned 8 bit integers:
type Point = (u8, u8);
let p: Point = (41, 68);

r[items.type.constructor-alias] A type alias to a tuple-struct or unit-struct
cannot be used to qualify that type's constructor:
struct MyStruct(u32);

use MyStruct as UseAlias;
type TypeAlias = MyStruct;

let _ = UseAlias(5); // OK
let _ = TypeAlias(5); // Doesn't work

r[items.type.associated-type] A type alias, when not used as an
associated type, must include a [Type][grammar-Type] and may not include
[TypeParamBounds].

r[items.type.associated-trait] A type alias, when used as an associated
type in a trait, must not include a [Type][grammar-Type] specification but
may include [TypeParamBounds].

clbr://internal.invalid/book/OEBPS/types.md
clbr://internal.invalid/book/OEBPS/names/namespaces.md
clbr://internal.invalid/book/OEBPS/items/associated-items.md#associated-types
clbr://internal.invalid/book/OEBPS/items/associated-items.md#associated-types
clbr://internal.invalid/book/OEBPS/items/traits.md

r[items.type.associated-impl] A type alias, when used as an associated
type in a trait impl, must include a [Type][grammar-Type] specification and
may not include [TypeParamBounds].

r[items.type.deprecated] Where clauses before the equals sign on a type
alias in a trait impl (like type TypeAlias<T> where T: Foo = Bar<T>)
are deprecated. Where clauses after the equals sign (like type

TypeAlias<T> = Bar<T> where T: Foo) are preferred.

clbr://internal.invalid/book/OEBPS/items/associated-items.md#associated-types
clbr://internal.invalid/book/OEBPS/items/implementations.md#trait-implementations
clbr://internal.invalid/book/OEBPS/items/implementations.md#trait-implementations

r[items.struct]

Structs
r[items.struct.syntax]

Struct ->
 StructStruct
 | TupleStruct

StructStruct ->
 `struct` IDENTIFIER GenericParams? WhereClause? (`{`
StructFields? `}` | `;`)

TupleStruct ->
 `struct` IDENTIFIER GenericParams? `(` TupleFields? `)`
WhereClause? `;`

StructFields -> StructField (`,` StructField)* `,`?

StructField -> OuterAttribute* Visibility? IDENTIFIER `:` Type

TupleFields -> TupleField (`,` TupleField)* `,`?

TupleField -> OuterAttribute* Visibility? Type

r[items.struct.intro] A struct is a nominal struct type defined with the
keyword struct .

r[items.struct.namespace] A struct declaration defines the given name in
the type namespace of the module or block where it is located.

An example of a struct item and its use:
struct Point {x: i32, y: i32}
let p = Point {x: 10, y: 11};
let px: i32 = p.x;

r[items.struct.tuple] A tuple struct is a nominal tuple type, and is also
defined with the keyword struct . In addition to defining a type, it also
defines a constructor of the same name in the value namespace. The

clbr://internal.invalid/book/OEBPS/types/struct.md
clbr://internal.invalid/book/OEBPS/names/namespaces.md
clbr://internal.invalid/book/OEBPS/types/tuple.md
clbr://internal.invalid/book/OEBPS/names/namespaces.md

constructor is a function which can be called to create a new instance of the
struct. For example:
struct Point(i32, i32);
let p = Point(10, 11);
let px: i32 = match p { Point(x, _) => x };

r[items.struct.unit] A unit-like struct is a struct without any fields,
defined by leaving off the list of fields entirely. Such a struct implicitly
defines a constant of its type with the same name. For example:
struct Cookie;
let c = [Cookie, Cookie {}, Cookie, Cookie {}];

is equivalent to
struct Cookie {}
const Cookie: Cookie = Cookie {};
let c = [Cookie, Cookie {}, Cookie, Cookie {}];

r[items.struct.layout] The precise memory layout of a struct is not
specified. One can specify a particular layout using the repr attribute.

clbr://internal.invalid/book/OEBPS/items/constant-items.md
clbr://internal.invalid/book/OEBPS/type-layout.md#representations

r[items.enum]

Enumerations
r[items.enum.syntax]

Enumeration ->
 `enum` IDENTIFIER GenericParams? WhereClause? `{`
EnumVariants? `}`

EnumVariants -> EnumVariant (`,` EnumVariant)* `,`?

EnumVariant ->
 OuterAttribute* Visibility?
 IDENTIFIER (EnumVariantTuple | EnumVariantStruct)?
EnumVariantDiscriminant?

EnumVariantTuple -> `(` TupleFields? `)`

EnumVariantStruct -> `{` StructFields? `}`

EnumVariantDiscriminant -> `=` Expression

r[items.enum.intro] An enumeration, also referred to as an enum, is a
simultaneous definition of a nominal enumerated type as well as a set of
constructors, that can be used to create or pattern-match values of the
corresponding enumerated type.

r[items.enum.decl] Enumerations are declared with the keyword enum .
r[items.enum.namespace] The enum declaration defines the enumeration

type in the type namespace of the module or block where it is located.
An example of an enum item and its use:

enum Animal {
 Dog,
 Cat,
}

clbr://internal.invalid/book/OEBPS/types/enum.md
clbr://internal.invalid/book/OEBPS/names/namespaces.md

let mut a: Animal = Animal::Dog;
a = Animal::Cat;

r[items.enum.constructor] Enum constructors can have either named or
unnamed fields:
enum Animal {
 Dog(String, f64),
 Cat { name: String, weight: f64 },
}

let mut a: Animal = Animal::Dog("Cocoa".to_string(), 37.2);
a = Animal::Cat { name: "Spotty".to_string(), weight: 2.7 };

In this example, Cat is a struct-like enum variant, whereas Dog is
simply called an enum variant.

r[items.enum.fieldless] An enum where no constructors contain fields
are called a field-less enum. For example, this is a fieldless enum:
enum Fieldless {
 Tuple(),
 Struct{},
 Unit,
}

r[items.enum.unit-only] If a field-less enum only contains unit variants,
the enum is called an unit-only enum. For example:
enum Enum {
 Foo = 3,
 Bar = 2,
 Baz = 1,
}

r[items.enum.constructor-names] Variant constructors are similar to
struct definitions, and can be referenced by a path from the enumeration
name, including in use declarations.

r[items.enum.constructor-namespace] Each variant defines its type in the
type namespace, though that type cannot be used as a type specifier. Tuple-
like and unit-like variants also define a constructor in the value namespace.

clbr://internal.invalid/book/OEBPS/items/structs.md
clbr://internal.invalid/book/OEBPS/items/use-declarations.md
clbr://internal.invalid/book/OEBPS/names/namespaces.md
clbr://internal.invalid/book/OEBPS/names/namespaces.md

r[items.enum.struct-expr] A struct-like variant can be instantiated with a
struct expression.

r[items.enum.tuple-expr] A tuple-like variant can be instantiated with a
call expression or a struct expression.

r[items.enum.path-expr] A unit-like variant can be instantiated with a
path expression or a struct expression. For example:
enum Examples {
 UnitLike,
 TupleLike(i32),
 StructLike { value: i32 },
}

use Examples::*; // Creates aliases to all variants.
let x = UnitLike; // Path expression of the const item.
let x = UnitLike {}; // Struct expression.
let y = TupleLike(123); // Call expression.
let y = TupleLike { 0: 123 }; // Struct expression using
integer field names.
let z = StructLike { value: 123 }; // Struct expression.

r[items.enum.discriminant]

clbr://internal.invalid/book/OEBPS/expressions/struct-expr.md
clbr://internal.invalid/book/OEBPS/expressions/call-expr.md
clbr://internal.invalid/book/OEBPS/expressions/struct-expr.md
clbr://internal.invalid/book/OEBPS/expressions/path-expr.md
clbr://internal.invalid/book/OEBPS/expressions/struct-expr.md

Discriminants
r[items.enum.discriminant.intro] Each enum instance has a discriminant:

an integer logically associated to it that is used to determine which variant it
holds.

r[items.enum.discriminant.repr-rust] Under the Rust representation, the
discriminant is interpreted as an isize value. However, the compiler is
allowed to use a smaller type (or another means of distinguishing variants)
in its actual memory layout.

Assigning discriminant values
r[items.enum.discriminant.explicit]

Explicit discriminants
r[items.enum.discriminant.explicit.intro] In two circumstances, the

discriminant of a variant may be explicitly set by following the variant
name with = and a constant expression:

r[items.enum.discriminant.explicit.unit-only]

1. if the enumeration is "unit-only".
r[items.enum.discriminant.explicit.primitive-repr] 2. if a primitive

representation is used. For example:
#[repr(u8)]
enum Enum {
 Unit = 3,
 Tuple(u16),
 Struct {
 a: u8,
 b: u16,
 } = 1,
}

r[items.enum.discriminant.implicit]

Implicit discriminants

clbr://internal.invalid/book/OEBPS/type-layout.md#the-rust-representation
clbr://internal.invalid/book/OEBPS/const_eval.md#constant-expressions
clbr://internal.invalid/book/OEBPS/type-layout.md#primitive-representations

If a discriminant for a variant is not specified, then it is set to one higher
than the discriminant of the previous variant in the declaration. If the
discriminant of the first variant in the declaration is unspecified, then it is
set to zero.
enum Foo {
 Bar, // 0
 Baz = 123, // 123
 Quux, // 124
}

let baz_discriminant = Foo::Baz as u32;
assert_eq!(baz_discriminant, 123);

r[items.enum.discriminant.restrictions]

Restrictions
r[items.enum.discriminant.restrictions.same-discriminant] It is an error

when two variants share the same discriminant.
enum SharedDiscriminantError {
 SharedA = 1,
 SharedB = 1
}

enum SharedDiscriminantError2 {
 Zero, // 0
 One, // 1
 OneToo = 1 // 1 (collision with previous!)
}

r[items.enum.discriminant.restrictions.above-max-discriminant] It is also
an error to have an unspecified discriminant where the previous
discriminant is the maximum value for the size of the discriminant.
#[repr(u8)]
enum OverflowingDiscriminantError {
 Max = 255,
 MaxPlusOne // Would be 256, but that overflows the enum.
}

#[repr(u8)]
enum OverflowingDiscriminantError2 {
 MaxMinusOne = 254, // 254
 Max, // 255
 MaxPlusOne // Would be 256, but that overflows the
enum.
}

Accessing discriminant
Via mem::discriminant

r[items.enum.discriminant.access-opaque]
[std::mem::discriminant] returns an opaque reference to the

discriminant of an enum value which can be compared. This cannot be used
to get the value of the discriminant.

r[items.enum.discriminant.coercion]

Casting
r[items.enum.discriminant.coercion.intro] If an enumeration is unit-only

(with no tuple and struct variants), then its discriminant can be directly
accessed with a numeric cast; e.g.:
enum Enum {
 Foo,
 Bar,
 Baz,
}

assert_eq!(0, Enum::Foo as isize);
assert_eq!(1, Enum::Bar as isize);
assert_eq!(2, Enum::Baz as isize);

r[items.enum.discriminant.coercion.fieldless] Field-less enums can be
casted if they do not have explicit discriminants, or where only unit variants
are explicit.

clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#semantics

enum Fieldless {
 Tuple(),
 Struct{},
 Unit,
}

assert_eq!(0, Fieldless::Tuple() as isize);
assert_eq!(1, Fieldless::Struct{} as isize);
assert_eq!(2, Fieldless::Unit as isize);

#[repr(u8)]
enum FieldlessWithDiscriminants {
 First = 10,
 Tuple(),
 Second = 20,
 Struct{},
 Unit,
}

assert_eq!(10, FieldlessWithDiscriminants::First as u8);
assert_eq!(11, FieldlessWithDiscriminants::Tuple() as u8);
assert_eq!(20, FieldlessWithDiscriminants::Second as u8);
assert_eq!(21, FieldlessWithDiscriminants::Struct{} as u8);
assert_eq!(22, FieldlessWithDiscriminants::Unit as u8);

Pointer casting
r[items.enum.discriminant.access-memory]
If the enumeration specifies a primitive representation, then the

discriminant may be reliably accessed via unsafe pointer casting:
#[repr(u8)]
enum Enum {
 Unit,
 Tuple(bool),
 Struct{a: bool},
}

clbr://internal.invalid/book/OEBPS/type-layout.md#primitive-representations

impl Enum {
 fn discriminant(&self) -> u8 {
 unsafe { *(self as *const Self as *const u8) }
 }
}

let unit_like = Enum::Unit;
let tuple_like = Enum::Tuple(true);
let struct_like = Enum::Struct{a: false};

assert_eq!(0, unit_like.discriminant());
assert_eq!(1, tuple_like.discriminant());
assert_eq!(2, struct_like.discriminant());

r[items.enum.empty]

Zero-variant enums
r[items.enum.empty.intro] Enums with zero variants are known as zero-

variant enums. As they have no valid values, they cannot be instantiated.
enum ZeroVariants {}

r[items.enum.empty.uninhabited] Zero-variant enums are equivalent to
the never type, but they cannot be coerced into other types.
enum ZeroVariants {}
let x: ZeroVariants = panic!();
let y: u32 = x; // mismatched type error

r[items.enum.variant-visibility]

clbr://internal.invalid/book/OEBPS/types/never.md

Variant visibility
Enum variants syntactically allow a [Visibility] annotation, but this is

rejected when the enum is validated. This allows items to be parsed with a
unified syntax across different contexts where they are used.
macro_rules! mac_variant {
 ($vis:vis $name:ident) => {
 enum $name {
 $vis Unit,

 $vis Tuple(u8, u16),

 $vis Struct { f: u8 },
 }
 }
}

// Empty `vis` is allowed.
mac_variant! { E }

// This is allowed, since it is removed before being
validated.
#[cfg(false)]
enum E {
 pub U,
 pub(crate) T(u8),
 pub(super) T { f: String }
}

r[items.union]

Unions
r[items.union.syntax]

Union ->
 `union` IDENTIFIER GenericParams? WhereClause? `{`
StructFields? `}`

r[items.union.intro] A union declaration uses the same syntax as a struct
declaration, except with union in place of struct .

r[items.union.namespace] A union declaration defines the given name in
the type namespace of the module or block where it is located.
#[repr(C)]
union MyUnion {
 f1: u32,
 f2: f32,
}

r[items.union.common-storage] The key property of unions is that all
fields of a union share common storage. As a result, writes to one field of a
union can overwrite its other fields, and size of a union is determined by the
size of its largest field.

r[items.union.field-restrictions] Union field types are restricted to the
following subset of types:

r[items.union.field-copy]

Copy types
r[items.union.field-references]

References (&T and &mut T for arbitrary T)
r[items.union.field-manually-drop]

ManuallyDrop<T> (for arbitrary T)
r[items.union.field-tuple]

Tuples and arrays containing only allowed union field types

clbr://internal.invalid/book/OEBPS/names/namespaces.md

r[items.union.drop] This restriction ensures, in particular, that union
fields never need to be dropped. Like for structs and enums, it is possible to
impl Drop for a union to manually define what happens when it gets
dropped.

r[items.union.fieldless] Unions without any fields are not accepted by
the compiler, but can be accepted by macros.

r[items.union.init]

Initialization of a union
r[items.union.init.intro] A value of a union type can be created using the

same syntax that is used for struct types, except that it must specify exactly
one field:
union MyUnion { f1: u32, f2: f32 }

let u = MyUnion { f1: 1 };

r[items.union.init.result] The expression above creates a value of type
MyUnion and initializes the storage using field f1 . The union can be
accessed using the same syntax as struct fields:
union MyUnion { f1: u32, f2: f32 }

let u = MyUnion { f1: 1 };
let f = unsafe { u.f1 };

r[items.union.fields]

Reading and writing union fields
r[items.union.fields.intro] Unions have no notion of an "active field".

Instead, every union access just interprets the storage as the type of the field
used for the access.

r[items.union.fields.read] Reading a union field reads the bits of the
union at the field's type.

r[items.union.fields.offset] Fields might have a non-zero offset (except
when the C representation is used); in that case the bits starting at the offset
of the fields are read

r[items.union.fields.validity] It is the programmer's responsibility to
make sure that the data is valid at the field's type. Failing to do so results in
undefined behavior. For example, reading the value 3 from a field of the
boolean type is undefined behavior. Effectively, writing to and then reading
from a union with the C representation is analogous to a transmute from
the type used for writing to the type used for reading.

r[items.union.fields.read-safety] Consequently, all reads of union fields
have to be placed in unsafe blocks:
union MyUnion { f1: u32, f2: f32 }
let u = MyUnion { f1: 1 };

unsafe {
 let f = u.f1;
}

Commonly, code using unions will provide safe wrappers around unsafe
union field accesses.

r[items.union.fields.write-safety] In contrast, writes to union fields are
safe, since they just overwrite arbitrary data, but cannot cause undefined
behavior. (Note that union field types can never have drop glue, so a union
field write will never implicitly drop anything.)

r[items.union.pattern]

clbr://internal.invalid/book/OEBPS/type-layout.md#reprc-unions
clbr://internal.invalid/book/OEBPS/behavior-considered-undefined.md
clbr://internal.invalid/book/OEBPS/types/boolean.md
clbr://internal.invalid/book/OEBPS/type-layout.md#reprc-unions
std::mem::transmute

Pattern matching on unions
r[items.union.pattern.intro] Another way to access union fields is to use

pattern matching.
r[items.union.pattern.one-field] Pattern matching on union fields uses

the same syntax as struct patterns, except that the pattern must specify
exactly one field.

r[items.union.pattern.safety] Since pattern matching is like reading the
union with a particular field, it has to be placed in unsafe blocks as well.
union MyUnion { f1: u32, f2: f32 }

fn f(u: MyUnion) {
 unsafe {
 match u {
 MyUnion { f1: 10 } => { println!("ten"); }
 MyUnion { f2 } => { println!("{}", f2); }
 }
 }
}

r[items.union.pattern.subpattern] Pattern matching may match a union as
a field of a larger structure. In particular, when using a Rust union to
implement a C tagged union via FFI, this allows matching on the tag and
the corresponding field simultaneously:
#[repr(u32)]
enum Tag { I, F }

#[repr(C)]
union U {
 i: i32,
 f: f32,
}

#[repr(C)]
struct Value {

 tag: Tag,
 u: U,
}

fn is_zero(v: Value) -> bool {
 unsafe {
 match v {
 Value { tag: Tag::I, u: U { i: 0 } } => true,
 Value { tag: Tag::F, u: U { f: num } } if num ==
0.0 => true,
 _ => false,
 }
 }
}

r[items.union.ref]

References to union fields
r[items.union.ref.intro] Since union fields share common storage,

gaining write access to one field of a union can give write access to all its
remaining fields.

r[items.union.ref.borrow] Borrow checking rules have to be adjusted to
account for this fact. As a result, if one field of a union is borrowed, all its
remaining fields are borrowed as well for the same lifetime.
union MyUnion { f1: u32, f2: f32 }
// ERROR: cannot borrow `u` (via `u.f2`) as mutable more than
once at a time
fn test() {
 let mut u = MyUnion { f1: 1 };
 unsafe {
 let b1 = &mut u.f1;
// ---- first mutable borrow occurs here
(via `u.f1`)
 let b2 = &mut u.f2;
// ^^^^ second mutable borrow occurs here
(via `u.f2`)
 *b1 = 5;
 }
// - first borrow ends here
 assert_eq!(unsafe { u.f1 }, 5);
}

r[items.union.ref.usage] As you could see, in many aspects (except for
layouts, safety, and ownership) unions behave exactly like structs, largely as
a consequence of inheriting their syntactic shape from structs. This is also
true for many unmentioned aspects of Rust language (such as privacy, name
resolution, type inference, generics, trait implementations, inherent
implementations, coherence, pattern checking, etc etc etc).

r[items.const]

Constant items
r[items.const.syntax]

ConstantItem ->
 `const` (IDENTIFIER | `_`) `:` Type (`=` Expression)?
`;`

r[items.const.intro] A constant item is an optionally named constant
value which is not associated with a specific memory location in the
program.

r[items.const.behavior] Constants are essentially inlined wherever they
are used, meaning that they are copied directly into the relevant context
when used. This includes usage of constants from external crates, and non-
Copy types. References to the same constant are not necessarily guaranteed
to refer to the same memory address.

r[items.const.namespace] The constant declaration defines the constant
value in the value namespace of the module or block where it is located.

r[items.const.static] Constants must be explicitly typed. The type must
have a 'static lifetime: any references in the initializer must have
'static lifetimes. References in the type of a constant default to 'static
lifetime; see static lifetime elision.

r[items.const.static-temporary] A reference to a constant will have
'static lifetime if the constant value is eligible for promotion; otherwise,
a temporary will be created.
const BIT1: u32 = 1 << 0;
const BIT2: u32 = 1 << 1;

const BITS: [u32; 2] = [BIT1, BIT2];
const STRING: &'static str = "bitstring";

struct BitsNStrings<'a> {
 mybits: [u32; 2],
 mystring: &'a str,
}

clbr://internal.invalid/book/OEBPS/const_eval.md#constant-expressions
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#copy
clbr://internal.invalid/book/OEBPS/names/namespaces.md
clbr://internal.invalid/book/OEBPS/lifetime-elision.md#const-and-static-elision
clbr://internal.invalid/book/OEBPS/destructors.md#constant-promotion

const BITS_N_STRINGS: BitsNStrings<'static> = BitsNStrings {
 mybits: BITS,
 mystring: STRING,
};

r[items.const.no-mut-refs] The final value of a const item cannot
contain any mutable references.
#![allow(static_mut_refs)]
static mut S: u8 = 0;
const C: &u8 = unsafe { &mut S }; // OK

use core::sync::atomic::AtomicU8;
static S: AtomicU8 = AtomicU8::new(0);
const C: &AtomicU8 = &S; // OK

#![allow(static_mut_refs)]
static mut S: u8 = 0;
const C: &mut u8 = unsafe { &mut S }; // ERROR not allowed

[!NOTE] We also disallow, in the final value, shared references to
mutable statics created in the initializer for a separate reason.
Consider:
use core::sync::atomic::AtomicU8;
const C: &AtomicU8 = &AtomicU8::new(0); // ERROR

Here, the AtomicU8 is a temporary that is lifetime extended to
'static (see [destructors.scope.lifetime-extension.static]), and
references to lifetime-extended temporaries with interior mutability are
not allowed in the final value of a constant expression (see [const-
eval.const-expr.borrows]).

r[items.const.expr-omission] The constant expression may only be
omitted in a trait definition.

r[items.const.destructor]

clbr://internal.invalid/book/OEBPS/items/traits.md

Constants with Destructors
Constants can contain destructors. Destructors are run when the value

goes out of scope.
struct TypeWithDestructor(i32);

impl Drop for TypeWithDestructor {
 fn drop(&mut self) {
 println!("Dropped. Held {}.", self.0);
 }
}

const ZERO_WITH_DESTRUCTOR: TypeWithDestructor =
TypeWithDestructor(0);

fn create_and_drop_zero_with_destructor() {
 let x = ZERO_WITH_DESTRUCTOR;
 // x gets dropped at end of function, calling drop.
 // prints "Dropped. Held 0.".
}

r[items.const.unnamed]

Unnamed constant
r[items.const.unnamed.intro] Unlike an associated constant, a free

constant may be unnamed by using an underscore instead of the name. For
example:
const _: () = { struct _SameNameTwice; };

// OK although it is the same name as above:
const _: () = { struct _SameNameTwice; };

r[items.const.unnamed.repetition] As with underscore imports, macros
may safely emit the same unnamed constant in the same scope more than
once. For example, the following should not produce an error:
macro_rules! m {
 ($item: item) => { $item $item }
}

m!(const _: () = (););
// This expands to:
// const _: () = ();
// const _: () = ();

r[items.const.eval]

clbr://internal.invalid/book/OEBPS/items/associated-items.md#associated-constants
clbr://internal.invalid/book/OEBPS/glossary.md#free-item
clbr://internal.invalid/book/OEBPS/items/use-declarations.md#underscore-imports

Evaluation
Free constants are always evaluated at compile-time to surface panics.

This happens even within an unused function:
// Compile-time panic
const PANIC: () = std::unimplemented!();

fn unused_generic_function<T>() {
 // A failing compile-time assertion
 const _: () = assert!(usize::BITS == 0);
}

clbr://internal.invalid/book/OEBPS/glossary.md#free-item
clbr://internal.invalid/book/OEBPS/const_eval.md

r[items.static]

Static items
r[items.static.syntax]

StaticItem ->
 ItemSafety?[^extern-safety] `static` `mut`? IDENTIFIER `:`
Type (`=` Expression)? `;`
1

The safe and unsafe function qualifiers are only allowed semantically
within extern blocks.

r[items.static.intro] A static item is similar to a constant, except that it
represents an allocated object in the program that is initialized with the
initializer expression. All references and raw pointers to the static refer to
the same allocated object.

r[items.static.lifetime] Static items have the static lifetime, which
outlives all other lifetimes in a Rust program. Static items do not call drop
at the end of the program.

r[items.static.storage-disjointness] If the static has a size of at least 1
byte, this allocated object is disjoint from all other such static objects as
well as heap allocations and stack-allocated variables. However, the storage
of immutable static items can overlap with objects that do not themselves
have a unique address, such as promoteds and const items.

r[items.static.namespace] The static declaration defines a static value in
the value namespace of the module or block where it is located.

r[items.static.init] The static initializer is a constant expression evaluated
at compile time. Static initializers may refer to and read from other statics.
When reading from mutable statics, they read the initial value of that static.

r[items.static.read-only] Non- mut static items that contain a type that is
not interior mutable may be placed in read-only memory.

r[items.static.safety] All access to a static is safe, but there are a number
of restrictions on statics:

r[items.static.sync]

clbr://internal.invalid/book/OEBPS/items/constant-items.md
clbr://internal.invalid/book/OEBPS/destructors.md
clbr://internal.invalid/book/OEBPS/destructors.md#constant-promotion
clbr://internal.invalid/book/OEBPS/items/constant-items.md
clbr://internal.invalid/book/OEBPS/names/namespaces.md
clbr://internal.invalid/book/OEBPS/const_eval.md#constant-expressions
clbr://internal.invalid/book/OEBPS/interior-mutability.md

The type must have the Sync trait bound to allow thread-safe access.
r[items.static.init.omission] The initializer expression must be omitted in

an external block, and must be provided for free static items.
r[items.static.safety-qualifiers] The safe and unsafe qualifiers are

semantically only allowed when used in an external block.
r[items.static.generics]

std::marker::Sync
clbr://internal.invalid/book/OEBPS/items/external-blocks.md
clbr://internal.invalid/book/OEBPS/items/external-blocks.md

Statics & generics
A static item defined in a generic scope (for example in a blanket or

default implementation) will result in exactly one static item being defined,
as if the static definition was pulled out of the current scope into the
module. There will not be one item per monomorphization.

This code:
use std::sync::atomic::{AtomicUsize, Ordering};

trait Tr {
 fn default_impl() {
 static COUNTER: AtomicUsize = AtomicUsize::new(0);
 println!("default_impl: counter was {}",
COUNTER.fetch_add(1, Ordering::Relaxed));
 }

 fn blanket_impl();
}

struct Ty1 {}
struct Ty2 {}

impl<T> Tr for T {
 fn blanket_impl() {
 static COUNTER: AtomicUsize = AtomicUsize::new(0);
 println!("blanket_impl: counter was {}",
COUNTER.fetch_add(1, Ordering::Relaxed));
 }
}

fn main() {
 <Ty1 as Tr>::default_impl();
 <Ty2 as Tr>::default_impl();
 <Ty1 as Tr>::blanket_impl();

 <Ty2 as Tr>::blanket_impl();
}

prints
default_impl: counter was 0
default_impl: counter was 1
blanket_impl: counter was 0
blanket_impl: counter was 1

r[items.static.mut]

Mutable statics
r[items.static.mut.intro] If a static item is declared with the mut

keyword, then it is allowed to be modified by the program. One of Rust's
goals is to make concurrency bugs hard to run into, and this is obviously a
very large source of race conditions or other bugs.

r[items.static.mut.safety] For this reason, an unsafe block is required
when either reading or writing a mutable static variable. Care should be
taken to ensure that modifications to a mutable static are safe with respect
to other threads running in the same process.

r[items.static.mut.extern] Mutable statics are still very useful, however.
They can be used with C libraries and can also be bound from C libraries in
an extern block.
fn atomic_add(_: *mut u32, _: u32) -> u32 { 2 }

static mut LEVELS: u32 = 0;

// This violates the idea of no shared state, and this doesn't
internally
// protect against races, so this function is `unsafe`
unsafe fn bump_levels_unsafe() -> u32 {
 unsafe {
 let ret = LEVELS;
 LEVELS += 1;
 return ret;
 }
}

// As an alternative to `bump_levels_unsafe`, this function is
safe, assuming
// that we have an atomic_add function which returns the old
value. This
// function is safe only if no other code accesses the static
in a non-atomic

// fashion. If such accesses are possible (such as in
`bump_levels_unsafe`),
// then this would need to be `unsafe` to indicate to the
caller that they
// must still guard against concurrent access.
fn bump_levels_safe() -> u32 {
 unsafe {
 return atomic_add(&raw mut LEVELS, 1);
 }
}

r[items.static.mut.sync] Mutable statics have the same restrictions as
normal statics, except that the type does not have to implement the Sync
trait.

r[items.static.alternate]

Using Statics or Consts
It can be confusing whether or not you should use a constant item or a

static item. Constants should, in general, be preferred over statics unless
one of the following are true:

Large amounts of data are being stored.
The single-address property of statics is required.
Interior mutability is required.

r[items.traits]

Traits
r[items.traits.syntax]

Trait ->
 `unsafe`? `trait` IDENTIFIER GenericParams? (`:`
TypeParamBounds?)? WhereClause?
 `{`
 InnerAttribute*
 AssociatedItem*
 `}`

r[items.traits.intro] A trait describes an abstract interface that types can
implement. This interface consists of associated items, which come in three
varieties:

functions
types
constants

r[items.traits.namespace] The trait declaration defines a trait in the type
namespace of the module or block where it is located.

r[items.traits.associated-item-namespaces] Associated items are defined
as members of the trait within their respective namespaces. Associated
types are defined in the type namespace. Associated constants and
associated functions are defined in the value namespace.

r[items.traits.self-param] All traits define an implicit type parameter
Self that refers to "the type that is implementing this interface". Traits may
also contain additional type parameters. These type parameters, including
Self , may be constrained by other traits and so forth as usual.

r[items.traits.impls] Traits are implemented for specific types through
separate implementations.

r[items.traits.associated-item-decls] Trait functions may omit the
function body by replacing it with a semicolon. This indicates that the
implementation must define the function. If the trait function defines a
body, this definition acts as a default for any implementation which does

clbr://internal.invalid/book/OEBPS/items/associated-items.md
clbr://internal.invalid/book/OEBPS/items/associated-items.md#associated-functions-and-methods
clbr://internal.invalid/book/OEBPS/items/associated-items.md#associated-types
clbr://internal.invalid/book/OEBPS/items/associated-items.md#associated-constants
clbr://internal.invalid/book/OEBPS/names/namespaces.md
clbr://internal.invalid/book/OEBPS/items/generics.md
clbr://internal.invalid/book/OEBPS/items/implementations.md

not override it. Similarly, associated constants may omit the equals sign and
expression to indicate implementations must define the constant value.
Associated types must never define the type, the type may only be specified
in an implementation.
// Examples of associated trait items with and without
definitions.
trait Example {
 const CONST_NO_DEFAULT: i32;
 const CONST_WITH_DEFAULT: i32 = 99;
 type TypeNoDefault;
 fn method_without_default(&self);
 fn method_with_default(&self) {}
}

r[items.traits.const-fn] Trait functions are not allowed to be const .
r[items.traits.bounds]

clbr://internal.invalid/book/OEBPS/items/functions.md#const-functions

Trait bounds
Generic items may use traits as bounds on their type parameters.
r[items.traits.generic]

clbr://internal.invalid/book/OEBPS/trait-bounds.md

Generic traits
Type parameters can be specified for a trait to make it generic. These

appear after the trait name, using the same syntax used in generic functions.
trait Seq<T> {
 fn len(&self) -> u32;
 fn elt_at(&self, n: u32) -> T;
 fn iter<F>(&self, f: F) where F: Fn(T);
}

r[items.traits.dyn-compatible]

clbr://internal.invalid/book/OEBPS/items/functions.md#generic-functions

Dyn compatibility
r[items.traits.dyn-compatible.intro] A dyn-compatible trait can be the

base trait of a trait object. A trait is dyn compatible if it has the following
qualities:

r[items.traits.dyn-compatible.supertraits]

All supertraits must also be dyn compatible.
r[items.traits.dyn-compatible.sized]

Sized must not be a supertrait. In other words, it must not require
Self: Sized .

r[items.traits.dyn-compatible.associated-consts]

It must not have any associated constants.
r[items.traits.dyn-compatible.associated-types]

It must not have any associated types with generics.
r[items.traits.dyn-compatible.associated-functions]

All associated functions must either be dispatchable from a trait object
or be explicitly non-dispatchable:

Dispatchable functions must:

Not have any type parameters (although lifetime parameters
are allowed).
Be a method that does not use Self except in the type of the
receiver.
Have a receiver with one of the following types:

&Self (i.e. &self)
&mut Self (i.e &mut self)
Box<Self>

Rc<Self>

clbr://internal.invalid/book/OEBPS/types/trait-object.md
clbr://internal.invalid/book/OEBPS/items/associated-items.md#methods
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#boxt
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#rct

Arc<Self>

Pin<P> where P is one of the types above
Not have an opaque return type; that is,

Not be an async fn (which has a hidden Future
type).
Not have a return position impl Trait type (fn
example(&self) -> impl Trait).

Not have a where Self: Sized bound (receiver type of
Self (i.e. self) implies this).

Explicitly non-dispatchable functions require:

Have a where Self: Sized bound (receiver type of Self
(i.e. self) implies this).

r[items.traits.dyn-compatible.async-traits]

The [AsyncFn], [AsyncFnMut], and [AsyncFnOnce] traits are not dyn-
compatible.

[!NOTE] This concept was formerly known as object safety.

use std::rc::Rc;
use std::sync::Arc;
use std::pin::Pin;
// Examples of dyn compatible methods.
trait TraitMethods {
 fn by_ref(self: &Self) {}
 fn by_ref_mut(self: &mut Self) {}
 fn by_box(self: Box<Self>) {}
 fn by_rc(self: Rc<Self>) {}
 fn by_arc(self: Arc<Self>) {}
 fn by_pin(self: Pin<&Self>) {}
 fn with_lifetime<'a>(self: &'a Self) {}
 fn nested_pin(self: Pin<Arc<Self>>) {}
}
struct S;

clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#arct
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#pinp

impl TraitMethods for S {}
let t: Box<dyn TraitMethods> = Box::new(S);

// This trait is dyn compatible, but these methods cannot be
dispatched on a trait object.
trait NonDispatchable {
 // Non-methods cannot be dispatched.
 fn foo() where Self: Sized {}
 // Self type isn't known until runtime.
 fn returns(&self) -> Self where Self: Sized;
 // `other` may be a different concrete type of the
receiver.
 fn param(&self, other: Self) where Self: Sized {}
 // Generics are not compatible with vtables.
 fn typed<T>(&self, x: T) where Self: Sized {}
}

struct S;
impl NonDispatchable for S {
 fn returns(&self) -> Self where Self: Sized { S }
}
let obj: Box<dyn NonDispatchable> = Box::new(S);
obj.returns(); // ERROR: cannot call with Self return
obj.param(S); // ERROR: cannot call with Self parameter
obj.typed(1); // ERROR: cannot call with generic type
use std::rc::Rc;
// Examples of dyn-incompatible traits.
trait DynIncompatible {
 const CONST: i32 = 1; // ERROR: cannot have associated
const

 fn foo() {} // ERROR: associated function without Sized
 fn returns(&self) -> Self; // ERROR: Self in return type
 fn typed<T>(&self, x: T) {} // ERROR: has generic type
parameters
 fn nested(self: Rc<Box<Self>>) {} // ERROR: nested receiver

cannot be downcasted
}

struct S;
impl DynIncompatible for S {
 fn returns(&self) -> Self { S }
}
let obj: Box<dyn DynIncompatible> = Box::new(S); // ERROR
// `Self: Sized` traits are dyn-incompatible.
trait TraitWithSize where Self: Sized {}

struct S;
impl TraitWithSize for S {}
let obj: Box<dyn TraitWithSize> = Box::new(S); // ERROR
// Dyn-incompatible if `Self` is a type argument.
trait Super<A> {}
trait WithSelf: Super<Self> where Self: Sized {}

struct S;
impl<A> Super<A> for S {}
impl WithSelf for S {}
let obj: Box<dyn WithSelf> = Box::new(S); // ERROR: cannot use
`Self` type parameter

r[items.traits.supertraits]

Supertraits
r[items.traits.supertraits.intro] Supertraits are traits that are required to

be implemented for a type to implement a specific trait. Furthermore,
anywhere a generic or trait object is bounded by a trait, it has access to the
associated items of its supertraits.

r[items.traits.supertraits.decl] Supertraits are declared by trait bounds on
the Self type of a trait and transitively the supertraits of the traits declared
in those trait bounds. It is an error for a trait to be its own supertrait.

r[items.traits.supertraits.subtrait] The trait with a supertrait is called a
subtrait of its supertrait.

The following is an example of declaring Shape to be a supertrait of
Circle .
trait Shape { fn area(&self) -> f64; }
trait Circle: Shape { fn radius(&self) -> f64; }

And the following is the same example, except using where clauses.
trait Shape { fn area(&self) -> f64; }
trait Circle where Self: Shape { fn radius(&self) -> f64; }

This next example gives radius a default implementation using the
area function from Shape .
trait Shape { fn area(&self) -> f64; }
trait Circle where Self: Shape {
 fn radius(&self) -> f64 {
 // A = pi * r^2
 // so algebraically,
 // r = sqrt(A / pi)
 (self.area() / std::f64::consts::PI).sqrt()
 }
}

This next example calls a supertrait method on a generic parameter.
trait Shape { fn area(&self) -> f64; }
trait Circle: Shape { fn radius(&self) -> f64; }

clbr://internal.invalid/book/OEBPS/items/generics.md
clbr://internal.invalid/book/OEBPS/types/trait-object.md
clbr://internal.invalid/book/OEBPS/items/generics.md#where-clauses

fn print_area_and_radius<C: Circle>(c: C) {
 // Here we call the area method from the supertrait
`Shape` of `Circle`.
 println!("Area: {}", c.area());
 println!("Radius: {}", c.radius());
}

Similarly, here is an example of calling supertrait methods on trait
objects.
trait Shape { fn area(&self) -> f64; }
trait Circle: Shape { fn radius(&self) -> f64; }
struct UnitCircle;
impl Shape for UnitCircle { fn area(&self) -> f64 {
std::f64::consts::PI } }
impl Circle for UnitCircle { fn radius(&self) -> f64 { 1.0 }
}
let circle = UnitCircle;
let circle = Box::new(circle) as Box<dyn Circle>;
let nonsense = circle.radius() * circle.area();

r[items.traits.safety]

Unsafe traits
r[items.traits.safety.intro] Traits items that begin with the unsafe

keyword indicate that implementing the trait may be unsafe. It is safe to use
a correctly implemented unsafe trait. The trait implementation must also
begin with the unsafe keyword.

Sync and Send are examples of unsafe traits.
r[items.traits.params]

clbr://internal.invalid/book/OEBPS/unsafety.md
clbr://internal.invalid/book/OEBPS/items/implementations.md#trait-implementations
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#sync
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#send

Parameter patterns
r[items.traits.params.patterns-no-body] Parameters in associated

functions without a body only allow [IDENTIFIER] or _ wild card
patterns, as well as the form allowed by [SelfParam]. mut [IDENTIFIER]
is currently allowed, but it is deprecated and will become a hard error in the
future.
trait T {
 fn f1(&self);
 fn f2(x: Self, _: i32);
}

trait T {
 fn f2(&x: &i32); // ERROR: patterns aren't allowed in
functions without bodies
}

r[items.traits.params.patterns-with-body] Parameters in associated
functions with a body only allow irrefutable patterns.
trait T {
 fn f1((a, b): (i32, i32)) {} // OK: is irrefutable
}

trait T {
 fn f1(123: i32) {} // ERROR: pattern is refutable
 fn f2(Some(x): Option<i32>) {} // ERROR: pattern is
refutable
}

r[items.traits.params.pattern-required.edition2018]

[!EDITION-2018] Prior to the 2018 edition, the pattern for an
associated function parameter is optional:
// 2015 Edition
trait T {
 fn f(i32); // OK: parameter identifiers are not
required
}

clbr://internal.invalid/book/OEBPS/patterns.md#wildcard-pattern

Beginning in the 2018 edition, patterns are no longer optional.

r[items.traits.params.restriction-patterns.edition2018]

[!EDITION-2018] Prior to the 2018 edition, parameters in
associated functions with a body are limited to the following kinds of
patterns:

[IDENTIFIER]
mut [IDENTIFIER]
_

& [IDENTIFIER]
&& [IDENTIFIER]

// 2015 Edition
trait T {
 fn f1((a, b): (i32, i32)) {} // ERROR: pattern not
allowed
}

Beginning in 2018, all irrefutable patterns are allowed as described
in [items.traits.params.patterns-with-body].

r[items.traits.associated-visibility]

clbr://internal.invalid/book/OEBPS/patterns.md#wildcard-pattern

Item visibility
r[items.traits.associated-visibility.intro] Trait items syntactically allow a

[Visibility] annotation, but this is rejected when the trait is validated. This
allows items to be parsed with a unified syntax across different contexts
where they are used. As an example, an empty vis macro fragment
specifier can be used for trait items, where the macro rule may be used in
other situations where visibility is allowed.
macro_rules! create_method {
 ($vis:vis $name:ident) => {
 $vis fn $name(&self) {}
 };
}

trait T1 {
 // Empty `vis` is allowed.
 create_method! { method_of_t1 }
}

struct S;

impl S {
 // Visibility is allowed here.
 create_method! { pub method_of_s }
}

impl T1 for S {}

fn main() {
 let s = S;
 s.method_of_t1();
 s.method_of_s();
}

r[items.impl]

Implementations
r[items.impl.syntax]

Implementation -> InherentImpl | TraitImpl

InherentImpl ->
 `impl` GenericParams? Type WhereClause? `{`
 InnerAttribute*
 AssociatedItem*
 `}`

TraitImpl ->
 `unsafe`? `impl` GenericParams? `!`? TypePath `for` Type
 WhereClause?
 `{`
 InnerAttribute*
 AssociatedItem*
 `}`

r[items.impl.intro] An implementation is an item that associates items
with an implementing type. Implementations are defined with the keyword
impl and contain functions that belong to an instance of the type that is
being implemented or to the type statically.

r[items.impl.kinds] There are two types of implementations:

inherent implementations
trait implementations

r[items.impl.inherent]

clbr://internal.invalid/book/OEBPS/items/traits.md

Inherent Implementations
r[items.impl.inherent.intro] An inherent implementation is defined as the

sequence of the impl keyword, generic type declarations, a path to a
nominal type, a where clause, and a bracketed set of associable items.

r[items.impl.inherent.implementing-type] The nominal type is called the
implementing type and the associable items are the associated items to the
implementing type.

r[items.impl.inherent.associated-items] Inherent implementations
associate the contained items to the implementing type.

r[items.impl.inherent.associated-items.allowed-items] Inherent
implementations can contain associated functions (including methods) and
associated constants.

r[items.impl.inherent.type-alias] They cannot contain associated type
aliases.

r[items.impl.inherent.associated-item-path] The path to an associated
item is any path to the implementing type, followed by the associated item's
identifier as the final path component.

r[items.impl.inherent.coherence] A type can also have multiple inherent
implementations. An implementing type must be defined within the same
crate as the original type definition.
pub mod color {
 pub struct Color(pub u8, pub u8, pub u8);

 impl Color {
 pub const WHITE: Color = Color(255, 255, 255);
 }
}

mod values {
 use super::color::Color;
 impl Color {
 pub fn red() -> Color {
 Color(255, 0, 0)

clbr://internal.invalid/book/OEBPS/items/associated-items.md#associated-functions-and-methods
clbr://internal.invalid/book/OEBPS/items/associated-items.md#methods
clbr://internal.invalid/book/OEBPS/items/associated-items.md#associated-constants
clbr://internal.invalid/book/OEBPS/paths.md

 }
 }
}

pub use self::color::Color;
fn main() {
 // Actual path to the implementing type and impl in the
same module.
 color::Color::WHITE;

 // Impl blocks in different modules are still accessed
through a path to the type.
 color::Color::red();

 // Re-exported paths to the implementing type also work.
 Color::red();

 // Does not work, because use in `values` is not pub.
 // values::Color::red();
}

r[items.impl.trait]

Trait Implementations
r[items.impl.trait.intro] A trait implementation is defined like an inherent

implementation except that the optional generic type declarations are
followed by a trait, followed by the keyword for , followed by a path to a
nominal type.

r[items.impl.trait.implemented-trait] The trait is known as the
implemented trait. The implementing type implements the implemented
trait.

r[items.impl.trait.def-requirement] A trait implementation must define
all non-default associated items declared by the implemented trait, may
redefine default associated items defined by the implemented trait, and
cannot define any other items.

r[items.impl.trait.associated-item-path] The path to the associated items
is < followed by a path to the implementing type followed by as followed
by a path to the trait followed by > as a path component followed by the
associated item's path component.

r[items.impl.trait.safety] Unsafe traits require the trait implementation to
begin with the unsafe keyword.
#[derive(Copy, Clone)]
struct Point {x: f64, y: f64};
type Surface = i32;
struct BoundingBox {x: f64, y: f64, width: f64, height:
f64};
trait Shape { fn draw(&self, s: Surface); fn
bounding_box(&self) -> BoundingBox; }
fn do_draw_circle(s: Surface, c: Circle) { }
struct Circle {
 radius: f64,
 center: Point,
}

impl Copy for Circle {}

clbr://internal.invalid/book/OEBPS/items/traits.md
clbr://internal.invalid/book/OEBPS/items/traits.md#unsafe-traits

impl Clone for Circle {
 fn clone(&self) -> Circle { *self }
}

impl Shape for Circle {
 fn draw(&self, s: Surface) { do_draw_circle(s, *self); }
 fn bounding_box(&self) -> BoundingBox {
 let r = self.radius;
 BoundingBox {
 x: self.center.x - r,
 y: self.center.y - r,
 width: 2.0 * r,
 height: 2.0 * r,
 }
 }
}

r[items.impl.trait.coherence]

Trait Implementation Coherence
r[items.impl.trait.coherence.intro] A trait implementation is considered

incoherent if either the orphan rules check fails or there are overlapping
implementation instances.

r[items.impl.trait.coherence.overlapping] Two trait implementations
overlap when there is a non-empty intersection of the traits the
implementation is for, the implementations can be instantiated with the
same type.

r[items.impl.trait.orphan-rule]

Orphan rules
r[items.impl.trait.orphan-rule.intro] The orphan rule states that a trait

implementation is only allowed if either the trait or at least one of the types
in the implementation is defined in the current crate. It prevents conflicting
trait implementations across different crates and is key to ensuring
coherence.

An orphan implementation is one that implements a foreign trait for a
foreign type. If these were freely allowed, two crates could implement the
same trait for the same type in incompatible ways, creating a situation
where adding or updating a dependency could break compilation due to
conflicting implementations.

The orphan rule enables library authors to add new implementations to
their traits without fear that they'll break downstream code. Without these
restrictions, a library couldn't add an implementation like impl<T:

Display> MyTrait for T without potentially conflicting with downstream
implementations.

r[items.impl.trait.orphan-rule.general] Given impl<P1..=Pn>

Trait<T1..=Tn> for T0 , an impl is valid only if at least one of the
following is true:

Trait is a local trait
All of

At least one of the types T0..=Tn must be a local type. Let Ti be
the first such type.
No uncovered type parameters P1..=Pn may appear in T0..Ti
(excluding Ti)

r[items.impl.trait.uncovered-param] Only the appearance of uncovered
type parameters is restricted.

r[items.impl.trait.fundamental] Note that for the purposes of coherence,
fundamental types are special. The T in Box<T> is not considered covered,
and Box<LocalType> is considered local.

r[items.impl.generics]

clbr://internal.invalid/book/OEBPS/glossary.md#local-trait
clbr://internal.invalid/book/OEBPS/glossary.md#local-type
clbr://internal.invalid/book/OEBPS/glossary.md#uncovered-type
clbr://internal.invalid/book/OEBPS/glossary.md#fundamental-type-constructors

Generic Implementations
r[items.impl.generics.intro] An implementation can take generic

parameters, which can be used in the rest of the implementation.
Implementation parameters are written directly after the impl keyword.
trait Seq<T> { fn dummy(&self, _: T) { } }
impl<T> Seq<T> for Vec<T> {
 /* ... */
}
impl Seq<bool> for u32 {
 /* Treat the integer as a sequence of bits */
}

r[items.impl.generics.usage] Generic parameters constrain an
implementation if the parameter appears at least once in one of:

The implemented trait, if it has one
The implementing type
As an associated type in the bounds of a type that contains another
parameter that constrains the implementation

r[items.impl.generics.constrain] Type and const parameters must always
constrain the implementation. Lifetimes must constrain the implementation
if the lifetime is used in an associated type.

Examples of constraining situations:
trait Trait{}
trait GenericTrait<T> {}
trait HasAssocType { type Ty; }
struct Struct;
struct GenericStruct<T>(T);
struct ConstGenericStruct<const N: usize>([(); N]);
// T constrains by being an argument to GenericTrait.
impl<T> GenericTrait<T> for i32 { /* ... */ }

// T constrains by being an argument to GenericStruct
impl<T> Trait for GenericStruct<T> { /* ... */ }

clbr://internal.invalid/book/OEBPS/items/generics.md
clbr://internal.invalid/book/OEBPS/items/associated-items.md#associated-types
clbr://internal.invalid/book/OEBPS/trait-bounds.md

// Likewise, N constrains by being an argument to
ConstGenericStruct
impl<const N: usize> Trait for ConstGenericStruct<N> { /* ...
*/ }

// T constrains by being in an associated type in a bound for
type `U` which is
// itself a generic parameter constraining the trait.
impl<T, U> GenericTrait<U> for u32 where U: HasAssocType<Ty =
T> { /* ... */ }

// Like previous, except the type is `(U, isize)`. `U` appears
inside the type
// that includes `T`, and is not the type itself.
impl<T, U> GenericStruct<U> where (U, isize): HasAssocType<Ty
= T> { /* ... */ }

Examples of non-constraining situations:
// The rest of these are errors, since they have type or const
parameters that
// do not constrain.

// T does not constrain since it does not appear at all.
impl<T> Struct { /* ... */ }

// N does not constrain for the same reason.
impl<const N: usize> Struct { /* ... */ }

// Usage of T inside the implementation does not constrain the
impl.
impl<T> Struct {
 fn uses_t(t: &T) { /* ... */ }
}

// T is used as an associated type in the bounds for U, but U

does not constrain.
impl<T, U> Struct where U: HasAssocType<Ty = T> { /* ... */ }

// T is used in the bounds, but not as an associated type, so
it does not constrain.
impl<T, U> GenericTrait<U> for u32 where U: GenericTrait<T> {}

Example of an allowed unconstraining lifetime parameter:
struct Struct;
impl<'a> Struct {}

Example of a disallowed unconstraining lifetime parameter:
struct Struct;
trait HasAssocType { type Ty; }
impl<'a> HasAssocType for Struct {
 type Ty = &'a Struct;
}

r[items.impl.attributes]

Attributes on Implementations
Implementations may contain outer attributes before the impl keyword

and inner attributes inside the brackets that contain the associated items.
Inner attributes must come before any associated items. The attributes that
have meaning here are cfg , deprecated , doc , and the lint check
attributes.

clbr://internal.invalid/book/OEBPS/attributes.md
clbr://internal.invalid/book/OEBPS/attributes.md
clbr://internal.invalid/book/OEBPS/conditional-compilation.md
clbr://internal.invalid/book/OEBPS/attributes/diagnostics.md#the-deprecated-attribute
clbr://internal.invalid/book/rustdoc/the-doc-attribute.html
clbr://internal.invalid/book/OEBPS/attributes/diagnostics.md#lint-check-attributes

r[items.extern]

External blocks
r[items.extern.syntax]

ExternBlock ->
 `unsafe`?[^unsafe-2024] `extern` Abi? `{`
 InnerAttribute*
 ExternalItem*
 `}`

ExternalItem ->
 OuterAttribute* (
 MacroInvocationSemi
 | Visibility? StaticItem
 | Visibility? Function
)
1

Starting with the 2024 Edition, the unsafe keyword is required
semantically.

r[items.extern.intro] External blocks provide declarations of items that
are not defined in the current crate and are the basis of Rust's foreign
function interface. These are akin to unchecked imports.

r[items.extern.allowed-kinds] Two kinds of item declarations are
allowed in external blocks: functions and statics.

r[items.extern.fn-safety] Calling functions or accessing statics that are
declared in external blocks is only allowed in an unsafe context.

r[items.extern.namespace] The external block defines its functions and
statics in the value namespace of the module or block where it is located.

r[items.extern.unsafe-required] The unsafe keyword is semantically
required to appear before the extern keyword on external blocks.

r[items.extern.edition2024]

[!EDITION-2024] Prior to the 2024 edition, the unsafe keyword is
optional. The safe and unsafe item qualifiers are only allowed if the

clbr://internal.invalid/book/OEBPS/items/functions.md
clbr://internal.invalid/book/OEBPS/items/static-items.md
clbr://internal.invalid/book/OEBPS/names/namespaces.md

external block itself is marked as unsafe .

r[items.extern.fn]

Functions
r[items.extern.fn.body] Functions within external blocks are declared in

the same way as other Rust functions, with the exception that they must not
have a body and are instead terminated by a semicolon.

r[items.extern.fn.param-patterns] Patterns are not allowed in parameters,
only [IDENTIFIER] or _ may be used.

r[items.extern.fn.qualifiers] The safe and unsafe function qualifiers
are allowed, but other function qualifiers (e.g. const , async , extern) are
not.

r[items.extern.fn.foreign-abi] Functions within external blocks may be
called by Rust code, just like functions defined in Rust. The Rust compiler
automatically translates between the Rust ABI and the foreign ABI.

r[items.extern.fn.safety] A function declared in an extern block is
implicitly unsafe unless the safe function qualifier is present.

r[items.extern.fn.fn-ptr] When coerced to a function pointer, a function
declared in an extern block has type extern "abi" for<'l1, ..., 'lm>
fn(A1, ..., An) -> R , where 'l1 , ... 'lm are its lifetime parameters,
A1 , ..., An are the declared types of its parameters, R is the declared return
type.

r[items.extern.static]

Statics
r[items.extern.static.intro] Statics within external blocks are declared in

the same way as statics outside of external blocks, except that they do not
have an expression initializing their value.

r[items.extern.static.safety] Unless a static item declared in an extern
block is qualified as safe , it is unsafe to access that item, whether or not
it's mutable, because there is nothing guaranteeing that the bit pattern at the
static's memory is valid for the type it is declared with, since some arbitrary
(e.g. C) code is in charge of initializing the static.

r[items.extern.static.mut] Extern statics can be either immutable or
mutable just like statics outside of external blocks.

r[items.extern.static.read-only] An immutable static must be initialized
before any Rust code is executed. It is not enough for the static to be
initialized before Rust code reads from it. Once Rust code runs, mutating an
immutable static (from inside or outside Rust) is UB, except if the mutation
happens to bytes inside of an UnsafeCell .

r[items.extern.abi]

clbr://internal.invalid/book/OEBPS/items/static-items.md
clbr://internal.invalid/book/OEBPS/items/static-items.md

ABI
r[items.extern.abi.intro] By default external blocks assume that the

library they are calling uses the standard C ABI on the specific platform.
Other ABIs may be specified using an abi string, as shown here:
// Interface to the Windows API
unsafe extern "system" { }

r[items.extern.abi.standard] The following ABI strings are supported on
all platforms:

r[items.extern.abi.rust]

unsafe extern "Rust" -- The default ABI when you write a normal
fn foo() in any Rust code.

r[items.extern.abi.c]

unsafe extern "C" -- This is the same as extern fn foo() ;
whatever the default your C compiler supports.

r[items.extern.abi.system]

unsafe extern "system" -- Usually the same as extern "C" , except
on Win32, in which case it's "stdcall" , or what you should use to
link to the Windows API itself

r[items.extern.abi.unwind]

extern "C-unwind" and extern "system-unwind" -- identical to
"C" and "system" , respectively, but with different behavior when the
callee unwinds (by panicking or throwing a C++ style exception).

r[items.extern.abi.platform] There are also some platform-specific ABI
strings:

r[items.extern.abi.cdecl]

unsafe extern "cdecl" -- The default for x86_32 C code.
r[items.extern.abi.stdcall]

clbr://internal.invalid/book/OEBPS/items/functions.md#unwinding

unsafe extern "stdcall" -- The default for the Win32 API on
x86_32.

r[items.extern.abi.win64]

unsafe extern "win64" -- The default for C code on x86_64
Windows.

r[items.extern.abi.sysv64]

unsafe extern "sysv64" -- The default for C code on non-Windows
x86_64.

r[items.extern.abi.aapcs]

unsafe extern "aapcs" -- The default for ARM.
r[items.extern.abi.fastcall]

unsafe extern "fastcall" -- The fastcall ABI -- corresponds to
MSVC's __fastcall and GCC and clang's
__attribute__((fastcall))

r[items.extern.abi.thiscall]

unsafe extern "thiscall" -- The default for C++ member
functions on x86_32 MSVC -- corresponds to MSVC's __thiscall
and GCC and clang's __attribute__((thiscall))

r[items.extern.abi.efiapi]

unsafe extern "efiapi" -- The ABI used for UEFI functions.
r[items.extern.abi.platform-unwind-variants] Like "C" and "system" ,

most platform-specific ABI strings also have a corresponding -unwind
variant; specifically, these are:

"aapcs-unwind"

"cdecl-unwind"

"fastcall-unwind"

https://uefi.org/specifications
clbr://internal.invalid/book/OEBPS/items/functions.md#unwinding

"stdcall-unwind"

"sysv64-unwind"

"thiscall-unwind"

"win64-unwind"

r[items.extern.variadic]

Variadic functions
Functions within external blocks may be variadic by specifying ... as

the last argument. The variadic parameter may optionally be specified with
an identifier.
unsafe extern "C" {
 unsafe fn foo(...);
 unsafe fn bar(x: i32, ...);
 unsafe fn with_name(format: *const u8, args: ...);
 // SAFETY: This function guarantees it will not access
 // variadic arguments.
 safe fn ignores_variadic_arguments(x: i32, ...);
}

[!WARNING] The safe qualifier should not be used on a function
in an extern block unless that function guarantees that it will not
access the variadic arguments at all. Passing an unexpected number of
arguments or arguments of unexpected type to a variadic function may
lead to [undefined behavior][undefined].

r[items.extern.attributes]

Attributes on extern blocks
r[items.extern.attributes.intro] The following attributes control the

behavior of external blocks.
r[items.extern.attributes.link]

The link attribute
r[items.extern.attributes.link.intro] The link attribute specifies the

name of a native library that the compiler should link with for the items
within an extern block.

r[items.extern.attributes.link.syntax] It uses the [MetaListNameValueStr]
syntax to specify its inputs. The name key is the name of the native library
to link. The kind key is an optional value which specifies the kind of
library with the following possible values:

r[items.extern.attributes.link.dylib]

dylib --- Indicates a dynamic library. This is the default if kind is
not specified.

r[items.extern.attributes.link.static]

static --- Indicates a static library.
r[items.extern.attributes.link.framework]

framework --- Indicates a macOS framework. This is only valid for
macOS targets.

r[items.extern.attributes.link.raw-dylib]

raw-dylib --- Indicates a dynamic library where the compiler will
generate an import library to link against (see dylib versus raw-
dylib below for details). This is only valid for Windows targets.

r[items.extern.attributes.link.name-requirement] The name key must be
included if kind is specified.

clbr://internal.invalid/book/OEBPS/attributes.md

r[items.extern.attributes.link.modifiers] The optional modifiers

argument is a way to specify linking modifiers for the library to link.
r[items.extern.attributes.link.modifiers.syntax] Modifiers are specified as

a comma-delimited string with each modifier prefixed with either a + or -
to indicate that the modifier is enabled or disabled, respectively.

r[items.extern.attributes.link.modifiers.multiple] Specifying multiple
modifiers arguments in a single link attribute, or multiple identical
modifiers in the same modifiers argument is not currently supported.
Example: #[link(name = "mylib", kind = "static", modifiers =
"+whole-archive")] .

r[items.extern.attributes.link.wasm_import_module] The
wasm_import_module key may be used to specify the WebAssembly
module name for the items within an extern block when importing
symbols from the host environment. The default module name is env if
wasm_import_module is not specified.
#[link(name = "crypto")]
unsafe extern {
 // …
}

#[link(name = "CoreFoundation", kind = "framework")]
unsafe extern {
 // …
}

#[link(wasm_import_module = "foo")]
unsafe extern {
 // …
}

r[items.extern.attributes.link.empty-block] It is valid to add the link
attribute on an empty extern block. You can use this to satisfy the linking
requirements of extern blocks elsewhere in your code (including upstream
crates) instead of adding the attribute to each extern block.

https://webassembly.github.io/spec/core/syntax/modules.html

r[items.extern.attributes.link.modifiers.bundle]

Linking modifiers: bundle
r[items.extern.attributes.link.modifiers.bundle.allowed-kinds] This

modifier is only compatible with the static linking kind. Using any other
kind will result in a compiler error.

r[items.extern.attributes.link.modifiers.bundle.behavior] When building
a rlib or staticlib +bundle means that the native static library will be
packed into the rlib or staticlib archive, and then retrieved from there during
linking of the final binary.

r[items.extern.attributes.link.modifiers.bundle.behavior-negative] When
building a rlib -bundle means that the native static library is registered as a
dependency of that rlib "by name", and object files from it are included only
during linking of the final binary, the file search by that name is also
performed during final linking.
When building a staticlib -bundle means that the native static library is
simply not included into the archive and some higher level build system
will need to add it later during linking of the final binary.

r[items.extern.attributes.link.modifiers.bundle.no-effect] This modifier
has no effect when building other targets like executables or dynamic
libraries.

r[items.extern.attributes.link.modifiers.bundle.default] The default for
this modifier is +bundle .

More implementation details about this modifier can be found in
bundle documentation for rustc.

r[items.extern.attributes.link.modifiers.whole-archive]

Linking modifiers: whole-archive
r[items.extern.attributes.link.modifiers.whole-archive.allowed-kinds]

This modifier is only compatible with the static linking kind. Using any
other kind will result in a compiler error.

r[items.extern.attributes.link.modifiers.whole-archive.behavior] +whole-
archive means that the static library is linked as a whole archive without
throwing any object files away.

clbr://internal.invalid/book/rustc/command-line-arguments.html#linking-modifiers-bundle

r[items.extern.attributes.link.modifiers.whole-archive.default] The
default for this modifier is -whole-archive .

More implementation details about this modifier can be found in whole-
archive documentation for rustc.

r[items.extern.attributes.link.modifiers.verbatim]

Linking modifiers: verbatim
r[items.extern.attributes.link.modifiers.verbatim.allowed-kinds] This

modifier is compatible with all linking kinds.
r[items.extern.attributes.link.modifiers.verbatim.behavior] +verbatim

means that rustc itself won't add any target-specified library prefixes or
suffixes (like lib or .a) to the library name, and will try its best to ask for
the same thing from the linker.

r[items.extern.attributes.link.modifiers.verbatim.behavior-negative] -

verbatim means that rustc will either add a target-specific prefix and suffix
to the library name before passing it to linker, or won't prevent linker from
implicitly adding it.

r[items.extern.attributes.link.modifiers.verbatim.default] The default for
this modifier is -verbatim .

More implementation details about this modifier can be found in
verbatim documentation for rustc.

r[items.extern.attributes.link.kind-raw-dylib]

dylib versus raw-dylib
r[items.extern.attributes.link.kind-raw-dylib.intro] On Windows, linking

against a dynamic library requires that an import library is provided to the
linker: this is a special static library that declares all of the symbols
exported by the dynamic library in such a way that the linker knows that
they have to be dynamically loaded at runtime.

r[items.extern.attributes.link.kind-raw-dylib.import] Specifying kind =
"dylib" instructs the Rust compiler to link an import library based on the
name key. The linker will then use its normal library resolution logic to find
that import library. Alternatively, specifying kind = "raw-dylib" instructs

clbr://internal.invalid/book/rustc/command-line-arguments.html#linking-modifiers-whole-archive
clbr://internal.invalid/book/rustc/command-line-arguments.html#linking-modifiers-verbatim

the compiler to generate an import library during compilation and provide
that to the linker instead.

r[items.extern.attributes.link.kind-raw-dylib.platform-specific] raw-

dylib is only supported on Windows. Using it when targeting other
platforms will result in a compiler error.

r[items.extern.attributes.link.import_name_type]

The import_name_type key
r[items.extern.attributes.link.import_name_type.intro] On x86 Windows,

names of functions are "decorated" (i.e., have a specific prefix and/or suffix
added) to indicate their calling convention. For example, a stdcall calling
convention function with the name fn1 that has no arguments would be
decorated as _fn1@0 . However, the PE Format does also permit names to
have no prefix or be undecorated. Additionally, the MSVC and GNU
toolchains use different decorations for the same calling conventions which
means, by default, some Win32 functions cannot be called using the raw-
dylib link kind via the GNU toolchain.

r[items.extern.attributes.link.import_name_type.values] To allow for
these differences, when using the raw-dylib link kind you may also
specify the import_name_type key with one of the following values to
change how functions are named in the generated import library:

decorated : The function name will be fully-decorated using the
MSVC toolchain format.
noprefix : The function name will be decorated using the MSVC
toolchain format, but skipping the leading ? , @ , or optionally _ .
undecorated : The function name will not be decorated.

r[items.extern.attributes.link.import_name_type.default] If the
import_name_type key is not specified, then the function name will be
fully-decorated using the target toolchain's format.

r[items.extern.attributes.link.import_name_type.variables] Variables are
never decorated and so the import_name_type key has no effect on how
they are named in the generated import library.

https://learn.microsoft.com/windows/win32/debug/pe-format#import-name-type

r[items.extern.attributes.link.import_name_type.platform-specific] The
import_name_type key is only supported on x86 Windows. Using it when
targeting other platforms will result in a compiler error.

r[items.extern.attributes.link_name]

The link_name attribute
r[items.extern.attributes.link_name.intro] The link_name attribute may

be specified on declarations inside an extern block to indicate the symbol
to import for the given function or static.

r[items.extern.attributes.link_name.syntax] It uses the
[MetaNameValueStr] syntax to specify the name of the symbol.
unsafe extern {
 #[link_name = "actual_symbol_name"]
 safe fn name_in_rust();
}

r[items.extern.attributes.link_name.exclusive] Using this attribute with
the link_ordinal attribute will result in a compiler error.

r[items.extern.attributes.link_ordinal]

The link_ordinal attribute
r[items.extern.attributes.link_ordinal.intro] The link_ordinal attribute

can be applied on declarations inside an extern block to indicate the
numeric ordinal to use when generating the import library to link against.
An ordinal is a unique number per symbol exported by a dynamic library on
Windows and can be used when the library is being loaded to find that
symbol rather than having to look it up by name.

[!WARNING] link_ordinal should only be used in cases where
the ordinal of the symbol is known to be stable: if the ordinal of a
symbol is not explicitly set when its containing binary is built then one
will be automatically assigned to it, and that assigned ordinal may
change between builds of the binary.

#[cfg(all(windows, target_arch = "x86"))]
#[link(name = "exporter", kind = "raw-dylib")]

unsafe extern "stdcall" {
 #[link_ordinal(15)]
 safe fn imported_function_stdcall(i: i32);
}

r[items.extern.attributes.link_ordinal.allowed-kinds] This attribute is
only used with the raw-dylib linking kind. Using any other kind will
result in a compiler error.

r[items.extern.attributes.link_ordinal.exclusive] Using this attribute with
the link_name attribute will result in a compiler error.

r[items.extern.attributes.fn-parameters]

Attributes on function parameters
Attributes on extern function parameters follow the same rules and

restrictions as regular function parameters.

clbr://internal.invalid/book/OEBPS/items/functions.md#attributes-on-function-parameters

r[items.generics]

Generic parameters
r[items.generics.syntax]

GenericParams -> `<` (GenericParam (`,` GenericParam)* `,`?)?
`>`

GenericParam -> OuterAttribute* (LifetimeParam | TypeParam |
ConstParam)

LifetimeParam -> Lifetime (`:` LifetimeBounds)?

TypeParam -> IDENTIFIER (`:` TypeParamBounds?)? (`=` Type)?

ConstParam ->
 `const` IDENTIFIER `:` Type
 (`=` BlockExpression | IDENTIFIER | `-`?LiteralExpression
)?

r[items.generics.syntax.intro] Functions, type aliases, structs,
enumerations, unions, traits, and implementations may be parameterized by
types, constants, and lifetimes. These parameters are listed in angle brackets
(<...>), usually immediately after the name of the item and before its
definition. For implementations, which don't have a name, they come
directly after impl .

r[items.generics.syntax.decl-order] The order of generic parameters is
restricted to lifetime parameters and then type and const parameters
intermixed.

r[items.generics.syntax.duplicate-params] The same parameter name
may not be declared more than once in a [GenericParams] list.

Some examples of items with type, const, and lifetime parameters:
fn foo<'a, T>() {}
trait A<U> {}
struct Ref<'a, T> where T: 'a { r: &'a T }

clbr://internal.invalid/book/OEBPS/items/functions.md
clbr://internal.invalid/book/OEBPS/items/type-aliases.md
clbr://internal.invalid/book/OEBPS/items/structs.md
clbr://internal.invalid/book/OEBPS/items/enumerations.md
clbr://internal.invalid/book/OEBPS/items/unions.md
clbr://internal.invalid/book/OEBPS/items/traits.md
clbr://internal.invalid/book/OEBPS/items/implementations.md

struct InnerArray<T, const N: usize>([T; N]);
struct EitherOrderWorks<const N: bool, U>(U);

r[items.generics.syntax.scope] Generic parameters are in scope within
the item definition where they are declared. They are not in scope for items
declared within the body of a function as described in item declarations. See
generic parameter scopes for more details.

r[items.generics.builtin-generic-types] References, raw pointers, arrays,
slices, tuples, and function pointers have lifetime or type parameters as
well, but are not referred to with path syntax.

r[items.generics.invalid-lifetimes] '_ and 'static are not valid
lifetime parameter names.

r[items.generics.const]

Const generics
r[items.generics.const.intro] Const generic parameters allow items to be

generic over constant values.
r[items.generics.const.namespace] The const identifier introduces a

name in the value namespace for the constant parameter, and all instances
of the item must be instantiated with a value of the given type.

r[items.generics.const.allowed-types] The only allowed types of const
parameters are u8 , u16 , u32 , u64 , u128 , usize , i8 , i16 , i32 , i64 ,
i128 , isize , char and bool .

r[items.generics.const.usage] Const parameters can be used anywhere a
const item can be used, with the exception that when used in a type or array
repeat expression, it must be standalone (as described below). That is, they
are allowed in the following places:

1. As an applied const to any type which forms a part of the signature of
the item in question.

2. As part of a const expression used to define an associated const, or as a
parameter to an associated type.

3. As a value in any runtime expression in the body of any functions in
the item.

clbr://internal.invalid/book/OEBPS/statements.md#item-declarations
clbr://internal.invalid/book/OEBPS/names/scopes.md#generic-parameter-scopes
clbr://internal.invalid/book/OEBPS/types/pointer.md#shared-references-
clbr://internal.invalid/book/OEBPS/types/pointer.md#raw-pointers-const-and-mut
clbr://internal.invalid/book/OEBPS/types/array.md
clbr://internal.invalid/book/OEBPS/types/slice.md
clbr://internal.invalid/book/OEBPS/types/tuple.md
clbr://internal.invalid/book/OEBPS/types/function-pointer.md
clbr://internal.invalid/book/OEBPS/names/namespaces.md
clbr://internal.invalid/book/OEBPS/items/constant-items.md
clbr://internal.invalid/book/OEBPS/types.md
clbr://internal.invalid/book/OEBPS/expressions/array-expr.md
clbr://internal.invalid/book/OEBPS/items/associated-items.md#associated-constants
clbr://internal.invalid/book/OEBPS/items/associated-items.md#associated-types

4. As a parameter to any type used in the body of any functions in the
item.

5. As a part of the type of any fields in the item.
// Examples where const generic parameters can be used.

// Used in the signature of the item itself.
fn foo<const N: usize>(arr: [i32; N]) {
 // Used as a type within a function body.
 let x: [i32; N];
 // Used as an expression.
 println!("{}", N * 2);
}

// Used as a field of a struct.
struct Foo<const N: usize>([i32; N]);

impl<const N: usize> Foo<N> {
 // Used as an associated constant.
 const CONST: usize = N * 4;
}

trait Trait {
 type Output;
}

impl<const N: usize> Trait for Foo<N> {
 // Used as an associated type.
 type Output = [i32; N];
}

// Examples where const generic parameters cannot be used.
fn foo<const N: usize>() {
 // Cannot use in item definitions within a function body.
 const BAD_CONST: [usize; N] = [1; N];
 static BAD_STATIC: [usize; N] = [1; N];
 fn inner(bad_arg: [usize; N]) {

 let bad_value = N * 2;
 }
 type BadAlias = [usize; N];
 struct BadStruct([usize; N]);
}

r[items.generics.const.standalone] As a further restriction, const
parameters may only appear as a standalone argument inside of a type or
array repeat expression. In those contexts, they may only be used as a single
segment path expression, possibly inside a block (such as N or {N}). That
is, they cannot be combined with other expressions.
// Examples where const parameters may not be used.

// Not allowed to combine in other expressions in types, such
as the
// arithmetic expression in the return type here.
fn bad_function<const N: usize>() -> [u8; {N + 1}] {
 // Similarly not allowed for array repeat expressions.
 [1; {N + 1}]
}

r[items.generics.const.argument] A const argument in a path specifies
the const value to use for that item.

r[items.generics.const.argument.const-expr] The argument must either
be an inferred const or be a const expression of the type ascribed to the
const parameter. The const expression must be a block expression
(surrounded with braces) unless it is a single path segment (an
[IDENTIFIER]) or a literal (with a possibly leading - token).

[!NOTE] This syntactic restriction is necessary to avoid requiring
infinite lookahead when parsing an expression inside of a type.

struct S<const N: i64>;
const C: i64 = 1;
fn f<const N: i64>() -> S<N> { S }

let _ = f::<1>(); // Literal.
let _ = f::<-1>(); // Negative literal.

clbr://internal.invalid/book/OEBPS/types.md
clbr://internal.invalid/book/OEBPS/expressions/array-expr.md
clbr://internal.invalid/book/OEBPS/expressions/path-expr.md
clbr://internal.invalid/book/OEBPS/expressions/block-expr.md
clbr://internal.invalid/book/OEBPS/paths.md
clbr://internal.invalid/book/OEBPS/items/items.generics.const.inferred
clbr://internal.invalid/book/OEBPS/const_eval.md#constant-expressions
clbr://internal.invalid/book/OEBPS/expressions/block-expr.md
clbr://internal.invalid/book/OEBPS/expressions/literal-expr.md

let _ = f::<{ 1 + 2 }>(); // Constant expression.
let _ = f::<C>(); // Single segment path.
let _ = f::<{ C + 1 }>(); // Constant expression.
let _: S<1> = f::<_>(); // Inferred const.
let _: S<1> = f::<(((_)))>(); // Inferred const.

[!NOTE] In a generic argument list, an inferred const is parsed as
an [inferred type][InferredType] but then semantically treated as a
separate kind of const generic argument.

r[items.generics.const.inferred] Where a const argument is expected, an
_ (optionally surrounded by any number of matching parentheses), called
the inferred const ([path rules][paths.expr.complex-const-params], [array
expression rules][expr.array.length-restriction]), can be used instead. This
asks the compiler to infer the const argument if possible based on
surrounding information.
fn make_buf<const N: usize>() -> [u8; N] {
 [0; _]
 // ^ Infers `N`.
}
let _: [u8; 1024] = make_buf::<_>();
// ^ Infers `1024`.

[!NOTE] An inferred const is not semantically an [expression]
[Expression] and so is not accepted within braces.
fn f<const N: usize>() -> [u8; N] { [0; _] }
let _: [_; 1] = f::<{ _ }>();
// ^ ERROR `_` not allowed here

r[items.generics.const.inferred.constraint] The inferred const cannot be
used in item signatures.
fn f<const N: usize>(x: [u8; N]) -> [u8; _] { x }
// ^ ERROR not allowed

r[items.generics.const.type-ambiguity] When there is ambiguity if a
generic argument could be resolved as either a type or const argument, it is
always resolved as a type. Placing the argument in a block expression can
force it to be interpreted as a const argument.

clbr://internal.invalid/book/OEBPS/items/items.generics.const.inferred
clbr://internal.invalid/book/OEBPS/items/items.generics.const.argument
clbr://internal.invalid/book/OEBPS/items/items.generics.const.inferred

type N = u32;
struct Foo<const N: usize>;
// The following is an error, because `N` is interpreted as the
type alias `N`.
fn foo<const N: usize>() -> Foo<N> { todo!() } // ERROR
// Can be fixed by wrapping in braces to force it to be
interpreted as the `N`
// const parameter:
fn bar<const N: usize>() -> Foo<{ N }> { todo!() } // ok

r[items.generics.const.variance] Unlike type and lifetime parameters,
const parameters can be declared without being used inside of a
parameterized item, with the exception of implementations as described in
generic implementations:
// ok
struct Foo<const N: usize>;
enum Bar<const M: usize> { A, B }

// ERROR: unused parameter
struct Baz<T>;
struct Biz<'a>;
struct Unconstrained;
impl<const N: usize> Unconstrained {}

r[items.generics.const.exhaustiveness] When resolving a trait bound
obligation, the exhaustiveness of all implementations of const parameters is
not considered when determining if the bound is satisfied. For example, in
the following, even though all possible const values for the bool type are
implemented, it is still an error that the trait bound is not satisfied:
struct Foo<const B: bool>;
trait Bar {}
impl Bar for Foo<true> {}
impl Bar for Foo<false> {}

fn needs_bar(_: impl Bar) {}
fn generic<const B: bool>() {
 let v = Foo::;

clbr://internal.invalid/book/OEBPS/items/implementations.md#generic-implementations

 needs_bar(v); // ERROR: trait bound `Foo: Bar` is not
satisfied
}

r[items.generics.where]

Where clauses
r[items.generics.where.syntax]

WhereClause -> `where` (WhereClauseItem `,`)*
WhereClauseItem?

WhereClauseItem ->
 LifetimeWhereClauseItem
 | TypeBoundWhereClauseItem

LifetimeWhereClauseItem -> Lifetime `:` LifetimeBounds

TypeBoundWhereClauseItem -> ForLifetimes? Type `:`
TypeParamBounds?

r[items.generics.where.intro] Where clauses provide another way to
specify bounds on type and lifetime parameters as well as a way to specify
bounds on types that aren't type parameters.

r[items.generics.where.higher-ranked-lifetimes] The for keyword can
be used to introduce higher-ranked lifetimes. It only allows
[LifetimeParam] parameters.
struct A<T>
where
 T: Iterator, // Could use A<T: Iterator>
instead
 T::Item: Copy, // Bound on an associated type
 String: PartialEq<T>, // Bound on `String`, using the
type parameter
 i32: Default, // Allowed, but not useful
{
 f: T,
}

r[items.generics.attributes]

clbr://internal.invalid/book/OEBPS/trait-bounds.md#higher-ranked-trait-bounds

Attributes
Generic lifetime and type parameters allow attributes on them. There are

no built-in attributes that do anything in this position, although custom
derive attributes may give meaning to it.

This example shows using a custom derive attribute to modify the
meaning of a generic parameter.
// Assume that the derive for MyFlexibleClone declared
`my_flexible_clone` as
// an attribute it understands.
#[derive(MyFlexibleClone)]
struct Foo<#[my_flexible_clone(unbounded)] H> {
 a: *const H
}

clbr://internal.invalid/book/OEBPS/attributes.md

r[items.associated]

Associated Items
r[items.associated.syntax]

AssociatedItem ->
 OuterAttribute* (
 MacroInvocationSemi
 | (Visibility? (TypeAlias | ConstantItem | Function))
)

r[items.associated.intro] Associated Items are the items declared in traits
or defined in implementations. They are called this because they are defined
on an associate type — the type in the implementation.

r[items.associated.kinds] They are a subset of the kinds of items you can
declare in a module. Specifically, there are associated functions (including
methods), associated types, and associated constants.

r[items.associated.related] Associated items are useful when the
associated item is logically related to the associating item. For example, the
is_some method on Option is intrinsically related to Options, so should be
associated.

r[items.associated.decl-def] Every associated item kind comes in two
varieties: definitions that contain the actual implementation and
declarations that declare signatures for definitions.

r[items.associated.trait-items] It is the declarations that make up the
contract of traits and what is available on generic types.

r[items.associated.fn]

clbr://internal.invalid/book/OEBPS/items/traits.md
clbr://internal.invalid/book/OEBPS/items/implementations.md

Associated functions and methods
r[items.associated.fn.intro] Associated functions are functions associated

with a type.
r[items.associated.fn.decl] An associated function declaration declares a

signature for an associated function definition. It is written as a function
item, except the function body is replaced with a ; .

r[items.associated.name] The identifier is the name of the function.
r[items.associated.same-signature] The generics, parameter list, return

type, and where clause of the associated function must be the same as the
associated function declarations's.

r[items.associated.fn.def] An associated function definition defines a
function associated with another type. It is written the same as a function
item.

[!NOTE] A common example is an associated function named new
that returns a value of the type with which it is associated.

struct Struct {
 field: i32
}

impl Struct {
 fn new() -> Struct {
 Struct {
 field: 0i32
 }
 }
}

fn main () {
 let _struct = Struct::new();
}

r[items.associated.fn.qualified-self] When the associated function is
declared on a trait, the function can also be called with a path that is a path

clbr://internal.invalid/book/OEBPS/items/functions.md
clbr://internal.invalid/book/OEBPS/types/function-item.md
clbr://internal.invalid/book/OEBPS/paths.md

to the trait appended by the name of the trait. When this happens, it is
substituted for <_ as Trait>::function_name .
trait Num {
 fn from_i32(n: i32) -> Self;
}

impl Num for f64 {
 fn from_i32(n: i32) -> f64 { n as f64 }
}

// These 4 are all equivalent in this case.
let _: f64 = Num::from_i32(42);
let _: f64 = <_ as Num>::from_i32(42);
let _: f64 = <f64 as Num>::from_i32(42);
let _: f64 = f64::from_i32(42);

r[items.associated.fn.method]

Methods
r[items.associated.fn.method.intro] Associated functions whose first

parameter is named self are called methods and may be invoked using the
method call operator, for example, x.foo() , as well as the usual function
call notation.

r[items.associated.fn.method.self-ty] If the type of the self parameter is
specified, it is limited to types resolving to one generated by the following
grammar (where 'lt denotes some arbitrary lifetime):
P = &'lt S | &'lt mut S | Box<S> | Rc<S> | Arc<S> | Pin<P>
S = Self | P

The Self terminal in this grammar denotes a type resolving to the
implementing type. This can also include the contextual type alias Self ,
other type aliases, or associated type projections resolving to the
implementing type.
use std::rc::Rc;
use std::sync::Arc;

clbr://internal.invalid/book/OEBPS/expressions/method-call-expr.md

use std::pin::Pin;
// Examples of methods implemented on struct `Example`.
struct Example;
type Alias = Example;
trait Trait { type Output; }
impl Trait for Example { type Output = Example; }
impl Example {
 fn by_value(self: Self) {}
 fn by_ref(self: &Self) {}
 fn by_ref_mut(self: &mut Self) {}
 fn by_box(self: Box<Self>) {}
 fn by_rc(self: Rc<Self>) {}
 fn by_arc(self: Arc<Self>) {}
 fn by_pin(self: Pin<&Self>) {}
 fn explicit_type(self: Arc<Example>) {}
 fn with_lifetime<'a>(self: &'a Self) {}
 fn nested<'a>(self: &mut &'a Arc<Rc<Box<Alias>>>) {}
 fn via_projection(self: <Example as Trait>::Output) {}
}

r[associated.fn.method.self-pat-shorthands] Shorthand syntax can be
used without specifying a type, which have the following equivalents:

Shorthand Equivalent
self self: Self

&'lifetime self self: &'lifetime Self

&'lifetime mut self self: &'lifetime mut Self

[!NOTE] Lifetimes can be, and usually are, elided with this
shorthand.

r[associated.fn.method.self-pat-mut] If the self parameter is prefixed
with mut , it becomes a mutable variable, similar to regular parameters
using a mut identifier pattern. For example:

clbr://internal.invalid/book/OEBPS/patterns.md#identifier-patterns

trait Changer: Sized {
 fn change(mut self) {}
 fn modify(mut self: Box<Self>) {}
}

As an example of methods on a trait, consider the following:
type Surface = i32;
type BoundingBox = i32;
trait Shape {
 fn draw(&self, surface: Surface);
 fn bounding_box(&self) -> BoundingBox;
}

This defines a trait with two methods. All values that have
implementations of this trait while the trait is in scope can have their draw
and bounding_box methods called.
type Surface = i32;
type BoundingBox = i32;
trait Shape {
fn draw(&self, surface: Surface);
fn bounding_box(&self) -> BoundingBox;
}

struct Circle {
 // ...
}

impl Shape for Circle {
 // ...
fn draw(&self, _: Surface) {}
fn bounding_box(&self) -> BoundingBox { 0i32 }
}

impl Circle {
fn new() -> Circle { Circle{} }
}

clbr://internal.invalid/book/OEBPS/items/implementations.md

let circle_shape = Circle::new();
let bounding_box = circle_shape.bounding_box();

r[items.associated.fn.params.edition2018]

[!EDITION-2018] In the 2015 edition, it is possible to declare trait
methods with anonymous parameters (e.g. fn foo(u8)). This is
deprecated and an error as of the 2018 edition. All parameters must
have an argument name.

r[items.associated.fn.param-attributes]

Attributes on method parameters
Attributes on method parameters follow the same rules and restrictions

as regular function parameters.
r[items.associated.type]

clbr://internal.invalid/book/OEBPS/items/functions.md#attributes-on-function-parameters

Associated Types
r[items.associated.type.intro] Associated types are type aliases associated

with another type.
r[items.associated.type.restrictions] Associated types cannot be defined

in inherent implementations nor can they be given a default implementation
in traits.

r[items.associated.type.decl] An associated type declaration declares a
signature for associated type definitions. It is written in one of the following
forms, where Assoc is the name of the associated type, Params is a
comma-separated list of type, lifetime or const parameters, Bounds is a
plus-separated list of trait bounds that the associated type must meet, and
WhereBounds is a comma-separated list of bounds that the parameters must
meet:
type Assoc;
type Assoc: Bounds;
type Assoc<Params>;
type Assoc<Params>: Bounds;
type Assoc<Params> where WhereBounds;
type Assoc<Params>: Bounds where WhereBounds;

r[items.associated.type.name] The identifier is the name of the declared
type alias.

r[items.associated.type.impl-fulfillment] The optional trait bounds must
be fulfilled by the implementations of the type alias.

r[items.associated.type.sized] There is an implicit Sized bound on
associated types that can be relaxed using the special ?Sized bound.

r[items.associated.type.def] An associated type definition defines a type
alias for the implementation of a trait on a type

r[items.associated.type.def.restriction] They are written similarly to an
associated type declaration, but cannot contain Bounds , but instead must
contain a Type :
type Assoc = Type;
type Assoc<Params> = Type; // the type `Type` here may

clbr://internal.invalid/book/OEBPS/items/type-aliases.md
clbr://internal.invalid/book/OEBPS/items/implementations.md#inherent-implementations
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#sized

reference `Params`
type Assoc<Params> = Type where WhereBounds;
type Assoc<Params> where WhereBounds = Type; // deprecated,
prefer the form above

r[items.associated.type.alias] If a type Item has an associated type
Assoc from a trait Trait , then <Item as Trait>::Assoc is a type that is
an alias of the type specified in the associated type definition

r[items.associated.type.param] Furthermore, if Item is a type parameter,
then Item::Assoc can be used in type parameters.

r[items.associated.type.generic] Associated types may include generic
parameters and where clauses; these are often referred to as generic
associated types, or GATs. If the type Thing has an associated type Item
from a trait Trait with the generics <'a> , the type can be named like
<Thing as Trait>::Item<'x> , where 'x is some lifetime in scope. In this
case, 'x will be used wherever 'a appears in the associated type
definitions on impls.
trait AssociatedType {
 // Associated type declaration
 type Assoc;
}

struct Struct;

struct OtherStruct;

impl AssociatedType for Struct {
 // Associated type definition
 type Assoc = OtherStruct;
}

impl OtherStruct {
 fn new() -> OtherStruct {
 OtherStruct
 }

clbr://internal.invalid/book/OEBPS/items/generics.md
clbr://internal.invalid/book/OEBPS/items/generics.md#where-clauses

}

fn main() {
 // Usage of the associated type to refer to OtherStruct as
<Struct as AssociatedType>::Assoc
 let _other_struct: OtherStruct = <Struct as
AssociatedType>::Assoc::new();
}

An example of associated types with generics and where clauses:
struct ArrayLender<'a, T>(&'a mut [T; 16]);

trait Lend {
 // Generic associated type declaration
 type Lender<'a> where Self: 'a;
 fn lend<'a>(&'a mut self) -> Self::Lender<'a>;
}

impl<T> Lend for [T; 16] {
 // Generic associated type definition
 type Lender<'a> = ArrayLender<'a, T> where Self: 'a;

 fn lend<'a>(&'a mut self) -> Self::Lender<'a> {
 ArrayLender(self)
 }
}

fn borrow<'a, T: Lend>(array: &'a mut T) -> <T as
Lend>::Lender<'a> {
 array.lend()
}

fn main() {
 let mut array = [0usize; 16];
 let lender = borrow(&mut array);
}

Associated Types Container Example
Consider the following example of a Container trait. Notice that the

type is available for use in the method signatures:
trait Container {
 type E;
 fn empty() -> Self;
 fn insert(&mut self, elem: Self::E);
}

In order for a type to implement this trait, it must not only provide
implementations for every method, but it must specify the type E . Here's an
implementation of Container for the standard library type Vec :
trait Container {
type E;
fn empty() -> Self;
fn insert(&mut self, elem: Self::E);
}
impl<T> Container for Vec<T> {
 type E = T;
 fn empty() -> Vec<T> { Vec::new() }
 fn insert(&mut self, x: T) { self.push(x); }
}

Relationship between Bounds and WhereBounds
In this example:

use std::fmt::Debug;
trait Example {
 type Output<T>: Ord where T: Debug;
}

Given a reference to the associated type like <X as

Example>::Output<Y> , the associated type itself must be Ord , and the type
Y must be Debug .

r[items.associated.type.generic-where-clause]

Required where clauses on generic associated
types

r[items.associated.type.generic-where-clause.intro] Generic associated
type declarations on traits currently may require a list of where clauses,
dependent on functions in the trait and how the GAT is used. These rules
may be loosened in the future; updates can be found on the generic
associated types initiative repository.

r[items.associated.type.generic-where-clause.valid-fn] In a few words,
these where clauses are required in order to maximize the allowed
definitions of the associated type in impls. To do this, any clauses that can
be proven to hold on functions (using the parameters of the function or trait)
where a GAT appears as an input or output must also be written on the GAT
itself.
trait LendingIterator {
 type Item<'x> where Self: 'x;
 fn next<'a>(&'a mut self) -> Self::Item<'a>;
}

In the above, on the next function, we can prove that Self: 'a ,
because of the implied bounds from &'a mut self ; therefore, we must
write the equivalent bound on the GAT itself: where Self: 'x .

r[items.associated.type.generic-where-clause.intersection] When there
are multiple functions in a trait that use the GAT, then the intersection of the
bounds from the different functions are used, rather than the union.
trait Check<T> {
 type Checker<'x>;
 fn create_checker<'a>(item: &'a T) -> Self::Checker<'a>;
 fn do_check(checker: Self::Checker<'_>);
}

In this example, no bounds are required on the type Checker<'a>; .
While we know that T: 'a on create_checker , we do not know that on
do_check . However, if do_check was commented out, then the where T:
'x bound would be required on Checker .

https://rust-lang.github.io/generic-associated-types-initiative/explainer/required_bounds.html

r[items.associated.type.generic-where-clause.forward] The bounds on
associated types also propagate required where clauses.
trait Iterable {
 type Item<'a> where Self: 'a;
 type Iterator<'a>: Iterator<Item = Self::Item<'a>> where
Self: 'a;
 fn iter<'a>(&'a self) -> Self::Iterator<'a>;
}

Here, where Self: 'a is required on Item because of iter . However,
Item is used in the bounds of Iterator , the where Self: 'a clause is
also required there.

r[items.associated.type.generic-where-clause.static] Finally, any explicit
uses of 'static on GATs in the trait do not count towards the required
bounds.
trait StaticReturn {
 type Y<'a>;
 fn foo(&self) -> Self::Y<'static>;
}

r[items.associated.const]

Associated Constants
r[items.associated.const.intro] Associated constants are constants

associated with a type.
r[items.associated.const.decl] An associated constant declaration

declares a signature for associated constant definitions. It is written as
const , then an identifier, then : , then a type, finished by a ; .

r[items.associated.const.name] The identifier is the name of the constant
used in the path. The type is the type that the definition has to implement.

r[items.associated.const.def] An associated constant definition defines a
constant associated with a type. It is written the same as a constant item.

r[items.associated.const.eval] Associated constant definitions undergo
constant evaluation only when referenced. Further, definitions that include
generic parameters are evaluated after monomorphization.
struct Struct;
struct GenericStruct<const ID: i32>;

impl Struct {
 // Definition not immediately evaluated
 const PANIC: () = panic!("compile-time panic");
}

impl<const ID: i32> GenericStruct<ID> {
 // Definition not immediately evaluated
 const NON_ZERO: () = if ID == 0 {
 panic!("contradiction")
 };
}

fn main() {
 // Referencing Struct::PANIC causes compilation error
 let _ = Struct::PANIC;

 // Fine, ID is not 0

clbr://internal.invalid/book/OEBPS/items/constant-items.md
clbr://internal.invalid/book/OEBPS/items/constant-items.md
clbr://internal.invalid/book/OEBPS/const_eval.md
clbr://internal.invalid/book/OEBPS/items/generics.md

 let _ = GenericStruct::<1>::NON_ZERO;

 // Compilation error from evaluating NON_ZERO with ID=0
 let _ = GenericStruct::<0>::NON_ZERO;
}

Associated Constants Examples
A basic example:

trait ConstantId {
 const ID: i32;
}

struct Struct;

impl ConstantId for Struct {
 const ID: i32 = 1;
}

fn main() {
 assert_eq!(1, Struct::ID);
}

Using default values:
trait ConstantIdDefault {
 const ID: i32 = 1;
}

struct Struct;
struct OtherStruct;

impl ConstantIdDefault for Struct {}

impl ConstantIdDefault for OtherStruct {
 const ID: i32 = 5;
}

fn main() {
 assert_eq!(1, Struct::ID);
 assert_eq!(5, OtherStruct::ID);
}

r[attributes]

Attributes
r[attributes.syntax]

InnerAttribute -> `#` `!` `[` Attr `]`

OuterAttribute -> `#` `[` Attr `]`

Attr ->
 SimplePath AttrInput?
 | `unsafe` `(` SimplePath AttrInput? `)`

AttrInput ->
 DelimTokenTree
 | `=` Expression

r[attributes.intro] An attribute is a general, free-form metadatum that is
interpreted according to name, convention, language, and compiler version.
Attributes are modeled on Attributes in ECMA-335, with the syntax coming
from ECMA-334 (C#).

r[attributes.inner] Inner attributes, written with a bang (!) after the hash
(#), apply to the item that the attribute is declared within. Outer attributes,
written without the bang after the hash, apply to the thing that follows the
attribute.

r[attributes.input] The attribute consists of a path to the attribute,
followed by an optional delimited token tree whose interpretation is defined
by the attribute. Attributes other than macro attributes also allow the input
to be an equals sign (=) followed by an expression. See the meta item
syntax below for more details.

r[attributes.safety] An attribute may be unsafe to apply. To avoid
undefined behavior when using these attributes, certain obligations that
cannot be checked by the compiler must be met. To assert these have been,
the attribute is wrapped in unsafe(..) , e.g. #[unsafe(no_mangle)] .

The following attributes are unsafe:

https://www.ecma-international.org/publications-and-standards/standards/ecma-335/
https://www.ecma-international.org/publications-and-standards/standards/ecma-334/

export_name

link_section

naked

no_mangle

r[attributes.kind] Attributes can be classified into the following kinds:

Built-in attributes
Proc macro attributes
Derive macro helper attributes
Tool attributes

r[attributes.allowed-position] Attributes may be applied to many things
in the language:

All item declarations accept outer attributes while external blocks,
functions, implementations, and modules accept inner attributes.
Most statements accept outer attributes (see Expression Attributes for
limitations on expression statements).
Block expressions accept outer and inner attributes, but only when
they are the outer expression of an expression statement or the final
expression of another block expression.
Enum variants and struct and union fields accept outer attributes.
Match expression arms accept outer attributes.
Generic lifetime or type parameter accept outer attributes.
Expressions accept outer attributes in limited situations, see
Expression Attributes for details.
Function, closure and function pointer parameters accept outer
attributes. This includes attributes on variadic parameters denoted with
... in function pointers and external blocks.

Some examples of attributes:
// General metadata applied to the enclosing module or crate.
#![crate_type = "lib"]

// A function marked as a unit test
#[test]

clbr://internal.invalid/book/OEBPS/abi.md#the-export_name-attribute
clbr://internal.invalid/book/OEBPS/abi.md#the-link_section-attribute
clbr://internal.invalid/book/OEBPS/attributes/codegen.md#the-naked-attribute
clbr://internal.invalid/book/OEBPS/abi.md#the-no_mangle-attribute
clbr://internal.invalid/book/OEBPS/procedural-macros.md#attribute-macros
clbr://internal.invalid/book/OEBPS/procedural-macros.md#derive-macro-helper-attributes
clbr://internal.invalid/book/OEBPS/items.md
clbr://internal.invalid/book/OEBPS/items/external-blocks.md
clbr://internal.invalid/book/OEBPS/items/functions.md
clbr://internal.invalid/book/OEBPS/items/implementations.md
clbr://internal.invalid/book/OEBPS/items/modules.md
clbr://internal.invalid/book/OEBPS/statements.md
clbr://internal.invalid/book/OEBPS/expressions.md#expression-attributes
clbr://internal.invalid/book/OEBPS/expressions/block-expr.md
clbr://internal.invalid/book/OEBPS/statements.md#expression-statements
clbr://internal.invalid/book/OEBPS/items/enumerations.md
clbr://internal.invalid/book/OEBPS/items/structs.md
clbr://internal.invalid/book/OEBPS/items/unions.md
clbr://internal.invalid/book/OEBPS/expressions/match-expr.md
clbr://internal.invalid/book/OEBPS/items/generics.md
clbr://internal.invalid/book/OEBPS/expressions.md#expression-attributes
clbr://internal.invalid/book/OEBPS/items/functions.md
clbr://internal.invalid/book/OEBPS/expressions/closure-expr.md
clbr://internal.invalid/book/OEBPS/types/function-pointer.md

fn test_foo() {
 /* ... */
}

// A conditionally-compiled module
#[cfg(target_os = "linux")]
mod bar {
 /* ... */
}

// A lint attribute used to suppress a warning/error
#[allow(non_camel_case_types)]
type int8_t = i8;

// Inner attribute applies to the entire function.
fn some_unused_variables() {
 #![allow(unused_variables)]

 let x = ();
 let y = ();
 let z = ();
}

r[attributes.meta]

Meta Item Attribute Syntax
r[attributes.meta.intro] A "meta item" is the syntax used for the [Attr]

rule by most built-in attributes. It has the following grammar:
r[attributes.meta.syntax]

@root MetaItem ->
 SimplePath
 | SimplePath `=` Expression
 | SimplePath `(` MetaSeq? `)`

MetaSeq ->
 MetaItemInner (`,` MetaItemInner)* `,`?

MetaItemInner ->
 MetaItem
 | Expression

r[attributes.meta.literal-expr] Expressions in meta items must macro-
expand to literal expressions, which must not include integer or float type
suffixes. Expressions which are not literal expressions will be syntactically
accepted (and can be passed to proc-macros), but will be rejected after
parsing.

r[attributes.meta.order] Note that if the attribute appears within another
macro, it will be expanded after that outer macro. For example, the
following code will expand the Serialize proc-macro first, which must
preserve the include_str! call in order for it to be expanded:
#[derive(Serialize)]
struct Foo {
 #[doc = include_str!("x.md")]
 x: u32
}

r[attributes.meta.order-macro] Additionally, macros in attributes will be
expanded only after all other attributes applied to the item:
#[macro_attr1] // expanded first
#[doc = mac!()] // `mac!` is expanded fourth.

#[macro_attr2] // expanded second
#[derive(MacroDerive1, MacroDerive2)] // expanded third
fn foo() {}

r[attributes.meta.builtin] Various built-in attributes use different subsets
of the meta item syntax to specify their inputs. The following grammar
rules show some commonly used forms:

r[attributes.meta.builtin.syntax]
@root MetaWord ->
 IDENTIFIER

MetaNameValueStr ->
 IDENTIFIER `=` (STRING_LITERAL | RAW_STRING_LITERAL)

@root MetaListPaths ->
 IDENTIFIER `(` (SimplePath (`,` SimplePath)* `,`?)? `)`

@root MetaListIdents ->
 IDENTIFIER `(` (IDENTIFIER (`,` IDENTIFIER)* `,`?)? `)`

@root MetaListNameValueStr ->
 IDENTIFIER `(` (MetaNameValueStr (`,` MetaNameValueStr)*
`,`?)? `)`

Some examples of meta items are:

Style Example
[MetaWord] no_std

[MetaNameValueStr] doc = "example"

[MetaListPaths] allow(unused,

clippy::inline_always)

[MetaListIdents] macro_use(foo, bar)

[MetaListNameValueStr] link(name = "CoreFoundation",

kind = "framework")

r[attributes.activity]

Active and inert attributes
r[attributes.activity.intro] An attribute is either active or inert. During

attribute processing, active attributes remove themselves from the thing
they are on while inert attributes stay on.

The cfg and cfg_attr attributes are active. Attribute macros are
active. All other attributes are inert.

r[attributes.tool]

clbr://internal.invalid/book/OEBPS/conditional-compilation.md#the-cfg-attribute
clbr://internal.invalid/book/OEBPS/conditional-compilation.md#the-cfg_attr-attribute
clbr://internal.invalid/book/OEBPS/procedural-macros.md#attribute-macros

Tool attributes
r[attributes.tool.intro] The compiler may allow attributes for external

tools where each tool resides in its own module in the tool prelude. The first
segment of the attribute path is the name of the tool, with one or more
additional segments whose interpretation is up to the tool.

r[attributes.tool.ignored] When a tool is not in use, the tool's attributes
are accepted without a warning. When the tool is in use, the tool is
responsible for processing and interpretation of its attributes.

r[attributes.tool.prelude] Tool attributes are not available if the
no_implicit_prelude attribute is used.
// Tells the rustfmt tool to not format the following element.
#[rustfmt::skip]
struct S {
}

// Controls the "cyclomatic complexity" threshold for the
clippy tool.
#[clippy::cyclomatic_complexity = "100"]
pub fn f() {}

[!NOTE] rustc currently recognizes the tools "clippy", "rustfmt",
"diagnostic", "miri" and "rust_analyzer".

r[attributes.builtin]

clbr://internal.invalid/book/OEBPS/names/preludes.md#tool-prelude
clbr://internal.invalid/book/OEBPS/names/preludes.md#the-no_implicit_prelude-attribute

Built-in attributes index
The following is an index of all built-in attributes.

Conditional compilation

cfg --- Controls conditional compilation.
cfg_attr --- Conditionally includes attributes.

Testing

test --- Marks a function as a test.
ignore --- Disables a test function.
should_panic --- Indicates a test should generate a panic.

Derive

derive --- Automatic trait implementations.
automatically_derived --- Marker for implementations created
by derive .

Macros

macro_export --- Exports a macro_rules macro for cross-crate
usage.
macro_use --- Expands macro visibility, or imports macros from
other crates.
proc_macro --- Defines a function-like macro.
proc_macro_derive --- Defines a derive macro.
proc_macro_attribute --- Defines an attribute macro.

Diagnostics

allow , expect , warn , deny , forbid --- Alters the default lint
level.
deprecated --- Generates deprecation notices.
must_use --- Generates a lint for unused values.

clbr://internal.invalid/book/OEBPS/conditional-compilation.md#the-cfg-attribute
clbr://internal.invalid/book/OEBPS/conditional-compilation.md#the-cfg_attr-attribute
clbr://internal.invalid/book/OEBPS/attributes/testing.md#the-test-attribute
clbr://internal.invalid/book/OEBPS/attributes/testing.md#the-ignore-attribute
clbr://internal.invalid/book/OEBPS/attributes/testing.md#the-should_panic-attribute
clbr://internal.invalid/book/OEBPS/attributes/derive.md
clbr://internal.invalid/book/OEBPS/attributes/derive.md#the-automatically_derived-attribute
clbr://internal.invalid/book/OEBPS/macros-by-example.md#path-based-scope
clbr://internal.invalid/book/OEBPS/macros-by-example.md#the-macro_use-attribute
clbr://internal.invalid/book/OEBPS/procedural-macros.md#function-like-procedural-macros
clbr://internal.invalid/book/OEBPS/procedural-macros.md#derive-macros
clbr://internal.invalid/book/OEBPS/procedural-macros.md#attribute-macros
clbr://internal.invalid/book/OEBPS/attributes/diagnostics.md#lint-check-attributes
clbr://internal.invalid/book/OEBPS/attributes/diagnostics.md#lint-check-attributes
clbr://internal.invalid/book/OEBPS/attributes/diagnostics.md#lint-check-attributes
clbr://internal.invalid/book/OEBPS/attributes/diagnostics.md#lint-check-attributes
clbr://internal.invalid/book/OEBPS/attributes/diagnostics.md#lint-check-attributes
clbr://internal.invalid/book/OEBPS/attributes/diagnostics.md#the-deprecated-attribute
clbr://internal.invalid/book/OEBPS/attributes/diagnostics.md#the-must_use-attribute

diagnostic::on_unimplemented --- Hints the compiler to emit a
certain error message if a trait is not implemented.
diagnostic::do_not_recommend --- Hints the compiler to not
show a certain trait impl in error messages.

ABI, linking, symbols, and FFI

link --- Specifies a native library to link with an extern block.
link_name --- Specifies the name of the symbol for functions or
statics in an extern block.
link_ordinal --- Specifies the ordinal of the symbol for
functions or statics in an extern block.
no_link --- Prevents linking an extern crate.
repr --- Controls type layout.
crate_type --- Specifies the type of crate (library, executable,
etc.).
no_main --- Disables emitting the main symbol.
export_name --- Specifies the exported symbol name for a
function or static.
link_section --- Specifies the section of an object file to use for
a function or static.
no_mangle --- Disables symbol name encoding.
used --- Forces the compiler to keep a static item in the output
object file.
crate_name --- Specifies the crate name.

Code generation

inline --- Hint to inline code.
cold --- Hint that a function is unlikely to be called.
naked --- Prevent the compiler from emitting a function
prologue.
no_builtins --- Disables use of certain built-in functions.
target_feature --- Configure platform-specific code
generation.

clbr://internal.invalid/book/OEBPS/attributes/diagnostics.md#the-diagnosticon_unimplemented-attribute
clbr://internal.invalid/book/OEBPS/attributes/diagnostics.md#the-diagnosticdo_not_recommend-attribute
clbr://internal.invalid/book/OEBPS/items/external-blocks.md#the-link-attribute
clbr://internal.invalid/book/OEBPS/items/external-blocks.md#the-link_name-attribute
clbr://internal.invalid/book/OEBPS/items/external-blocks.md#the-link_ordinal-attribute
clbr://internal.invalid/book/OEBPS/items/extern-crates.md#the-no_link-attribute
clbr://internal.invalid/book/OEBPS/type-layout.md#representations
clbr://internal.invalid/book/OEBPS/linkage.md
clbr://internal.invalid/book/OEBPS/crates-and-source-files.md#the-no_main-attribute
clbr://internal.invalid/book/OEBPS/abi.md#the-export_name-attribute
clbr://internal.invalid/book/OEBPS/abi.md#the-link_section-attribute
clbr://internal.invalid/book/OEBPS/abi.md#the-no_mangle-attribute
clbr://internal.invalid/book/OEBPS/abi.md#the-used-attribute
clbr://internal.invalid/book/OEBPS/crates-and-source-files.md#the-crate_name-attribute
clbr://internal.invalid/book/OEBPS/attributes/codegen.md#the-inline-attribute
clbr://internal.invalid/book/OEBPS/attributes/codegen.md#the-cold-attribute
clbr://internal.invalid/book/OEBPS/attributes/codegen.md#the-naked-attribute
clbr://internal.invalid/book/OEBPS/attributes/codegen.md#the-no_builtins-attribute
clbr://internal.invalid/book/OEBPS/attributes/codegen.md#the-target_feature-attribute

track_caller --- Pass the parent call location to
std::panic::Location::caller() .
instruction_set --- Specify the instruction set used to generate
a functions code

Documentation

doc --- Specifies documentation. See The Rustdoc Book for more
information. Doc comments are transformed into doc attributes.

Preludes

no_std --- Removes std from the prelude.
no_implicit_prelude --- Disables prelude lookups within a
module.

Modules

path --- Specifies the filename for a module.
Limits

recursion_limit --- Sets the maximum recursion limit for
certain compile-time operations.
type_length_limit --- Sets the maximum size of a polymorphic
type.

Runtime

panic_handler --- Sets the function to handle panics.
global_allocator --- Sets the global memory allocator.
windows_subsystem --- Specifies the windows subsystem to link
with.

Features

feature --- Used to enable unstable or experimental compiler
features. See The Unstable Book for features implemented in
rustc .

clbr://internal.invalid/book/OEBPS/attributes/codegen.md#the-track_caller-attribute
clbr://internal.invalid/book/OEBPS/attributes/codegen.md#the-instruction_set-attribute
clbr://internal.invalid/book/rustdoc/the-doc-attribute.html
clbr://internal.invalid/book/OEBPS/comments.md#doc-comments
clbr://internal.invalid/book/OEBPS/names/preludes.md#the-no_std-attribute
clbr://internal.invalid/book/OEBPS/names/preludes.md#the-no_implicit_prelude-attribute
clbr://internal.invalid/book/OEBPS/items/modules.md#the-path-attribute
clbr://internal.invalid/book/OEBPS/attributes/limits.md#the-recursion_limit-attribute
clbr://internal.invalid/book/OEBPS/attributes/limits.md#the-type_length_limit-attribute
clbr://internal.invalid/book/OEBPS/panic.md#the-panic_handler-attribute
clbr://internal.invalid/book/OEBPS/runtime.md#the-global_allocator-attribute
clbr://internal.invalid/book/OEBPS/runtime.md#the-windows_subsystem-attribute
clbr://internal.invalid/book/unstable-book/index.html

Type System

non_exhaustive --- Indicate that a type will have more
fields/variants added in future.

Debugger

debugger_visualizer --- Embeds a file that specifies debugger
output for a type.
collapse_debuginfo --- Controls how macro invocations are
encoded in debuginfo.

clbr://internal.invalid/book/OEBPS/attributes/type_system.md#the-non_exhaustive-attribute
clbr://internal.invalid/book/OEBPS/attributes/debugger.md#the-debugger_visualizer-attribute
clbr://internal.invalid/book/OEBPS/attributes/debugger.md#the-collapse_debuginfo-attribute

r[attributes.testing]

Testing attributes
The following attributes are used for specifying functions for performing

tests. Compiling a crate in "test" mode enables building the test functions
along with a test harness for executing the tests. Enabling the test mode also
enables the test conditional compilation option.

r[attributes.testing.test]

clbr://internal.invalid/book/OEBPS/attributes.md
clbr://internal.invalid/book/OEBPS/conditional-compilation.md#test

The test attribute
r[attributes.testing.test.intro] The test attribute marks a function to be

executed as a test.

[!EXAMPLE]
pub fn add(left: u64, right: u64) -> u64 { left + right }
#[test]
fn it_works() {
 let result = add(2, 2);
 assert_eq!(result, 4);
}

r[attributes.testing.test.syntax] The test attribute uses the [MetaWord]
syntax and thus does not take any inputs.

r[attributes.testing.test.allowed-positions] The test attribute may only
be applied to free functions that are monomorphic, that take no arguments,
and where the return type implements the Termination trait.

[!NOTE] Some of types that implement the Termination trait
include:

()

Result<T, E> where T: Termination, E: Debug

r[attributes.testing.test.duplicates] Only the first instance of test on a
function is honored.

[!NOTE] Subsequent test attributes are currently ignored and
rustc warns about these.

r[attributes.testing.test.stdlib] The test attribute is exported from the
standard library prelude as [std::prelude::v1::test].

r[attributes.testing.test.enabled] These functions are only compiled when
in test mode.

clbr://internal.invalid/book/OEBPS/attributes.md
clbr://internal.invalid/book/OEBPS/glossary.md#free-item
std::process::Termination
std::process::Termination

[!NOTE] The test mode is enabled by passing the --test argument
to rustc or using cargo test .

r[attributes.testing.test.success] The test harness calls the returned
value's report method, and classifies the test as passed or failed depending
on whether the resulting ExitCode represents successful termination. In
particular:

Tests that return () pass as long as they terminate and do not panic.
Tests that return a Result<(), E> pass as long as they return Ok(()) .
Tests that return ExitCode::SUCCESS pass, and tests that return
ExitCode::FAILURE fail.
Tests that do not terminate neither pass nor fail.

[!EXAMPLE]
use std::io;
fn setup_the_thing() -> io::Result<i32> { Ok(1) }
fn do_the_thing(s: &i32) -> io::Result<()> { Ok(()) }
#[test]
fn test_the_thing() -> io::Result<()> {
 let state = setup_the_thing()?; // expected to succeed
 do_the_thing(&state)?; // expected to succeed
 Ok(())
}

r[attributes.testing.ignore]

std::process::Termination::report
std::process::ExitCode

The ignore attribute
r[attributes.testing.ignore.intro] The ignore attribute can be used with

the [test attribute][attributes.testing.test] to tell the test harness to not
execute that function as a test.

[!EXAMPLE]
#[test]
#[ignore]
fn check_thing() {
 // …
}

[!NOTE] The rustc test harness supports the --include-ignored
flag to force ignored tests to be run.

r[attributes.testing.ignore.syntax] The ignore attribute uses either the
[MetaWord] or [MetaNameValueStr] syntax.

r[attributes.testing.ignore.reason] The [MetaNameValueStr] form of the
ignore attribute provides a way to specify a reason why the test is ignored.

[!EXAMPLE]
#[test]
#[ignore = "not yet implemented"]
fn mytest() {
 // …
}

r[attributes.testing.ignore.allowed-positions] The ignore attribute may
be applied to functions annotated with the test attribute.

[!NOTE] rustc currently warns when ignore is used in some
other situations. This may become an error in the future.

r[attributes.testing.ignore.duplicates] Only the first instance of ignore
on a function is honored.

clbr://internal.invalid/book/OEBPS/attributes.md

[!NOTE] rustc currently ignores duplicate ignore attributes.
This may become an error in the future.

r[attributes.testing.ignore.behavior] Ignored tests are still compiled when
in test mode, but they are not executed.

r[attributes.testing.should_panic]

The should_panic attribute
r[attributes.testing.should_panic.intro] The should_panic attribute

causes a test to pass only if the [test function][attributes.testing.test] to
which the attribute is applied panics.

[!EXAMPLE]
#[test]
#[should_panic(expected = "values don't match")]
fn mytest() {
 assert_eq!(1, 2, "values don't match");
}

r[attributes.testing.should_panic.syntax] The should_panic attribute
has one of the following forms:

[MetaWord]

[!EXAMPLE]
#[test]
#[should_panic]
fn mytest() { panic!("error: some message, and more");
}

[MetaNameValueStr] --- The given string must appear within the
panic message for the test to pass.

[!EXAMPLE]
#[test]
#[should_panic = "some message"]
fn mytest() { panic!("error: some message, and more");
}

[MetaListNameValueStr] --- As with the [MetaNameValueStr]
syntax, the given string must appear within the panic message.

[!EXAMPLE]
#[test]
#[should_panic(expected = "some message")]

clbr://internal.invalid/book/OEBPS/attributes.md

fn mytest() { panic!("error: some message, and more");
}

[!NOTE] rustc currently accepts the
[MetaListNameValueStr] form with invalid syntax between the
parentheses and emits a future-compatibility warning. This may
become a hard error in the future.

r[attributes.testing.should_panic.allowed-positions] The should_panic

attribute may only be applied to functions annotated with the test

attribute.

[!NOTE] rustc currently accepts this attribute in other positions
with a warning. This may become a hard error in the future.

r[attributes.testing.should_panic.duplicates] Only the first instance of
should_panic on a function is honored.

[!NOTE] rustc currently ignores subsequent should_panic

attributes and emits a future-compatibility warning. This may become
a hard error in the future.

r[attributes.testing.should_panic.expected] When the
[MetaNameValueStr] form or the [MetaListNameValueStr] form with the
expected key is used, the given string must appear somewhere within the
panic message for the test to pass.

r[attributes.testing.should_panic.return] The return type of the test
function must be () .

r[attributes.derive]

Derive
r[attributes.derive.intro] The derive attribute allows new items to be

automatically generated for data structures.
r[attributes.derive.syntax] It uses the [MetaListPaths] syntax to specify a

list of traits to implement or paths to derive macros to process.
For example, the following will create an impl item for the

[PartialEq] and [Clone] traits for Foo , and the type parameter T will be
given the PartialEq or Clone constraints for the appropriate impl :
#[derive(PartialEq, Clone)]
struct Foo<T> {
 a: i32,
 b: T,
}

The generated impl for PartialEq is equivalent to
struct Foo<T> { a: i32, b: T }
impl<T: PartialEq> PartialEq for Foo<T> {
 fn eq(&self, other: &Foo<T>) -> bool {
 self.a == other.a && self.b == other.b
 }
}

r[attributes.derive.proc-macro] You can implement derive for your own
traits through procedural macros.

r[attributes.derive.automatically_derived]

clbr://internal.invalid/book/OEBPS/items.md
clbr://internal.invalid/book/OEBPS/procedural-macros.md#derive-macros
clbr://internal.invalid/book/OEBPS/items/implementations.md
clbr://internal.invalid/book/OEBPS/procedural-macros.md#derive-macros

The automatically_derived attribute
The automatically_derived attribute is automatically added to

implementations created by the derive attribute for built-in traits. It has no
direct effect, but it may be used by tools and diagnostic lints to detect these
automatically generated implementations.

clbr://internal.invalid/book/OEBPS/items/implementations.md

r[attributes.diagnostics]

Diagnostic attributes
The following attributes are used for controlling or generating diagnostic

messages during compilation.
r[attributes.diagnostics.lint]

clbr://internal.invalid/book/OEBPS/attributes.md

Lint check attributes
A lint check names a potentially undesirable coding pattern, such as

unreachable code or omitted documentation.
r[attributes.diagnostics.lint.level] The lint attributes allow , expect ,

warn , deny , and forbid use the [MetaListPaths] syntax to specify a list of
lint names to change the lint level for the entity to which the attribute
applies.

For any lint check C :
r[attributes.diagnostics.lint.allow]

#[allow(C)] overrides the check for C so that violations will go
unreported.

r[attributes.diagnostics.lint.expect]

#[expect(C)] indicates that lint C is expected to be emitted. The
attribute will suppress the emission of C or issue a warning, if the
expectation is unfulfilled.

r[attributes.diagnostics.lint.warn]

#[warn(C)] warns about violations of C but continues compilation.
r[attributes.diagnostics.lint.deny]

#[deny(C)] signals an error after encountering a violation of C ,
r[attributes.diagnostics.lint.forbid]

#[forbid(C)] is the same as deny(C) , but also forbids changing the
lint level afterwards,

[!NOTE] The lint checks supported by rustc can be found via
rustc -W help , along with their default settings and are documented
in the rustc book.

pub mod m1 {
 // Missing documentation is ignored here

clbr://internal.invalid/book/rustc/lints/index.html

 #[allow(missing_docs)]
 pub fn undocumented_one() -> i32 { 1 }

 // Missing documentation signals a warning here
 #[warn(missing_docs)]
 pub fn undocumented_too() -> i32 { 2 }

 // Missing documentation signals an error here
 #[deny(missing_docs)]
 pub fn undocumented_end() -> i32 { 3 }
}

r[attributes.diagnostics.lint.override] Lint attributes can override the
level specified from a previous attribute, as long as the level does not
attempt to change a forbidden lint (except for deny , which is allowed
inside a forbid context, but ignored). Previous attributes are those from a
higher level in the syntax tree, or from a previous attribute on the same
entity as listed in left-to-right source order.

This example shows how one can use allow and warn to toggle a
particular check on and off:
#[warn(missing_docs)]
pub mod m2 {
 #[allow(missing_docs)]
 pub mod nested {
 // Missing documentation is ignored here
 pub fn undocumented_one() -> i32 { 1 }

 // Missing documentation signals a warning here,
 // despite the allow above.
 #[warn(missing_docs)]
 pub fn undocumented_two() -> i32 { 2 }
 }

 // Missing documentation signals a warning here

 pub fn undocumented_too() -> i32 { 3 }
}

This example shows how one can use forbid to disallow uses of allow
or expect for that lint check:
#[forbid(missing_docs)]
pub mod m3 {
 // Attempting to toggle warning signals an error here
 #[allow(missing_docs)]
 /// Returns 2.
 pub fn undocumented_too() -> i32 { 2 }
}

[!NOTE] rustc allows setting lint levels on the command-line, and
also supports setting caps on the lints that are reported.

r[attributes.diagnostics.lint.reason]

Lint Reasons
All lint attributes support an additional reason parameter, to give

context why a certain attribute was added. This reason will be displayed as
part of the lint message if the lint is emitted at the defined level.
// `keyword_idents` is allowed by default. Here we deny it to
// avoid migration of identifiers when we update the edition.
#![deny(
 keyword_idents,
 reason = "we want to avoid these idents to be future
compatible"
)]

// This name was allowed in Rust's 2015 edition. We still aim
to avoid
// this to be future compatible and not confuse end users.
fn dyn() {}

Here is another example, where the lint is allowed with a reason:

clbr://internal.invalid/book/rustc/lints/levels.html#via-compiler-flag
clbr://internal.invalid/book/rustc/lints/levels.html#capping-lints

use std::path::PathBuf;

pub fn get_path() -> PathBuf {
 // The `reason` parameter on `allow` attributes acts as
documentation for the reader.
 #[allow(unused_mut, reason = "this is only modified on
some platforms")]
 let mut file_name = PathBuf::from("git");

 #[cfg(target_os = "windows")]
 file_name.set_extension("exe");

 file_name
}

r[attributes.diagnostics.expect]

The #[expect] attribute
r[attributes.diagnostics.expect.intro] The #[expect(C)] attribute creates

a lint expectation for lint C . The expectation will be fulfilled, if a #

[warn(C)] attribute at the same location would result in a lint emission. If
the expectation is unfulfilled, because lint C would not be emitted, the
unfulfilled_lint_expectations lint will be emitted at the attribute.
fn main() {
 // This `#[expect]` attribute creates a lint expectation,
that the `unused_variables`
 // lint would be emitted by the following statement. This
expectation is
 // unfulfilled, since the `question` variable is used by
the `println!` macro.
 // Therefore, the `unfulfilled_lint_expectations` lint
will be emitted at the
 // attribute.
 #[expect(unused_variables)]
 let question = "who lives in a pineapple under the sea?";

 println!("{question}");

 // This `#[expect]` attribute creates a lint expectation
that will be fulfilled, since
 // the `answer` variable is never used. The
`unused_variables` lint, that would usually
 // be emitted, is suppressed. No warning will be issued
for the statement or attribute.
 #[expect(unused_variables)]
 let answer = "SpongeBob SquarePants!";
}

r[attributes.diagnostics.expect.fulfillment] The lint expectation is only
fulfilled by lint emissions which have been suppressed by the expect
attribute. If the lint level is modified in the scope with other level attributes
like allow or warn , the lint emission will be handled accordingly and the
expectation will remain unfulfilled.
#[expect(unused_variables)]
fn select_song() {
 // This will emit the `unused_variables` lint at the warn
level
 // as defined by the `warn` attribute. This will not
fulfill the
 // expectation above the function.
 #[warn(unused_variables)]
 let song_name = "Crab Rave";

 // The `allow` attribute suppresses the lint emission.
This will not
 // fulfill the expectation as it has been suppressed by
the `allow`
 // attribute and not the `expect` attribute above the
function.
 #[allow(unused_variables)]
 let song_creator = "Noisestorm";

 // This `expect` attribute will suppress the
`unused_variables` lint emission
 // at the variable. The `expect` attribute above the
function will still not
 // be fulfilled, since this lint emission has been
suppressed by the local
 // expect attribute.
 #[expect(unused_variables)]
 let song_version = "Monstercat Release";
}

r[attributes.diagnostics.expect.independent] If the expect attribute
contains several lints, each one is expected separately. For a lint group it's
enough if one lint inside the group has been emitted:
// This expectation will be fulfilled by the unused value
inside the function
// since the emitted `unused_variables` lint is inside the
`unused` lint group.
#[expect(unused)]
pub fn thoughts() {
 let unused = "I'm running out of examples";
}

pub fn another_example() {
 // This attribute creates two lint expectations. The
`unused_mut` lint will be
 // suppressed and with that fulfill the first expectation.
The `unused_variables`
 // wouldn't be emitted, since the variable is used. That
expectation will therefore
 // be unsatisfied, and a warning will be emitted.
 #[expect(unused_mut, unused_variables)]
 let mut link = "https://www.rust-lang.org/";

 println!("Welcome to our community: {link}");
}

[!NOTE] The behavior of #

[expect(unfulfilled_lint_expectations)] is currently defined to
always generate the unfulfilled_lint_expectations lint.

r[attributes.diagnostics.lint.group]

Lint groups
Lints may be organized into named groups so that the level of related

lints can be adjusted together. Using a named group is equivalent to listing
out the lints within that group.
// This allows all lints in the "unused" group.
#[allow(unused)]
// This overrides the "unused_must_use" lint from the "unused"
// group to deny.
#[deny(unused_must_use)]
fn example() {
 // This does not generate a warning because the
"unused_variables"
 // lint is in the "unused" group.
 let x = 1;
 // This generates an error because the result is unused and
 // "unused_must_use" is marked as "deny".
 std::fs::remove_file("some_file"); // ERROR: unused
`Result` that must be used
}

r[attributes.diagnostics.lint.group.warnings] There is a special group
named "warnings" which includes all lints at the "warn" level. The
"warnings" group ignores attribute order and applies to all lints that would
otherwise warn within the entity.
unsafe fn an_unsafe_fn() {}
// The order of these two attributes does not matter.
#[deny(warnings)]
// The unsafe_code lint is normally "allow" by default.
#[warn(unsafe_code)]
fn example_err() {

 // This is an error because the `unsafe_code` warning has
 // been lifted to "deny".
 unsafe { an_unsafe_fn() } // ERROR: usage of `unsafe` block
}

r[attributes.diagnostics.lint.tool]

Tool lint attributes
r[attributes.diagnostics.lint.tool.intro] Tool lints allows using scoped

lints, to allow , warn , deny or forbid lints of certain tools.
r[attributes.diagnostics.lint.tool.activation] Tool lints only get checked

when the associated tool is active. If a lint attribute, such as allow ,
references a nonexistent tool lint, the compiler will not warn about the
nonexistent lint until you use the tool.

Otherwise, they work just like regular lint attributes:
// set the entire `pedantic` clippy lint group to warn
#![warn(clippy::pedantic)]
// silence warnings from the `filter_map` clippy lint
#![allow(clippy::filter_map)]

fn main() {
 // ...
}

// silence the `cmp_nan` clippy lint just for this function
#[allow(clippy::cmp_nan)]
fn foo() {
 // ...
}

[!NOTE] rustc currently recognizes the tool lints for "clippy" and
"rustdoc".

r[attributes.diagnostics.deprecated]

https://github.com/rust-lang/rust-clippy
clbr://internal.invalid/book/rustdoc/lints.html

The deprecated attribute
r[attributes.diagnostics.deprecated.intro] The deprecated attribute

marks an item as deprecated. rustc will issue warnings on usage of #
[deprecated] items. rustdoc will show item deprecation, including the
since version and note , if available.

r[attributes.diagnostics.deprecated.syntax] The deprecated attribute has
several forms:

deprecated --- Issues a generic message.
deprecated = "message" --- Includes the given string in the
deprecation message.
[MetaListNameValueStr] syntax with two optional fields:

since --- Specifies a version number when the item was
deprecated. rustc does not currently interpret the string, but
external tools like Clippy may check the validity of the value.
note --- Specifies a string that should be included in the
deprecation message. This is typically used to provide an
explanation about the deprecation and preferred alternatives.

r[attributes.diagnostic.deprecated.allowed-positions] The deprecated

attribute may be applied to any item, trait item, enum variant, struct field,
external block item, or macro definition. It cannot be applied to trait
implementation items. When applied to an item containing other items,
such as a module or implementation, all child items inherit the deprecation
attribute.

Here is an example:
#[deprecated(since = "5.2.0", note = "foo was rarely used.
Users should instead use bar")]
pub fn foo() {}

pub fn bar() {}

The RFC contains motivations and more details.

https://github.com/rust-lang/rust-clippy
clbr://internal.invalid/book/OEBPS/items.md
clbr://internal.invalid/book/OEBPS/items/traits.md
clbr://internal.invalid/book/OEBPS/items/enumerations.md
clbr://internal.invalid/book/OEBPS/items/structs.md
clbr://internal.invalid/book/OEBPS/items/external-blocks.md
clbr://internal.invalid/book/OEBPS/macros-by-example.md
clbr://internal.invalid/book/OEBPS/items/implementations.md#trait-implementations
clbr://internal.invalid/book/OEBPS/items/modules.md
clbr://internal.invalid/book/OEBPS/items/implementations.md
https://github.com/rust-lang/rfcs/blob/master/text/1270-deprecation.md

r[attributes.diagnostics.must_use]

The must_use attribute
r[attributes.diagnostics.must_use.intro] The must_use attribute is used

to issue a diagnostic warning when a value is not "used".
r[attributes.diagnostics.must_use.allowed-positions] The must_use

attribute can be applied to user-defined composite types (struct s, enum s,
and union s), functions, and traits.

r[attributes.diagnostics.must_use.message] The must_use attribute may
include a message by using the [MetaNameValueStr] syntax such as #
[must_use = "example message"] . The message will be given alongside
the warning.

r[attributes.diagnostics.must_use.type] When used on user-defined
composite types, if the expression of an expression statement has that type,
then the unused_must_use lint is violated.
#[must_use]
struct MustUse {
 // some fields
}

impl MustUse {
fn new() -> MustUse { MustUse {} }
}

// Violates the `unused_must_use` lint.
MustUse::new();

r[attributes.diagnostics.must_use.fn] When used on a function, if the
expression of an expression statement is a call expression to that function,
then the unused_must_use lint is violated.
#[must_use]
fn five() -> i32 { 5i32 }

// Violates the unused_must_use lint.
five();

clbr://internal.invalid/book/OEBPS/items/structs.md
clbr://internal.invalid/book/OEBPS/items/enumerations.md
clbr://internal.invalid/book/OEBPS/items/unions.md
clbr://internal.invalid/book/OEBPS/items/functions.md
clbr://internal.invalid/book/OEBPS/items/traits.md
clbr://internal.invalid/book/OEBPS/expressions.md
clbr://internal.invalid/book/OEBPS/statements.md#expression-statements
clbr://internal.invalid/book/OEBPS/expressions.md
clbr://internal.invalid/book/OEBPS/statements.md#expression-statements
clbr://internal.invalid/book/OEBPS/expressions/call-expr.md

r[attributes.diagnostics.must_use.trait] When used on a trait declaration,
a call expression of an expression statement to a function that returns an
impl trait or a dyn trait of that trait violates the unused_must_use lint.
#[must_use]
trait Critical {}
impl Critical for i32 {}

fn get_critical() -> impl Critical {
 4i32
}

// Violates the `unused_must_use` lint.
get_critical();

r[attributes.diagnostics.must_use.trait-function] When used on a function
in a trait declaration, then the behavior also applies when the call expression
is a function from an implementation of the trait.
trait Trait {
 #[must_use]
 fn use_me(&self) -> i32;
}

impl Trait for i32 {
 fn use_me(&self) -> i32 { 0i32 }
}

// Violates the `unused_must_use` lint.
5i32.use_me();

r[attributes.diagnostics.must_use.trait-impl-function] When used on a
function in a trait implementation, the attribute does nothing.

[!NOTE] Trivial no-op expressions containing the value will not
violate the lint. Examples include wrapping the value in a type that
does not implement Drop and then not using that type and being the
final expression of a block expression that is not used.

clbr://internal.invalid/book/OEBPS/items/traits.md
clbr://internal.invalid/book/OEBPS/expressions/call-expr.md
clbr://internal.invalid/book/OEBPS/statements.md#expression-statements
clbr://internal.invalid/book/OEBPS/types/impl-trait.md
clbr://internal.invalid/book/OEBPS/types/trait-object.md
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#drop
clbr://internal.invalid/book/OEBPS/expressions/block-expr.md

#[must_use]
fn five() -> i32 { 5i32 }

// None of these violate the unused_must_use lint.
(five(),);
Some(five());
{ five() };
if true { five() } else { 0i32 };
match true {
 _ => five()
};

[!NOTE] It is idiomatic to use a let statement with a pattern of _
when a must-used value is purposely discarded.
#[must_use]
fn five() -> i32 { 5i32 }

// Does not violate the unused_must_use lint.
let _ = five();

r[attributes.diagnostic.namespace]

clbr://internal.invalid/book/OEBPS/statements.md#let-statements

The diagnostic tool attribute namespace
r[attributes.diagnostic.namespace.intro] The #[diagnostic] attribute

namespace is a home for attributes to influence compile-time error
messages. The hints provided by these attributes are not guaranteed to be
used.

r[attributes.diagnostic.namespace.unknown-invalid-syntax] Unknown
attributes in this namespace are accepted, though they may emit warnings
for unused attributes. Additionally, invalid inputs to known attributes will
typically be a warning (see the attribute definitions for details). This is
meant to allow adding or discarding attributes and changing inputs in the
future to allow changes without the need to keep the non-meaningful
attributes or options working.

r[attributes.diagnostic.on_unimplemented]

The diagnostic::on_unimplemented attribute
r[attributes.diagnostic.on_unimplemented.intro] The #

[diagnostic::on_unimplemented] attribute is a hint to the compiler to
supplement the error message that would normally be generated in
scenarios where a trait is required but not implemented on a type.

r[attributes.diagnostic.on_unimplemented.allowed-positions] The
attribute should be placed on a trait declaration, though it is not an error to
be located in other positions.

r[attributes.diagnostic.on_unimplemented.syntax] The attribute uses the
[MetaListNameValueStr] syntax to specify its inputs, though any
malformed input to the attribute is not considered as an error to provide
both forwards and backwards compatibility.

r[attributes.diagnostic.on_unimplemented.keys] The following keys have
the given meaning:

message --- The text for the top level error message.
label --- The text for the label shown inline in the broken code in the
error message.
note --- Provides additional notes.

clbr://internal.invalid/book/OEBPS/items/traits.md

r[attributes.diagnostic.on_unimplemented.note-repetition] The note

option can appear several times, which results in several note messages
being emitted.

r[attributes.diagnostic.on_unimplemented.repetition] If any of the other
options appears several times the first occurrence of the relevant option
specifies the actually used value. Subsequent occurrences generates a
warning.

r[attributes.diagnostic.on_unimplemented.unknown-keys] A warning is
generated for any unknown keys.

r[attributes.diagnostic.on_unimplemented.format-string] All three
options accept a string as an argument, interpreted using the same
formatting as a [std::fmt] string.

r[attributes.diagnostic.on_unimplemented.format-parameters] Format
parameters with the given named parameter will be replaced with the
following text:

{Self} --- The name of the type implementing the trait.
{ GenericParameterName } --- The name of the generic argument's
type for the given generic parameter.

r[attributes.diagnostic.on_unimplemented.invalid-formats] Any other
format parameter will generate a warning, but will otherwise be included in
the string as-is.

r[attributes.diagnostic.on_unimplemented.invalid-string] Invalid format
strings may generate a warning, but are otherwise allowed, but may not
display as intended. Format specifiers may generate a warning, but are
otherwise ignored.

In this example:
#[diagnostic::on_unimplemented(
 message = "My Message for `ImportantTrait<{A}>` implemented
for `{Self}`",
 label = "My Label",
 note = "Note 1",
 note = "Note 2"
)]

trait ImportantTrait<A> {}

fn use_my_trait(_: impl ImportantTrait<i32>) {}

fn main() {
 use_my_trait(String::new());
}

the compiler may generate an error message which looks like this:
error[E0277]: My Message for `ImportantTrait<i32>` implemented
for `String`
 --> src/main.rs:14:18
 |
14 | use_my_trait(String::new());
 | ------------ ^^^^^^^^^^^^^ My Label
 | |
 | required by a bound introduced by this call
 |
 = help: the trait `ImportantTrait<i32>` is not implemented
for `String`
 = note: Note 1
 = note: Note 2

r[attributes.diagnostic.do_not_recommend]

The diagnostic::do_not_recommend attribute
r[attributes.diagnostic.do_not_recommend.intro] The #

[diagnostic::do_not_recommend] attribute is a hint to the compiler to not
show the annotated trait implementation as part of a diagnostic message.

[!NOTE] Suppressing the recommendation can be useful if you
know that the recommendation would normally not be useful to the
programmer. This often occurs with broad, blanket impls. The
recommendation may send the programmer down the wrong path, or
the trait implementation may be an internal detail that you don't want
to expose, or the bounds may not be able to be satisfied by the
programmer.

For example, in an error message about a type not implementing a
required trait, the compiler may find a trait implementation that would
satisfy the requirements if it weren't for specific bounds in the trait
implementation. The compiler may tell the user that there is an impl,
but the problem is the bounds in the trait implementation. The #
[diagnostic::do_not_recommend] attribute can be used to tell the
compiler to not tell the user about the trait implementation, and instead
simply tell the user the type doesn't implement the required trait.

r[attributes.diagnostic.do_not_recommend.allowed-positions] The
attribute should be placed on a trait implementation item, though it is not an
error to be located in other positions.

r[attributes.diagnostic.do_not_recommend.syntax] The attribute does not
accept any arguments, though unexpected arguments are not considered as
an error.

In the following example, there is a trait called AsExpression which is
used for casting arbitrary types to the Expression type used in an SQL
library. There is a method called check which takes an AsExpression .
pub trait Expression {
type SqlType;
}

pub trait AsExpression<ST> {
type Expression: Expression<SqlType = ST>;
}

pub struct Text;
pub struct Integer;

pub struct Bound<T>(T);
pub struct SelectInt;

impl Expression for SelectInt {
type SqlType = Integer;
}

clbr://internal.invalid/book/OEBPS/items/implementations.md#trait-implementations

impl<T> Expression for Bound<T> {
type SqlType = T;
}

impl AsExpression<Integer> for i32 {
type Expression = Bound<Integer>;
}

impl AsExpression<Text> for &'_ str {
type Expression = Bound<Text>;
}

impl<T> Foo for T where T: Expression {}

// Uncomment this line to change the recommendation.
// #[diagnostic::do_not_recommend]
impl<T, ST> AsExpression<ST> for T
where
 T: Expression<SqlType = ST>,
{
 type Expression = T;
}

trait Foo: Expression + Sized {
 fn check<T>(&self, _: T) -> <T as AsExpression<<Self as
Expression>::SqlType>>::Expression
 where
 T: AsExpression<Self::SqlType>,
 {
 todo!()
 }
}

fn main() {

 SelectInt.check("bar");
}

The SelectInt type's check method is expecting an Integer type.
Calling it with an i32 type works, as it gets converted to an Integer by the
AsExpression trait. However, calling it with a string does not, and
generates a an error that may look like this:
error[E0277]: the trait bound `&str: Expression` is not
satisfied
 --> src/main.rs:53:15
 |
53 | SelectInt.check("bar");
 | ^^^^^ the trait `Expression` is not
implemented for `&str`
 |
 = help: the following other types implement trait
`Expression`:
 Bound<T>
 SelectInt
note: required for `&str` to implement `AsExpression<Integer>`
 --> src/main.rs:45:13
 |
45 | impl<T, ST> AsExpression<ST> for T
 | ^^^^^^^^^^^^^^^^ ^
46 | where
47 | T: Expression<SqlType = ST>,
 | ------------------------ unsatisfied trait bound
introduced here

By adding the #[diagnostic::do_not_recommend] attribute to the
blanket impl for AsExpression , the message changes to:
error[E0277]: the trait bound `&str: AsExpression<Integer>` is
not satisfied
 --> src/main.rs:53:15
 |
53 | SelectInt.check("bar");

 | ^^^^^ the trait `AsExpression<Integer>` is
not implemented for `&str`
 |
 = help: the trait `AsExpression<Integer>` is not implemented
for `&str`
 but trait `AsExpression<Text>` is implemented for it
 = help: for that trait implementation, expected `Text`,
found `Integer`

The first error message includes a somewhat confusing error message
about the relationship of &str and Expression , as well as the unsatisfied
trait bound in the blanket impl. After adding #

[diagnostic::do_not_recommend] , it no longer considers the blanket impl
for the recommendation. The message should be a little clearer, with an
indication that a string cannot be converted to an Integer .

r[attributes.codegen]

Code generation attributes
The following attributes are used for controlling code generation.
r[attributes.codegen.hint]

clbr://internal.invalid/book/OEBPS/attributes.md

Optimization hints
r[attributes.codegen.hint.cold-inline] The cold and inline attributes

give suggestions to generate code in a way that may be faster than what it
would do without the hint. The attributes are only hints, and may be
ignored.

r[attributes.codegen.hint.usage] Both attributes can be used on functions.
When applied to a function in a trait, they apply only to that function when
used as a default function for a trait implementation and not to all trait
implementations. The attributes have no effect on a trait function without a
body.

r[attributes.codegen.inline]

The inline attribute
r[attributes.codegen.inline.intro] The inline attribute suggests that a

copy of the attributed function should be placed in the caller, rather than
generating code to call the function where it is defined.

[!NOTE] The rustc compiler automatically inlines functions
based on internal heuristics. Incorrectly inlining functions can make
the program slower, so this attribute should be used with care.

r[attributes.codegen.inline.modes] There are three ways to use the inline
attribute:

#[inline] suggests performing an inline expansion.
#[inline(always)] suggests that an inline expansion should always
be performed.
#[inline(never)] suggests that an inline expansion should never be
performed.

[!NOTE] #[inline] in every form is a hint, with no requirements
on the language to place a copy of the attributed function in the caller.

r[attributes.codegen.cold]

The cold attribute

clbr://internal.invalid/book/OEBPS/attributes.md
clbr://internal.invalid/book/OEBPS/items/functions.md
clbr://internal.invalid/book/OEBPS/items/traits.md
clbr://internal.invalid/book/OEBPS/attributes.md

The cold attribute suggests that the attributed function is unlikely to be
called.

r[attributes.codegen.naked]

clbr://internal.invalid/book/OEBPS/attributes.md

The naked attribute
r[attributes.codegen.naked.intro] The naked attribute prevents the

compiler from emitting a function prologue and epilogue for the attributed
function.

r[attributes.codegen.naked.body] The function body must consist of
exactly one naked_asm! macro invocation.

r[attributes.codegen.naked.prologue-epilogue] No function prologue or
epilogue is generated for the attributed function. The assembly code in the
naked_asm! block constitutes the full body of a naked function.

r[attributes.codegen.naked.unsafe-attribute] The naked attribute is an
unsafe attribute. Annotating a function with #[unsafe(naked)] comes
with the safety obligation that the body must respect the function's calling
convention, uphold its signature, and either return or diverge (i.e., not fall
through past the end of the assembly code).

r[attributes.codegen.naked.call-stack] The assembly code may assume
that the call stack and register state are valid on entry as per the signature
and calling convention of the function.

r[attributes.codegen.naked.no-duplication] The assembly code may not
be duplicated by the compiler except when monomorphizing polymorphic
functions.

[!NOTE] Guaranteeing when the assembly code may or may not be
duplicated is important for naked functions that define symbols.

r[attributes.codegen.naked.unused-variables] The unused_variables

lint is suppressed within naked functions.
r[attributes.codegen.naked.inline] The inline attribute cannot by

applied to a naked function.
r[attributes.codegen.naked.track_caller] The track_caller attribute

cannot be applied to a naked function.
r[attributes.codegen.naked.testing] The testing attributes cannot be

applied to a naked function.
r[attributes.codegen.no_builtins]

clbr://internal.invalid/book/OEBPS/attributes.md
clbr://internal.invalid/book/OEBPS/items/functions.md#function-body
clbr://internal.invalid/book/OEBPS/inline-assembly.md
clbr://internal.invalid/book/OEBPS/attributes.md#r-attributes.safety
clbr://internal.invalid/book/rustc/lints/listing/warn-by-default.html#unused-variables
clbr://internal.invalid/book/OEBPS/attributes/testing.md

The no_builtins attribute
The no_builtins attribute may be applied at the crate level to disable

optimizing certain code patterns to invocations of library functions that are
assumed to exist.

r[attributes.codegen.target_feature]

clbr://internal.invalid/book/OEBPS/attributes.md

The target_feature attribute
r[attributes.codegen.target_feature.intro] The target_feature attribute

may be applied to a function to enable code generation of that function for
specific platform architecture features. It uses the [MetaListNameValueStr]
syntax with a single key of enable whose value is a string of comma-
separated feature names to enable.
#[cfg(target_feature = "avx2")]
#[target_feature(enable = "avx2")]
fn foo_avx2() {}

r[attributes.codegen.target_feature.arch] Each target architecture has a
set of features that may be enabled. It is an error to specify a feature for a
target architecture that the crate is not being compiled for.

r[attributes.codegen.target_feature.closures] Closures defined within a
target_feature -annotated function inherit the attribute from the enclosing
function.

r[attributes.codegen.target_feature.target-ub] It is undefined behavior to
call a function that is compiled with a feature that is not supported on the
current platform the code is running on, except if the platform explicitly
documents this to be safe.

r[attributes.codegen.target_feature.safety-restrictions] The following
restrictions apply unless otherwise specified by the platform rules below:

Safe #[target_feature] functions (and closures that inherit the
attribute) can only be safely called within a caller that enables all the
target_feature s that the callee enables. This restriction does not
apply in an unsafe context.
Safe #[target_feature] functions (and closures that inherit the
attribute) can only be coerced to safe function pointers in contexts that
enable all the target_feature s that the coercee enables. This
restriction does not apply to unsafe function pointers.

Implicitly enabled features are included in this rule. For example an
sse2 function can call ones marked with sse .

clbr://internal.invalid/book/OEBPS/attributes.md
clbr://internal.invalid/book/OEBPS/conditional-compilation.md#target_arch
clbr://internal.invalid/book/OEBPS/behavior-considered-undefined.md

#[cfg(target_feature = "sse2")] {
#[target_feature(enable = "sse")]
fn foo_sse() {}

fn bar() {
 // Calling `foo_sse` here is unsafe, as we must ensure
that SSE is
 // available first, even if `sse` is enabled by default on
the target
 // platform or manually enabled as compiler flags.
 unsafe {
 foo_sse();
 }
}

#[target_feature(enable = "sse")]
fn bar_sse() {
 // Calling `foo_sse` here is safe.
 foo_sse();
 || foo_sse();
}

#[target_feature(enable = "sse2")]
fn bar_sse2() {
 // Calling `foo_sse` here is safe because `sse2` implies
`sse`.
 foo_sse();
}
}

r[attributes.codegen.target_feature.fn-traits] A function with a #

[target_feature] attribute never implements the Fn family of traits,
although closures inheriting features from the enclosing function do.

r[attributes.codegen.target_feature.allowed-positions] The #

[target_feature] attribute is not allowed on the following places:

[the main function][crate.main]
a [panic_handler function][panic.panic_handler]
safe trait methods
safe default functions in traits

r[attributes.codegen.target_feature.inline] Functions marked with
target_feature are not inlined into a context that does not support the
given features. The #[inline(always)] attribute may not be used with a
target_feature attribute.

r[attributes.codegen.target_feature.availability]

Available features
The following is a list of the available feature names.
r[attributes.codegen.target_feature.x86]

x86 or x86_64
Executing code with unsupported features is undefined behavior on this

platform. Hence on this platform usage of #[target_feature] functions
follows the [above restrictions][attributes.codegen.target_feature.safety-
restrictions].

Feature Implicitly
Enables

Description

adx ADX --- Multi-Precision Add-Carry
Instruction Extensions

aes sse2 AES --- Advanced Encryption Standard

avx sse4.2 AVX --- Advanced Vector Extensions

avx2 avx AVX2 --- Advanced Vector Extensions 2

avx51

2bf16

avx512b

w

AVX512-BF16 --- Advanced Vector
Extensions 512-bit - Bfloat16 Extensions

avx512

bitalg

avx512b

w

AVX512-BITALG --- Advanced Vector
Extensions 512-bit - Bit Algorithms

https://en.wikipedia.org/wiki/Intel_ADX
https://en.wikipedia.org/wiki/AES_instruction_set
https://en.wikipedia.org/wiki/Advanced_Vector_Extensions
https://en.wikipedia.org/wiki/Advanced_Vector_Extensions#AVX2
https://en.wikipedia.org/wiki/AVX-512#BF16
https://en.wikipedia.org/wiki/AVX-512#VPOPCNTDQ_and_BITALG

Feature Implicitly
Enables

Description

avx51

2bw

avx512f AVX512-BW --- Advanced Vector
Extensions 512-bit - Byte and Word
Instructions

avx51

2cd

avx512f AVX512-CD --- Advanced Vector
Extensions 512-bit - Conflict Detection
Instructions

avx51

2dq

avx512f AVX512-DQ --- Advanced Vector
Extensions 512-bit - Doubleword and
Quadword Instructions

avx51

2f

avx2 ,
fma ,
f16c

AVX512-F --- Advanced Vector
Extensions 512-bit - Foundation

avx51

2fp16

avx512b

w

AVX512-FP16 --- Advanced Vector
Extensions 512-bit - Float16 Extensions

avx51

2ifma

avx512f AVX512-IFMA --- Advanced Vector
Extensions 512-bit - Integer Fused
Multiply Add

avx51

2vbmi

avx512b

w

AVX512-VBMI --- Advanced Vector
Extensions 512-bit - Vector Byte
Manipulation Instructions

avx512

vbmi2

avx512b

w

AVX512-VBMI2 --- Advanced Vector
Extensions 512-bit - Vector Byte
Manipulation Instructions 2

avx51

2vl

avx512f AVX512-VL --- Advanced Vector
Extensions 512-bit - Vector Length
Extensions

avx51

2vnni

avx512f AVX512-VNNI --- Advanced Vector
Extensions 512-bit - Vector Neural
Network Instructions

https://en.wikipedia.org/wiki/AVX-512#BW,_DQ_and_VBMI
https://en.wikipedia.org/wiki/AVX-512#Conflict_detection
https://en.wikipedia.org/wiki/AVX-512#BW,_DQ_and_VBMI
https://en.wikipedia.org/wiki/AVX-512
https://en.wikipedia.org/wiki/AVX-512#FP16
https://en.wikipedia.org/wiki/AVX-512#IFMA
https://en.wikipedia.org/wiki/AVX-512#BW,_DQ_and_VBMI
https://en.wikipedia.org/wiki/AVX-512#VBMI2
https://en.wikipedia.org/wiki/AVX-512
https://en.wikipedia.org/wiki/AVX-512#VNNI

Feature Implicitly
Enables

Description

avx512

vp2int

ersect

avx512f AVX512-VP2INTERSECT --- Advanced
Vector Extensions 512-bit - Vector Pair
Intersection to a Pair of Mask Registers

avx512

vpopcn

tdq

avx512f AVX512-VPOPCNTDQ --- Advanced
Vector Extensions 512-bit - Vector
Population Count Instruction

avxif

ma

avx2 AVX-IFMA --- Advanced Vector
Extensions - Integer Fused Multiply Add

avxnec

onvert

avx2 AVX-NE-CONVERT --- Advanced
Vector Extensions - No-Exception
Floating-Point conversion Instructions

avxvn

ni

avx2 AVX-VNNI --- Advanced Vector
Extensions - Vector Neural Network
Instructions

avxvnn

iint16

avx2 AVX-VNNI-INT16 --- Advanced Vector
Extensions - Vector Neural Network
Instructions with 16-bit Integers

avxvnn

iint8

avx2 AVX-VNNI-INT8 --- Advanced Vector
Extensions - Vector Neural Network
Instructions with 8-bit Integers

bmi1 BMI1 --- Bit Manipulation Instruction
Sets

bmi2 BMI2 --- Bit Manipulation Instruction
Sets 2

cmpxc

hg16b

cmpxchg16b --- Compares and exchange
16 bytes (128 bits) of data atomically

f16c avx F16C --- 16-bit floating point conversion
instructions

https://en.wikipedia.org/wiki/AVX-512#VP2INTERSECT
https://en.wikipedia.org/wiki/AVX-512#VPOPCNTDQ_and_BITALG
https://en.wikipedia.org/wiki/Advanced_Vector_Extensions#AVX-VNNI,_AVX-IFMA
https://en.wikipedia.org/wiki/Advanced_Vector_Extensions#AVX-VNNI,_AVX-IFMA
https://en.wikipedia.org/wiki/Advanced_Vector_Extensions#AVX-VNNI,_AVX-IFMA
https://en.wikipedia.org/wiki/Advanced_Vector_Extensions#AVX-VNNI,_AVX-IFMA
https://en.wikipedia.org/wiki/Advanced_Vector_Extensions#AVX-VNNI,_AVX-IFMA
https://en.wikipedia.org/wiki/Bit_Manipulation_Instruction_Sets
https://en.wikipedia.org/wiki/Bit_Manipulation_Instruction_Sets#BMI2
https://www.felixcloutier.com/x86/cmpxchg8b:cmpxchg16b
https://en.wikipedia.org/wiki/F16C

Feature Implicitly
Enables

Description

fma avx FMA3 --- Three-operand fused multiply-
add

fxsr fxsave and fxrstor --- Save and
restore x87 FPU, MMX Technology, and
SSE State

gfni sse2 GFNI --- Galois Field New Instructions

kl sse2 KEYLOCKER --- Intel Key Locker
Instructions

lzcnt lzcnt --- Leading zeros count

movbe movbe --- Move data after swapping
bytes

pclmu

lqdq

sse2 pclmulqdq --- Packed carry-less
multiplication quadword

popcn

t

popcnt --- Count of bits set to 1

rdran

d

rdrand --- Read random number

rdsee

d

rdseed --- Read random seed

sha sse2 SHA --- Secure Hash Algorithm

sha51

2

avx2 SHA512 --- Secure Hash Algorithm with
512-bit digest

sm3 avx SM3 --- ShangMi 3 Hash Algorithm

sm4 avx2 SM4 --- ShangMi 4 Cipher Algorithm

sse SSE --- Streaming SIMD Extensions

sse2 sse SSE2 --- Streaming SIMD Extensions 2

https://en.wikipedia.org/wiki/FMA_instruction_set
https://www.felixcloutier.com/x86/fxsave
https://www.felixcloutier.com/x86/fxrstor
https://en.wikipedia.org/wiki/AVX-512#GFNI
https://en.wikipedia.org/wiki/List_of_x86_cryptographic_instructions#Intel_Key_Locker_instructions
https://www.felixcloutier.com/x86/lzcnt
https://www.felixcloutier.com/x86/movbe
https://www.felixcloutier.com/x86/pclmulqdq
https://www.felixcloutier.com/x86/popcnt
https://en.wikipedia.org/wiki/RdRand
https://en.wikipedia.org/wiki/RdRand
https://en.wikipedia.org/wiki/Intel_SHA_extensions
https://en.wikipedia.org/wiki/Intel_SHA_extensions
https://en.wikipedia.org/wiki/List_of_x86_cryptographic_instructions#Intel_SHA_and_SM3_instructions
https://en.wikipedia.org/wiki/List_of_x86_cryptographic_instructions#Intel_SHA_and_SM3_instructions
https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
https://en.wikipedia.org/wiki/SSE2

Feature Implicitly
Enables

Description

sse3 sse2 SSE3 --- Streaming SIMD Extensions 3

sse4.

1

ssse3 SSE4.1 --- Streaming SIMD Extensions
4.1

sse4.

2

sse4.1 SSE4.2 --- Streaming SIMD Extensions
4.2

ssse3 sse3 SSSE3 --- Supplemental Streaming
SIMD Extensions 3

vaes avx2 ,
aes

VAES --- Vector AES Instructions

vpclm

ulqdq

avx ,
pclmulq

dq

VPCLMULQDQ --- Vector Carry-less
multiplication of Quadwords

widek

l

kl KEYLOCKER_WIDE --- Intel Wide
Keylocker Instructions

xsave xsave --- Save processor extended states

xsave

c

xsavec --- Save processor extended
states with compaction

xsave

opt

xsaveopt --- Save processor extended
states optimized

xsave

s

xsaves --- Save processor extended
states supervisor

r[attributes.codegen.target_feature.aarch64]

aarch64

On this platform the usage of #[target_feature] functions follows the
[above restrictions][attributes.codegen.target_feature.safety-restrictions].

https://en.wikipedia.org/wiki/SSE3
https://en.wikipedia.org/wiki/SSE4#SSE4.1
https://en.wikipedia.org/wiki/SSE4#SSE4.2
https://en.wikipedia.org/wiki/SSSE3
https://en.wikipedia.org/wiki/AVX-512#VAES
https://en.wikipedia.org/wiki/AVX-512#VPCLMULQDQ
https://en.wikipedia.org/wiki/List_of_x86_cryptographic_instructions#Intel_Key_Locker_instructions
https://www.felixcloutier.com/x86/xsave
https://www.felixcloutier.com/x86/xsavec
https://www.felixcloutier.com/x86/xsaveopt
https://www.felixcloutier.com/x86/xsaves

Further documentation on these features can be found in the ARM
Architecture Reference Manual, or elsewhere on developer.arm.com.

[!NOTE] The following pairs of features should both be marked as
enabled or disabled together if used:

paca and pacg , which LLVM currently implements as one
feature.

Feature Implicitly
Enables

Feature Name

aes neon FEAT_AES & FEAT_PMULL ---
Advanced SIMD AES & PMULL
instructions

bf16 FEAT_BF16 --- BFloat16 instructions

bti FEAT_BTI --- Branch Target
Identification

crc FEAT_CRC --- CRC32 checksum
instructions

dit FEAT_DIT --- Data Independent Timing
instructions

dotpr

od

neon FEAT_DotProd --- Advanced SIMD Int8
dot product instructions

dpb FEAT_DPB --- Data cache clean to point
of persistence

dpb2 dpb FEAT_DPB2 --- Data cache clean to
point of deep persistence

f32mm sve FEAT_F32MM --- SVE single-precision
FP matrix multiply instruction

f64mm sve FEAT_F64MM --- SVE double-precision
FP matrix multiply instruction

https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/

Feature Implicitly
Enables

Feature Name

fcma neon FEAT_FCMA --- Floating point complex
number support

fhm fp16 FEAT_FHM --- Half-precision FP
FMLAL instructions

flagm FEAT_FLAGM --- Conditional flag
manipulation

fp16 neon FEAT_FP16 --- Half-precision FP data
processing

frint

ts

FEAT_FRINTTS --- Floating-point to int
helper instructions

i8mm FEAT_I8MM --- Int8 Matrix
Multiplication

jscon

v

neon FEAT_JSCVT --- JavaScript conversion
instruction

lor FEAT_LOR --- Limited Ordering
Regions extension

lse FEAT_LSE --- Large System Extensions

mte FEAT_MTE & FEAT_MTE2 --- Memory
Tagging Extension

neon FEAT_AdvSimd & FEAT_FP ---
Floating Point and Advanced SIMD
extension

paca FEAT_PAUTH --- Pointer Authentication
(address authentication)

pacg FEAT_PAUTH --- Pointer Authentication
(generic authentication)

pan FEAT_PAN --- Privileged Access-Never
extension

Feature Implicitly
Enables

Feature Name

pmuv3 FEAT_PMUv3 --- Performance Monitors
extension (v3)

rand FEAT_RNG --- Random Number
Generator

ras FEAT_RAS & FEAT_RASv1p1 ---
Reliability, Availability and
Serviceability extension

rcpc FEAT_LRCPC --- Release consistent
Processor Consistent

rcpc2 rcpc FEAT_LRCPC2 --- RcPc with immediate
offsets

rdm neon FEAT_RDM --- Rounding Double
Multiply accumulate

sb FEAT_SB --- Speculation Barrier

sha2 neon FEAT_SHA1 & FEAT_SHA256 ---
Advanced SIMD SHA instructions

sha3 sha2 FEAT_SHA512 & FEAT_SHA3 ---
Advanced SIMD SHA instructions

sm4 neon FEAT_SM3 & FEAT_SM4 --- Advanced
SIMD SM3/4 instructions

spe FEAT_SPE --- Statistical Profiling
Extension

ssbs FEAT_SSBS & FEAT_SSBS2 ---
Speculative Store Bypass Safe

sve neon FEAT_SVE --- Scalable Vector
Extension

sve2 sve FEAT_SVE2 --- Scalable Vector
Extension 2

Feature Implicitly
Enables

Feature Name

sve2-

aes

sve2 ,
aes

FEAT_SVE_AES &
FEAT_SVE_PMULL128 --- SVE AES
instructions

sve2-

bitper

m

sve2 FEAT_SVE2_BitPerm --- SVE Bit
Permute

sve2-

sha3

sve2 ,
sha3

FEAT_SVE2_SHA3 --- SVE SHA3
instructions

sve2-

sm4

sve2 ,
sm4

FEAT_SVE2_SM4 --- SVE SM4
instructions

tme FEAT_TME --- Transactional Memory
Extension

vh FEAT_VHE --- Virtualization Host
Extensions

r[attributes.codegen.target_feature.loongarch]

loongarch

On this platform the usage of #[target_feature] functions follows the
[above restrictions][attributes.codegen.target_feature.safety-restrictions].

Feature Implicitly
Enables

Description

f F --- Single-precision float-point
instructions

d f D --- Double-precision float-point
instructions

freci

pe

FRECIPE --- Reciprocal
approximation instructions

https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html#cpucfg-fp_sp
https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html#cpucfg-fp_dp
https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html#cpucfg-frecipe

Feature Implicitly
Enables

Description

lasx lsx LASX --- 256-bit vector instructions

lbt LBT --- Binary translation
instructions

lsx d LSX --- 128-bit vector instructions

lvz LVZ --- Virtualization instructions

r[attributes.codegen.target_feature.riscv]

riscv32 or riscv64
On this platform the usage of #[target_feature] functions follows the

[above restrictions][attributes.codegen.target_feature.safety-restrictions].
Further documentation on these features can be found in their respective

specification. Many specifications are described in the RISC-V ISA Manual
or in another manual hosted on the RISC-V GitHub Account.

Feature Implicitly Enables Description
a A --- Atomic instructions

c C --- Compressed
instructions

m M --- Integer Multiplication
and Division instructions

zb zba , zbc , zbs Zb --- Bit Manipulation
instructions

zba Zba --- Address Generation
instructions

zbb Zbb --- Basic bit-
manipulation

zbc Zbc --- Carry-less
multiplication

https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html#cpucfg-lasx
https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html#cpucfg-lbt_x86
https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html#cpucfg-lsx
https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html#cpucfg-lvz
https://github.com/riscv/riscv-isa-manual
https://github.com/riscv
https://github.com/riscv/riscv-isa-manual/blob/de46343a245c6ee1f7b1a40c92fe1a86bd4f4978/src/a-st-ext.adoc
https://github.com/riscv/riscv-isa-manual/blob/de46343a245c6ee1f7b1a40c92fe1a86bd4f4978/src/c-st-ext.adoc
https://github.com/riscv/riscv-isa-manual/blob/de46343a245c6ee1f7b1a40c92fe1a86bd4f4978/src/m-st-ext.adoc
https://github.com/riscv/riscv-bitmanip
https://github.com/riscv/riscv-bitmanip/blob/main/bitmanip/zba.adoc
https://github.com/riscv/riscv-bitmanip/blob/main/bitmanip/zbb.adoc
https://github.com/riscv/riscv-bitmanip/blob/main/bitmanip/zbc.adoc

Feature Implicitly Enables Description
zbkb Zbkb --- Bit Manipulation

Instructions for Cryptography
zbkc Zbkc --- Carry-less

multiplication for
Cryptography

zbkx Zbkx --- Crossbar
permutations

zbs Zbs --- Single-bit instructions

zk zkn , zkr , zks ,
zkt , zbkb , zbkc ,
zkbx

Zk --- Scalar Cryptography

zkn zknd , zkne , zknh ,
zbkb , zbkc , zkbx

Zkn --- NIST Algorithm suite
extension

zknd Zknd --- NIST Suite: AES
Decryption

zkne Zkne --- NIST Suite: AES
Encryption

zknh Zknh --- NIST Suite: Hash
Function Instructions

zkr Zkr --- Entropy Source
Extension

zks zksed , zksh , zbkb ,
zbkc , zkbx

Zks --- ShangMi Algorithm
Suite

zksed Zksed --- ShangMi Suite:
SM4 Block Cipher
Instructions

zksh Zksh --- ShangMi Suite: SM3
Hash Function Instructions

https://github.com/riscv/riscv-bitmanip/blob/main/bitmanip/zbkb.adoc
https://github.com/riscv/riscv-bitmanip/blob/main/bitmanip/zbc.adoc
https://github.com/riscv/riscv-bitmanip/blob/main/bitmanip/zbkx.adoc
https://github.com/riscv/riscv-bitmanip/blob/main/bitmanip/zbs.adoc
https://github.com/riscv/riscv-crypto/blob/e2dd7d98b7f34d477e38cb5fd7a3af4379525189/doc/scalar/riscv-crypto-scalar-zk.adoc
https://github.com/riscv/riscv-crypto/blob/e2dd7d98b7f34d477e38cb5fd7a3af4379525189/doc/scalar/riscv-crypto-scalar-zkn.adoc
https://github.com/riscv/riscv-crypto/blob/e2dd7d98b7f34d477e38cb5fd7a3af4379525189/doc/scalar/riscv-crypto-scalar-zknd.adoc
https://github.com/riscv/riscv-crypto/blob/e2dd7d98b7f34d477e38cb5fd7a3af4379525189/doc/scalar/riscv-crypto-scalar-zkne.adoc
https://github.com/riscv/riscv-crypto/blob/e2dd7d98b7f34d477e38cb5fd7a3af4379525189/doc/scalar/riscv-crypto-scalar-zknh.adoc
https://github.com/riscv/riscv-crypto/blob/e2dd7d98b7f34d477e38cb5fd7a3af4379525189/doc/scalar/riscv-crypto-scalar-zkr.adoc
https://github.com/riscv/riscv-crypto/blob/e2dd7d98b7f34d477e38cb5fd7a3af4379525189/doc/scalar/riscv-crypto-scalar-zks.adoc
https://github.com/riscv/riscv-crypto/blob/e2dd7d98b7f34d477e38cb5fd7a3af4379525189/doc/scalar/riscv-crypto-scalar-zksed.adoc
https://github.com/riscv/riscv-crypto/blob/e2dd7d98b7f34d477e38cb5fd7a3af4379525189/doc/scalar/riscv-crypto-scalar-zksh.adoc

Feature Implicitly Enables Description
zkt Zkt --- Data Independent

Execution Latency Subset

r[attributes.codegen.target_feature.wasm]

wasm32 or wasm64
Safe #[target_feature] functions may always be used in safe contexts

on Wasm platforms. It is impossible to cause undefined behavior via the #
[target_feature] attribute because attempting to use instructions
unsupported by the Wasm engine will fail at load time without the risk of
being interpreted in a way different from what the compiler expected.

Feature Implicitly
Enables

Description

bulk-

memory

WebAssembly bulk memory
operations proposal

extended-

const

WebAssembly extended const
expressions proposal

mutable-

globals

WebAssembly mutable global
proposal

nontrappin

g-fptoint

WebAssembly non-trapping float-
to-int conversion proposal

relaxed-

simd

simd128 WebAssembly relaxed simd
proposal

sign-ext WebAssembly sign extension
operators Proposal

simd128 WebAssembly simd proposal

multivalue WebAssembly multivalue proposal

https://github.com/riscv/riscv-crypto/blob/e2dd7d98b7f34d477e38cb5fd7a3af4379525189/doc/scalar/riscv-crypto-scalar-zkt.adoc
https://github.com/WebAssembly/bulk-memory-operations
https://github.com/WebAssembly/extended-const
https://github.com/WebAssembly/mutable-global
https://github.com/WebAssembly/nontrapping-float-to-int-conversions
https://github.com/WebAssembly/relaxed-simd
https://github.com/WebAssembly/sign-extension-ops
https://github.com/webassembly/simd
https://github.com/webassembly/multi-value

Feature Implicitly
Enables

Description

reference-

types

WebAssembly reference-types
proposal

tail-call WebAssembly tail-call proposal

r[attributes.codegen.target_feature.info]

Additional information
r[attributes.codegen.target_feature.remark-cfg] See the target_feature

conditional compilation option for selectively enabling or disabling
compilation of code based on compile-time settings. Note that this option is
not affected by the target_feature attribute, and is only driven by the
features enabled for the entire crate.

r[attributes.codegen.target_feature.remark-rt] See the
is_x86_feature_detected or is_aarch64_feature_detected macros in
the standard library for runtime feature detection on these platforms.

[!NOTE] rustc has a default set of features enabled for each target
and CPU. The CPU may be chosen with the -C target-cpu flag.
Individual features may be enabled or disabled for an entire crate with
the -C target-feature flag.

r[attributes.codegen.track_caller]

https://github.com/webassembly/reference-types
https://github.com/webassembly/tail-call
clbr://internal.invalid/book/OEBPS/conditional-compilation.md#target_feature
clbr://internal.invalid/book/std/arch/macro.is_x86_feature_detected.html
clbr://internal.invalid/book/std/arch/macro.is_aarch64_feature_detected.html
clbr://internal.invalid/book/rustc/codegen-options/index.html#target-cpu
clbr://internal.invalid/book/rustc/codegen-options/index.html#target-feature

The track_caller attribute
r[attributes.codegen.track_caller.allowed-positions] The track_caller

attribute may be applied to any function with "Rust" ABI with the
exception of the entry point fn main .

r[attributes.codegen.track_caller.traits] When applied to functions and
methods in trait declarations, the attribute applies to all implementations. If
the trait provides a default implementation with the attribute, then the
attribute also applies to override implementations.

r[attributes.codegen.track_caller.extern] When applied to a function in
an extern block the attribute must also be applied to any linked
implementations, otherwise undefined behavior results. When applied to a
function which is made available to an extern block, the declaration in the
extern block must also have the attribute, otherwise undefined behavior
results.

r[attributes.codegen.track_caller.behavior]

Behavior
Applying the attribute to a function f allows code within f to get a hint

of the Location of the "topmost" tracked call that led to f 's invocation. At
the point of observation, an implementation behaves as if it walks up the
stack from f 's frame to find the nearest frame of an unattributed function
outer , and it returns the Location of the tracked call in outer .
#[track_caller]
fn f() {
 println!("{}", std::panic::Location::caller());
}

[!NOTE] core provides [core::panic::Location::caller] for
observing caller locations. It wraps the
[core::intrinsics::caller_location] intrinsic implemented by
rustc .

clbr://internal.invalid/book/OEBPS/items/external-blocks.md#abi
core::panic::Location
core::panic::Location

[!NOTE] Because the resulting Location is a hint, an
implementation may halt its walk up the stack early. See Limitations
for important caveats.

Examples
When f is called directly by calls_f , code in f observes its callsite

within calls_f :
#[track_caller]
fn f() {
println!("{}", std::panic::Location::caller());
}
fn calls_f() {
 f(); // <-- f() prints this location
}

When f is called by another attributed function g which is in turn
called by calls_g , code in both f and g observes g 's callsite within
calls_g :
#[track_caller]
fn f() {
println!("{}", std::panic::Location::caller());
}
#[track_caller]
fn g() {
 println!("{}", std::panic::Location::caller());
 f();
}

fn calls_g() {
 g(); // <-- g() prints this location twice, once itself
and once from f()
}

When g is called by another attributed function h which is in turn
called by calls_h , all code in f , g , and h observes h 's callsite within

calls_h :
#[track_caller]
fn f() {
println!("{}", std::panic::Location::caller());
}
#[track_caller]
fn g() {
println!("{}", std::panic::Location::caller());
f();
}
#[track_caller]
fn h() {
 println!("{}", std::panic::Location::caller());
 g();
}

fn calls_h() {
 h(); // <-- prints this location three times, once itself,
once from g(), once from f()
}

And so on.
r[attributes.codegen.track_caller.limits]

Limitations
r[attributes.codegen.track_caller.hint] This information is a hint and

implementations are not required to preserve it.
r[attributes.codegen.track_caller.decay] In particular, coercing a function

with #[track_caller] to a function pointer creates a shim which appears
to observers to have been called at the attributed function's definition site,
losing actual caller information across virtual calls. A common example of
this coercion is the creation of a trait object whose methods are attributed.

[!NOTE] The aforementioned shim for function pointers is
necessary because rustc implements track_caller in a codegen
context by appending an implicit parameter to the function ABI, but

this would be unsound for an indirect call because the parameter is not
a part of the function's type and a given function pointer type may or
may not refer to a function with the attribute. The creation of a shim
hides the implicit parameter from callers of the function pointer,
preserving soundness.

r[attributes.codegen.instruction_set]

The instruction_set attribute
r[attributes.codegen.instruction_set.allowed-positions] The

instruction_set attribute may be applied to a function to control which
instruction set the function will be generated for.

r[attributes.codegen.instruction_set.behavior] This allows mixing more
than one instruction set in a single program on CPU architectures that
support it.

r[attributes.codegen.instruction_set.syntax] It uses the [MetaListPaths]
syntax, and a path comprised of the architecture family name and
instruction set name.

r[attributes.codegen.instruction_set.target-limits] It is a compilation error
to use the instruction_set attribute on a target that does not support it.

r[attributes.codegen.instruction_set.arm]

On ARM
For the ARMv4T and ARMv5te architectures, the following are supported:

arm::a32 --- Generate the function as A32 "ARM" code.
arm::t32 --- Generate the function as T32 "Thumb" code.

#[instruction_set(arm::a32)]
fn foo_arm_code() {}

#[instruction_set(arm::t32)]
fn bar_thumb_code() {}

Using the instruction_set attribute has the following effects:

If the address of the function is taken as a function pointer, the low bit
of the address will be set to 0 (arm) or 1 (thumb) depending on the
instruction set.
Any inline assembly in the function must use the specified instruction
set instead of the target default.

clbr://internal.invalid/book/OEBPS/attributes.md

r[attributes.limits]

Limits
The following attributes affect compile-time limits.
r[attributes.limits.recursion_limit]

clbr://internal.invalid/book/OEBPS/attributes.md

The recursion_limit attribute
r[attributes.limits.recursion_limit.intro] The recursion_limit attribute

may be applied at the crate level to set the maximum depth for potentially
infinitely-recursive compile-time operations like macro expansion or auto-
dereference.

r[attributes.limits.recursion_limit.syntax] It uses the
[MetaNameValueStr] syntax to specify the recursion depth.

[!NOTE] The default in rustc is 128.

#![recursion_limit = "4"]

macro_rules! a {
 () => { a!(1); };
 (1) => { a!(2); };
 (2) => { a!(3); };
 (3) => { a!(4); };
 (4) => { };
}

// This fails to expand because it requires a recursion depth
greater than 4.
a!{}
#![recursion_limit = "1"]

// This fails because it requires two recursive steps to auto-
dereference.
(|_: &u8| {})(&&&1);

r[attributes.limits.type_length_limit]

clbr://internal.invalid/book/OEBPS/crates-and-source-files.md

The type_length_limit attribute
[!NOTE] This limit is only enforced when the nightly -Zenforce-

type-length-limit flag is active.
For more information, see https://github.com/rust-

lang/rust/pull/127670.

r[attributes.limits.type_length_limit.intro] The type_length_limit

attribute limits the maximum number of type substitutions made when
constructing a concrete type during monomorphization.

r[attributes.limits.type_length_limit.syntax] It is applied at the crate
level, and uses the [MetaNameValueStr] syntax to set the limit based on the
number of type substitutions.

[!NOTE] The default in rustc is 1048576.

#![type_length_limit = "4"]

fn f<T>(x: T) {}

// This fails to compile because monomorphizing to
// `f::<((((i32,), i32), i32), i32)>` requires more than 4 type
elements.
f(((((1,), 2), 3), 4));

https://github.com/rust-lang/rust/pull/127670
clbr://internal.invalid/book/OEBPS/crates-and-source-files.md

r[attributes.type-system]

Type system attributes
The following attributes are used for changing how a type can be used.
r[attributes.type-system.non_exhaustive]

clbr://internal.invalid/book/OEBPS/attributes.md

The non_exhaustive attribute
r[attributes.type-system.non_exhaustive.intro] The non_exhaustive

attribute indicates that a type or variant may have more fields or variants
added in the future.

r[attributes.type-system.non_exhaustive.allowed-positions] It can be
applied to struct s, enum s, and enum variants.

r[attributes.type-system.non_exhaustive.syntax] The non_exhaustive

attribute uses the [MetaWord] syntax and thus does not take any inputs.
r[attributes.type-system.non_exhaustive.same-crate] Within the defining

crate, non_exhaustive has no effect.
#[non_exhaustive]
pub struct Config {
 pub window_width: u16,
 pub window_height: u16,
}

#[non_exhaustive]
pub struct Token;

#[non_exhaustive]
pub struct Id(pub u64);

#[non_exhaustive]
pub enum Error {
 Message(String),
 Other,
}

pub enum Message {
 #[non_exhaustive] Send { from: u32, to: u32, contents:
String },
 #[non_exhaustive] Reaction(u32),
 #[non_exhaustive] Quit,

clbr://internal.invalid/book/OEBPS/items/structs.md
clbr://internal.invalid/book/OEBPS/items/enumerations.md

}

// Non-exhaustive structs can be constructed as normal within
the defining crate.
let config = Config { window_width: 640, window_height: 480 };
let token = Token;
let id = Id(4);

// Non-exhaustive structs can be matched on exhaustively
within the defining crate.
let Config { window_width, window_height } = config;
let Token = token;
let Id(id_number) = id;

let error = Error::Other;
let message = Message::Reaction(3);

// Non-exhaustive enums can be matched on exhaustively within
the defining crate.
match error {
 Error::Message(ref s) => { },
 Error::Other => { },
}

match message {
 // Non-exhaustive variants can be matched on exhaustively
within the defining crate.
 Message::Send { from, to, contents } => { },
 Message::Reaction(id) => { },
 Message::Quit => { },
}

r[attributes.type-system.non_exhaustive.external-crate] Outside of the
defining crate, types annotated with non_exhaustive have limitations that
preserve backwards compatibility when new fields or variants are added.

r[attributes.type-system.non_exhaustive.construction] Non-exhaustive
types cannot be constructed outside of the defining crate:

Non-exhaustive variants (struct or enum variant) cannot be
constructed with a [StructExpression] (including with functional
update syntax).
The implicitly defined same-named constant of a unit-like struct, or the
same-named constructor function of a tuple struct, has a visibility no
greater than pub(crate) . That is, if the struct’s visibility is pub , then
the constant or constructor’s visibility is pub(crate) , and otherwise
the visibility of the two items is the same (as is the case without #
[non_exhaustive]).
enum instances can be constructed.

The following examples of construction do not compile when outside the
defining crate:
// These are types defined in an upstream crate that have been
annotated as
// `#[non_exhaustive]`.
use upstream::{Config, Token, Id, Error, Message};

// Cannot construct an instance of `Config`; if new fields were
added in
// a new version of `upstream` then this would fail to compile,
so it is
// disallowed.
let config = Config { window_width: 640, window_height: 480 };

// Cannot construct an instance of `Token`; if new fields were
added, then
// it would not be a unit-like struct any more, so the same-
named constant
// created by it being a unit-like struct is not public outside
the crate;
// this code fails to compile.
let token = Token;

clbr://internal.invalid/book/OEBPS/items/structs.md
clbr://internal.invalid/book/OEBPS/items/enumerations.md
clbr://internal.invalid/book/OEBPS/expressions/struct-expr.md#functional-update-syntax
clbr://internal.invalid/book/OEBPS/items/structs.md
clbr://internal.invalid/book/OEBPS/items/structs.md
clbr://internal.invalid/book/OEBPS/visibility-and-privacy.md
clbr://internal.invalid/book/OEBPS/items/enumerations.md

// Cannot construct an instance of `Id`; if new fields were
added, then
// its constructor function signature would change, so its
constructor
// function is not public outside the crate; this code fails to
compile.
let id = Id(5);

// Can construct an instance of `Error`; new variants being
introduced would
// not result in this failing to compile.
let error = Error::Message("foo".to_string());

// Cannot construct an instance of `Message::Send` or
`Message::Reaction`;
// if new fields were added in a new version of `upstream` then
this would
// fail to compile, so it is disallowed.
let message = Message::Send { from: 0, to: 1, contents:
"foo".to_string(), };
let message = Message::Reaction(0);

// Cannot construct an instance of `Message::Quit`; if this
were converted to
// a tuple-variant `upstream` then this would fail to compile.
let message = Message::Quit;

r[attributes.type-system.non_exhaustive.match] There are limitations
when matching on non-exhaustive types outside of the defining crate:

When pattern matching on a non-exhaustive variant (struct or enum
variant), a [StructPattern] must be used which must include a .. . A
tuple variant's constructor's visibility is reduced to be no greater than
pub(crate) .

clbr://internal.invalid/book/OEBPS/items/structs.md
clbr://internal.invalid/book/OEBPS/items/enumerations.md
clbr://internal.invalid/book/OEBPS/visibility-and-privacy.md

When pattern matching on a non-exhaustive enum , matching on a
variant does not contribute towards the exhaustiveness of the arms.

The following examples of matching do not compile when outside the
defining crate:
// These are types defined in an upstream crate that have been
annotated as
// `#[non_exhaustive]`.
use upstream::{Config, Token, Id, Error, Message};

// Cannot match on a non-exhaustive enum without including a
wildcard arm.
match error {
 Error::Message(ref s) => { },
 Error::Other => { },
 // would compile with: `_ => {},`
}

// Cannot match on a non-exhaustive struct without a wildcard.
if let Ok(Config { window_width, window_height }) = config {
 // would compile with: `..`
}

// Cannot match a non-exhaustive unit-like or tuple struct
except by using
// braced struct syntax with a wildcard.
// This would compile as `let Token { .. } = token;`
let Token = token;
// This would compile as `let Id { 0: id_number, .. } = id;`
let Id(id_number) = id;

match message {
 // Cannot match on a non-exhaustive struct enum variant
without including a wildcard.
 Message::Send { from, to, contents } => { },
 // Cannot match on a non-exhaustive tuple or unit enum

clbr://internal.invalid/book/OEBPS/items/enumerations.md

variant.
 Message::Reaction(type) => { },
 Message::Quit => { },
}

It's also not allowed to use numeric casts (as) on enums that contain any
non-exhaustive variants.

For example, the following enum can be cast because it doesn't contain
any non-exhaustive variants:
#[non_exhaustive]
pub enum Example {
 First,
 Second
}

However, if the enum contains even a single non-exhaustive variant,
casting will result in an error. Consider this modified version of the same
enum:
#[non_exhaustive]
pub enum EnumWithNonExhaustiveVariants {
 First,
 #[non_exhaustive]
 Second
}

use othercrate::EnumWithNonExhaustiveVariants;

// Error: cannot cast an enum with a non-exhaustive variant
when it's defined in another crate
let _ = EnumWithNonExhaustiveVariants::First as u8;

Non-exhaustive types are always considered inhabited in downstream
crates.

r[attributes.debugger]

Debugger attributes
The following attributes are used for enhancing the debugging

experience when using third-party debuggers like GDB or WinDbg.
r[attributes.debugger.debugger_visualizer]

clbr://internal.invalid/book/OEBPS/attributes.md

The debugger_visualizer attribute
r[attributes.debugger.debugger_visualizer.intro] The

debugger_visualizer attribute can be used to embed a debugger
visualizer file into the debug information. This enables an improved
debugger experience for displaying values in the debugger.

r[attributes.debugger.debugger_visualizer.syntax] It uses the
[MetaListNameValueStr] syntax to specify its inputs, and must be specified
as a crate attribute.

r[attributes.debugger.debugger_visualizer.natvis]

Using debugger_visualizer with Natvis
r[attributes.debugger.debugger_visualizer.natvis.intro] Natvis is an

XML-based framework for Microsoft debuggers (such as Visual Studio and
WinDbg) that uses declarative rules to customize the display of types. For
detailed information on the Natvis format, refer to Microsoft's Natvis
documentation.

r[attributes.debugger.debugger_visualizer.natvis.msvc] This attribute
only supports embedding Natvis files on -windows-msvc targets.

r[attributes.debugger.debugger_visualizer.natvis.path] The path to the
Natvis file is specified with the natvis_file key, which is a path relative
to the crate source file:
#![debugger_visualizer(natvis_file = "Rectangle.natvis")]

struct FancyRect {
 x: f32,
 y: f32,
 dx: f32,
 dy: f32,
}

fn main() {
 let fancy_rect = FancyRect { x: 10.0, y: 10.0, dx: 5.0,
dy: 5.0 };

https://docs.microsoft.com/en-us/visualstudio/debugger/create-custom-views-of-native-objects

 println!("set breakpoint here");
}

and Rectangle.natvis contains:
<?xml version="1.0" encoding="utf-8"?>
<AutoVisualizer
xmlns="http://schemas.microsoft.com/vstudio/debugger/natvis/201
0">
 <Type Name="foo::FancyRect">
 <DisplayString>({x},{y}) + ({dx}, {dy})</DisplayString>
 <Expand>
 <Synthetic Name="LowerLeft">
 <DisplayString>({x}, {y})</DisplayString>
 </Synthetic>
 <Synthetic Name="UpperLeft">
 <DisplayString>({x}, {y + dy})</DisplayString>
 </Synthetic>
 <Synthetic Name="UpperRight">
 <DisplayString>({x + dx}, {y + dy})</DisplayString>
 </Synthetic>
 <Synthetic Name="LowerRight">
 <DisplayString>({x + dx}, {y})</DisplayString>
 </Synthetic>
 </Expand>
 </Type>
</AutoVisualizer>

When viewed under WinDbg, the fancy_rect variable would be shown
as follows:
> Variables:
 > fancy_rect: (10.0, 10.0) + (5.0, 5.0)
 > LowerLeft: (10.0, 10.0)
 > UpperLeft: (10.0, 15.0)
 > UpperRight: (15.0, 15.0)
 > LowerRight: (15.0, 10.0)

r[attributes.debugger.debugger_visualizer.gdb]

Using debugger_visualizer with GDB
r[attributes.debugger.debugger_visualizer.gdb.pretty] GDB supports the

use of a structured Python script, called a pretty printer, that describes how
a type should be visualized in the debugger view. For detailed information
on pretty printers, refer to GDB's pretty printing documentation.

Embedded pretty printers are not automatically loaded when debugging
a binary under GDB. There are two ways to enable auto-loading embedded
pretty printers:

1. Launch GDB with extra arguments to explicitly add a directory or
binary to the auto-load safe path: gdb -iex "add-auto-load-safe-
path safe-path path/to/binary" path/to/binary For more
information, see GDB's auto-loading documentation.

2. Create a file named gdbinit under $HOME/.config/gdb (you may
need to create the directory if it doesn't already exist). Add the
following line to that file: add-auto-load-safe-path
path/to/binary.

r[attributes.debugger.debugger_visualizer.gdb.path] These scripts are
embedded using the gdb_script_file key, which is a path relative to the
crate source file.
#![debugger_visualizer(gdb_script_file = "printer.py")]

struct Person {
 name: String,
 age: i32,
}

fn main() {
 let bob = Person { name: String::from("Bob"), age: 10 };
 println!("set breakpoint here");
}

and printer.py contains:

https://sourceware.org/gdb/onlinedocs/gdb/Pretty-Printing.html
https://sourceware.org/gdb/onlinedocs/gdb/Auto_002dloading-safe-path.html

import gdb

class PersonPrinter:
 "Print a Person"

 def __init__(self, val):
 self.val = val
 self.name = val["name"]
 self.age = int(val["age"])

 def to_string(self):
 return "{} is {} years old.".format(self.name,
self.age)

def lookup(val):
 lookup_tag = val.type.tag
 if lookup_tag is None:
 return None
 if "foo::Person" == lookup_tag:
 return PersonPrinter(val)

 return None

gdb.current_objfile().pretty_printers.append(lookup)

When the crate's debug executable is passed into GDB1, print bob will
display:
"Bob" is 10 years old.
1

Note: This assumes you are using the rust-gdb script which configures
pretty-printers for standard library types like String .

r[attributes.debugger.collapse_debuginfo]

The collapse_debuginfo attribute
r[attributes.debugger.collapse_debuginfo.intro] The

collapse_debuginfo attribute controls whether code locations from a
macro definition are collapsed into a single location associated with the
macro's call site, when generating debuginfo for code calling this macro.

r[attributes.debugger.collapse_debuginfo.syntax] The attribute uses the
[MetaListIdents] syntax to specify its inputs, and can only be applied to
macro definitions.

r[attributes.debugger.collapse_debuginfo.options] Accepted options:

#[collapse_debuginfo(yes)] --- code locations in debuginfo are
collapsed.
#[collapse_debuginfo(no)] --- code locations in debuginfo are not
collapsed.
#[collapse_debuginfo(external)] --- code locations in debuginfo
are collapsed only if the macro comes from a different crate.

r[attributes.debugger.collapse_debuginfo.default] The external

behavior is the default for macros that don't have this attribute, unless they
are built-in macros. For built-in macros the default is yes .

[!NOTE] rustc has a -C collapse-macro-debuginfo CLI option
to override both the default collapsing behavior and #

[collapse_debuginfo] attributes.

#[collapse_debuginfo(yes)]
macro_rules! example {
 () => {
 println!("hello!");
 };
}

clbr://internal.invalid/book/OEBPS/attributes.md

r[stmt-expr]

Statements and expressions
Rust is primarily an expression language. This means that most forms of

value-producing or effect-causing evaluation are directed by the uniform
syntax category of expressions. Each kind of expression can typically nest
within each other kind of expression, and rules for evaluation of
expressions involve specifying both the value produced by the expression
and the order in which its sub-expressions are themselves evaluated.

In contrast, statements serve mostly to contain and explicitly sequence
expression evaluation.

r[statement]

Statements
r[statement.syntax]

Statement ->
 `;`
 | Item
 | LetStatement
 | ExpressionStatement
 | OuterAttribute* MacroInvocationSemi

r[statement.intro] A statement is a component of a block, which is in turn
a component of an outer expression or function.

r[statement.kind] Rust has two kinds of statement: declaration
statements and expression statements.

r[statement.decl]

clbr://internal.invalid/book/OEBPS/expressions/block-expr.md
clbr://internal.invalid/book/OEBPS/expressions.md
clbr://internal.invalid/book/OEBPS/items/functions.md

Declaration statements
A declaration statement is one that introduces one or more names into

the enclosing statement block. The declared names may denote new
variables or new items.

The two kinds of declaration statements are item declarations and let
statements.

r[statement.item]

Item declarations
r[statement.item.intro] An item declaration statement has a syntactic

form identical to an item declaration within a module.
r[statement.item.scope] Declaring an item within a statement block

restricts its scope to the block containing the statement. The item is not
given a canonical path nor are any sub-items it may declare.

r[statement.item.associated-scope] The exception to this is that
associated items defined by implementations are still accessible in outer
scopes as long as the item and, if applicable, trait are accessible. It is
otherwise identical in meaning to declaring the item inside a module.

r[statement.item.outer-generics] There is no implicit capture of the
containing function's generic parameters, parameters, and local variables.
For example, inner may not access outer_var .
fn outer() {
 let outer_var = true;

 fn inner() { /* outer_var is not in scope here */ }

 inner();
}

r[statement.let]

let statements
r[statement.let.syntax]

clbr://internal.invalid/book/OEBPS/items.md
clbr://internal.invalid/book/OEBPS/items.md
clbr://internal.invalid/book/OEBPS/items/modules.md
clbr://internal.invalid/book/OEBPS/names/scopes.md
clbr://internal.invalid/book/OEBPS/paths.md#canonical-paths
clbr://internal.invalid/book/OEBPS/items/implementations.md

LetStatement ->
 OuterAttribute* `let` PatternNoTopAlt (`:` Type)?
 (
 `=` Expression
 | `=` Expression _except [LazyBooleanExpression] or end
with a `}`_ `else` BlockExpression
)? `;`

r[statement.let.intro] A let statement introduces a new set of variables,
given by a pattern. The pattern is followed optionally by a type annotation
and then either ends, or is followed by an initializer expression plus an
optional else block.

r[statement.let.inference] When no type annotation is given, the compiler
will infer the type, or signal an error if insufficient type information is
available for definite inference.

r[statement.let.scope] Any variables introduced by a variable declaration
are visible from the point of declaration until the end of the enclosing block
scope, except when they are shadowed by another variable declaration.

r[statement.let.constraint] If an else block is not present, the pattern
must be irrefutable. If an else block is present, the pattern may be
refutable.

r[statement.let.behavior] If the pattern does not match (this requires it to
be refutable), the else block is executed. The else block must always
diverge (evaluate to the never type).
let (mut v, w) = (vec![1, 2, 3], 42); // The bindings may be
mut or const
let Some(t) = v.pop() else { // Refutable patterns require an
else block
 panic!(); // The else block must diverge
};
let [u, v] = [v[0], v[1]] else { // This pattern is
irrefutable, so the compiler
 // will lint as the else
block is redundant.

clbr://internal.invalid/book/OEBPS/variables.md
clbr://internal.invalid/book/OEBPS/patterns.md
clbr://internal.invalid/book/OEBPS/types/never.md

 panic!();
};

r[statement.expr]

Expression statements
r[statement.expr.syntax]

ExpressionStatement ->
 ExpressionWithoutBlock `;`
 | ExpressionWithBlock `;`?

r[statement.expr.intro] An expression statement is one that evaluates an
expression and ignores its result. As a rule, an expression statement's
purpose is to trigger the effects of evaluating its expression.

r[statement.expr.restriction-semicolon] An expression that consists of
only a block expression or control flow expression, if used in a context
where a statement is permitted, can omit the trailing semicolon. This can
cause an ambiguity between it being parsed as a standalone statement and
as a part of another expression; in this case, it is parsed as a statement.

r[statement.expr.constraint-block] The type of [ExpressionWithBlock]
expressions when used as statements must be the unit type.
let mut v = vec![1, 2, 3];
v.pop(); // Ignore the element returned from pop
if v.is_empty() {
 v.push(5);
} else {
 v.remove(0);
} // Semicolon can be omitted.
[1]; // Separate expression statement, not an
indexing expression.

When the trailing semicolon is omitted, the result must be type () .
// bad: the block's type is i32, not ()
// Error: expected `()` because of default return type
// if true {
// 1
// }

// good: the block's type is i32
if true {

clbr://internal.invalid/book/OEBPS/expressions.md
clbr://internal.invalid/book/OEBPS/expressions/block-expr.md

 1
} else {
 2
};

r[statement.attribute]

Attributes on Statements
Statements accept outer attributes. The attributes that have meaning on a

statement are cfg , and the lint check attributes.

clbr://internal.invalid/book/OEBPS/attributes.md
clbr://internal.invalid/book/OEBPS/conditional-compilation.md
clbr://internal.invalid/book/OEBPS/attributes/diagnostics.md#lint-check-attributes

r[expr]

Expressions
r[expr.syntax]

Expression ->
 ExpressionWithoutBlock
 | ExpressionWithBlock

ExpressionWithoutBlock ->
 OuterAttribute*
 (
 LiteralExpression
 | PathExpression
 | OperatorExpression
 | GroupedExpression
 | ArrayExpression
 | AwaitExpression
 | IndexExpression
 | TupleExpression
 | TupleIndexingExpression
 | StructExpression
 | CallExpression
 | MethodCallExpression
 | FieldExpression
 | ClosureExpression
 | AsyncBlockExpression
 | ContinueExpression
 | BreakExpression
 | RangeExpression
 | ReturnExpression
 | UnderscoreExpression
 | MacroInvocation
)

ExpressionWithBlock ->

 OuterAttribute*
 (
 BlockExpression
 | ConstBlockExpression
 | UnsafeBlockExpression
 | LoopExpression
 | IfExpression
 | MatchExpression
)

r[expr.intro] An expression may have two roles: it always produces a
value, and it may have effects (otherwise known as "side effects").

r[expr.evaluation] An expression evaluates to a value, and has effects
during evaluation.

r[expr.operands] Many expressions contain sub-expressions, called the
operands of the expression.

r[expr.behavior] The meaning of each kind of expression dictates several
things:

Whether or not to evaluate the operands when evaluating the
expression
The order in which to evaluate the operands
How to combine the operands' values to obtain the value of the
expression

r[expr.structure] In this way, the structure of expressions dictates the
structure of execution. Blocks are just another kind of expression, so
blocks, statements, expressions, and blocks again can recursively nest
inside each other to an arbitrary depth.

[!NOTE] We give names to the operands of expressions so that we
may discuss them, but these names are not stable and may be changed.

r[expr.precedence]

Expression precedence
The precedence of Rust operators and expressions is ordered as follows,

going from strong to weak. Binary Operators at the same precedence level
are grouped in the order given by their associativity.

Operator/Expression Associativity
[Paths][expr.path]
[Method calls][expr.method]
[Field expressions][expr.field] left to right
[Function calls][expr.call], [array indexing]
[expr.array.index]
[?][expr.try]

Unary [-][expr.negate] [!][expr.negate] [*]
[expr.deref] [borrow][expr.operator.borrow]
[as][expr.as] left to right

[*][expr.arith-logic] [/][expr.arith-logic] [%]
[expr.arith-logic]

left to right

[+][expr.arith-logic] [-][expr.arith-logic] left to right

[<<][expr.arith-logic] [>>][expr.arith-logic] left to right

[&][expr.arith-logic] left to right

[^][expr.arith-logic] left to right

[|][expr.arith-logic] left to right

[==][expr.cmp] [!=][expr.cmp] [<][expr.cmp]
[>][expr.cmp] [<=][expr.cmp] [>=][expr.cmp]

Require
parentheses

[&&][expr.bool-logic] left to right

[||][expr.bool-logic] left to right

[..][expr.range] [..=][expr.range] Require
parentheses

Operator/Expression Associativity
[=][expr.assign] [+=][expr.compound-assign] [-
=][expr.compound-assign] [*=][expr.compound-
assign] [/=][expr.compound-assign] [%=]
[expr.compound-assign]
[&=][expr.compound-assign] [|=]
[expr.compound-assign] [^=][expr.compound-
assign] [<<=][expr.compound-assign] [>>=]
[expr.compound-assign]

right to left

[return][expr.return] [break][expr.loop.break]
[closures][expr.closure]

r[expr.operand-order]

Evaluation order of operands
r[expr.operand-order.default] The following list of expressions all

evaluate their operands the same way, as described after the list. Other
expressions either don't take operands or evaluate them conditionally as
described on their respective pages.

Dereference expression
Error propagation expression
Negation expression
Arithmetic and logical binary operators
Comparison operators
Type cast expression
Grouped expression
Array expression
Await expression
Index expression
Tuple expression
Tuple index expression
Struct expression
Call expression
Method call expression
Field expression
Break expression
Range expression
Return expression

r[expr.operand-order.operands-before-primary] The operands of these
expressions are evaluated prior to applying the effects of the expression.
Expressions taking multiple operands are evaluated left to right as written in
the source code.

[!NOTE] Which subexpressions are the operands of an expression
is determined by expression precedence as per the previous section.

For example, the two next method calls will always be called in the
same order:

// Using vec instead of array to avoid references
// since there is no stable owned array iterator
// at the time this example was written.
let mut one_two = vec![1, 2].into_iter();
assert_eq!(
 (1, 2),
 (one_two.next().unwrap(), one_two.next().unwrap())
);

[!NOTE] Since this is applied recursively, these expressions are
also evaluated from innermost to outermost, ignoring siblings until
there are no inner subexpressions.

r[expr.place-value]

Place Expressions and Value Expressions
r[expr.place-value.intro] Expressions are divided into two main

categories: place expressions and value expressions; there is also a third,
minor category of expressions called assignee expressions. Within each
expression, operands may likewise occur in either place context or value
context. The evaluation of an expression depends both on its own category
and the context it occurs within.

r[expr.place-value.place-memory-location] A place expression is an
expression that represents a memory location.

r[expr.place-value.place-expr-kinds] These expressions are paths which
refer to local variables, static variables, dereferences (*expr), array
indexing expressions (expr[expr]), field references (expr.f) and
parenthesized place expressions.

r[expr.place-value.value-expr-kinds] All other expressions are value
expressions.

r[expr.place-value.value-result] A value expression is an expression that
represents an actual value.

r[expr.place-value.place-context] The following contexts are place
expression contexts:

The left operand of a compound assignment expression.
The operand of a unary borrow, raw borrow or dereference operator.
The operand of a field expression.
The indexed operand of an array indexing expression.
The operand of any implicit borrow.
The initializer of a let statement.
The scrutinee of an if let , match , or while let expression.
The base of a functional update struct expression.

[!NOTE] Historically, place expressions were called lvalues and
value expressions were called rvalues.

r[expr.place-value.assignee] An assignee expression is an expression that
appears in the left operand of an assignment expression. Explicitly, the

clbr://internal.invalid/book/OEBPS/expressions/path-expr.md
clbr://internal.invalid/book/OEBPS/items/static-items.md
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#the-dereference-operator
clbr://internal.invalid/book/OEBPS/expressions/array-expr.md#array-and-slice-indexing-expressions
clbr://internal.invalid/book/OEBPS/expressions/field-expr.md
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#compound-assignment-expressions
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#borrow-operators
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#raw-borrow-operators
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#the-dereference-operator
clbr://internal.invalid/book/OEBPS/statements.md#let-statements
clbr://internal.invalid/book/OEBPS/glossary.md#scrutinee
clbr://internal.invalid/book/OEBPS/expressions/if-expr.md#if-let-patterns
clbr://internal.invalid/book/OEBPS/expressions/match-expr.md
clbr://internal.invalid/book/OEBPS/expressions/loop-expr.md#while-let-patterns
clbr://internal.invalid/book/OEBPS/expressions/struct-expr.md#functional-update-syntax
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#assignment-expressions

assignee expressions are:

Place expressions.
Underscores.
Tuples of assignee expressions.
[Slices][expr.array.index] of assignee expressions.
Tuple structs of assignee expressions.
Structs of assignee expressions (with optionally named fields).
Unit structs

r[expr.place-value.parenthesis] Arbitrary parenthesisation is permitted
inside assignee expressions.

r[expr.move]

Moved and copied types
r[expr.move.intro] When a place expression is evaluated in a value

expression context, or is bound by value in a pattern, it denotes the value
held in that memory location.

r[expr.move.copy] If the type of that value implements Copy , then the
value will be copied.

r[expr.move.requires-sized] In the remaining situations, if that type is
Sized , then it may be possible to move the value.

r[expr.move.movable-place] Only the following place expressions may
be moved out of:

Variables which are not currently borrowed.
Temporary values.
Fields of a place expression which can be moved out of and don't
implement Drop .
The result of dereferencing an expression with type [Box<T>] and that
can also be moved out of.

r[expr.move.deinitialization] After moving out of a place expression that
evaluates to a local variable, the location is deinitialized and cannot be read
from again until it is reinitialized.

clbr://internal.invalid/book/OEBPS/expressions/underscore-expr.md
clbr://internal.invalid/book/OEBPS/expressions/tuple-expr.md
clbr://internal.invalid/book/OEBPS/items.struct.tuple
clbr://internal.invalid/book/OEBPS/expr.struct
clbr://internal.invalid/book/OEBPS/items.struct.unit
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#copy
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#sized
clbr://internal.invalid/book/OEBPS/variables.md
clbr://internal.invalid/book/OEBPS/expressions/field-expr.md
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#drop
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#the-dereference-operator

r[expr.move.place-invalid] In all other cases, trying to use a place
expression in a value expression context is an error.

r[expr.mut]

Mutability
r[expr.mut.intro] For a place expression to be assigned to, mutably

borrowed, implicitly mutably borrowed, or bound to a pattern containing
ref mut , it must be mutable. We call these mutable place expressions. In
contrast, other place expressions are called immutable place expressions.

r[expr.mut.valid-places] The following expressions can be mutable place
expression contexts:

Mutable variables which are not currently borrowed.
Mutable static items.
Temporary values.
Fields: this evaluates the subexpression in a mutable place expression
context.
Dereferences of a *mut T pointer.
Dereference of a variable, or field of a variable, with type &mut T .
Note: This is an exception to the requirement of the next rule.
Dereferences of a type that implements DerefMut : this then requires
that the value being dereferenced is evaluated in a mutable place
expression context.
Array indexing of a type that implements IndexMut : this then
evaluates the value being indexed, but not the index, in mutable place
expression context.

r[expr.temporary]

Temporaries
When using a value expression in most place expression contexts, a

temporary unnamed memory location is created and initialized to that value.
The expression evaluates to that location instead, except if promoted to a
static . The drop scope of the temporary is usually the end of the
enclosing statement.

clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#assignment-expressions
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#borrow-operators
clbr://internal.invalid/book/OEBPS/variables.md
clbr://internal.invalid/book/OEBPS/items/static-items.md#mutable-statics
clbr://internal.invalid/book/OEBPS/expressions/field-expr.md
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#the-dereference-operator
clbr://internal.invalid/book/OEBPS/expressions/array-expr.md#array-and-slice-indexing-expressions
clbr://internal.invalid/book/OEBPS/destructors.md#constant-promotion
clbr://internal.invalid/book/OEBPS/destructors.md#drop-scopes

r[expr.implicit-borrow]

Implicit Borrows
r[expr.implicit-borrow-intro] Certain expressions will treat an expression

as a place expression by implicitly borrowing it. For example, it is possible
to compare two unsized slices for equality directly, because the == operator
implicitly borrows its operands:
let c = [1, 2, 3];
let d = vec![1, 2, 3];
let a: &[i32];
let b: &[i32];
a = &c;
b = &d;
// ...
*a == *b;
// Equivalent form:
::std::cmp::PartialEq::eq(&*a, &*b);

r[expr.implicit-borrow.application] Implicit borrows may be taken in the
following expressions:

Left operand in method-call expressions.
Left operand in field expressions.
Left operand in call expressions.
Left operand in array indexing expressions.
Operand of the dereference operator (*).
Operands of comparison.
Left operands of the compound assignment.

r[expr.overload]

clbr://internal.invalid/book/OEBPS/types/slice.md
clbr://internal.invalid/book/OEBPS/expressions/method-call-expr.md
clbr://internal.invalid/book/OEBPS/expressions/field-expr.md
clbr://internal.invalid/book/OEBPS/expressions/call-expr.md
clbr://internal.invalid/book/OEBPS/expressions/array-expr.md#array-and-slice-indexing-expressions
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#the-dereference-operator
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#comparison-operators
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#compound-assignment-expressions

Overloading Traits
Many of the following operators and expressions can also be overloaded

for other types using traits in std::ops or std::cmp . These traits also
exist in core::ops and core::cmp with the same names.

r[expr.attr]

Expression Attributes
r[expr.attr.restriction] Outer attributes before an expression are allowed

only in a few specific cases:

Before an expression used as a statement.
Elements of array expressions, tuple expressions, call expressions, and
tuple-style struct expressions.
The tail expression of block expressions.

r[expr.attr.never-before] They are never allowed before:

Range expressions.
Binary operator expressions ([ArithmeticOrLogicalExpression],
[ComparisonExpression], [LazyBooleanExpression],
[TypeCastExpression], [AssignmentExpression],
[CompoundAssignmentExpression]).

clbr://internal.invalid/book/OEBPS/attributes.md
clbr://internal.invalid/book/OEBPS/statements.md
clbr://internal.invalid/book/OEBPS/expressions/array-expr.md
clbr://internal.invalid/book/OEBPS/expressions/tuple-expr.md
clbr://internal.invalid/book/OEBPS/expressions/call-expr.md
clbr://internal.invalid/book/OEBPS/expressions/struct-expr.md
clbr://internal.invalid/book/OEBPS/expressions/block-expr.md
clbr://internal.invalid/book/OEBPS/expressions/range-expr.md

r[expr.literal]

Literal expressions
r[expr.literal.syntax]

LiteralExpression ->
 CHAR_LITERAL
 | STRING_LITERAL
 | RAW_STRING_LITERAL
 | BYTE_LITERAL
 | BYTE_STRING_LITERAL
 | RAW_BYTE_STRING_LITERAL
 | C_STRING_LITERAL
 | RAW_C_STRING_LITERAL
 | INTEGER_LITERAL
 | FLOAT_LITERAL
 | `true`
 | `false`

r[expr.literal.intro] A literal expression is an expression consisting of a
single token, rather than a sequence of tokens, that immediately and directly
denotes the value it evaluates to, rather than referring to it by name or some
other evaluation rule.

r[expr.literal.const-expr] A literal is a form of constant expression, so is
evaluated (primarily) at compile time.

r[expr.literal.literal-token] Each of the lexical literal forms described
earlier can make up a literal expression, as can the keywords true and
false .
"hello"; // string type
'5'; // character type
5; // integer type

r[expr.literal.string-representation] In the descriptions below, the string
representation of a token is the sequence of characters from the input which
matched the token's production in a Lexer grammar snippet.

clbr://internal.invalid/book/OEBPS/const_eval.md#constant-expressions
clbr://internal.invalid/book/OEBPS/tokens.md#literals

[!NOTE] This string representation never includes a character
U+000D (CR) immediately followed by U+000A (LF): this pair would
have been previously transformed into a single U+000A (LF).

r[expr.literal.escape]

Escapes
r[expr.literal.escape.intro] The descriptions of textual literal expressions

below make use of several forms of escape.
r[expr.literal.escape.sequence] Each form of escape is characterised by:

an escape sequence: a sequence of characters, which always begins
with U+005C (\)
an escaped value: either a single character or an empty sequence of
characters

In the definitions of escapes below:

An octal digit is any of the characters in the range [0 - 7].
A hexadecimal digit is any of the characters in the ranges [0 - 9], [a -
f], or [A - F].

r[expr.literal.escape.simple]

Simple escapes
Each sequence of characters occurring in the first column of the

following table is an escape sequence.
In each case, the escaped value is the character given in the

corresponding entry in the second column.

Escape sequence Escaped value
\0 U+0000 (NUL)

\t U+0009 (HT)

\n U+000A (LF)

\r U+000D (CR)

\" U+0022 (QUOTATION MARK)

\' U+0027 (APOSTROPHE)

\\ U+005C (REVERSE SOLIDUS)

r[expr.literal.escape.hex-octet]

8-bit escapes
The escape sequence consists of \x followed by two hexadecimal digits.
The escaped value is the character whose Unicode scalar value is the

result of interpreting the final two characters in the escape sequence as a
hexadecimal integer, as if by [u8::from_str_radix] with radix 16.

[!NOTE] The escaped value therefore has a Unicode scalar value in
the range of u8 .

r[expr.literal.escape.hex-ascii]

7-bit escapes
The escape sequence consists of \x followed by an octal digit then a

hexadecimal digit.
The escaped value is the character whose Unicode scalar value is the

result of interpreting the final two characters in the escape sequence as a
hexadecimal integer, as if by [u8::from_str_radix] with radix 16.

r[expr.literal.escape.unicode]

Unicode escapes
The escape sequence consists of \u{ , followed by a sequence of

characters each of which is a hexadecimal digit or _ , followed by } .
The escaped value is the character whose Unicode scalar value is the

result of interpreting the hexadecimal digits contained in the escape
sequence as a hexadecimal integer, as if by [u32::from_str_radix] with
radix 16.

[!NOTE] The permitted forms of a [CHAR_LITERAL] or
[STRING_LITERAL] token ensure that there is such a character.

r[expr.literal.continuation]

String continuation escapes

http://www.unicode.org/glossary/#unicode_scalar_value
http://www.unicode.org/glossary/#unicode_scalar_value
clbr://internal.invalid/book/OEBPS/types/numeric.md
http://www.unicode.org/glossary/#unicode_scalar_value
http://www.unicode.org/glossary/#unicode_scalar_value

The escape sequence consists of \ followed immediately by U+000A
(LF), and all following whitespace characters before the next non-
whitespace character. For this purpose, the whitespace characters are
U+0009 (HT), U+000A (LF), U+000D (CR), and U+0020 (SPACE).

The escaped value is an empty sequence of characters.

[!NOTE] The effect of this form of escape is that a string
continuation skips following whitespace, including additional
newlines. Thus a , b and c are equal:
let a = "foobar";
let b = "foo\
 bar";
let c = "foo\

 bar";

assert_eq!(a, b);
assert_eq!(b, c);

Skipping additional newlines (as in example c) is potentially
confusing and unexpected. This behavior may be adjusted in the
future. Until a decision is made, it is recommended to avoid relying on
skipping multiple newlines with line continuations. See this issue for
more information.

r[expr.literal.char]

https://github.com/rust-lang/reference/pull/1042

Character literal expressions
r[expr.literal.char.intro] A character literal expression consists of a single

[CHAR_LITERAL] token.
r[expr.literal.char.type] The expression's type is the primitive char type.
r[expr.literal.char.no-suffix] The token must not have a suffix.
r[expr.literal.char.literal-content] The token's literal content is the

sequence of characters following the first U+0027 (') and preceding the
last U+0027 (') in the string representation of the token.

r[expr.literal.char.represented] The literal expression's represented
character is derived from the literal content as follows:

r[expr.literal.char.escape]

If the literal content is one of the following forms of escape sequence,
the represented character is the escape sequence's escaped value:

Simple escapes
7-bit escapes
Unicode escapes

r[expr.literal.char.single]

Otherwise the represented character is the single character that makes
up the literal content.

r[expr.literal.char.result] The expression's value is the char

corresponding to the represented character's Unicode scalar value.

[!NOTE] The permitted forms of a [CHAR_LITERAL] token
ensure that these rules always produce a single character.

Examples of character literal expressions:
'R'; // R
'\''; // '
'\x52'; // R
'\u{00E6}'; // LATIN SMALL LETTER AE
(U+00E6)

clbr://internal.invalid/book/OEBPS/types/textual.md
clbr://internal.invalid/book/OEBPS/types/textual.md
http://www.unicode.org/glossary/#unicode_scalar_value

r[expr.literal.string]

String literal expressions
r[expr.literal.string.intro] A string literal expression consists of a single

[STRING_LITERAL] or [RAW_STRING_LITERAL] token.
r[expr.literal.string.type] The expression's type is a shared reference

(with static lifetime) to the primitive str type. That is, the type is
&'static str .

r[expr.literal.string.no-suffix] The token must not have a suffix.
r[expr.literal.string.literal-content] The token's literal content is the

sequence of characters following the first U+0022 (") and preceding the
last U+0022 (") in the string representation of the token.

r[expr.literal.string.represented] The literal expression's represented
string is a sequence of characters derived from the literal content as
follows:

r[expr.literal.string.escape]

If the token is a [STRING_LITERAL], each escape sequence of
any of the following forms occurring in the literal content is replaced
by the escape sequence's escaped value.

Simple escapes
7-bit escapes
Unicode escapes
String continuation escapes

These replacements take place in left-to-right order. For example,
the token "\\x41" is converted to the characters \ x 4 1 .

r[expr.literal.string.raw]

If the token is a [RAW_STRING_LITERAL], the represented string is
identical to the literal content.

r[expr.literal.string.result] The expression's value is a reference to a
statically allocated str containing the UTF-8 encoding of the represented
string.

Examples of string literal expressions:

clbr://internal.invalid/book/OEBPS/types/textual.md
clbr://internal.invalid/book/OEBPS/types/textual.md

"foo"; r"foo"; // foo
"\"foo\""; r#""foo""#; // "foo"

"foo #\"# bar";
r##"foo #"# bar"##; // foo #"# bar

"\x52"; "R"; r"R"; // R
"\\x52"; r"\x52"; // \x52

r[expr.literal.byte-char]

Byte literal expressions
r[expr.literal.byte-char.intro] A byte literal expression consists of a single

[BYTE_LITERAL] token.
r[expr.literal.byte-char.literal] The expression's type is the primitive u8

type.
r[expr.literal.byte-char.no-suffix] The token must not have a suffix.
r[expr.literal.byte-char.literal-content] The token's literal content is the

sequence of characters following the first U+0027 (') and preceding the
last U+0027 (') in the string representation of the token.

r[expr.literal.byte-char.represented] The literal expression's represented
character is derived from the literal content as follows:

r[expr.literal.byte-char.escape]

If the literal content is one of the following forms of escape sequence,
the represented character is the escape sequence's escaped value:

Simple escapes
8-bit escapes

r[expr.literal.byte-char.single]

Otherwise the represented character is the single character that makes
up the literal content.

r[expr.literal.byte-char.result] The expression's value is the represented
character's Unicode scalar value.

[!NOTE] The permitted forms of a [BYTE_LITERAL] token
ensure that these rules always produce a single character, whose
Unicode scalar value is in the range of u8 .

Examples of byte literal expressions:
b'R'; // 82
b'\''; // 39
b'\x52'; // 82
b'\xA0'; // 160

clbr://internal.invalid/book/OEBPS/types/numeric.md
http://www.unicode.org/glossary/#unicode_scalar_value
clbr://internal.invalid/book/OEBPS/types/numeric.md

r[expr.literal.byte-string]

Byte string literal expressions
r[expr.literal.byte-string.intro] A byte string literal expression consists of

a single [BYTE_STRING_LITERAL] or
[RAW_BYTE_STRING_LITERAL] token.

r[expr.literal.byte-string.type] The expression's type is a shared reference
(with static lifetime) to an array whose element type is u8 . That is, the
type is &'static [u8; N] , where N is the number of bytes in the
represented string described below.

r[expr.literal.byte-string.no-suffix] The token must not have a suffix.
r[expr.literal.byte-string.literal-content] The token's literal content is the

sequence of characters following the first U+0022 (") and preceding the
last U+0022 (") in the string representation of the token.

r[expr.literal.byte-string.represented] The literal expression's represented
string is a sequence of characters derived from the literal content as
follows:

r[expr.literal.byte-string.escape]

If the token is a [BYTE_STRING_LITERAL], each escape
sequence of any of the following forms occurring in the literal content
is replaced by the escape sequence's escaped value.

Simple escapes
8-bit escapes
String continuation escapes

These replacements take place in left-to-right order. For example,
the token b"\\x41" is converted to the characters \ x 4 1 .

r[expr.literal.byte-string.raw]

If the token is a [RAW_BYTE_STRING_LITERAL], the represented
string is identical to the literal content.

r[expr.literal.byte-string.result] The expression's value is a reference to a
statically allocated array containing the Unicode scalar values of the
characters in the represented string, in the same order.

clbr://internal.invalid/book/OEBPS/types/numeric.md
http://www.unicode.org/glossary/#unicode_scalar_value

[!NOTE] The permitted forms of [BYTE_STRING_LITERAL] and
[RAW_BYTE_STRING_LITERAL] tokens ensure that these rules
always produce array element values in the range of u8 .

Examples of byte string literal expressions:
b"foo"; br"foo"; // foo
b"\"foo\""; br#""foo""#; // "foo"

b"foo #\"# bar";
br##"foo #"# bar"##; // foo #"# bar

b"\x52"; b"R"; br"R"; // R
b"\\x52"; br"\x52"; // \x52

r[expr.literal.c-string]

clbr://internal.invalid/book/OEBPS/types/numeric.md

C string literal expressions
r[expr.literal.c-string.intro] A C string literal expression consists of a

single [C_STRING_LITERAL] or [RAW_C_STRING_LITERAL] token.
r[expr.literal.c-string.type] The expression's type is a shared reference

(with static lifetime) to the standard library CStr type. That is, the type is
&'static core::ffi::CStr .

r[expr.literal.c-string.no-suffix] The token must not have a suffix.
r[expr.literal.c-string.literal-content] The token's literal content is the

sequence of characters following the first " and preceding the last " in the
string representation of the token.

r[expr.literal.c-string.represented] The literal expression's represented
bytes are a sequence of bytes derived from the literal content as follows:

r[expr.literal.c-string.escape]

If the token is a [C_STRING_LITERAL], the literal content is treated
as a sequence of items, each of which is either a single Unicode
character other than \ or an escape. The sequence of items is
converted to a sequence of bytes as follows:

Each single Unicode character contributes its UTF-8
representation.
Each simple escape contributes the Unicode scalar value of its
escaped value.
Each 8-bit escape contributes a single byte containing the
Unicode scalar value of its escaped value.
Each unicode escape contributes the UTF-8 representation of its
escaped value.
Each string continuation escape contributes no bytes.

r[expr.literal.c-string.raw]

If the token is a [RAW_C_STRING_LITERAL], the represented bytes
are the UTF-8 encoding of the literal content.

core::ffi::CStr
http://www.unicode.org/glossary/#unicode_scalar_value
http://www.unicode.org/glossary/#unicode_scalar_value

[!NOTE] The permitted forms of [C_STRING_LITERAL] and
[RAW_C_STRING_LITERAL] tokens ensure that the represented
bytes never include a null byte.

r[expr.literal.c-string.result] The expression's value is a reference to a
statically allocated CStr whose array of bytes contains the represented bytes
followed by a null byte.

Examples of C string literal expressions:
c"foo"; cr"foo"; // foo
c"\"foo\""; cr#""foo""#; // "foo"

c"foo #\"# bar";
cr##"foo #"# bar"##; // foo #"# bar

c"\x52"; c"R"; cr"R"; // R
c"\\x52"; cr"\x52"; // \x52

c"æ"; // LATIN SMALL LETTER AE
(U+00E6)
c"\u{00E6}"; // LATIN SMALL LETTER AE
(U+00E6)
c"\xC3\xA6"; // LATIN SMALL LETTER AE
(U+00E6)

c"\xE6".to_bytes(); // [230]
c"\u{00E6}".to_bytes(); // [195, 166]

r[expr.literal.int]

core::ffi::CStr

Integer literal expressions
r[expr.literal.int.intro] An integer literal expression consists of a single

[INTEGER_LITERAL] token.
r[expr.literal.int.suffix] If the token has a suffix, the suffix must be the

name of one of the primitive integer types: u8 , i8 , u16 , i16 , u32 , i32 ,
u64 , i64 , u128 , i128 , usize , or isize , and the expression has that type.

r[expr.literal.int.infer] If the token has no suffix, the expression's type is
determined by type inference:

r[expr.literal.int.inference-unique-type]

If an integer type can be uniquely determined from the surrounding
program context, the expression has that type.

r[expr.literal.int.inference-default]

If the program context under-constrains the type, it defaults to the
signed 32-bit integer i32 .

r[expr.literal.int.inference-error]

If the program context over-constrains the type, it is considered a static
type error.

Examples of integer literal expressions:
123; // type i32
123i32; // type i32
123u32; // type u32
123_u32; // type u32
let a: u64 = 123; // type u64

0xff; // type i32
0xff_u8; // type u8

0o70; // type i32
0o70_i16; // type i16

clbr://internal.invalid/book/OEBPS/tokens.md#suffixes
clbr://internal.invalid/book/OEBPS/types/numeric.md

0b1111_1111_1001_0000; // type i32
0b1111_1111_1001_0000i64; // type i64

0usize; // type usize

r[expr.literal.int.representation] The value of the expression is
determined from the string representation of the token as follows:

r[expr.literal.int.radix]

An integer radix is chosen by inspecting the first two characters of
the string, as follows:

0b indicates radix 2
0o indicates radix 8
0x indicates radix 16
otherwise the radix is 10.

r[expr.literal.int.radix-prefix-stripped]

If the radix is not 10, the first two characters are removed from the
string.

r[expr.literal.int.type-suffix-stripped]

Any suffix is removed from the string.
r[expr.literal.int.separators-stripped]

Any underscores are removed from the string.
r[expr.literal.int.u128-value]

The string is converted to a u128 value as if by
[u128::from_str_radix] with the chosen radix. If the value does not
fit in u128 , it is a compiler error.

r[expr.literal.int.cast]

The u128 value is converted to the expression's type via a numeric
cast.

clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#numeric-cast

[!NOTE] The final cast will truncate the value of the literal if it
does not fit in the expression's type. rustc includes a lint check
named overflowing_literals , defaulting to deny , which rejects
expressions where this occurs.

[!NOTE] -1i8 , for example, is an application of the negation
operator to the literal expression 1i8 , not a single integer literal
expression. See Overflow for notes on representing the most negative
value for a signed type.

r[expr.literal.float]

clbr://internal.invalid/book/OEBPS/attributes/diagnostics.md#lint-check-attributes
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#negation-operators
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#overflow

Floating-point literal expressions
r[expr.literal.float.intro] A floating-point literal expression has one of

two forms:

a single [FLOAT_LITERAL] token
a single [INTEGER_LITERAL] token which has a suffix and no radix
indicator

r[expr.literal.float.suffix] If the token has a suffix, the suffix must be the
name of one of the primitive floating-point types: f32 or f64 , and the
expression has that type.

r[expr.literal.float.infer] If the token has no suffix, the expression's type
is determined by type inference:

r[expr.literal.float.inference-unique-type]

If a floating-point type can be uniquely determined from the
surrounding program context, the expression has that type.

r[expr.literal.float.inference-default]

If the program context under-constrains the type, it defaults to f64 .
r[expr.literal.float.inference-error]

If the program context over-constrains the type, it is considered a static
type error.

Examples of floating-point literal expressions:
123.0f64; // type f64
0.1f64; // type f64
0.1f32; // type f32
12E+99_f64; // type f64
5f32; // type f32
let x: f64 = 2.; // type f64

r[expr.literal.float.result] The value of the expression is determined from
the string representation of the token as follows:

r[expr.literal.float.type-suffix-stripped]

clbr://internal.invalid/book/OEBPS/tokens.md#suffixes
clbr://internal.invalid/book/OEBPS/types/numeric.md#floating-point-types

Any suffix is removed from the string.
r[expr.literal.float.separators-stripped]

Any underscores are removed from the string.
r[expr.literal.float.value]

The string is converted to the expression's type as if by
f32::from_str or f64::from_str .

[!NOTE] -1.0 , for example, is an application of the negation
operator to the literal expression 1.0 , not a single floating-point literal
expression.

[!NOTE] inf and NaN are not literal tokens. The
[f32::INFINITY], [f64::INFINITY], [f32::NAN], and [f64::NAN]
constants can be used instead of literal expressions. In rustc , a literal
large enough to be evaluated as infinite will trigger the
overflowing_literals lint check.

r[expr.literal.bool]

clbr://internal.invalid/book/core/primitive.f32.md#method.from_str
clbr://internal.invalid/book/core/primitive.f64.md#method.from_str
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#negation-operators

Boolean literal expressions
r[expr.literal.bool.intro] A boolean literal expression consists of one of

the keywords true or false .
r[expr.literal.bool.result] The expression's type is the primitive boolean

type, and its value is:

true if the keyword is true
false if the keyword is false

clbr://internal.invalid/book/OEBPS/types/boolean.md

r[expr.path]

Path expressions
r[expr.path.syntax]

PathExpression ->
 PathInExpression
 | QualifiedPathInExpression

r[expr.path.intro] A path used as an expression context denotes either a
local variable or an item.

r[expr.path.place] Path expressions that resolve to local or static
variables are place expressions, other paths are value expressions.

r[expr.path.safety] Using a static mut variable requires an unsafe
block.
mod globals {
pub static STATIC_VAR: i32 = 5;
pub static mut STATIC_MUT_VAR: i32 = 7;
}
let local_var = 3;
local_var;
globals::STATIC_VAR;
unsafe { globals::STATIC_MUT_VAR };
let some_constructor = Some::<i32>;
let push_integer = Vec::<i32>::push;
let slice_reverse = <[i32]>::reverse;

r[expr.path.const] Evaluation of associated constants is handled the same
way as const blocks.

clbr://internal.invalid/book/OEBPS/paths.md
clbr://internal.invalid/book/OEBPS/expressions.md#place-expressions-and-value-expressions
clbr://internal.invalid/book/OEBPS/expressions.md#place-expressions-and-value-expressions
clbr://internal.invalid/book/OEBPS/items/static-items.md#mutable-statics
clbr://internal.invalid/book/OEBPS/expressions/block-expr.md#unsafe-blocks
clbr://internal.invalid/book/OEBPS/expressions/block-expr.md#const-blocks

r[expr.block]

Block expressions
r[expr.block.syntax]

BlockExpression ->
 `{`
 InnerAttribute*
 Statements?
 `}`

Statements ->
 Statement+
 | Statement+ ExpressionWithoutBlock
 | ExpressionWithoutBlock

r[expr.block.intro] A block expression, or block, is a control flow
expression and anonymous namespace scope for items and variable
declarations.

r[expr.block.sequential-evaluation] As a control flow expression, a block
sequentially executes its component non-item declaration statements and
then its final optional expression.

r[expr.block.namespace] As an anonymous namespace scope, item
declarations are only in scope inside the block itself and variables declared
by let statements are in scope from the next statement until the end of the
block. See the scopes chapter for more details.

r[expr.block.inner-attributes] The syntax for a block is { , then any inner
attributes, then any number of statements, then an optional expression,
called the final operand, and finally a } .

r[expr.block.statements] Statements are usually required to be followed
by a semicolon, with two exceptions:

1. Item declaration statements do not need to be followed by a semicolon.
2. Expression statements usually require a following semicolon except if

its outer expression is a flow control expression.

clbr://internal.invalid/book/OEBPS/names/scopes.md
clbr://internal.invalid/book/OEBPS/attributes.md
clbr://internal.invalid/book/OEBPS/statements.md

r[expr.block.null-statement] Furthermore, extra semicolons between
statements are allowed, but these semicolons do not affect semantics.

r[expr.block.evaluation] When evaluating a block expression, each
statement, except for item declaration statements, is executed sequentially.

r[expr.block.result] Then the final operand is executed, if given.
r[expr.block.type] The type of a block is the type of the final operand, or

() if the final operand is omitted.
fn fn_call() {}
let _: () = {
 fn_call();
};

let five: i32 = {
 fn_call();
 5
};

assert_eq!(5, five);

[!NOTE] As a control flow expression, if a block expression is the
outer expression of an expression statement, the expected type is ()
unless it is followed immediately by a semicolon.

r[expr.block.value] Blocks are always value expressions and evaluate the
last operand in value expression context.

[!NOTE] This can be used to force moving a value if really needed.
For example, the following example fails on the call to consume_self
because the struct was moved out of s in the block expression.
struct Struct;

impl Struct {
 fn consume_self(self) {}
 fn borrow_self(&self) {}
}

clbr://internal.invalid/book/OEBPS/expressions.md#place-expressions-and-value-expressions

fn move_by_block_expression() {
 let s = Struct;

 // Move the value out of `s` in the block expression.
 (&{ s }).borrow_self();

 // Fails to execute because `s` is moved out of.
 s.consume_self();
}

r[expr.block.async]

async blocks
r[expr.block.async.syntax]

AsyncBlockExpression -> `async` `move`? BlockExpression

r[expr.block.async.intro] An async block is a variant of a block
expression which evaluates to a future.

r[expr.block.async.future-result] The final expression of the block, if
present, determines the result value of the future.

r[expr.block.async.anonymous-type] Executing an async block is similar
to executing a closure expression: its immediate effect is to produce and
return an anonymous type.

r[expr.block.async.future] Whereas closures return a type that
implements one or more of the [std::ops::Fn] traits, however, the type
returned for an async block implements the [std::future::Future] trait.

r[expr.block.async.layout-unspecified] The actual data format for this
type is unspecified.

[!NOTE] The future type that rustc generates is roughly equivalent
to an enum with one variant per await point, where each variant
stores the data needed to resume from its corresponding point.

r[expr.block.async.edition2018]

[!EDITION-2018] Async blocks are only available beginning with
Rust 2018.

r[expr.block.async.capture]

Capture modes
Async blocks capture variables from their environment using the same

capture modes as closures. Like closures, when written async { .. } the
capture mode for each variable will be inferred from the content of the
block. async move { .. } blocks however will move all referenced
variables into the resulting future.

r[expr.block.async.context]

clbr://internal.invalid/book/OEBPS/types/closure.md#capture-modes

Async context
Because async blocks construct a future, they define an async context

which can in turn contain await expressions. Async contexts are
established by async blocks as well as the bodies of async functions, whose
semantics are defined in terms of async blocks.

r[expr.block.async.function]

Control-flow operators
r[expr.block.async.function.intro] Async blocks act like a function

boundary, much like closures.
r[expr.block.async.function.return-try] Therefore, the ? operator and

return expressions both affect the output of the future, not the enclosing
function or other context. That is, return <expr> from within an async
block will return the result of <expr> as the output of the future. Similarly,
if <expr>? propagates an error, that error is propagated as the result of the
future.

r[expr.block.async.function.control-flow] Finally, the break and
continue keywords cannot be used to branch out from an async block.
Therefore the following is illegal:
loop {
 async move {
 break; // error[E0267]: `break` inside of an `async`
block
 }
}

r[expr.block.const]

clbr://internal.invalid/book/OEBPS/expressions/await-expr.md

const blocks
r[expr.block.const.syntax]

ConstBlockExpression -> `const` BlockExpression

r[expr.block.const.intro] A const block is a variant of a block expression
whose body evaluates at compile-time instead of at runtime.

r[expr.block.const.context] Const blocks allows you to define a constant
value without having to define new constant items, and thus they are also
sometimes referred as inline consts. It also supports type inference so there
is no need to specify the type, unlike constant items.

r[expr.block.const.generic-params] Const blocks have the ability to
reference generic parameters in scope, unlike free constant items. They are
desugared to constant items with generic parameters in scope (similar to
associated constants, but without a trait or type they are associated with).
For example, this code:
fn foo<T>() -> usize {
 const { std::mem::size_of::<T>() + 1 }
}

is equivalent to:
fn foo<T>() -> usize {
 {
 struct Const<T>(T);
 impl<T> Const<T> {
 const CONST: usize = std::mem::size_of::<T>() + 1;
 }
 Const::<T>::CONST
 }
}

r[expr.block.const.evaluation]
If the const block expression is executed at runtime, then the constant is

guaranteed to be evaluated, even if its return value is ignored:
fn foo<T>() -> usize {
 // If this code ever gets executed, then the assertion has

clbr://internal.invalid/book/OEBPS/items/constant-items.md
clbr://internal.invalid/book/OEBPS/items/constant-items.md
clbr://internal.invalid/book/OEBPS/glossary.md#free-item

definitely
 // been evaluated at compile-time.
 const { assert!(std::mem::size_of::<T>() > 0); }
 // Here we can have unsafe code relying on the type being
non-zero-sized.
 /* ... */
 42
}

r[expr.block.const.not-executed]
If the const block expression is not executed at runtime, it may or may

not be evaluated:
if false {
 // The panic may or may not occur when the program is
built.
 const { panic!(); }
}

r[expr.block.unsafe]

unsafe blocks
r[expr.block.unsafe.syntax]

UnsafeBlockExpression -> `unsafe` BlockExpression

r[expr.block.unsafe.intro] See unsafe blocks for more information on
when to use unsafe .

A block of code can be prefixed with the unsafe keyword to permit
unsafe operations. Examples:
unsafe {
 let b = [13u8, 17u8];
 let a = &b[0] as *const u8;
 assert_eq!(*a, 13);
 assert_eq!(*a.offset(1), 17);
}

unsafe fn an_unsafe_fn() -> i32 { 10 }
let a = unsafe { an_unsafe_fn() };

r[expr.block.label]

clbr://internal.invalid/book/OEBPS/unsafe-keyword.md#unsafe-blocks-unsafe-
clbr://internal.invalid/book/OEBPS/unsafety.md

Labelled block expressions
Labelled block expressions are documented in the Loops and other

breakable expressions section.
r[expr.block.attributes]

clbr://internal.invalid/book/OEBPS/expressions/loop-expr.md#labelled-block-expressions

Attributes on block expressions
r[expr.block.attributes.inner-attributes] Inner attributes are allowed

directly after the opening brace of a block expression in the following
situations:

Function and method bodies.
Loop bodies (loop , while , and for).
Block expressions used as a statement.
Block expressions as elements of array expressions, tuple expressions,
call expressions, and tuple-style struct expressions.
A block expression as the tail expression of another block expression.

r[expr.block.attributes.valid] The attributes that have meaning on a block
expression are cfg and the lint check attributes.

For example, this function returns true on unix platforms and false
on other platforms.
fn is_unix_platform() -> bool {
 #[cfg(unix)] { true }
 #[cfg(not(unix))] { false }
}

clbr://internal.invalid/book/OEBPS/attributes.md
clbr://internal.invalid/book/OEBPS/items/functions.md
clbr://internal.invalid/book/OEBPS/items/associated-items.md#methods
clbr://internal.invalid/book/OEBPS/expressions/loop-expr.md#infinite-loops
clbr://internal.invalid/book/OEBPS/expressions/loop-expr.md#predicate-loops
clbr://internal.invalid/book/OEBPS/expressions/loop-expr.md#iterator-loops
clbr://internal.invalid/book/OEBPS/statements.md
clbr://internal.invalid/book/OEBPS/expressions/array-expr.md
clbr://internal.invalid/book/OEBPS/expressions/tuple-expr.md
clbr://internal.invalid/book/OEBPS/expressions/call-expr.md
clbr://internal.invalid/book/OEBPS/expressions/struct-expr.md
clbr://internal.invalid/book/OEBPS/conditional-compilation.md
clbr://internal.invalid/book/OEBPS/attributes/diagnostics.md#lint-check-attributes

r[expr.operator]

Operator expressions
r[expr.operator.syntax]

OperatorExpression ->
 BorrowExpression
 | DereferenceExpression
 | ErrorPropagationExpression
 | NegationExpression
 | ArithmeticOrLogicalExpression
 | ComparisonExpression
 | LazyBooleanExpression
 | TypeCastExpression
 | AssignmentExpression
 | CompoundAssignmentExpression

r[expr.operator.intro] Operators are defined for built in types by the Rust language.
r[expr.operator.trait] Many of the following operators can also be overloaded using traits in

std::ops or std::cmp .
r[expr.operator.int-overflow]

Overflow
r[expr.operator.int-overflow.intro] Integer operators will panic when they overflow when compiled

in debug mode. The -C debug-assertions and -C overflow-checks compiler flags can be used to
control this more directly. The following things are considered to be overflow:

r[expr.operator.int-overflow.binary-arith]

When + , * or binary - create a value greater than the maximum value, or less than the
minimum value that can be stored.

r[expr.operator.int-overflow.unary-neg]

Applying unary - to the most negative value of any signed integer type, unless the operand is a
literal expression (or a literal expression standing alone inside one or more grouped
expressions).

r[expr.operator.int-overflow.div]

Using / or % , where the left-hand argument is the smallest integer of a signed integer type and
the right-hand argument is -1 . These checks occur even when -C overflow-checks is
disabled, for legacy reasons.

r[expr.operator.int-overflow.shift]

Using << or >> where the right-hand argument is greater than or equal to the number of bits in
the type of the left-hand argument, or is negative.

[!NOTE] The exception for literal expressions behind unary - means that forms such as
-128_i8 or let j: i8 = -(128) never cause a panic and have the expected value of -128.

In these cases, the literal expression already has the most negative value for its type (for
example, 128_i8 has the value -128) because integer literals are truncated to their type per the
description in Integer literal expressions.

Negation of these most negative values leaves the value unchanged due to two's complement
overflow conventions.

In rustc , these most negative expressions are also ignored by the overflowing_literals
lint check.

r[expr.operator.borrow]

clbr://internal.invalid/book/OEBPS/expressions/literal-expr.md#integer-literal-expressions
clbr://internal.invalid/book/OEBPS/expressions/grouped-expr.md
clbr://internal.invalid/book/OEBPS/expressions/literal-expr.md#integer-literal-expressions

Borrow operators
r[expr.operator.borrow.syntax]

BorrowExpression ->
 (`&`|`&&`) Expression
 | (`&`|`&&`) `mut` Expression
 | (`&`|`&&`) `raw` `const` Expression
 | (`&`|`&&`) `raw` `mut` Expression

r[expr.operator.borrow.intro] The & (shared borrow) and &mut (mutable borrow) operators are
unary prefix operators.

r[expr.operator.borrow.result] When applied to a place expression, this expressions produces a
reference (pointer) to the location that the value refers to.

r[expr.operator.borrow.lifetime] The memory location is also placed into a borrowed state for the
duration of the reference. For a shared borrow (&), this implies that the place may not be mutated,
but it may be read or shared again. For a mutable borrow (&mut), the place may not be accessed in
any way until the borrow expires.

r[expr.operator.borrow.mut] &mut evaluates its operand in a mutable place expression context.
r[expr.operator.borrow.temporary] If the & or &mut operators are applied to a value expression,

then a temporary value is created.
These operators cannot be overloaded.

{
 // a temporary with value 7 is created that lasts for this scope.
 let shared_reference = &7;
}
let mut array = [-2, 3, 9];
{
 // Mutably borrows `array` for this scope.
 // `array` may only be used through `mutable_reference`.
 let mutable_reference = &mut array;
}

r[expr.borrow.and-and-syntax] Even though && is a single token (the lazy 'and' operator), when
used in the context of borrow expressions it works as two borrows:
// same meanings:
let a = && 10;
let a = & & 10;

// same meanings:
let a = &&&& mut 10;
let a = && && mut 10;
let a = & & & & mut 10;

r[expr.borrow.raw]

Raw borrow operators
r[expr.borrow.raw.intro] &raw const and &raw mut are the raw borrow operators.

clbr://internal.invalid/book/OEBPS/expressions.md#place-expressions-and-value-expressions
clbr://internal.invalid/book/OEBPS/expressions.md#place-expressions-and-value-expressions
clbr://internal.invalid/book/OEBPS/expressions.md#temporaries

r[expr.borrow.raw.place] The operand expression of these operators is evaluated in place
expression context.

r[expr.borrow.raw.result] &raw const expr then creates a const raw pointer of type *const T to
the given place, and &raw mut expr creates a mutable raw pointer of type *mut T .

r[expr.borrow.raw.invalid-ref] The raw borrow operators must be used instead of a borrow
operator whenever the place expression could evaluate to a place that is not properly aligned or does
not store a valid value as determined by its type, or whenever creating a reference would introduce
incorrect aliasing assumptions. In those situations, using a borrow operator would cause undefined
behavior by creating an invalid reference, but a raw pointer may still be constructed.

The following is an example of creating a raw pointer to an unaligned place through a packed
struct:
#[repr(packed)]
struct Packed {
 f1: u8,
 f2: u16,
}

let packed = Packed { f1: 1, f2: 2 };
// `&packed.f2` would create an unaligned reference, and thus be undefined
behavior!
let raw_f2 = &raw const packed.f2;
assert_eq!(unsafe { raw_f2.read_unaligned() }, 2);

The following is an example of creating a raw pointer to a place that does not contain a valid
value:
use std::mem::MaybeUninit;

struct Demo {
 field: bool,
}

let mut uninit = MaybeUninit::<Demo>::uninit();
// `&uninit.as_mut().field` would create a reference to an uninitialized `bool`,
// and thus be undefined behavior!
let f1_ptr = unsafe { &raw mut (*uninit.as_mut_ptr()).field };
unsafe { f1_ptr.write(true); }
let init = unsafe { uninit.assume_init() };

r[expr.deref]

clbr://internal.invalid/book/OEBPS/behavior-considered-undefined.md

The dereference operator
r[expr.deref.syntax]

DereferenceExpression -> `*` Expression

r[expr.deref.intro] The * (dereference) operator is also a unary prefix operator.
r[expr.deref.result] When applied to a pointer it denotes the pointed-to location.
r[expr.deref.mut] If the expression is of type &mut T or *mut T , and is either a local variable, a

(nested) field of a local variable or is a mutable place expression, then the resulting memory location
can be assigned to.

r[expr.deref.safety] Dereferencing a raw pointer requires unsafe .
r[expr.deref.traits] On non-pointer types *x is equivalent to *std::ops::Deref::deref(&x) in

an immutable place expression context and *std::ops::DerefMut::deref_mut(&mut x) in a
mutable place expression context.
let x = &7;
assert_eq!(*x, 7);
let y = &mut 9;
*y = 11;
assert_eq!(*y, 11);

r[expr.try]

clbr://internal.invalid/book/OEBPS/types/pointer.md
clbr://internal.invalid/book/OEBPS/expressions.md#place-expressions-and-value-expressions
clbr://internal.invalid/book/OEBPS/expressions.md#mutability

The question mark operator
r[expr.try.syntax]

ErrorPropagationExpression -> Expression `?`

r[expr.try.intro] The question mark operator (?) unwraps valid values or returns erroneous values,
propagating them to the calling function.

r[expr.try.restricted-types] It is a unary postfix operator that can only be applied to the types
Result<T, E> and Option<T> .

r[expr.try.behavior-std-result] When applied to values of the Result<T, E> type, it propagates
errors.

r[expr.try.effects-err] If the value is Err(e) , then it will return Err(From::from(e)) from the
enclosing function or closure.

r[expr.try.result-ok] If applied to Ok(x) , then it will unwrap the value to evaluate to x .
use std::num::ParseIntError;
fn try_to_parse() -> Result<i32, ParseIntError> {
 let x: i32 = "123".parse()?; // x = 123
 let y: i32 = "24a".parse()?; // returns an Err() immediately
 Ok(x + y) // Doesn't run.
}

let res = try_to_parse();
println!("{:?}", res);
assert!(res.is_err())

r[expr.try.behavior-std-option] When applied to values of the Option<T> type, it propagates
None s.

r[expr.try.effects-none] If the value is None , then it will return None .
r[expr.try.result-some] If applied to Some(x) , then it will unwrap the value to evaluate to x .

fn try_option_some() -> Option<u8> {
 let val = Some(1)?;
 Some(val)
}
assert_eq!(try_option_some(), Some(1));

fn try_option_none() -> Option<u8> {
 let val = None?;
 Some(val)
}
assert_eq!(try_option_none(), None);

r[expr.try.trait] ? cannot be overloaded.
r[expr.negate]

Negation operators
r[expr.negate.syntax]

NegationExpression ->
 `-` Expression
 | `!` Expression

r[expr.negate.intro] These are the last two unary operators.
r[expr.negate.results] This table summarizes the behavior of them on primitive types and which

traits are used to overload these operators for other types. Remember that signed integers are always
represented using two's complement. The operands of all of these operators are evaluated in value
expression context so are moved or copied.

Symbol Integer bool Floating Point Overloading Trait

- Negation* Negation std::ops::Neg

! Bitwise NOT Logical NOT std::ops::Not

* Only for signed integer types.
Here are some example of these operators

let x = 6;
assert_eq!(-x, -6);
assert_eq!(!x, -7);
assert_eq!(true, !false);

r[expr.arith-logic]

clbr://internal.invalid/book/OEBPS/expressions.md#place-expressions-and-value-expressions
clbr://internal.invalid/book/OEBPS/types/boolean.md#logical-not

Arithmetic and Logical Binary Operators
r[expr.arith-logic.syntax]

ArithmeticOrLogicalExpression ->
 Expression `+` Expression
 | Expression `-` Expression
 | Expression `*` Expression
 | Expression `/` Expression
 | Expression `%` Expression
 | Expression `&` Expression
 | Expression `|` Expression
 | Expression `^` Expression
 | Expression `<<` Expression
 | Expression `>>` Expression

r[expr.arith-logic.intro] Binary operators expressions are all written with infix notation.
r[expr.arith-logic.behavior] This table summarizes the behavior of arithmetic and logical binary

operators on primitive types and which traits are used to overload these operators for other types.
Remember that signed integers are always represented using two's complement. The operands of all
of these operators are evaluated in value expression context so are moved or copied.

Symbol Integer bool Floating
Point

Overloading
Trait

Overloading
Compound
Assignment
Trait

+ Addition Addition std::ops::

Add

std::ops::

AddAssign

- Subtraction Subtraction std::ops::

Sub

std::ops::

SubAssign

* Multiplication Multiplication std::ops::

Mul

std::ops::

MulAssign

/ Division*† Division std::ops::

Div

std::ops::

DivAssign

% Remainder**† Remainder std::ops::

Rem

std::ops::

RemAssign

& Bitwise AND Logical
AND

std::ops::

BitAnd

std::ops::

BitAndAssi

gn

| Bitwise OR Logical
OR

std::ops::

BitOr

std::ops::

BitOrAssig

n

clbr://internal.invalid/book/OEBPS/expressions.md#place-expressions-and-value-expressions
clbr://internal.invalid/book/OEBPS/types/boolean.md#logical-and
clbr://internal.invalid/book/OEBPS/types/boolean.md#logical-or

Symbol Integer bool Floating
Point

Overloading
Trait

Overloading
Compound
Assignment
Trait

^ Bitwise XOR Logical
XOR

std::ops::

BitXor

std::ops::

BitXorAssi

gn

<< Left Shift std::ops::

Shl

std::ops::

ShlAssign

>> Right
Shift***

std::ops::

Shr

std::ops::

ShrAssign

* Integer division rounds towards zero.
** Rust uses a remainder defined with truncating division. Given remainder = dividend %

divisor , the remainder will have the same sign as the dividend.
*** Arithmetic right shift on signed integer types, logical right shift on unsigned integer types.
† For integer types, division by zero panics.
Here are examples of these operators being used.

assert_eq!(3 + 6, 9);
assert_eq!(5.5 - 1.25, 4.25);
assert_eq!(-5 * 14, -70);
assert_eq!(14 / 3, 4);
assert_eq!(100 % 7, 2);
assert_eq!(0b1010 & 0b1100, 0b1000);
assert_eq!(0b1010 | 0b1100, 0b1110);
assert_eq!(0b1010 ^ 0b1100, 0b110);
assert_eq!(13 << 3, 104);
assert_eq!(-10 >> 2, -3);

r[expr.cmp]

clbr://internal.invalid/book/OEBPS/types/boolean.md#logical-xor
https://en.wikipedia.org/wiki/Modulo_operation#Variants_of_the_definition

Comparison Operators
r[expr.cmp.syntax]

ComparisonExpression ->
 Expression `==` Expression
 | Expression `!=` Expression
 | Expression `>` Expression
 | Expression `<` Expression
 | Expression `>=` Expression
 | Expression `<=` Expression

r[expr.cmp.intro] Comparison operators are also defined both for primitive types and many types
in the standard library.

r[expr.cmp.paren-chaining] Parentheses are required when chaining comparison operators. For
example, the expression a == b == c is invalid and may be written as (a == b) == c .

r[expr.cmp.trait] Unlike arithmetic and logical operators, the traits for overloading these operators
are used more generally to show how a type may be compared and will likely be assumed to define
actual comparisons by functions that use these traits as bounds. Many functions and macros in the
standard library can then use that assumption (although not to ensure safety).

r[expr.cmp.place] Unlike the arithmetic and logical operators above, these operators implicitly
take shared borrows of their operands, evaluating them in place expression context:
let a = 1;
let b = 1;
a == b;
// is equivalent to
::std::cmp::PartialEq::eq(&a, &b);

This means that the operands don't have to be moved out of.
r[expr.cmp.behavior]

Symbol Meaning Overloading method
== Equal std::cmp::PartialEq::eq

!= Not equal std::cmp::PartialEq::ne

> Greater than std::cmp::PartialOrd::gt

< Less than std::cmp::PartialOrd::lt

>= Greater than or equal to std::cmp::PartialOrd::ge

<= Less than or equal to std::cmp::PartialOrd::le

Here are examples of the comparison operators being used.
assert!(123 == 123);
assert!(23 != -12);
assert!(12.5 > 12.2);
assert!([1, 2, 3] < [1, 3, 4]);
assert!('A' <= 'B');
assert!("World" >= "Hello");

clbr://internal.invalid/book/OEBPS/expressions.md#place-expressions-and-value-expressions

r[expr.bool-logic]

Lazy boolean operators
r[expr.bool-logic.syntax]

LazyBooleanExpression ->
 Expression `||` Expression
 | Expression `&&` Expression

r[expr.bool-logic.intro] The operators || and && may be applied to operands of boolean type. The
|| operator denotes logical 'or', and the && operator denotes logical 'and'.

r[expr.bool-logic.conditional-evaluation] They differ from | and & in that the right-hand operand
is only evaluated when the left-hand operand does not already determine the result of the expression.
That is, || only evaluates its right-hand operand when the left-hand operand evaluates to false ,
and && only when it evaluates to true .
let x = false || true; // true
let y = false && panic!(); // false, doesn't evaluate `panic!()`

r[expr.as]

Type cast expressions
r[expr.as.syntax]

TypeCastExpression -> Expression `as` TypeNoBounds

r[expr.as.intro] A type cast expression is denoted with the binary operator as .
r[expr.as.result] Executing an as expression casts the value on the left-hand side to the type on

the right-hand side.
An example of an as expression:

fn sum(values: &[f64]) -> f64 { 0.0 }
fn len(values: &[f64]) -> i32 { 0 }
fn average(values: &[f64]) -> f64 {
 let sum: f64 = sum(values);
 let size: f64 = len(values) as f64;
 sum / size
}

r[expr.as.coercions] as can be used to explicitly perform coercions, as well as the following
additional casts. Any cast that does not fit either a coercion rule or an entry in the table is a compiler
error. Here *T means either *const T or *mut T . m stands for optional mut in reference types and
mut or const in pointer types.

Type of e U Cast performed by e as U

Integer or Float
type

Integer or Float
type

[Numeric cast][expr.as.numeric]

Enumeration Integer type [Enum cast][expr.as.enum]
bool or char Integer type [Primitive to integer cast][expr.as.bool-char-

as-int]
u8 char [u8 to char cast][expr.as.u8-as-char]

*T *V 1 [Pointer to pointer cast][expr.as.pointer]

*T where T:

Sized

Integer type [Pointer to address cast][expr.as.pointer-as-
int]

Integer type *V where V:

Sized

[Address to pointer cast][expr.as.int-as-
pointer]

&m₁ [T; n] *m₂ T 2 Array to pointer cast

*m₁ [T; n] *m₂ T 2 Array to pointer cast

Function item Function pointer Function item to function pointer cast
Function item *V where V:

Sized

Function item to pointer cast

Function item Integer Function item to address cast

clbr://internal.invalid/book/OEBPS/type-coercions.md
clbr://internal.invalid/book/OEBPS/types/function-item.md
clbr://internal.invalid/book/OEBPS/types/function-pointer.md
clbr://internal.invalid/book/OEBPS/types/function-item.md
clbr://internal.invalid/book/OEBPS/types/function-item.md

Type of e U Cast performed by e as U

Function pointer *V where V:

Sized

Function pointer to pointer cast

Function pointer Integer Function pointer to address cast
Closure 3 Function pointer Closure to function pointer cast

1

where T and V have compatible metadata:

V: Sized , or
Both slice metadata (*[u16] -> *[u8] , *str -> *(u8, [u32])), or
Both the same trait object metadata, modulo dropping auto traits (*dyn Debug -> *(u16, dyn
Debug) , *dyn Debug + Send -> *dyn Debug)

Note: adding auto traits is only allowed if the principal trait has the auto trait as a super
trait (given trait T: Send {} , *dyn T -> *dyn T + Send is valid, but *dyn Debug ->
*dyn Debug + Send is not)
Note: Generics (including lifetimes) must match (*dyn T<'a, A> -> *dyn T<'b, B>
requires 'a = 'b and A = B)

2

only when m₁ is mut or m₂ is const . Casting mut reference/pointer to const pointer is allowed.
3

only for closures that do not capture (close over) any local variables can be casted to function
pointers.

Semantics
r[expr.as.numeric]

Numeric cast
r[expr.as.numeric.int-same-size]

Casting between two integers of the same size (e.g. i32 -> u32) is a no-op (Rust uses 2's
complement for negative values of fixed integers)
assert_eq!(42i8 as u8, 42u8);
assert_eq!(-1i8 as u8, 255u8);
assert_eq!(255u8 as i8, -1i8);
assert_eq!(-1i16 as u16, 65535u16);

r[expr.as.numeric.int-truncation]

Casting from a larger integer to a smaller integer (e.g. u32 -> u8) will truncate
assert_eq!(42u16 as u8, 42u8);
assert_eq!(1234u16 as u8, 210u8);
assert_eq!(0xabcdu16 as u8, 0xcdu8);

clbr://internal.invalid/book/OEBPS/types/function-pointer.md
clbr://internal.invalid/book/OEBPS/types/function-pointer.md

assert_eq!(-42i16 as i8, -42i8);
assert_eq!(1234u16 as i8, -46i8);
assert_eq!(0xabcdi32 as i8, -51i8);

r[expr.as.numeric.int-extension]

Casting from a smaller integer to a larger integer (e.g. u8 -> u32) will

zero-extend if the source is unsigned
sign-extend if the source is signed

assert_eq!(42i8 as i16, 42i16);
assert_eq!(-17i8 as i16, -17i16);
assert_eq!(0b1000_1010u8 as u16, 0b0000_0000_1000_1010u16, "Zero-extend");
assert_eq!(0b0000_1010i8 as i16, 0b0000_0000_0000_1010i16, "Sign-extend 0");
assert_eq!(0b1000_1010u8 as i8 as i16, 0b1111_1111_1000_1010u16 as i16, "Sign-
extend 1");

r[expr.as.numeric.float-as-int]

Casting from a float to an integer will round the float towards zero

NaN will return 0
Values larger than the maximum integer value, including INFINITY , will saturate to the
maximum value of the integer type.
Values smaller than the minimum integer value, including NEG_INFINITY , will saturate to
the minimum value of the integer type.

assert_eq!(42.9f32 as i32, 42);
assert_eq!(-42.9f32 as i32, -42);
assert_eq!(42_000_000f32 as i32, 42_000_000);
assert_eq!(std::f32::NAN as i32, 0);
assert_eq!(1_000_000_000_000_000f32 as i32, 0x7fffffffi32);
assert_eq!(std::f32::NEG_INFINITY as i32, -0x80000000i32);

r[expr.as.numeric.int-as-float]

Casting from an integer to float will produce the closest possible float *

if necessary, rounding is according to roundTiesToEven mode ***
on overflow, infinity (of the same sign as the input) is produced
note: with the current set of numeric types, overflow can only happen on u128 as f32 for
values greater or equal to f32::MAX + (0.5 ULP)

assert_eq!(1337i32 as f32, 1337f32);
assert_eq!(123_456_789i32 as f32, 123_456_790f32, "Rounded");
assert_eq!(0xffffffff_ffffffff_ffffffff_ffffffff_u128 as f32,
std::f32::INFINITY);

r[expr.as.numeric.float-widening]

Casting from an f32 to an f64 is perfect and lossless

assert_eq!(1_234.5f32 as f64, 1_234.5f64);
assert_eq!(std::f32::INFINITY as f64, std::f64::INFINITY);
assert!((std::f32::NAN as f64).is_nan());

r[expr.as.numeric.float-narrowing]

Casting from an f64 to an f32 will produce the closest possible f32 **

if necessary, rounding is according to roundTiesToEven mode ***
on overflow, infinity (of the same sign as the input) is produced

assert_eq!(1_234.5f64 as f32, 1_234.5f32);
assert_eq!(1_234_567_891.123f64 as f32, 1_234_567_890f32, "Rounded");
assert_eq!(std::f64::INFINITY as f32, std::f32::INFINITY);
assert!((std::f64::NAN as f32).is_nan());

* if integer-to-float casts with this rounding mode and overflow behavior are not supported
natively by the hardware, these casts will likely be slower than expected.

** if f64-to-f32 casts with this rounding mode and overflow behavior are not supported natively
by the hardware, these casts will likely be slower than expected.

*** as defined in IEEE 754-2008 §4.3.1: pick the nearest floating point number, preferring the
one with an even least significant digit if exactly halfway between two floating point numbers.

r[expr.as.enum]

Enum cast
r[expr.as.enum.discriminant] Casts an enum to its discriminant, then uses a numeric cast if

needed. Casting is limited to the following kinds of enumerations:

Unit-only enums
Field-less enums without explicit discriminants, or where only unit-variants have explicit
discriminants

enum Enum { A, B, C }
assert_eq!(Enum::A as i32, 0);
assert_eq!(Enum::B as i32, 1);
assert_eq!(Enum::C as i32, 2);

r[expr.as.enum.no-drop] Casting is not allowed if the enum implements [Drop].
r[expr.as.bool-char-as-int]

Primitive to integer cast

false casts to 0 , true casts to 1
char casts to the value of the code point, then uses a numeric cast if needed.

assert_eq!(false as i32, 0);
assert_eq!(true as i32, 1);
assert_eq!('A' as i32, 65);
assert_eq!('Ö' as i32, 214);

r[expr.as.u8-as-char]

u8 to char cast

clbr://internal.invalid/book/OEBPS/items/enumerations.md#unit-only-enum
clbr://internal.invalid/book/OEBPS/items/enumerations.md#field-less-enum
clbr://internal.invalid/book/OEBPS/items/enumerations.md#explicit-discriminants

Casts to the char with the corresponding code point.
assert_eq!(65u8 as char, 'A');
assert_eq!(214u8 as char, 'Ö');

r[expr.as.pointer-as-int]

Pointer to address cast
Casting from a raw pointer to an integer produces the machine address of the referenced memory.

If the integer type is smaller than the pointer type, the address may be truncated; using usize avoids
this.

r[expr.as.int-as-pointer]

Address to pointer cast
Casting from an integer to a raw pointer interprets the integer as a memory address and produces a

pointer referencing that memory.

[!WARNING] This interacts with the Rust memory model, which is still under development.
A pointer obtained from this cast may suffer additional restrictions even if it is bitwise equal to a
valid pointer. Dereferencing such a pointer may be undefined behavior if aliasing rules are not
followed.

A trivial example of sound address arithmetic:
let mut values: [i32; 2] = [1, 2];
let p1: *mut i32 = values.as_mut_ptr();
let first_address = p1 as usize;
let second_address = first_address + 4; // 4 == size_of::<i32>()
let p2 = second_address as *mut i32;
unsafe {
 *p2 += 1;
}
assert_eq!(values[1], 3);

r[expr.as.pointer]

Pointer-to-pointer cast
r[expr.as.pointer.behavior] *const T / *mut T can be cast to *const U / *mut U with the

following behavior:
r[expr.as.pointer.sized]

If T and U are both sized, the pointer is returned unchanged.
r[expr.as.pointer.unsized]

If T and U are both unsized, the pointer is also returned unchanged. In particular, the
metadata is preserved exactly.

For instance, a cast from *const [T] to *const [U] preserves the number of elements.
Note that, as a consequence, such casts do not necessarily preserve the size of the pointer's
referent (e.g., casting *const [u16] to *const [u8] will result in a raw pointer which refers
to an object of half the size of the original). The same holds for str and any compound type
whose unsized tail is a slice type, such as struct Foo(i32, [u8]) or (u64, Foo) .

clbr://internal.invalid/book/OEBPS/behavior-considered-undefined.md

r[expr.as.pointer.discard-metadata]

If T is unsized and U is sized, the cast discards all metadata that completes the wide pointer T
and produces a thin pointer U consisting of the data part of the unsized pointer.

r[expr.assign]

Assignment expressions
r[expr.assign.syntax]

AssignmentExpression -> Expression `=` Expression

r[expr.assign.intro] An assignment expression moves a value into a specified place.
r[expr.assign.assignee] An assignment expression consists of a mutable assignee expression, the

assignee operand, followed by an equals sign (=) and a value expression, the assigned value
operand.

r[expr.assign.behavior-basic] In its most basic form, an assignee expression is a place expression,
and we discuss this case first.

r[expr.assign.behavior-destructuring] The more general case of destructuring assignment is
discussed below, but this case always decomposes into sequential assignments to place expressions,
which may be considered the more fundamental case.

r[expr.assign.basic]

Basic assignments
r[expr.assign.evaluation-order] Evaluating assignment expressions begins by evaluating its

operands. The assigned value operand is evaluated first, followed by the assignee expression.
r[expr.assign.destructuring-order] For destructuring assignment, subexpressions of the assignee

expression are evaluated left-to-right.

[!NOTE] This is different than other expressions in that the right operand is evaluated before
the left one.

r[expr.assign.drop-target] It then has the effect of first dropping the value at the assigned place,
unless the place is an uninitialized local variable or an uninitialized field of a local variable.

r[expr.assign.behavior] Next it either copies or moves the assigned value to the assigned place.
r[expr.assign.result] An assignment expression always produces the unit value.
Example:

let mut x = 0;
let y = 0;
x = y;

r[expr.assign.destructure]

Destructuring assignments
r[expr.assign.destructure.intro] Destructuring assignment is a counterpart to destructuring pattern

matches for variable declaration, permitting assignment to complex values, such as tuples or structs.
For instance, we may swap two mutable variables:
let (mut a, mut b) = (0, 1);
// Swap `a` and `b` using destructuring assignment.
(b, a) = (a, b);

r[expr.assign.destructure.assignee] In contrast to destructuring declarations using let , patterns
may not appear on the left-hand side of an assignment due to syntactic ambiguities. Instead, a group
of expressions that correspond to patterns are designated to be assignee expressions, and permitted on

clbr://internal.invalid/book/OEBPS/expressions.md#mutability
clbr://internal.invalid/book/OEBPS/expressions.md#place-expressions-and-value-expressions
clbr://internal.invalid/book/OEBPS/expressions.md#place-expressions-and-value-expressions
clbr://internal.invalid/book/OEBPS/expressions.md#place-expressions-and-value-expressions
clbr://internal.invalid/book/OEBPS/destructors.md
clbr://internal.invalid/book/OEBPS/expressions.md#moved-and-copied-types
clbr://internal.invalid/book/OEBPS/types/tuple.md
clbr://internal.invalid/book/OEBPS/expressions.md#place-expressions-and-value-expressions

the left-hand side of an assignment. Assignee expressions are then desugared to pattern matches
followed by sequential assignment.

r[expr.assign.destructure.irrefutable] The desugared patterns must be irrefutable: in particular, this
means that only slice patterns whose length is known at compile-time, and the trivial slice [..] , are
permitted for destructuring assignment.

The desugaring method is straightforward, and is illustrated best by example.
struct Struct { x: u32, y: u32 }
let (mut a, mut b) = (0, 0);
(a, b) = (3, 4);

[a, b] = [3, 4];

Struct { x: a, y: b } = Struct { x: 3, y: 4};

// desugars to:

{
 let (_a, _b) = (3, 4);
 a = _a;
 b = _b;
}

{
 let [_a, _b] = [3, 4];
 a = _a;
 b = _b;
}

{
 let Struct { x: _a, y: _b } = Struct { x: 3, y: 4};
 a = _a;
 b = _b;
}

r[expr.assign.destructure.repeat-ident] Identifiers are not forbidden from being used multiple times
in a single assignee expression.

r[expr.assign.destructure.discard-value] Underscore expressions and empty range expressions may
be used to ignore certain values, without binding them.

r[expr.assign.destructure.default-binding] Note that default binding modes do not apply for the
desugared expression.

r[expr.compound-assign]

clbr://internal.invalid/book/OEBPS/expressions/underscore-expr.md
clbr://internal.invalid/book/OEBPS/expressions/range-expr.md

Compound assignment expressions
r[expr.compound-assign.syntax]

CompoundAssignmentExpression ->
 Expression `+=` Expression
 | Expression `-=` Expression
 | Expression `*=` Expression
 | Expression `/=` Expression
 | Expression `%=` Expression
 | Expression `&=` Expression
 | Expression `|=` Expression
 | Expression `^=` Expression
 | Expression `<<=` Expression
 | Expression `>>=` Expression

r[expr.compound-assign.intro] Compound assignment expressions combine arithmetic and logical
binary operators with assignment expressions.

For example:
let mut x = 5;
x += 1;
assert!(x == 6);

The syntax of compound assignment is a mutable place expression, the assigned operand, then
one of the operators followed by an = as a single token (no whitespace), and then a value expression,
the modifying operand.

r[expr.compound-assign.place] Unlike other place operands, the assigned place operand must be a
place expression.

r[expr.compound-assign.no-value] Attempting to use a value expression is a compiler error rather
than promoting it to a temporary.

r[expr.compound-assign.operand-order] Evaluation of compound assignment expressions depends
on the types of the operators.

r[expr.compound-assign.primitive-order] If both types are primitives, then the modifying operand
will be evaluated first followed by the assigned operand. It will then set the value of the assigned
operand's place to the value of performing the operation of the operator with the values of the
assigned operand and modifying operand.

[!NOTE] This is different than other expressions in that the right operand is evaluated before
the left one.

r[expr.compound-assign.trait] Otherwise, this expression is syntactic sugar for calling the function
of the overloading compound assignment trait of the operator (see the table earlier in this chapter). A
mutable borrow of the assigned operand is automatically taken.

For example, the following expression statements in example are equivalent:
struct Addable;
use std::ops::AddAssign;

impl AddAssign<Addable> for Addable {
 /* */

clbr://internal.invalid/book/OEBPS/expressions.md#mutability
clbr://internal.invalid/book/OEBPS/expressions.md#place-expressions-and-value-expressions
clbr://internal.invalid/book/OEBPS/expressions.md#place-expressions-and-value-expressions

fn add_assign(&mut self, other: Addable) {}
}

fn example() {
let (mut a1, a2) = (Addable, Addable);
 a1 += a2;

let (mut a1, a2) = (Addable, Addable);
 AddAssign::add_assign(&mut a1, a2);
}

r[expr.compound-assign.result] Like assignment expressions, compound assignment expressions
always produce the unit value.

[!WARNING] The evaluation order of operands swaps depending on the types of the
operands: with primitive types the right-hand side will get evaluated first, while with non-
primitive types the left-hand side will get evaluated first. Try not to write code that depends on
the evaluation order of operands in compound assignment expressions. See this test for an
example of using this dependency.

clbr://internal.invalid/book/OEBPS/types/tuple.md
https://github.com/rust-lang/rust/blob/1.58.0/src/test/ui/expr/compound-assignment/eval-order.rs

r[expr.paren]

Grouped expressions
r[expr.paren.syntax]

GroupedExpression -> `(` Expression `)`

r[expr.paren.intro] A parenthesized expression wraps a single expression,
evaluating to that expression. The syntax for a parenthesized expression is a
(, then an expression, called the enclosed operand, and then a) .

r[expr.paren.evaluation] Parenthesized expressions evaluate to the value
of the enclosed operand.

r[expr.paren.place-or-value] Unlike other expressions, parenthesized
expressions are both place expressions and value expressions. When the
enclosed operand is a place expression, it is a place expression and when
the enclosed operand is a value expression, it is a value expression.

r[expr.paren.override-precedence] Parentheses can be used to explicitly
modify the precedence order of subexpressions within an expression.

An example of a parenthesized expression:
let x: i32 = 2 + 3 * 4; // not parenthesized
let y: i32 = (2 + 3) * 4; // parenthesized
assert_eq!(x, 14);
assert_eq!(y, 20);

An example of a necessary use of parentheses is when calling a function
pointer that is a member of a struct:
struct A {
f: fn() -> &'static str
}
impl A {
fn f(&self) -> &'static str {
"The method f"
}
}
let a = A{f: || "The field f"};

clbr://internal.invalid/book/OEBPS/expressions.md#place-expressions-and-value-expressions

assert_eq!(a.f (), "The method f");
assert_eq!((a.f)(), "The field f");

r[expr.array]

Array and array index expressions

Array expressions
r[expr.array.syntax]

ArrayExpression -> `[` ArrayElements? `]`

ArrayElements ->
 Expression (`,` Expression)* `,`?
 | Expression `;` Expression

r[expr.array.constructor] Array expressions construct arrays. Array
expressions come in two forms.

r[expr.array.array] The first form lists out every value in the array.
r[expr.array.array-syntax] The syntax for this form is a comma-separated

list of expressions of uniform type enclosed in square brackets.
r[expr.array.array-behavior] This produces an array containing each of

these values in the order they are written.
r[expr.array.repeat] The syntax for the second form is two expressions

separated by a semicolon (;) enclosed in square brackets.
r[expr.array.repeat-operand] The expression before the ; is called the

repeat operand.
r[expr.array.length-operand] The expression after the ; is called the

length operand.
r[expr.array.length-restriction] The length operand must either be an

inferred const or be a constant expression of type usize (e.g. a literal or a
constant item).
const C: usize = 1;
let _: [u8; C] = [0; 1]; // Literal.
let _: [u8; C] = [0; C]; // Constant item.
let _: [u8; C] = [0; _]; // Inferred const.
let _: [u8; C] = [0; (((_)))]; // Inferred const.

[!NOTE] In an array expression, an inferred const is parsed as an
[expression][Expression] but then semantically treated as a separate
kind of const generic argument.

clbr://internal.invalid/book/OEBPS/types/array.md
clbr://internal.invalid/book/OEBPS/expressions/items.generics.const.inferred
clbr://internal.invalid/book/OEBPS/const_eval.md#constant-expressions
clbr://internal.invalid/book/OEBPS/tokens.md#literals
clbr://internal.invalid/book/OEBPS/items/constant-items.md
clbr://internal.invalid/book/OEBPS/expressions/items.generics.const.inferred
clbr://internal.invalid/book/OEBPS/expressions/items.generics.const.argument

r[expr.array.repeat-behavior] An array expression of this form creates an
array with the length of the value of the length operand with each element
being a copy of the repeat operand. That is, [a; b] creates an array
containing b copies of the value of a .

r[expr.array.repeat-copy] If the length operand has a value greater than 1
then this requires that the type of the repeat operand is Copy or that it must
be a path to a constant item.

r[expr.array.repeat-const-item] When the repeat operand is a constant
item, it is evaluated the length operand's value times.

r[expr.array.repeat-evaluation-zero] If that value is 0 , then the constant
item is not evaluated at all.

r[expr.array.repeat-non-const] For expressions that are not a constant
item, it is evaluated exactly once, and then the result is copied the length
operand's value times.
[1, 2, 3, 4];
["a", "b", "c", "d"];
[0; 128]; // array with 128 zeros
[0u8, 0u8, 0u8, 0u8,];
[[1, 0, 0], [0, 1, 0], [0, 0, 1]]; // 2D array
const EMPTY: Vec<i32> = Vec::new();
[EMPTY; 2];

r[expr.array.index]

clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#copy
clbr://internal.invalid/book/OEBPS/expressions/path-expr.md

Array and slice indexing expressions
r[expr.array.index.syntax]

IndexExpression -> Expression `[` Expression `]`

r[expr.array.index.array] Array and slice-typed values can be indexed by
writing a square-bracket-enclosed expression of type usize (the index)
after them. When the array is mutable, the resulting memory location can be
assigned to.

r[expr.array.index.trait] For other types an index expression a[b] is
equivalent to *std::ops::Index::index(&a, b) , or
*std::ops::IndexMut::index_mut(&mut a, b) in a mutable place
expression context. Just as with methods, Rust will also insert dereference
operations on a repeatedly to find an implementation.

r[expr.array.index.zero-index] Indices are zero-based for arrays and
slices.

r[expr.array.index.const] Array access is a constant expression, so
bounds can be checked at compile-time with a constant index value.
Otherwise a check will be performed at run-time that will put the thread in a
panicked state if it fails.
// lint is deny by default.
#![warn(unconditional_panic)]

([1, 2, 3, 4])[2]; // Evaluates to 3

let b = [[1, 0, 0], [0, 1, 0], [0, 0, 1]];
b[1][2]; // multidimensional array indexing

let x = (["a", "b"])[10]; // warning: index out of bounds

let n = 10;
let y = (["a", "b"])[n]; // panics

let arr = ["a", "b"];
arr[10]; // warning: index out of bounds

clbr://internal.invalid/book/OEBPS/types/array.md
clbr://internal.invalid/book/OEBPS/types/slice.md
clbr://internal.invalid/book/OEBPS/expressions.md#place-expressions-and-value-expressions
clbr://internal.invalid/book/OEBPS/const_eval.md#constant-expressions
clbr://internal.invalid/book/OEBPS/panic.md

r[expr.array.index.trait-impl] The array index expression can be
implemented for types other than arrays and slices by implementing the
Index and IndexMut traits.

std::ops::Index
std::ops::IndexMut

r[expr.tuple]

Tuple and tuple indexing
expressions

Tuple expressions
r[expr.tuple.syntax]

TupleExpression -> `(` TupleElements? `)`

TupleElements -> (Expression `,`)+ Expression?

r[expr.tuple.result] A tuple expression constructs tuple values.
r[expr.tuple.intro] The syntax for tuple expressions is a parenthesized,

comma separated list of expressions, called the tuple initializer operands.
r[expr.tuple.unary-tuple-restriction] 1-ary tuple expressions require a

comma after their tuple initializer operand to be disambiguated with a
parenthetical expression.

r[expr.tuple.value] Tuple expressions are a value expression that evaluate
into a newly constructed value of a tuple type.

r[expr.tuple.type] The number of tuple initializer operands is the arity of
the constructed tuple.

r[expr.tuple.unit] Tuple expressions without any tuple initializer
operands produce the unit tuple.

r[expr.tuple.fields] For other tuple expressions, the first written tuple
initializer operand initializes the field 0 and subsequent operands initializes
the next highest field. For example, in the tuple expression ('a', 'b',
'c') , 'a' initializes the value of the field 0 , 'b' field 1 , and 'c' field
2 .

Examples of tuple expressions and their types:

Expression Type
() () (unit)

(0.0, 4.5) (f64, f64)

("x".to_string(),) (String,)

("a", 4usize, true) (&'static str, usize, bool)

r[expr.tuple-index]

clbr://internal.invalid/book/OEBPS/types/tuple.md
clbr://internal.invalid/book/OEBPS/expressions/grouped-expr.md
clbr://internal.invalid/book/OEBPS/expressions.md#place-expressions-and-value-expressions

Tuple indexing expressions
r[expr.tuple-index.syntax]

TupleIndexingExpression -> Expression `.` TUPLE_INDEX

r[expr.tuple-index.intro] A tuple indexing expression accesses fields of
tuples and tuple structs.

The syntax for a tuple index expression is an expression, called the tuple
operand, then a . , then finally a tuple index.

r[expr.tuple-index.index-syntax] The syntax for the tuple index is a
decimal literal with no leading zeros, underscores, or suffix. For example 0
and 2 are valid tuple indices but not 01 , 0_ , nor 0i32 .

r[expr.tuple-index.required-type] The type of the tuple operand must be a
tuple type or a tuple struct.

r[expr.tuple-index.index-name-operand] The tuple index must be a name
of a field of the type of the tuple operand.

r[expr.tuple-index.result] Evaluation of tuple index expressions has no
side effects beyond evaluation of its tuple operand. As a place expression, it
evaluates to the location of the field of the tuple operand with the same
name as the tuple index.

Examples of tuple indexing expressions:
// Indexing a tuple
let pair = ("a string", 2);
assert_eq!(pair.1, 2);

// Indexing a tuple struct
struct Point(f32, f32);
let point = Point(1.0, 0.0);
assert_eq!(point.0, 1.0);
assert_eq!(point.1, 0.0);

[!NOTE] Unlike field access expressions, tuple index expressions
can be the function operand of a call expression as it cannot be
confused with a method call since method names cannot be numbers.

clbr://internal.invalid/book/OEBPS/types/tuple.md
clbr://internal.invalid/book/OEBPS/types/struct.md
clbr://internal.invalid/book/OEBPS/tokens.md#integer-literals
clbr://internal.invalid/book/OEBPS/types/tuple.md
clbr://internal.invalid/book/OEBPS/types/struct.md
clbr://internal.invalid/book/OEBPS/expressions.md#place-expressions-and-value-expressions
clbr://internal.invalid/book/OEBPS/expressions/call-expr.md

[!NOTE] Although arrays and slices also have elements, you must
use an array or slice indexing expression or a slice pattern to access
their elements.

clbr://internal.invalid/book/OEBPS/expressions/array-expr.md#array-and-slice-indexing-expressions
clbr://internal.invalid/book/OEBPS/patterns.md#slice-patterns

r[expr.struct]

Struct expressions
r[expr.struct.syntax]

StructExpression ->
 PathInExpression `{` (StructExprFields | StructBase)? `}`

StructExprFields ->
 StructExprField (`,` StructExprField)* (`,` StructBase |
`,`?)

StructExprField ->
 OuterAttribute*
 (
 IDENTIFIER
 | (IDENTIFIER | TUPLE_INDEX) `:` Expression
)

StructBase -> `..` Expression

r[expr.struct.intro] A struct expression creates a struct, enum, or union
value. It consists of a path to a struct, enum variant, or union item followed
by the values for the fields of the item.

The following are examples of struct expressions:
struct Point { x: f64, y: f64 }
struct NothingInMe { }
mod game { pub struct User<'a> { pub name: &'a str, pub age:
u32, pub score: usize } }
enum Enum { Variant {} }
Point {x: 10.0, y: 20.0};
NothingInMe {};
let u = game::User {name: "Joe", age: 35, score: 100_000};
Enum::Variant {};

[!NOTE] Tuple structs and tuple enum variants are typically
instantiated using a [call expression][expr.call] referring to the

clbr://internal.invalid/book/OEBPS/items/structs.md
clbr://internal.invalid/book/OEBPS/items/enumerations.md
clbr://internal.invalid/book/OEBPS/items/unions.md

[constructor in the value namespace][items.struct.tuple]. These are
distinct from a struct expression using curly braces referring to the
constructor in the type namespace.
struct Position(i32, i32, i32);
Position(0, 0, 0); // Typical way of creating a tuple
struct.
let c = Position; // `c` is a function that takes 3
arguments.
let pos = c(8, 6, 7); // Creates a `Position` value.

enum Version { Triple(i32, i32, i32) };
Version::Triple(0, 0, 0);
let f = Version::Triple;
let ver = f(8, 6, 7);

The last segment of the call path cannot refer to a type alias:
trait Tr { type T; }
impl<T> Tr for T { type T = T; }

struct Tuple();
enum Enum { Tuple() }

// <Unit as Tr>::T(); // causes an error -- `::T` is a
type, not a value
<Enum as Tr>::T::Tuple(); // OK

Unit structs and unit enum variants are typically instantiated using a
[path expression][expr.path] referring to the [constant in the value
namespace][items.struct.unit].
struct Gamma;
// Gamma unit value, referring to the const in the value
namespace.
let a = Gamma;
// Exact same value as `a`, but constructed using a
struct expression

// referring to the type namespace.
let b = Gamma {};

enum ColorSpace { Oklch }
let c = ColorSpace::Oklch;
let d = ColorSpace::Oklch {};

r[expr.struct.field]

Field struct expression
r[expr.struct.field.intro] A struct expression with fields enclosed in curly

braces allows you to specify the value for each individual field in any order.
The field name is separated from its value with a colon.

r[expr.struct.field.union-constraint] A value of a union type can only be
created using this syntax, and it must specify exactly one field.

r[expr.struct.update]

clbr://internal.invalid/book/OEBPS/items/unions.md

Functional update syntax
r[expr.struct.update.intro] A struct expression that constructs a value of a

struct type can terminate with the syntax .. followed by an expression to
denote a functional update.

r[expr.struct.update.base-same-type] The expression following .. (the
base) must have the same struct type as the new struct type being formed.

r[expr.struct.update.fields] The entire expression uses the given values
for the fields that were specified and moves or copies the remaining fields
from the base expression.

r[expr.struct.update.visibility-constraint] As with all struct expressions,
all of the fields of the struct must be visible, even those not explicitly
named.
struct Point3d { x: i32, y: i32, z: i32 }
let mut base = Point3d {x: 1, y: 2, z: 3};
let y_ref = &mut base.y;
Point3d {y: 0, z: 10, .. base}; // OK, only base.x is accessed
drop(y_ref);

r[expr.struct.brace-restricted-positions] Struct expressions can't be used
directly in a loop or if expression's head, or in the scrutinee of an if let or
match expression. However, struct expressions can be used in these
situations if they are within another expression, for example inside
parentheses.

r[expr.struct.tuple-field] The field names can be decimal integer values
to specify indices for constructing tuple structs. This can be used with base
structs to fill out the remaining indices not specified:
struct Color(u8, u8, u8);
let c1 = Color(0, 0, 0); // Typical way of creating a tuple
struct.
let c2 = Color{0: 255, 1: 127, 2: 0}; // Specifying fields by
index.
let c3 = Color{1: 0, ..c2}; // Fill out all other fields
using a base struct.

clbr://internal.invalid/book/OEBPS/visibility-and-privacy.md
clbr://internal.invalid/book/OEBPS/expressions/loop-expr.md
clbr://internal.invalid/book/OEBPS/expressions/if-expr.md#if-expressions
clbr://internal.invalid/book/OEBPS/glossary.md#scrutinee
clbr://internal.invalid/book/OEBPS/expressions/if-expr.md#if-let-patterns
clbr://internal.invalid/book/OEBPS/expressions/match-expr.md
clbr://internal.invalid/book/OEBPS/expressions/grouped-expr.md

r[expr.struct.field.named]

Struct field init shorthand
When initializing a data structure (struct, enum, union) with named (but

not numbered) fields, it is allowed to write fieldname as a shorthand for
fieldname: fieldname . This allows a compact syntax with less
duplication. For example:
struct Point3d { x: i32, y: i32, z: i32 }
let x = 0;
let y_value = 0;
let z = 0;
Point3d { x: x, y: y_value, z: z };
Point3d { x, y: y_value, z };

r[expr.call]

Call expressions
r[expr.call.syntax]

CallExpression -> Expression `(` CallParams? `)`

CallParams -> Expression (`,` Expression)* `,`?

r[expr.call.intro] A call expression calls a function. The syntax of a call
expression is an expression, called the function operand, followed by a
parenthesized comma-separated list of expression, called the argument
operands.

r[expr.call.convergence] If the function eventually returns, then the
expression completes.

r[expr.call.trait] For non-function types, the expression f(...) uses the
method on one of the following traits based on the function operand:

[Fn] or [AsyncFn] --- shared reference.
[FnMut] or [AsyncFnMut] --- mutable reference.
[FnOnce] or [AsyncFnOnce] --- value.

r[expr.call.autoref-deref] An automatic borrow will be taken if needed.
The function operand will also be automatically dereferenced as required.

Some examples of call expressions:
fn add(x: i32, y: i32) -> i32 { 0 }
let three: i32 = add(1i32, 2i32);
let name: &'static str = (|| "Rust")();

r[expr.call.desugar]

clbr://internal.invalid/book/OEBPS/types/function-item.md
clbr://internal.invalid/book/OEBPS/expressions/field-expr.md#automatic-dereferencing

Disambiguating Function Calls
r[expr.call.desugar.fully-qualified] All function calls are sugar for a more

explicit fully-qualified syntax.
r[expr.call.desugar.ambiguity] Function calls may need to be fully

qualified, depending on the ambiguity of a call in light of in-scope items.

[!NOTE] In the past, the terms "Unambiguous Function Call
Syntax", "Universal Function Call Syntax", or "UFCS", have been
used in documentation, issues, RFCs, and other community writings.
However, these terms lack descriptive power and potentially confuse
the issue at hand. We mention them here for searchability's sake.

r[expr.call.desugar.limits] Several situations often occur which result in
ambiguities about the receiver or referent of method or associated function
calls. These situations may include:

Multiple in-scope traits define methods with the same name for the
same types
Auto- deref is undesirable; for example, distinguishing between
methods on a smart pointer itself and the pointer's referent
Methods which take no arguments, like default() , and return
properties of a type, like size_of()

r[expr.call.desugar.explicit-path] To resolve the ambiguity, the
programmer may refer to their desired method or function using more
specific paths, types, or traits.

For example,
trait Pretty {
 fn print(&self);
}

trait Ugly {
 fn print(&self);
}

clbr://internal.invalid/book/OEBPS/paths.md#qualified-paths
std::default::Default::default
std::mem::size_of

struct Foo;
impl Pretty for Foo {
 fn print(&self) {}
}

struct Bar;
impl Pretty for Bar {
 fn print(&self) {}
}
impl Ugly for Bar {
 fn print(&self) {}
}

fn main() {
 let f = Foo;
 let b = Bar;

 // we can do this because we only have one item called
`print` for `Foo`s
 f.print();
 // more explicit, and, in the case of `Foo`, not necessary
 Foo::print(&f);
 // if you're not into the whole brevity thing
 <Foo as Pretty>::print(&f);

 // b.print(); // Error: multiple 'print' found
 // Bar::print(&b); // Still an error: multiple `print`
found

 // necessary because of in-scope items defining `print`
 <Bar as Pretty>::print(&b);
}

Refer to RFC 132 for further details and motivations.

https://github.com/rust-lang/rfcs/blob/master/text/0132-ufcs.md

r[expr.method]

Method-call expressions
r[expr.method.syntax]

MethodCallExpression -> Expression `.` PathExprSegment
`(`CallParams? `)`

r[expr.method.intro] A method call consists of an expression (the
receiver) followed by a single dot, an expression path segment, and a
parenthesized expression-list.

r[expr.method.target] Method calls are resolved to associated methods
on specific traits, either statically dispatching to a method if the exact
self -type of the left-hand-side is known, or dynamically dispatching if the
left-hand-side expression is an indirect trait object.
let pi: Result<f32, _> = "3.14".parse();
let log_pi = pi.unwrap_or(1.0).log(2.72);
assert!(1.14 < log_pi && log_pi < 1.15)

r[expr.method.autoref-deref] When looking up a method call, the
receiver may be automatically dereferenced or borrowed in order to call a
method. This requires a more complex lookup process than for other
functions, since there may be a number of possible methods to call. The
following procedure is used:

r[expr.method.candidate-receivers] The first step is to build a list of
candidate receiver types. Obtain these by repeatedly dereferencing the
receiver expression's type, adding each type encountered to the list, then
finally attempting an unsized coercion at the end, and adding the result type
if that is successful.

r[expr.method.candidate-receivers-refs] Then, for each candidate T , add
&T and &mut T to the list immediately after T .

For instance, if the receiver has type Box<[i32;2]> , then the candidate
types will be Box<[i32;2]> , &Box<[i32;2]> , &mut Box<[i32;2]> ,
[i32; 2] (by dereferencing), &[i32; 2] , &mut [i32; 2] , [i32] (by
unsized coercion), &[i32] , and finally &mut [i32] .

clbr://internal.invalid/book/OEBPS/items/associated-items.md#methods
clbr://internal.invalid/book/OEBPS/types/trait-object.md
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#the-dereference-operator
clbr://internal.invalid/book/OEBPS/type-coercions.md#unsized-coercions

r[expr.method.candidate-search] Then, for each candidate type T , search
for a visible method with a receiver of that type in the following places:

1. T's inherent methods (methods implemented directly on T).
2. Any of the methods provided by a visible trait implemented by T. If T

is a type parameter, methods provided by trait bounds on T are looked
up first. Then all remaining methods in scope are looked up.

[!NOTE] The lookup is done for each type in order, which can
occasionally lead to surprising results. The below code will print "In
trait impl!", because &self methods are looked up first, the trait
method is found before the struct's &mut self method is found.
struct Foo {}

trait Bar {
 fn bar(&self);
}

impl Foo {
 fn bar(&mut self) {
 println!("In struct impl!")
 }
}

impl Bar for Foo {
 fn bar(&self) {
 println!("In trait impl!")
 }
}

fn main() {
 let mut f = Foo{};
 f.bar();
}

clbr://internal.invalid/book/OEBPS/visibility-and-privacy.md
clbr://internal.invalid/book/OEBPS/visibility-and-privacy.md

r[expr.method.ambiguous-target] If this results in multiple possible
candidates, then it is an error, and the receiver must be converted to an
appropriate receiver type to make the method call.

r[expr.method.receiver-constraints] This process does not take into
account the mutability or lifetime of the receiver, or whether a method is
unsafe . Once a method is looked up, if it can't be called for one (or more)
of those reasons, the result is a compiler error.

r[expr.method.ambiguous-search] If a step is reached where there is
more than one possible method, such as where generic methods or traits are
considered the same, then it is a compiler error. These cases require a
disambiguating function call syntax for method and function invocation.

r[expr.method.edition2021]

[!EDITION-2021] Before the 2021 edition, during the search for
visible methods, if the candidate receiver type is an array type,
methods provided by the standard library IntoIterator trait are
ignored.

The edition used for this purpose is determined by the token
representing the method name.

This special case may be removed in the future.

[!WARNING] For trait objects, if there is an inherent method of the
same name as a trait method, it will give a compiler error when trying
to call the method in a method call expression. Instead, you can call
the method using disambiguating function call syntax, in which case it
calls the trait method, not the inherent method. There is no way to call
the inherent method. Just don't define inherent methods on trait objects
with the same name as a trait method and you'll be fine.

clbr://internal.invalid/book/OEBPS/expressions/call-expr.md#disambiguating-function-calls
clbr://internal.invalid/book/OEBPS/expressions/call-expr.md#disambiguating-function-calls
clbr://internal.invalid/book/OEBPS/types/array.md
std::iter::IntoIterator
clbr://internal.invalid/book/OEBPS/types/trait-object.md
clbr://internal.invalid/book/OEBPS/expressions/call-expr.md#disambiguating-function-calls

r[expr.field]

Field access expressions
r[expr.field.syntax]

FieldExpression -> Expression `.` IDENTIFIER

r[expr.field.intro] A field expression is a place expression that evaluates
to the location of a field of a struct or union.

r[expr.field.mut] When the operand is mutable, the field expression is
also mutable.

r[expr.field.form] The syntax for a field expression is an expression,
called the container operand, then a . , and finally an identifier.

r[expr.field.not-method-call] Field expressions cannot be followed by a
parenthetical comma-separated list of expressions, as that is instead parsed
as a method call expression. That is, they cannot be the function operand of
a call expression.

[!NOTE] Wrap the field expression in a parenthesized expression to
use it in a call expression.
struct HoldsCallable<F: Fn()> { callable: F }
let holds_callable = HoldsCallable { callable: || () };

// Invalid: Parsed as calling the method "callable"
// holds_callable.callable();

// Valid
(holds_callable.callable)();

Examples:
mystruct.myfield;
foo().x;
(Struct {a: 10, b: 20}).a;
(mystruct.function_field)() // Call expression containing a
field expression

r[expr.field.autoref-deref]

clbr://internal.invalid/book/OEBPS/expressions.md#place-expressions-and-value-expressions
clbr://internal.invalid/book/OEBPS/items/structs.md
clbr://internal.invalid/book/OEBPS/items/unions.md
clbr://internal.invalid/book/OEBPS/expressions.md#mutability
clbr://internal.invalid/book/OEBPS/identifiers.md
clbr://internal.invalid/book/OEBPS/expressions/method-call-expr.md
clbr://internal.invalid/book/OEBPS/expressions/call-expr.md
clbr://internal.invalid/book/OEBPS/expressions/grouped-expr.md

Automatic dereferencing
If the type of the container operand implements Deref or DerefMut

depending on whether the operand is mutable, it is automatically
dereferenced as many times as necessary to make the field access possible.
This process is also called autoderef for short.

r[expr.field.borrow]

clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#deref-and-derefmut
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#deref-and-derefmut
clbr://internal.invalid/book/OEBPS/expressions.md#mutability

Borrowing
The fields of a struct or a reference to a struct are treated as separate

entities when borrowing. If the struct does not implement Drop and is
stored in a local variable, this also applies to moving out of each of its
fields. This also does not apply if automatic dereferencing is done through
user-defined types other than Box .
struct A { f1: String, f2: String, f3: String }
let mut x: A;
x = A {
f1: "f1".to_string(),
f2: "f2".to_string(),
f3: "f3".to_string()
};
let a: &mut String = &mut x.f1; // x.f1 borrowed mutably
let b: &String = &x.f2; // x.f2 borrowed immutably
let c: &String = &x.f2; // Can borrow again
let d: String = x.f3; // Move out of x.f3

clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#drop
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#boxt

r[expr.closure]

Closure expressions
r[expr.closure.syntax]

ClosureExpression ->
 `async`?[^cl-async-edition]
 `move`?
 (`||` | `|` ClosureParameters? `|`)
 (Expression | `->` TypeNoBounds BlockExpression)

ClosureParameters -> ClosureParam (`,` ClosureParam)* `,`?

ClosureParam -> OuterAttribute* PatternNoTopAlt (`:` Type)?
1

The async qualifier is not allowed in the 2015 edition.
r[expr.closure.intro] A closure expression, also known as a lambda

expression or a lambda, defines a closure type and evaluates to a value of
that type. The syntax for a closure expression is an optional async

keyword, an optional move keyword, then a pipe-symbol-delimited (|)
comma-separated list of patterns, called the closure parameters each
optionally followed by a : and a type, then an optional -> and type, called
the return type, and then an expression, called the closure body operand.

r[expr.closure.param-type] The optional type after each pattern is a type
annotation for the pattern.

r[expr.closure.explicit-type-body] If there is a return type, the closure
body must be a block.

r[expr.closure.parameter-restriction] A closure expression denotes a
function that maps a list of parameters onto the expression that follows the
parameters. Just like a let binding, the closure parameters are irrefutable
patterns, whose type annotation is optional and will be inferred from
context if not given.

r[expr.closure.unique-type] Each closure expression has a unique,
anonymous type.

clbr://internal.invalid/book/OEBPS/types/closure.md
clbr://internal.invalid/book/OEBPS/patterns.md
clbr://internal.invalid/book/OEBPS/expressions/block-expr.md
clbr://internal.invalid/book/OEBPS/statements.md#let-statements
clbr://internal.invalid/book/OEBPS/patterns.md

r[expr.closure.captures] Significantly, closure expressions capture their
environment, which regular function definitions do not.

r[expr.closure.capture-inference] Without the move keyword, the closure
expression infers how it captures each variable from its environment,
preferring to capture by shared reference, effectively borrowing all outer
variables mentioned inside the closure's body.

r[expr.closure.capture-mut-ref] If needed the compiler will infer that
instead mutable references should be taken, or that the values should be
moved or copied (depending on their type) from the environment.

r[expr.closure.capture-move] A closure can be forced to capture its
environment by copying or moving values by prefixing it with the move
keyword. This is often used to ensure that the closure's lifetime is 'static .

r[expr.closure.trait-impl]

clbr://internal.invalid/book/OEBPS/items/functions.md
clbr://internal.invalid/book/OEBPS/types/closure.md#capture-modes

Closure trait implementations
Which traits the closure type implement depends on how variables are

captured, the types of the captured variables, and the presence of async .
See the call traits and coercions chapter for how and when a closure
implements Fn , FnMut , and FnOnce . The closure type implements Send
and Sync if the type of every captured variable also implements the trait.

r[expr.closure.async]

clbr://internal.invalid/book/OEBPS/types/closure.md#call-traits-and-coercions
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#send
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#sync

Async closures
r[expr.closure.async.intro] Closures marked with the async keyword

indicate that they are asynchronous in an analogous way to an [async
function][items.fn.async].

r[expr.closure.async.future] Calling the async closure does not perform
any work, but instead evaluates to a value that implements [Future] that
corresponds to the computation of the body of the closure.
async fn takes_async_callback(f: impl AsyncFn(u64)) {
 f(0).await;
 f(1).await;
}

async fn example() {
 takes_async_callback(async |i| {
 core::future::ready(i).await;
 println!("done with {i}.");
 }).await;
}

r[expr.closure.async.edition2018]

[!EDITION-2018] Async closures are only available beginning
with Rust 2018.

Example
In this example, we define a function ten_times that takes a higher-

order function argument, and we then call it with a closure expression as an
argument, followed by a closure expression that moves values from its
environment.
fn ten_times<F>(f: F) where F: Fn(i32) {
 for index in 0..10 {
 f(index);
 }
}

ten_times(|j| println!("hello, {}", j));
// With type annotations
ten_times(|j: i32| -> () { println!("hello, {}", j) });

let word = "konnichiwa".to_owned();
ten_times(move |j| println!("{}, {}", word, j));

Attributes on closure parameters
r[expr.closure.param-attributes] Attributes on closure parameters follow

the same rules and restrictions as regular function parameters.

clbr://internal.invalid/book/OEBPS/items/functions.md#attributes-on-function-parameters

r[expr.loop]

Loops and other breakable
expressions

r[expr.loop.syntax]
LoopExpression ->
 LoopLabel? (
 InfiniteLoopExpression
 | PredicateLoopExpression
 | IteratorLoopExpression
 | LabelBlockExpression
)

r[expr.loop.intro] Rust supports four loop expressions:

A loop expression denotes an infinite loop.
A while expression loops until a predicate is false.
A for expression extracts values from an iterator, looping until the
iterator is empty.
A labelled block expression runs a loop exactly once, but allows
exiting the loop early with break .

r[expr.loop.break-label] All four types of loop support break

expressions, and labels.
r[expr.loop.continue-label] All except labelled block expressions support

continue expressions.
r[expr.loop.explicit-result] Only loop and labelled block expressions

support evaluation to non-trivial values.
r[expr.loop.infinite]

Infinite loops
r[expr.loop.infinite.syntax]

InfiniteLoopExpression -> `loop` BlockExpression

r[expr.loop.infinite.intro] A loop expression repeats execution of its
body continuously: loop { println!("I live."); } .

r[expr.loop.infinite.diverging] A loop expression without an associated
break expression is diverging and has type ! .

r[expr.loop.infinite.break] A loop expression containing associated
break expression(s) may terminate, and must have type compatible with
the value of the break expression(s).

r[expr.loop.while]

clbr://internal.invalid/book/OEBPS/types/never.md

Predicate loops
r[expr.loop.while.grammar]

PredicateLoopExpression -> `while` Conditions BlockExpression

r[expr.loop.while.intro] A while loop expression allows repeating the
evaluation of a block while a set of conditions remain true.

r[expr.loop.while.syntax] The syntax of a while expression is a
sequence of one or more condition operands separated by && , followed by a
[BlockExpression].

r[expr.loop.while.condition] Condition operands must be either an
[Expression] with a boolean type or a conditional let match. If all of the
condition operands evaluate to true and all of the let patterns
successfully match their scrutinees, then the loop body block executes.

r[expr.loop.while.repeat] After the loop body successfully executes, the
condition operands are re-evaluated to determine if the body should be
executed again.

r[expr.loop.while.exit] If any condition operand evaluates to false or
any let pattern does not match its scrutinee, the body is not executed and
execution continues after the while expression.

r[expr.loop.while.eval] A while expression evaluates to () .
An example:

let mut i = 0;

while i < 10 {
 println!("hello");
 i = i + 1;
}

r[expr.loop.while.let]

while let patterns
r[expr.loop.while.let.intro] let patterns in a while condition allow

binding new variables into scope when the pattern matches successfully.

clbr://internal.invalid/book/OEBPS/types/boolean.md
clbr://internal.invalid/book/OEBPS/glossary.md#scrutinee

The following examples illustrate bindings using let patterns:
let mut x = vec![1, 2, 3];

while let Some(y) = x.pop() {
 println!("y = {}", y);
}

while let _ = 5 {
 println!("Irrefutable patterns are always true");
 break;
}

r[expr.loop.while.let.desugar] A while let loop is equivalent to a loop
expression containing a match expression as follows.
'label: while let PATS = EXPR {
 /* loop body */
}

is equivalent to
'label: loop {
 match EXPR {
 PATS => { /* loop body */ },
 _ => break,
 }
}

r[expr.loop.while.let.or-pattern] Multiple patterns may be specified with
the | operator. This has the same semantics as with | in match

expressions:
let mut vals = vec![2, 3, 1, 2, 2];
while let Some(v @ 1) | Some(v @ 2) = vals.pop() {
 // Prints 2, 2, then 1
 println!("{}", v);
}

r[expr.loop.while.chains]

clbr://internal.invalid/book/OEBPS/expressions/match-expr.md

while condition chains
r[expr.loop.while.chains.intro] Multiple condition operands can be

separated with && . These have the same semantics and restrictions as if
condition chains.

The following is an example of chaining multiple expressions, mixing
let bindings and boolean expressions, and with expressions able to
reference pattern bindings from previous expressions:
fn main() {
 let outer_opt = Some(Some(1i32));

 while let Some(inner_opt) = outer_opt
 && let Some(number) = inner_opt
 && number == 1
 {
 println!("Peek a boo");
 break;
 }
}

r[expr.loop.for]

clbr://internal.invalid/book/OEBPS/expressions/if-expr.md#chains-of-conditions

Iterator loops
r[expr.loop.for.syntax]

IteratorLoopExpression ->
 `for` Pattern `in` Expression _except [StructExpression]_
BlockExpression

r[expr.loop.for.intro] A for expression is a syntactic construct for
looping over elements provided by an implementation of
std::iter::IntoIterator .

r[expr.loop.for.condition] If the iterator yields a value, that value is
matched against the irrefutable pattern, the body of the loop is executed,
and then control returns to the head of the for loop. If the iterator is empty,
the for expression completes.

An example of a for loop over the contents of an array:
let v = &["apples", "cake", "coffee"];

for text in v {
 println!("I like {}.", text);
}

An example of a for loop over a series of integers:
let mut sum = 0;
for n in 1..11 {
 sum += n;
}
assert_eq!(sum, 55);

r[expr.loop.for.desugar] A for loop is equivalent to a loop expression
containing a match expression as follows:
'label: for PATTERN in iter_expr {
 /* loop body */
}

is equivalent to

clbr://internal.invalid/book/OEBPS/expressions/match-expr.md

{
 let result = match IntoIterator::into_iter(iter_expr) {
 mut iter => 'label: loop {
 let mut next;
 match Iterator::next(&mut iter) {
 Option::Some(val) => next = val,
 Option::None => break,
 };
 let PATTERN = next;
 let () = { /* loop body */ };
 },
 };
 result
}

r[expr.loop.for.lang-items] IntoIterator , Iterator , and Option are
always the standard library items here, not whatever those names resolve to
in the current scope.

The variable names next , iter , and val are for exposition only, they
do not actually have names the user can type.

[!NOTE] The outer match is used to ensure that any temporary
values in iter_expr don't get dropped before the loop is finished.
next is declared before being assigned because it results in types
being inferred correctly more often.

r[expr.loop.label]

clbr://internal.invalid/book/OEBPS/expressions.md#temporaries

Loop labels
r[expr.loop.label.syntax]

LoopLabel -> LIFETIME_OR_LABEL `:`

r[expr.loop.label.intro] A loop expression may optionally have a label.
The label is written as a lifetime preceding the loop expression, as in 'foo:
loop { break 'foo; } , 'bar: while false {} , 'humbug: for _ in
0..0 {} .

r[expr.loop.label.control-flow] If a label is present, then labeled break
and continue expressions nested within this loop may exit out of this loop
or return control to its head. See break expressions and continue
expressions.

r[expr.loop.label.ref] Labels follow the hygiene and shadowing rules of
local variables. For example, this code will print "outer loop":
'a: loop {
 'a: loop {
 break 'a;
 }
 print!("outer loop");
 break 'a;
}

'_ is not a valid loop label.
r[expr.loop.break]

break expressions
r[expr.loop.break.syntax]

BreakExpression -> `break` LIFETIME_OR_LABEL? Expression?

r[expr.loop.break.intro] When break is encountered, execution of the
associated loop body is immediately terminated, for example:
let mut last = 0;
for x in 1..100 {
 if x > 12 {
 break;
 }
 last = x;
}
assert_eq!(last, 12);

r[expr.loop.break.label] A break expression is normally associated with
the innermost loop , for or while loop enclosing the break expression,
but a label can be used to specify which enclosing loop is affected.
Example:
'outer: loop {
 while true {
 break 'outer;
 }
}

r[expr.loop.break.value] A break expression is only permitted in the
body of a loop, and has one of the forms break , break 'label or (see
below) break EXPR or break 'label EXPR .

r[expr.loop.block-labels]

Labelled block expressions
r[expr.loop.block-labels.syntax]

LabelBlockExpression -> BlockExpression

r[expr.loop.block-labels.intro] Labelled block expressions are exactly
like block expressions, except that they allow using break expressions
within the block.

r[expr.loop.block-labels.break] Unlike loops, break expressions within
a labelled block expression must have a label (i.e. the label is not optional).

r[expr.loop.block-labels.label-required] Similarly, labelled block
expressions must begin with a label.
fn do_thing() {}
fn condition_not_met() -> bool { true }
fn do_next_thing() {}
fn do_last_thing() {}
let result = 'block: {
 do_thing();
 if condition_not_met() {
 break 'block 1;
 }
 do_next_thing();
 if condition_not_met() {
 break 'block 2;
 }
 do_last_thing();
 3
};

r[expr.loop.continue]

continue expressions
r[expr.loop.continue.syntax]

ContinueExpression -> `continue` LIFETIME_OR_LABEL?

r[expr.loop.continue.intro] When continue is encountered, the current
iteration of the associated loop body is immediately terminated, returning
control to the loop head.

r[expr.loop.continue.while] In the case of a while loop, the head is the
conditional operands controlling the loop.

r[expr.loop.continue.for] In the case of a for loop, the head is the call-
expression controlling the loop.

r[expr.loop.continue.label] Like break , continue is normally
associated with the innermost enclosing loop, but continue 'label may
be used to specify the loop affected.

r[expr.loop.continue.in-loop-only] A continue expression is only
permitted in the body of a loop.

r[expr.loop.break-value]

break and loop values
r[expr.loop.break-value.intro] When associated with a loop , a break

expression may be used to return a value from that loop, via one of the
forms break EXPR or break 'label EXPR , where EXPR is an expression
whose result is returned from the loop . For example:
let (mut a, mut b) = (1, 1);
let result = loop {
 if b > 10 {
 break b;
 }
 let c = a + b;
 a = b;
 b = c;
};
// first number in Fibonacci sequence over 10:
assert_eq!(result, 13);

r[expr.loop.break-value.loop] In the case a loop has an associated
break , it is not considered diverging, and the loop must have a type
compatible with each break expression. break without an expression is
considered identical to break with expression () .

r[expr.range]

Range expressions
r[expr.range.syntax]

RangeExpression ->
 RangeExpr
 | RangeFromExpr
 | RangeToExpr
 | RangeFullExpr
 | RangeInclusiveExpr
 | RangeToInclusiveExpr

RangeExpr -> Expression `..` Expression

RangeFromExpr -> Expression `..`

RangeToExpr -> `..` Expression

RangeFullExpr -> `..`

RangeInclusiveExpr -> Expression `..=` Expression

RangeToInclusiveExpr -> `..=` Expression

r[expr.range.behavior] The .. and ..= operators will construct an object of one of
the std::ops::Range (or core::ops::Range) variants, according to the following
table:

Production Syntax Type Range
[RangeExpr] start .

. end
[std::ops::Range] start ≤

x <
end

[RangeFromExpr] start .. [std::ops::RangeFrom] start ≤
x

[RangeToExpr] .. end [std::ops::RangeTo] x <
end

[RangeFullExpr] .. [std::ops::RangeFull] -

[RangeInclusiveExpr] start .
.= end

[std::ops::RangeInclusive] start ≤
x ≤
end

Production Syntax Type Range
[RangeToInclusiveExpr] ..= en

d
[std::ops::RangeToInclusive] x ≤

end

Examples:
1..2; // std::ops::Range
3..; // std::ops::RangeFrom
..4; // std::ops::RangeTo
..; // std::ops::RangeFull
5..=6; // std::ops::RangeInclusive
..=7; // std::ops::RangeToInclusive

r[expr.range.equivalence] The following expressions are equivalent.
let x = std::ops::Range {start: 0, end: 10};
let y = 0..10;

assert_eq!(x, y);

r[expr.range.for] Ranges can be used in for loops:
for i in 1..11 {
 println!("{}", i);
}

r[expr.if]

if expressions
r[expr.if.syntax]

IfExpression ->
 `if` Conditions BlockExpression
 (`else` (BlockExpression | IfExpression))?

Conditions ->
 Expression _except [StructExpression]_
 | LetChain

LetChain -> LetChainCondition (`&&` LetChainCondition)*

LetChainCondition ->
 Expression _except [ExcludedConditions]_
 | OuterAttribute* `let` Pattern `=` Scrutinee _except
[ExcludedConditions]_

@root ExcludedConditions ->
 StructExpression
 | LazyBooleanExpression
 | RangeExpr
 | RangeFromExpr
 | RangeInclusiveExpr
 | AssignmentExpression
 | CompoundAssignmentExpression

r[expr.if.intro] The syntax of an if expression is a sequence of one or
more condition operands separated by && , followed by a consequent block,
any number of else if conditions and blocks, and an optional trailing
else block.

r[expr.if.condition] Condition operands must be either an [Expression]
with a boolean type or a conditional let match.

clbr://internal.invalid/book/OEBPS/types/boolean.md

r[expr.if.condition-true] If all of the condition operands evaluate to true
and all of the let patterns successfully match their scrutinees, the
consequent block is executed and any subsequent else if or else block
is skipped.

r[expr.if.else-if] If any condition operand evaluates to false or any let
pattern does not match its scrutinee, the consequent block is skipped and
any subsequent else if condition is evaluated.

r[expr.if.else] If all if and else if conditions evaluate to false then
any else block is executed.

r[expr.if.result] An if expression evaluates to the same value as the
executed block, or () if no block is evaluated.

r[expr.if.type] An if expression must have the same type in all
situations.
let x = 3;
if x == 4 {
 println!("x is four");
} else if x == 3 {
 println!("x is three");
} else {
 println!("x is something else");
}

// `if` can be used as an expression.
let y = if 12 * 15 > 150 {
 "Bigger"
} else {
 "Smaller"
};
assert_eq!(y, "Bigger");

r[expr.if.let]

clbr://internal.invalid/book/OEBPS/glossary.md#scrutinee

if let patterns
r[expr.if.let.intro] let patterns in an if condition allow binding new

variables into scope when the pattern matches successfully.
The following examples illustrate bindings using let patterns:

let dish = ("Ham", "Eggs");

// This body will be skipped because the pattern is refuted.
if let ("Bacon", b) = dish {
 println!("Bacon is served with {}", b);
} else {
 // This block is evaluated instead.
 println!("No bacon will be served");
}

// This body will execute.
if let ("Ham", b) = dish {
 println!("Ham is served with {}", b);
}

if let _ = 5 {
 println!("Irrefutable patterns are always true");
}

r[expr.if.let.or-pattern] Multiple patterns may be specified with the |
operator. This has the same semantics as with | in match expressions:
enum E {
 X(u8),
 Y(u8),
 Z(u8),
}
let v = E::Y(12);
if let E::X(n) | E::Y(n) = v {
 assert_eq!(n, 12);
}

clbr://internal.invalid/book/OEBPS/expressions/match-expr.md

r[expr.if.chains]

Chains of conditions
r[expr.if.chains.intro] Multiple condition operands can be separated with

&& .
r[expr.if.chains.order] Similar to a && [LazyBooleanExpression], each

operand is evaluated from left-to-right until an operand evaluates as false
or a let match fails, in which case the subsequent operands are not
evaluated.

r[expr.if.chains.bindings] The bindings of each pattern are put into scope
to be available for the next condition operand and the consequent block.

The following is an example of chaining multiple expressions, mixing
let bindings and boolean expressions, and with expressions able to
reference pattern bindings from previous expressions:
fn single() {
 let outer_opt = Some(Some(1i32));

 if let Some(inner_opt) = outer_opt
 && let Some(number) = inner_opt
 && number == 1
 {
 println!("Peek a boo");
 }
}

The above is equivalent to the following without using chains of
conditions:
fn nested() {
 let outer_opt = Some(Some(1i32));

 if let Some(inner_opt) = outer_opt {
 if let Some(number) = inner_opt {
 if number == 1 {
 println!("Peek a boo");
 }

 }
 }
}

r[expr.if.chains.or] If any condition operand is a let pattern, then none
of the condition operands can be a || [lazy boolean operator expression]
[expr.bool-logic] due to ambiguity and precedence with the let scrutinee.
If a || expression is needed, then parentheses can be used. For example:
let foo = Some(123);
let condition1 = true;
let condition2 = false;
// Parentheses are required here.
if let Some(x) = foo && (condition1 || condition2) { /*...*/ }

r[expr.if.edition2024]

[!EDITION-2024] Before the 2024 edition, let chains are not
supported. That is, the [LetChain] grammar is not allowed in an if
expression.

r[expr.match]

match expressions
r[expr.match.syntax]

MatchExpression ->
 `match` Scrutinee `{`
 InnerAttribute*
 MatchArms?
 `}`

Scrutinee -> Expression _except [StructExpression]_

MatchArms ->
 (MatchArm `=>` (ExpressionWithoutBlock `,` |
ExpressionWithBlock `,`?))*
 MatchArm `=>` Expression `,`?

MatchArm -> OuterAttribute* Pattern MatchArmGuard?

MatchArmGuard -> `if` Expression

r[expr.match.intro] A match expression branches on a pattern. The exact
form of matching that occurs depends on the pattern.

r[expr.match.scrutinee] A match expression has a scrutinee expression,
which is the value to compare to the patterns.

r[expr.match.scrutinee-constraint] The scrutinee expression and the
patterns must have the same type.

r[expr.match.scrutinee-behavior] A match behaves differently
depending on whether or not the scrutinee expression is a place expression
or value expression.

r[expr.match.scrutinee-value] If the scrutinee expression is a value
expression, it is first evaluated into a temporary location, and the resulting
value is sequentially compared to the patterns in the arms until a match is
found. The first arm with a matching pattern is chosen as the branch target

clbr://internal.invalid/book/OEBPS/patterns.md
clbr://internal.invalid/book/OEBPS/glossary.md#scrutinee
clbr://internal.invalid/book/OEBPS/expressions.md#place-expressions-and-value-expressions
clbr://internal.invalid/book/OEBPS/expressions.md#place-expressions-and-value-expressions

of the match , any variables bound by the pattern are assigned to local
variables in the arm's block, and control enters the block.

r[expr.match.scrutinee-place] When the scrutinee expression is a place
expression, the match does not allocate a temporary location; however, a
by-value binding may copy or move from the memory location. When
possible, it is preferable to match on place expressions, as the lifetime of
these matches inherits the lifetime of the place expression rather than being
restricted to the inside of the match.

An example of a match expression:
let x = 1;

match x {
 1 => println!("one"),
 2 => println!("two"),
 3 => println!("three"),
 4 => println!("four"),
 5 => println!("five"),
 _ => println!("something else"),
}

r[expr.match.pattern-vars] Variables bound within the pattern are scoped
to the match guard and the arm's expression.

r[expr.match.pattern-var-binding] The binding mode (move, copy, or
reference) depends on the pattern.

r[expr.match.or-pattern] Multiple match patterns may be joined with the
| operator. Each pattern will be tested in left-to-right sequence until a
successful match is found.
let x = 9;
let message = match x {
 0 | 1 => "not many",
 2 ..= 9 => "a few",
 _ => "lots"
};

assert_eq!(message, "a few");

clbr://internal.invalid/book/OEBPS/expressions.md#place-expressions-and-value-expressions
clbr://internal.invalid/book/OEBPS/patterns.md#binding-modes

// Demonstration of pattern match order.
struct S(i32, i32);

match S(1, 2) {
 S(z @ 1, _) | S(_, z @ 2) => assert_eq!(z, 1),
 _ => panic!(),
}

[!NOTE] The 2..=9 is a Range Pattern, not a Range Expression.
Thus, only those types of ranges supported by range patterns can be
used in match arms.

r[expr.match.or-patterns-restriction] Every binding in each | separated
pattern must appear in all of the patterns in the arm.

r[expr.match.binding-restriction] Every binding of the same name must
have the same type, and have the same binding mode.

r[expr.match.guard]

clbr://internal.invalid/book/OEBPS/patterns.md#range-patterns
clbr://internal.invalid/book/OEBPS/expressions/range-expr.md

Match guards
r[expr.match.guard.intro] Match arms can accept match guards to further

refine the criteria for matching a case.
r[expr.match.guard.type] Pattern guards appear after the pattern and

consist of a bool -typed expression following the if keyword.
r[expr.match.guard.behavior] When the pattern matches successfully, the

pattern guard expression is executed. If the expression evaluates to true, the
pattern is successfully matched against.

r[expr.match.guard.next] Otherwise, the next pattern, including other
matches with the | operator in the same arm, is tested.
let maybe_digit = Some(0);
fn process_digit(i: i32) { }
fn process_other(i: i32) { }
let message = match maybe_digit {
 Some(x) if x < 10 => process_digit(x),
 Some(x) => process_other(x),
 None => panic!(),
};

[!NOTE] Multiple matches using the | operator can cause the
pattern guard and the side effects it has to execute multiple times. For
example:
use std::cell::Cell;
let i : Cell<i32> = Cell::new(0);
match 1 {
 1 | _ if { i.set(i.get() + 1); false } => {}
 _ => {}
}
assert_eq!(i.get(), 2);

r[expr.match.guard.bound-variables] A pattern guard may refer to the
variables bound within the pattern they follow.

r[expr.match.guard.shared-ref] Before evaluating the guard, a shared
reference is taken to the part of the scrutinee the variable matches on. While

evaluating the guard, this shared reference is then used when accessing the
variable.

r[expr.match.guard.value] Only when the guard evaluates to true is the
value moved, or copied, from the scrutinee into the variable. This allows
shared borrows to be used inside guards without moving out of the
scrutinee in case guard fails to match.

r[expr.match.guard.no-mutation] Moreover, by holding a shared
reference while evaluating the guard, mutation inside guards is also
prevented.

r[expr.match.attributes]

Attributes on match arms
r[expr.match.attributes.outer] Outer attributes are allowed on match

arms. The only attributes that have meaning on match arms are cfg and the
lint check attributes.

r[expr.match.attributes.inner] Inner attributes are allowed directly after
the opening brace of the match expression in the same expression contexts
as attributes on block expressions.

clbr://internal.invalid/book/OEBPS/conditional-compilation.md
clbr://internal.invalid/book/OEBPS/attributes/diagnostics.md#lint-check-attributes
clbr://internal.invalid/book/OEBPS/attributes.md
clbr://internal.invalid/book/OEBPS/expressions/block-expr.md#attributes-on-block-expressions

r[expr.return]

return expressions
r[expr.return.syntax]

ReturnExpression -> `return` Expression?

r[expr.return.intro] Return expressions are denoted with the keyword
return .

r[expr.return.behavior] Evaluating a return expression moves its
argument into the designated output location for the current function call,
destroys the current function activation frame, and transfers control to the
caller frame.

An example of a return expression:
fn max(a: i32, b: i32) -> i32 {
 if a > b {
 return a;
 }
 return b;
}

r[expr.await]

Await expressions
r[expr.await.syntax]

AwaitExpression -> Expression `.` `await`

r[expr.await.intro] An await expression is a syntactic construct for
suspending a computation provided by an implementation of
std::future::IntoFuture until the given future is ready to produce a
value.

r[expr.await.construct] The syntax for an await expression is an
expression with a type that implements the IntoFuture trait, called the
future operand, then the token . , and then the await keyword.

r[expr.await.allowed-positions] Await expressions are legal only within
an async context, like an async fn , async closure, or async block.

r[expr.await.effects] More specifically, an await expression has the
following effect.

1. Create a future by calling IntoFuture::into_future on the future
operand.

2. Evaluate the future to a future tmp;
3. Pin tmp using Pin::new_unchecked;
4. This pinned future is then polled by calling the Future::poll method

and passing it the current task context;
5. If the call to poll returns Poll::Pending, then the future returns

Poll::Pending, suspending its state so that, when the surrounding
async context is re-polled,execution returns to step 3;

6. Otherwise the call to poll must have returned Poll::Ready, in which
case the value contained in the Poll::Ready variant is used as the
result of the await expression itself.

r[expr.await.edition2018]

[!EDITION-2018] Await expressions are only available beginning
with Rust 2018.

std::future::IntoFuture
clbr://internal.invalid/book/OEBPS/expressions/block-expr.md#async-context
clbr://internal.invalid/book/OEBPS/items/functions.md#async-functions
clbr://internal.invalid/book/OEBPS/expressions/closure-expr.md#async-closures
clbr://internal.invalid/book/OEBPS/expressions/block-expr.md#async-blocks
std::future::IntoFuture::into_future
std::future::Future
std::pin::Pin::new_unchecked
std::future::Future::poll
std::task::Poll::Pending
std::task::Poll::Ready
std::task::Poll::Ready

r[expr.await.task]

Task context
The task context refers to the Context which was supplied to the current

async context when the async context itself was polled. Because await
expressions are only legal in an async context, there must be some task
context available.

r[expr.await.desugar]

std::task::Context
clbr://internal.invalid/book/OEBPS/expressions/block-expr.md#async-context

Approximate desugaring
Effectively, an await expression is roughly equivalent to the following

non-normative desugaring:
match operand.into_future() {
 mut pinned => loop {
 let mut pin = unsafe { Pin::new_unchecked(&mut pinned)
};
 match Pin::future::poll(Pin::borrow(&mut pin), &mut
current_context) {
 Poll::Ready(r) => break r,
 Poll::Pending => yield Poll::Pending,
 }
 }
}

where the yield pseudo-code returns Poll::Pending and, when re-
invoked, resumes execution from that point. The variable
current_context refers to the context taken from the async environment.

r[expr.placeholder]

_ expressions
r[expr.placeholder.syntax]

UnderscoreExpression -> `_`

r[expr.placeholder.intro] Underscore expressions, denoted with the
symbol _ , are used to signify a placeholder in a destructuring assignment.

r[expr.placeholder.lhs-assignment-only] They may only appear in the
left-hand side of an assignment.

r[expr.placeholder.pattern] Note that this is distinct from the wildcard
pattern.

Examples of _ expressions:
let p = (1, 2);
let mut a = 0;
(_, a) = p;

struct Position {
 x: u32,
 y: u32,
}

Position { x: a, y: _ } = Position{ x: 2, y: 3 };

// unused result, assignment to `_` used to declare intent and
remove a warning
_ = 2 + 2;
// triggers unused_must_use warning
// 2 + 2;

// equivalent technique using a wildcard pattern in a let-
binding
let _ = 2 + 2;

clbr://internal.invalid/book/OEBPS/patterns.md#wildcard-pattern

r[patterns]

Patterns
r[patterns.syntax]

Pattern -> `|`? PatternNoTopAlt (`|` PatternNoTopAlt)*

PatternNoTopAlt ->
 PatternWithoutRange
 | RangePattern

PatternWithoutRange ->
 LiteralPattern
 | IdentifierPattern
 | WildcardPattern
 | RestPattern
 | ReferencePattern
 | StructPattern
 | TupleStructPattern
 | TuplePattern
 | GroupedPattern
 | SlicePattern
 | PathPattern
 | MacroInvocation

r[patterns.intro] Patterns are used to match values against structures and
to, optionally, bind variables to values inside these structures. They are also
used in variable declarations and parameters for functions and closures.

The pattern in the following example does four things:

Tests if person has the car field filled with something.
Tests if the person's age field is between 13 and 19, and binds its
value to the person_age variable.
Binds a reference to the name field to the variable person_name .
Ignores the rest of the fields of person . The remaining fields can have
any value and are not bound to any variables.

struct Car;
struct Computer;
struct Person {
name: String,
car: Option<Car>,
computer: Option<Computer>,
age: u8,
}
let person = Person {
name: String::from("John"),
car: Some(Car),
computer: None,
age: 15,
};
if let
 Person {
 car: Some(_),
 age: person_age @ 13..=19,
 name: ref person_name,
 ..
 } = person
{
 println!("{} has a car and is {} years old.", person_name,
person_age);
}

r[patterns.usage] Patterns are used in:
r[patterns.let]

let declarations
r[patterns.param]

Function and closure parameters
r[patterns.match]

match expressions

clbr://internal.invalid/book/OEBPS/statements.md#let-statements
clbr://internal.invalid/book/OEBPS/items/functions.md
clbr://internal.invalid/book/OEBPS/expressions/closure-expr.md
clbr://internal.invalid/book/OEBPS/expressions/match-expr.md

r[patterns.if-let]

if let expressions
r[patterns.while-let]

while let expressions
r[patterns.for]

for expressions
r[patterns.destructure]

clbr://internal.invalid/book/OEBPS/expressions/if-expr.md
clbr://internal.invalid/book/OEBPS/expressions/loop-expr.md#while-let-patterns
clbr://internal.invalid/book/OEBPS/expressions/loop-expr.md#iterator-loops

Destructuring
r[patterns.destructure.intro] Patterns can be used to destructure structs,

enums, and tuples. Destructuring breaks up a value into its component
pieces. The syntax used is almost the same as when creating such values.

r[patterns.destructure.wildcard] In a pattern whose scrutinee expression
has a struct , enum or tuple type, a wildcard pattern (_) stands in for a
single data field, whereas an et cetera or rest pattern (..) stands in for all
the remaining fields of a particular variant.

r[patterns.destructure.named-field-shorthand] When destructuring a data
structure with named (but not numbered) fields, it is allowed to write
fieldname as a shorthand for fieldname: fieldname .
enum Message {
Quit,
WriteString(String),
Move { x: i32, y: i32 },
ChangeColor(u8, u8, u8),
}
let message = Message::Quit;
match message {
 Message::Quit => println!("Quit"),
 Message::WriteString(write) => println!("{}", &write),
 Message::Move{ x, y: 0 } => println!("move {}
horizontally", x),
 Message::Move{ .. } => println!("other move"),
 Message::ChangeColor { 0: red, 1: green, 2: _ } => {
 println!("color change, red: {}, green: {}", red,
green);
 }
};

r[patterns.refutable]

clbr://internal.invalid/book/OEBPS/items/structs.md
clbr://internal.invalid/book/OEBPS/items/enumerations.md
clbr://internal.invalid/book/OEBPS/types/tuple.md
clbr://internal.invalid/book/OEBPS/glossary.md#scrutinee

Refutability
A pattern is said to be refutable when it has the possibility of not being

matched by the value it is being matched against. Irrefutable patterns, on
the other hand, always match the value they are being matched against.
Examples:
let (x, y) = (1, 2); // "(x, y)" is an
irrefutable pattern

if let (a, 3) = (1, 2) { // "(a, 3)" is refutable,
and will not match
 panic!("Shouldn't reach here");
} else if let (a, 4) = (3, 4) { // "(a, 4)" is refutable,
and will match
 println!("Matched ({}, 4)", a);
}

r[patterns.literal]

Literal patterns
r[patterns.literal.syntax]

LiteralPattern -> `-`? LiteralExpression

r[patterns.literal.intro] Literal patterns match exactly the same value as
what is created by the literal. Since negative numbers are not literals,
literals in patterns may be prefixed by an optional minus sign, which acts
like the negation operator.

[!WARNING] C string and raw C string literals are accepted in
literal patterns, but &CStr doesn't implement structural equality (#
[derive(Eq, PartialEq)]) and therefore any such match on a
&CStr will be rejected with a type error.

r[patterns.literal.refutable] Literal patterns are always refutable.
Examples:

for i in -2..5 {
 match i {
 -1 => println!("It's minus one"),
 1 => println!("It's a one"),
 2|4 => println!("It's either a two or a four"),
 _ => println!("Matched none of the arms"),
 }
}

r[patterns.ident]

clbr://internal.invalid/book/OEBPS/expressions/literal-expr.md

Identifier patterns
r[patterns.ident.syntax]

IdentifierPattern -> `ref`? `mut`? IDENTIFIER (`@`
PatternNoTopAlt)?

r[patterns.ident.intro] Identifier patterns bind the value they match to a
variable in the value namespace.

r[patterns.ident.unique] The identifier must be unique within the pattern.
r[patterns.ident.scope] The variable will shadow any variables of the

same name in scope. The scope of the new binding depends on the context
of where the pattern is used (such as a let binding or a match arm).

r[patterns.ident.bare] Patterns that consist of only an identifier, possibly
with a mut , match any value and bind it to that identifier. This is the most
commonly used pattern in variable declarations and parameters for
functions and closures.
let mut variable = 10;
fn sum(x: i32, y: i32) -> i32 {
x + y
}

r[patterns.ident.scrutinized] To bind the matched value of a pattern to a
variable, use the syntax variable @ subpattern . For example, the
following binds the value 2 to e (not the entire range: the range here is a
range subpattern).
let x = 2;

match x {
 e @ 1 ..= 5 => println!("got a range element {}", e),
 _ => println!("anything"),
}

r[patterns.ident.move] By default, identifier patterns bind a variable to a
copy of or move from the matched value depending on whether the
matched value implements Copy .

clbr://internal.invalid/book/OEBPS/names.namespaces.kinds
clbr://internal.invalid/book/OEBPS/names/scopes.md
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#copy

r[patterns.ident.ref] This can be changed to bind to a reference by using
the ref keyword, or to a mutable reference using ref mut . For example:
let a = Some(10);
match a {
 None => (),
 Some(value) => (),
}

match a {
 None => (),
 Some(ref value) => (),
}

In the first match expression, the value is copied (or moved). In the
second match, a reference to the same memory location is bound to the
variable value. This syntax is needed because in destructuring subpatterns
the & operator can't be applied to the value's fields. For example, the
following is not valid:
struct Person {
name: String,
age: u8,
}
let value = Person { name: String::from("John"), age: 23 };
if let Person { name: &person_name, age: 18..=150 } = value { }

To make it valid, write the following:
struct Person {
name: String,
age: u8,
}
let value = Person { name: String::from("John"), age: 23 };
if let Person { name: ref person_name, age: 18..=150 } = value
{ }

r[patterns.ident.ref-ignored] Thus, ref is not something that is being
matched against. Its objective is exclusively to make the matched binding a
reference, instead of potentially copying or moving what was matched.

r[patterns.ident.precedent] Path patterns take precedence over identifier
patterns.

r[patterns.ident.constraint] It is an error if ref or ref mut is specified
and the identifier shadows a constant.

r[patterns.ident.refutable] Identifier patterns are irrefutable if the @

subpattern is irrefutable or the subpattern is not specified.
r[patterns.ident.binding]

Binding modes
r[patterns.ident.binding.intro] To service better ergonomics, patterns

operate in different binding modes in order to make it easier to bind
references to values. When a reference value is matched by a non-reference
pattern, it will be automatically treated as a ref or ref mut binding.
Example:
let x: &Option<i32> = &Some(3);
if let Some(y) = x {
 // y was converted to `ref y` and its type is &i32
}

r[patterns.ident.binding.non-reference] Non-reference patterns include
all patterns except bindings, wildcard patterns (_), const patterns of
reference types, and reference patterns.

r[patterns.ident.binding.default-mode] If a binding pattern does not
explicitly have ref , ref mut , or mut , then it uses the default binding
mode to determine how the variable is bound.

r[patterns.ident.binding.move] The default binding mode starts in
"move" mode which uses move semantics.

r[patterns.ident.binding.top-down] When matching a pattern, the
compiler starts from the outside of the pattern and works inwards.

r[patterns.ident.binding.auto-deref] Each time a reference is matched
using a non-reference pattern, it will automatically dereference the value
and update the default binding mode.

r[patterns.ident.binding.ref] References will set the default binding mode
to ref .

r[patterns.ident.binding.ref-mut] Mutable references will set the mode to
ref mut unless the mode is already ref in which case it remains ref .

r[patterns.ident.binding.nested-references] If the automatically
dereferenced value is still a reference, it is dereferenced and this process
repeats.

r[patterns.ident.binding.mode-limitations-binding] The binding pattern
may only explicitly specify a ref or ref mut binding mode, or specify
mutability with mut , when the default binding mode is "move". For
example, these are not accepted:
let [mut x] = &[()]; //~ ERROR
let [ref x] = &[()]; //~ ERROR
let [ref mut x] = &mut [()]; //~ ERROR

r[patterns.ident.binding.mode-limitations.edition2024]

[!EDITION-2024] Before the 2024 edition, bindings could
explicitly specify a ref or ref mut binding mode even when the
default binding mode was not "move", and they could specify
mutability on such bindings with mut . In these editions, specifying
mut on a binding set the binding mode to "move" regardless of the
current default binding mode.

r[patterns.ident.binding.mode-limitations-reference] Similarly, a
reference pattern may only appear when the default binding mode is
"move". For example, this is not accepted:
let [&x] = &[&()]; //~ ERROR

r[patterns.ident.binding.mode-limitations-reference.edition2024]

[!EDITION-2024] Before the 2024 edition, reference patterns could
appear even when the default binding mode was not "move", and had
both the effect of matching against the scrutinee and of causing the
default binding mode to be reset to "move".

r[patterns.ident.binding.mixed] Move bindings and reference bindings
can be mixed together in the same pattern. Doing so will result in partial
move of the object bound to and the object cannot be used afterwards. This
applies only if the type cannot be copied.

In the example below, name is moved out of person . Trying to use
person as a whole or person.name would result in an error because of
partial move.

Example:
struct Person {
name: String,
age: u8,
}
let person = Person{ name: String::from("John"), age: 23 };
// `name` is moved from person and `age` referenced
let Person { name, ref age } = person;

r[patterns.wildcard]

Wildcard pattern
r[patterns.wildcard.syntax]

WildcardPattern -> `_`

r[patterns.wildcard.intro] The wildcard pattern (an underscore symbol)
matches any value. It is used to ignore values when they don't matter.

r[patterns.wildcard.struct-matcher] Inside other patterns it matches a
single data field (as opposed to the .. which matches the remaining fields).

r[patterns.wildcard.no-binding] Unlike identifier patterns, it does not
copy, move or borrow the value it matches.

Examples:
let x = 20;
let (a, _) = (10, x); // the x is always matched by _
assert_eq!(a, 10);

// ignore a function/closure param
let real_part = |a: f64, _: f64| { a };

// ignore a field from a struct
struct RGBA {
r: f32,
g: f32,
b: f32,
a: f32,
}
let color = RGBA{r: 0.4, g: 0.1, b: 0.9, a: 0.5};
let RGBA{r: red, g: green, b: blue, a: _} = color;
assert_eq!(color.r, red);
assert_eq!(color.g, green);
assert_eq!(color.b, blue);

// accept any Some, with any value
let x = Some(10);
if let Some(_) = x {}

r[patterns.wildcard.refutable] The wildcard pattern is always irrefutable.
r[patterns.rest]

Rest patterns
r[patterns.rest.syntax]

RestPattern -> `..`

r[patterns.rest.intro] The rest pattern (the .. token) acts as a variable-
length pattern which matches zero or more elements that haven't been
matched already before and after.

r[patterns.rest.allowed-patterns] It may only be used in tuple, tuple
struct, and slice patterns, and may only appear once as one of the elements
in those patterns. It is also allowed in an identifier pattern for slice patterns
only.

r[patterns.rest.refutable] The rest pattern is always irrefutable.
Examples:

let words = vec!["a", "b", "c"];
let slice = &words[..];
match slice {
 [] => println!("slice is empty"),
 [one] => println!("single element {}", one),
 [head, tail @ ..] => println!("head={} tail={:?}", head,
tail),
}

match slice {
 // Ignore everything but the last element, which must be
"!".
 [.., "!"] => println!("!!!"),

 // `start` is a slice of everything except the last
element, which must be "z".
 [start @ .., "z"] => println!("starts with: {:?}", start),

 // `end` is a slice of everything but the first element,
which must be "a".
 ["a", end @ ..] => println!("ends with: {:?}", end),

 // 'whole' is the entire slice and `last` is the final
element
 whole @ [.., last] => println!("the last element of {:?}
is {}", whole, last),

 rest => println!("{:?}", rest),
}

if let [.., penultimate, _] = slice {
 println!("next to last is {}", penultimate);
}

let tuple = (1, 2, 3, 4, 5);
// Rest patterns may also be used in tuple and tuple struct
patterns.
match tuple {
 (1, .., y, z) => println!("y={} z={}", y, z),
 (.., 5) => println!("tail must be 5"),
 (..) => println!("matches everything else"),
}

r[patterns.range]

Range patterns
r[patterns.range.syntax]

RangePattern ->
 RangeExclusivePattern
 | RangeInclusivePattern
 | RangeFromPattern
 | RangeToExclusivePattern
 | RangeToInclusivePattern
 | ObsoleteRangePattern[^obsolete-range-edition]

RangeExclusivePattern ->
 RangePatternBound `..` RangePatternBound

RangeInclusivePattern ->
 RangePatternBound `..=` RangePatternBound

RangeFromPattern ->
 RangePatternBound `..`

RangeToExclusivePattern ->
 `..` RangePatternBound

RangeToInclusivePattern ->
 `..=` RangePatternBound

ObsoleteRangePattern ->
 RangePatternBound `...` RangePatternBound

RangePatternBound ->
 LiteralPattern
 | PathExpression
1

The [ObsoleteRangePattern] syntax has been removed in the 2021
edition.

r[patterns.range.intro] Range patterns match scalar values within the
range defined by their bounds. They comprise a sigil (.. or ..=) and a
bound on one or both sides.

A bound on the left of the sigil is called a lower bound. A bound on the
right is called an upper bound.

r[patterns.range.exclusive] The exclusive range pattern matches all
values from the lower bound up to, but not including the upper bound. It is
written as its lower bound, followed by .. , followed by the upper bound.

For example, a pattern 'm'..'p' will match only 'm' , 'n' and 'o' ,
specifically not including 'p' .

r[patterns.range.inclusive] The inclusive range pattern matches all
values from the lower bound up to and including the upper bound. It is
written as its lower bound, followed by ..= , followed by the upper bound.

For example, a pattern 'm'..='p' will match only the values 'm' , 'n' ,
'o' , and 'p' .

r[patterns.range.from] The from range pattern matches all values greater
than or equal to the lower bound. It is written as its lower bound followed
by .. .

For example, 1.. will match any integer greater than or equal to 1, such
as 1, 9, or 9001, or 9007199254740991 (if it is of an appropriate size), but
not 0, and not negative numbers for signed integers.

r[patterns.range.to-exclusive] The to exclusive range pattern matches all
values less than the upper bound. It is written as .. followed by the upper
bound.

For example, ..10 will match any integer less than 10, such as 9, 1, 0,
and for signed integer types, all negative values.

r[patterns.range.to-inclusive] The to inclusive range pattern matches all
values less than or equal to the upper bound. It is written as ..= followed
by the upper bound.

For example, ..=10 will match any integer less than or equal to 10,
such as 10, 1, 0, and for signed integer types, all negative values.

r[patterns.range.constraint-less-than] The lower bound cannot be greater
than the upper bound. That is, in a..=b , a ≤ b must be the case. For
example, it is an error to have a range pattern 10..=0 .

r[patterns.range.bound] A bound is written as one of:

A character, byte, integer, or float literal.
A - followed by an integer or float literal.
A path.

[!NOTE]
We syntactically accept more than this for a [RangePatternBound].

We later reject the other things semantically.

r[patterns.range.constraint-bound-path] If a bound is written as a path,
after macro resolution, the path must resolve to a constant item of the type
char , an integer type, or a float type.

r[patterns.range.type] The range pattern matches the type of its upper
and lower bounds, which must be the same type.

r[patterns.range.path-value] If a bound is a path, the bound matches the
type and has the value of the constant the path resolves to.

r[patterns.range.literal-value] If a bound is a literal, the bound matches
the type and has the value of the corresponding literal expression.

r[patterns.range.negation] If a bound is a literal preceded by a - , the
bound matches the same type as the corresponding literal expression and
has the value of negating the value of the corresponding literal expression.

r[patterns.range.float-restriction] For float range patterns, the constant
may not be a NaN .

Examples:
let c = 'f';
let valid_variable = match c {
 'a'..='z' => true,
 'A'..='Z' => true,
 'α'..='ω' => true,
 _ => false,

clbr://internal.invalid/book/OEBPS/expressions/path-expr.md
clbr://internal.invalid/book/OEBPS/expressions/path-expr.md
clbr://internal.invalid/book/OEBPS/items/constant-items.md
clbr://internal.invalid/book/OEBPS/expressions/literal-expr.md
clbr://internal.invalid/book/OEBPS/expressions/literal-expr.md
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#negation-operators

};

let ph = 10;
println!("{}", match ph {
 0..7 => "acid",
 7 => "neutral",
 8..=14 => "base",
 _ => unreachable!(),
});

let uint: u32 = 5;
match uint {
 0 => "zero!",
 1.. => "positive number!",
};

// using paths to constants:
const TROPOSPHERE_MIN : u8 = 6;
const TROPOSPHERE_MAX : u8 = 20;

const STRATOSPHERE_MIN : u8 = TROPOSPHERE_MAX + 1;
const STRATOSPHERE_MAX : u8 = 50;

const MESOSPHERE_MIN : u8 = STRATOSPHERE_MAX + 1;
const MESOSPHERE_MAX : u8 = 85;

let altitude = 70;

println!("{}", match altitude {
 TROPOSPHERE_MIN..=TROPOSPHERE_MAX => "troposphere",
 STRATOSPHERE_MIN..=STRATOSPHERE_MAX => "stratosphere",
 MESOSPHERE_MIN..=MESOSPHERE_MAX => "mesosphere",
 _ => "outer space, maybe",
});

pub mod binary {

pub const MEGA : u64 = 1024*1024;
pub const GIGA : u64 = 1024*1024*1024;
}
let n_items = 20_832_425;
let bytes_per_item = 12;
if let size @ binary::MEGA..=binary::GIGA = n_items *
bytes_per_item {
 println!("It fits and occupies {} bytes", size);
}

trait MaxValue {
const MAX: u64;
}
impl MaxValue for u8 {
const MAX: u64 = (1 << 8) - 1;
}
impl MaxValue for u16 {
const MAX: u64 = (1 << 16) - 1;
}
impl MaxValue for u32 {
const MAX: u64 = (1 << 32) - 1;
}
// using qualified paths:
println!("{}", match 0xfacade {
 0 ..= <u8 as MaxValue>::MAX => "fits in a u8",
 0 ..= <u16 as MaxValue>::MAX => "fits in a u16",
 0 ..= <u32 as MaxValue>::MAX => "fits in a u32",
 _ => "too big",
});

r[patterns.range.refutable] Range patterns for fix-width integer and char
types are irrefutable when they span the entire set of possible values of a
type. For example, 0u8..=255u8 is irrefutable.

r[patterns.range.refutable-integer] The range of values for an integer
type is the closed range from its minimum to maximum value.

r[patterns.range.refutable-char] The range of values for a char type are
precisely those ranges containing all Unicode Scalar Values:
'\u{0000}'..='\u{D7FF}' and '\u{E000}'..='\u{10FFFF}' .

r[patterns.range.constraint-slice] [RangeFromPattern] cannot be used as
a top-level pattern for subpatterns in slice patterns. For example, the pattern
[1.., _] is not a valid pattern.

r[patterns.range.edition2021]

[!EDITION-2021] Before the 2021 edition, range patterns with
both a lower and upper bound may also be written using ... in place
of ..= , with the same meaning.

r[patterns.ref]

Reference patterns
r[patterns.ref.syntax]

ReferencePattern -> (`&`|`&&`) `mut`? PatternWithoutRange

r[patterns.ref.intro] Reference patterns dereference the pointers that are
being matched and, thus, borrow them.

For example, these two matches on x: &i32 are equivalent:
let int_reference = &3;

let a = match *int_reference { 0 => "zero", _ => "some" };
let b = match int_reference { &0 => "zero", _ => "some" };

assert_eq!(a, b);

r[patterns.ref.ref-ref] The grammar production for reference patterns has
to match the token && to match a reference to a reference because it is a
token by itself, not two & tokens.

r[patterns.ref.mut] Adding the mut keyword dereferences a mutable
reference. The mutability must match the mutability of the reference.

r[patterns.ref.refutable] Reference patterns are always irrefutable.
r[patterns.struct]

Struct patterns
r[patterns.struct.syntax]

StructPattern ->
 PathInExpression `{`
 StructPatternElements?
 `}`

StructPatternElements ->
 StructPatternFields (`,` | `,` StructPatternEtCetera)?
 | StructPatternEtCetera

StructPatternFields ->
 StructPatternField (`,` StructPatternField)*

StructPatternField ->
 OuterAttribute*
 (
 TUPLE_INDEX `:` Pattern
 | IDENTIFIER `:` Pattern
 | `ref`? `mut`? IDENTIFIER
)

StructPatternEtCetera -> `..`

r[patterns.struct.intro] Struct patterns match struct, enum, and union
values that match all criteria defined by its subpatterns. They are also used
to destructure a struct, enum, or union value.

r[patterns.struct.ignore-rest] On a struct pattern, the fields are referenced
by name, index (in the case of tuple structs) or ignored by use of .. :
struct Point {
x: u32,
y: u32,
}
let s = Point {x: 1, y: 1};

match s {
 Point {x: 10, y: 20} => (),
 Point {y: 10, x: 20} => (), // order doesn't matter
 Point {x: 10, ..} => (),
 Point {..} => (),
}

struct PointTuple (
u32,
u32,
);
let t = PointTuple(1, 2);

match t {
 PointTuple {0: 10, 1: 20} => (),
 PointTuple {1: 10, 0: 20} => (), // order doesn't matter
 PointTuple {0: 10, ..} => (),
 PointTuple {..} => (),
}

enum Message {
Quit,
Move { x: i32, y: i32 },
}
let m = Message::Quit;

match m {
 Message::Quit => (),
 Message::Move {x: 10, y: 20} => (),
 Message::Move {..} => (),
}

r[patterns.struct.constraint-struct] If .. is not used, a struct pattern used
to match a struct is required to specify all fields:

struct Struct {
a: i32,
b: char,
c: bool,
}
let mut struct_value = Struct{a: 10, b: 'X', c: false};

match struct_value {
 Struct{a: 10, b: 'X', c: false} => (),
 Struct{a: 10, b: 'X', ref c} => (),
 Struct{a: 10, b: 'X', ref mut c} => (),
 Struct{a: 10, b: 'X', c: _} => (),
 Struct{a: _, b: _, c: _} => (),
}

r[patterns.struct.constraint-union] A struct pattern used to match a union
must specify exactly one field (see Pattern matching on unions).

r[patterns.struct.binding-shorthand] The ref and/or mut [IDENTIFIER]
syntax matches any value and binds it to a variable with the same name as
the given field.
struct Struct {
a: i32,
b: char,
c: bool,
}
let struct_value = Struct{a: 10, b: 'X', c: false};

let Struct{a: x, b: y, c: z} = struct_value; //
destructure all fields

r[patterns.struct.refutable] A struct pattern is refutable if the
[PathInExpression] resolves to a constructor of an enum with more than one
variant, or one of its subpatterns is refutable.

r[patterns.struct.namespace] A struct pattern matches against the struct,
union, or enum variant whose constructor is resolved from

clbr://internal.invalid/book/OEBPS/items/unions.md#pattern-matching-on-unions

[PathInExpression] in the type namespace. See [patterns.tuple-
struct.namespace] for more details.

r[patterns.tuple-struct]

clbr://internal.invalid/book/OEBPS/names.namespaces.kinds

Tuple struct patterns
r[patterns.tuple-struct.syntax]

TupleStructPattern -> PathInExpression `(` TupleStructItems?
`)`

TupleStructItems -> Pattern (`,` Pattern)* `,`?

r[patterns.tuple-struct.intro] Tuple struct patterns match tuple struct and
enum values that match all criteria defined by its subpatterns. They are also
used to destructure a tuple struct or enum value.

r[patterns.tuple-struct.refutable] A tuple struct pattern is refutable if the
[PathInExpression] resolves to a constructor of an enum with more than one
variant, or one of its subpatterns is refutable.

r[patterns.tuple-struct.namespace] A tuple struct pattern matches against
the tuple struct or tuple-like enum variant whose constructor is resolved
from [PathInExpression] in the value namespace.

[!NOTE] Conversely, a struct pattern for a tuple struct or tuple-like
enum variant, e.g. S { 0: _ } , matches against the tuple struct or
variant whose constructor is resolved in the type namespace.
enum E1 { V(u16) }
enum E2 { V(u32) }

// Import `E1::V` from the type namespace only.
mod _0 {
 const V: () = (); // For namespace masking.
 pub(super) use super::E1::*;
}
use _0::*;

// Import `E2::V` from the value namespace only.
mod _1 {
 struct V {} // For namespace masking.
 pub(super) use super::E2::*;
}

clbr://internal.invalid/book/OEBPS/items.enum.tuple-expr
clbr://internal.invalid/book/OEBPS/names.namespaces.kinds
clbr://internal.invalid/book/OEBPS/items.enum.tuple-expr
clbr://internal.invalid/book/OEBPS/names.namespaces.kinds

use _1::*;

fn f() {
 // This struct pattern matches against the tuple-like
 // enum variant whose constructor was found in the type
 // namespace.
 let V { 0: ..=u16::MAX } = (loop {}) else { loop {} };
 // This tuple struct pattern matches against the tuple-
like
 // enum variant whose constructor was found in the
value
 // namespace.
 let V(..=u32::MAX) = (loop {}) else { loop {} };
}
// Required due to the odd behavior of `super` within
functions.
fn main() {}

The Lang team has made certain decisions, such as in PR #138458,
that raise questions about the desirability of using the value namespace
in this way for patterns, as described in PR #140593. It might be
prudent to not intentionally rely on this nuance in your code.

r[patterns.tuple]

https://github.com/rust-lang/rust/pull/138458
https://github.com/rust-lang/rust/pull/140593#issuecomment-2972338457

Tuple patterns
r[patterns.tuple.syntax]

TuplePattern -> `(` TuplePatternItems? `)`

TuplePatternItems ->
 Pattern `,`
 | RestPattern
 | Pattern (`,` Pattern)+ `,`?

r[patterns.tuple.intro] Tuple patterns match tuple values that match all
criteria defined by its subpatterns. They are also used to destructure a tuple.

r[patterns.tuple.rest-syntax] The form (..) with a single [RestPattern]
is a special form that does not require a comma, and matches a tuple of any
size.

r[patterns.tuple.refutable] The tuple pattern is refutable when one of its
subpatterns is refutable.

An example of using tuple patterns:
let pair = (10, "ten");
let (a, b) = pair;

assert_eq!(a, 10);
assert_eq!(b, "ten");

r[patterns.paren]

Grouped patterns
r[patterns.paren.syntax]

GroupedPattern -> `(` Pattern `)`

r[patterns.paren.intro] Enclosing a pattern in parentheses can be used to
explicitly control the precedence of compound patterns. For example, a
reference pattern next to a range pattern such as &0..=5 is ambiguous and
is not allowed, but can be expressed with parentheses.
let int_reference = &3;
match int_reference {
 &(0..=5) => (),
 _ => (),
}

r[patterns.slice]

Slice patterns
r[patterns.slice.syntax]

SlicePattern -> `[` SlicePatternItems? `]`

SlicePatternItems -> Pattern (`,` Pattern)* `,`?

r[patterns.slice.intro] Slice patterns can match both arrays of fixed size
and slices of dynamic size.
// Fixed size
let arr = [1, 2, 3];
match arr {
 [1, _, _] => "starts with one",
 [a, b, c] => "starts with something else",
};

// Dynamic size
let v = vec![1, 2, 3];
match v[..] {
 [a, b] => { /* this arm will not apply because the length
doesn't match */ }
 [a, b, c] => { /* this arm will apply */ }
 _ => { /* this wildcard is required, since the length is
not known statically */ }
};

r[patterns.slice.refutable-array] Slice patterns are irrefutable when
matching an array as long as each element is irrefutable.

r[patterns.slice.refutable-slice] When matching a slice, it is irrefutable
only in the form with a single .. rest pattern or identifier pattern with the
.. rest pattern as a subpattern.

r[patterns.slice.restriction] Within a slice, a range pattern without both
lower and upper bound must be enclosed in parentheses, as in (a..) , to
clarify it is intended to match against a single slice element. A range pattern
with both lower and upper bound, like a..=b , is not required to be enclosed
in parentheses.

r[patterns.path]

Path patterns
r[patterns.path.syntax]

PathPattern -> PathExpression

r[patterns.path.intro] Path patterns are patterns that refer either to
constant values or to structs or enum variants that have no fields.

r[patterns.path.unqualified] Unqualified path patterns can refer to:

enum variants
structs
constants
associated constants

r[patterns.path.qualified] Qualified path patterns can only refer to
associated constants.

r[patterns.path.refutable] Path patterns are irrefutable when they refer to
structs or an enum variant when the enum has only one variant or a constant
whose type is irrefutable. They are refutable when they refer to refutable
constants or enum variants for enums with multiple variants.

r[patterns.const]

Constant patterns
r[patterns.const.partial-eq] When a constant C of type T is used as a

pattern, we first check that T: PartialEq .
r[patterns.const.structural-equality] Furthermore we require that the

value of C has (recursive) structural equality, which is defined recursively
as follows:

r[patterns.const.primitive]

Integers as well as str , bool and char values always have structural
equality.

r[patterns.const.builtin-aggregate]

Tuples, arrays, and slices have structural equality if all their
fields/elements have structural equality. (In particular, () and []

always have structural equality.)
r[patterns.const.ref]

References have structural equality if the value they point to has
structural equality.

r[patterns.const.aggregate]

A value of struct or enum type has structural equality if its
PartialEq instance is derived via #[derive(PartialEq)] , and all
fields (for enums: of the active variant) have structural equality.

r[patterns.const.pointer]

A raw pointer has structural equality if it was defined as a constant
integer (and then cast/transmuted).

r[patterns.const.float]

A float value has structural equality if it is not a NaN .
r[patterns.const.exhaustive]

Nothing else has structural equality.
r[patterns.const.generic] In particular, the value of C must be known at

pattern-building time (which is pre-monomorphization). This means that
associated consts that involve generic parameters cannot be used as
patterns.

r[patterns.const.immutable] The value of C must not contain any
references to mutable statics (static mut items or interior mutable
static items) or extern statics.

r[patterns.const.translation] After ensuring all conditions are met, the
constant value is translated into a pattern, and now behaves exactly as-if
that pattern had been written directly. In particular, it fully participates in
exhaustiveness checking. (For raw pointers, constants are the only way to
write such patterns. Only _ is ever considered exhaustive for these types.)

r[patterns.or]

Or-patterns
Or-patterns are patterns that match on one of two or more sub-patterns

(for example A | B | C). They can nest arbitrarily. Syntactically, or-
patterns are allowed in any of the places where other patterns are allowed
(represented by the [Pattern] production), with the exceptions of let -
bindings and function and closure arguments (represented by the
[PatternNoTopAlt] production).

r[patterns.constraints]

Static semantics
r[patterns.constraints.pattern]

1. Given a pattern p | q at some depth for some arbitrary patterns p
and q , the pattern is considered ill-formed if:

the type inferred for p does not unify with the type inferred for
q , or
the same set of bindings are not introduced in p and q , or
the type of any two bindings with the same name in p and q do
not unify with respect to types or binding modes.

Unification of types is in all instances aforementioned exact and
implicit type coercions do not apply.

r[patterns.constraints.match-type-check] 2. When type checking an
expression match e_s { a_1 => e_1, ... a_n => e_n } , for each match
arm a_i which contains a pattern of form p_i | q_i , the pattern p_i |
q_i is considered ill formed if, at the depth d where it exists the fragment
of e_s at depth d , the type of the expression fragment does not unify with
p_i | q_i .

r[patterns.constraints.exhaustiveness-or-pattern] 3. With respect to
exhaustiveness checking, a pattern p | q is considered to cover p as well
as q . For some constructor c(x, ..) the distributive law applies such that
c(p | q, ..rest) covers the same set of value as c(p, ..rest) | c(q,

clbr://internal.invalid/book/OEBPS/type-coercions.md

..rest) does. This can be applied recursively until there are no more
nested patterns of form p | q other than those that exist at the top level.

Note that by "constructor" we do not refer to tuple struct patterns, but
rather we refer to a pattern for any product type. This includes enum
variants, tuple structs, structs with named fields, arrays, tuples, and slices.

r[patterns.behavior]

Dynamic semantics
r[patterns.behavior.nested-or-patterns]

1. The dynamic semantics of pattern matching a scrutinee expression e_s
against a pattern c(p | q, ..rest) at depth d where c is some
constructor, p and q are arbitrary patterns, and rest is optionally any
remaining potential factors in c, is defined as being the same as that of
c(p, ..rest) | c(q, ..rest).

r[patterns.precedence]

Precedence with other undelimited patterns
As shown elsewhere in this chapter, there are several types of patterns

that are syntactically undelimited, including identifier patterns, reference
patterns, and or-patterns. Or-patterns always have the lowest-precedence.
This allows us to reserve syntactic space for a possible future type
ascription feature and also to reduce ambiguity. For example, x @ A(..) |
B(..) will result in an error that x is not bound in all patterns. &A(x) |
B(x) will result in a type mismatch between x in the different subpatterns.

Type system

r[type]

Types
r[type.intro] Every variable, item, and value in a Rust program has a

type. The type of a value defines the interpretation of the memory holding it
and the operations that may be performed on the value.

r[type.builtin] Built-in types are tightly integrated into the language, in
nontrivial ways that are not possible to emulate in user-defined types.

r[type.user-defined] User-defined types have limited capabilities.
r[type.kinds] The list of types is:

Primitive types:

Boolean --- bool
Numeric --- integer and float
Textual --- char and str
Never --- ! --- a type with no values

Sequence types:

Tuple
Array
Slice

User-defined types:

Struct
Enum
Union

Function types:

Functions
Closures

Pointer types:

References
Raw pointers
Function pointers

clbr://internal.invalid/book/OEBPS/types/boolean.md
clbr://internal.invalid/book/OEBPS/types/numeric.md
clbr://internal.invalid/book/OEBPS/types/textual.md
clbr://internal.invalid/book/OEBPS/types/never.md
clbr://internal.invalid/book/OEBPS/types/tuple.md
clbr://internal.invalid/book/OEBPS/types/array.md
clbr://internal.invalid/book/OEBPS/types/slice.md
clbr://internal.invalid/book/OEBPS/types/struct.md
clbr://internal.invalid/book/OEBPS/types/enum.md
clbr://internal.invalid/book/OEBPS/types/union.md
clbr://internal.invalid/book/OEBPS/types/function-item.md
clbr://internal.invalid/book/OEBPS/types/closure.md
clbr://internal.invalid/book/OEBPS/types/pointer.md#shared-references-
clbr://internal.invalid/book/OEBPS/types/pointer.md#raw-pointers-const-and-mut
clbr://internal.invalid/book/OEBPS/types/function-pointer.md

Trait types:

Trait objects
Impl trait

r[type.name]

clbr://internal.invalid/book/OEBPS/types/trait-object.md
clbr://internal.invalid/book/OEBPS/types/impl-trait.md

Type expressions
r[type.name.syntax]

Type ->
 TypeNoBounds
 | ImplTraitType
 | TraitObjectType

TypeNoBounds ->
 ParenthesizedType
 | ImplTraitTypeOneBound
 | TraitObjectTypeOneBound
 | TypePath
 | TupleType
 | NeverType
 | RawPointerType
 | ReferenceType
 | ArrayType
 | SliceType
 | InferredType
 | QualifiedPathInType
 | BareFunctionType
 | MacroInvocation

r[type.name.intro] A type expression as defined in the [Type] grammar
rule above is the syntax for referring to a type. It may refer to:

r[type.name.sequence]

Sequence types (tuple, array, slice).
r[type.name.path]

Type paths which can reference:

Primitive types (boolean, numeric, textual).
Paths to an item (struct, enum, union, type alias, trait).
Self path where Self is the implementing type.

clbr://internal.invalid/book/OEBPS/types/tuple.md
clbr://internal.invalid/book/OEBPS/types/array.md
clbr://internal.invalid/book/OEBPS/types/slice.md
clbr://internal.invalid/book/OEBPS/paths.md#paths-in-types
clbr://internal.invalid/book/OEBPS/types/boolean.md
clbr://internal.invalid/book/OEBPS/types/numeric.md
clbr://internal.invalid/book/OEBPS/types/textual.md
clbr://internal.invalid/book/OEBPS/items.md
clbr://internal.invalid/book/OEBPS/types/struct.md
clbr://internal.invalid/book/OEBPS/types/enum.md
clbr://internal.invalid/book/OEBPS/types/union.md
clbr://internal.invalid/book/OEBPS/items/type-aliases.md
clbr://internal.invalid/book/OEBPS/types/trait-object.md
clbr://internal.invalid/book/OEBPS/paths.md#self-1

Generic type parameters.
r[type.name.pointer]

Pointer types (reference, raw pointer, function pointer).
r[type.name.inference]

The inferred type which asks the compiler to determine the type.
r[type.name.grouped]

Parentheses which are used for disambiguation.
r[type.name.trait]

Trait types: Trait objects and impl trait.
r[type.name.never]

The never type.
r[type.name.macro-expansion]

Macros which expand to a type expression.
r[type.name.parenthesized]

Parenthesized types
r[type.name.parenthesized.syntax]

ParenthesizedType -> `(` Type `)`

r[type.name.parenthesized.intro] In some situations the combination of
types may be ambiguous. Use parentheses around a type to avoid
ambiguity. For example, the + operator for type boundaries within a
reference type is unclear where the boundary applies, so the use of
parentheses is required. Grammar rules that require this disambiguation use
the [TypeNoBounds] rule instead of [Type][grammar-Type].
use std::any::Any;
type T<'a> = &'a (dyn Any + Send);

r[type.recursive]

clbr://internal.invalid/book/OEBPS/types/parameters.md
clbr://internal.invalid/book/OEBPS/types/pointer.md#shared-references-
clbr://internal.invalid/book/OEBPS/types/pointer.md#raw-pointers-const-and-mut
clbr://internal.invalid/book/OEBPS/types/function-pointer.md
clbr://internal.invalid/book/OEBPS/types/inferred.md
clbr://internal.invalid/book/OEBPS/types/trait-object.md
clbr://internal.invalid/book/OEBPS/types/impl-trait.md
clbr://internal.invalid/book/OEBPS/types/never.md
clbr://internal.invalid/book/OEBPS/macros.md
clbr://internal.invalid/book/OEBPS/trait-bounds.md
clbr://internal.invalid/book/OEBPS/types/pointer.md#shared-references-

Recursive types
r[type.recursive.intro] Nominal types — structs, enumerations, and

unions — may be recursive. That is, each enum variant or struct or
union field may refer, directly or indirectly, to the enclosing enum or
struct type itself.

r[type.recursive.constraint] Such recursion has restrictions:

Recursive types must include a nominal type in the recursion (not mere
type aliases, or other structural types such as arrays or tuples). So type
Rec = &'static [Rec] is not allowed.
The size of a recursive type must be finite; in other words the recursive
fields of the type must be pointer types.

An example of a recursive type and its use:
enum List<T> {
 Nil,
 Cons(T, Box<List<T>>)
}

let a: List<i32> = List::Cons(7, Box::new(List::Cons(13,
Box::new(List::Nil))));

clbr://internal.invalid/book/OEBPS/types/struct.md
clbr://internal.invalid/book/OEBPS/types/enum.md
clbr://internal.invalid/book/OEBPS/types/union.md
clbr://internal.invalid/book/OEBPS/items/type-aliases.md
clbr://internal.invalid/book/OEBPS/types/array.md
clbr://internal.invalid/book/OEBPS/types/tuple.md
clbr://internal.invalid/book/OEBPS/types/pointer.md

r[type.bool]

Boolean type
let b: bool = true;

r[type.bool.intro] The boolean type or bool is a primitive data type that
can take on one of two values, called true and false.

r[type.bool.literal] Values of this type may be created using a literal
expression using the keywords true and false corresponding to the value
of the same name.

r[type.bool.namespace] This type is a part of the language prelude with
the name bool .

r[type.bool.layout] An object with the boolean type has a size and
alignment of 1 each.

r[type.bool.repr] The value false has the bit pattern 0x00 and the value
true has the bit pattern 0x01 . It is undefined behavior for an object with the
boolean type to have any other bit pattern.

r[type.bool.usage] The boolean type is the type of many operands in
various expressions:

r[type.bool.usage-condition]

The condition operand in if expressions and while expressions
r[type.bool.usage-lazy-operator]

The operands in lazy boolean operator expressions

[!NOTE] The boolean type acts similarly to but is not an
enumerated type. In practice, this mostly means that constructors are
not associated to the type (e.g. bool::true).

r[type.bool.traits] Like all primitives, the boolean type implements the
traits Clone , Copy , Sized , Send , and Sync .

[!NOTE] See the standard library docs for library operations.

r[type.bool.expr]

clbr://internal.invalid/book/OEBPS/expressions/literal-expr.md
clbr://internal.invalid/book/OEBPS/names/preludes.md#language-prelude
clbr://internal.invalid/book/OEBPS/names.md
clbr://internal.invalid/book/OEBPS/type-layout.md#size-and-alignment
clbr://internal.invalid/book/OEBPS/behavior-considered-undefined.md
clbr://internal.invalid/book/OEBPS/expressions.md
clbr://internal.invalid/book/OEBPS/expressions/if-expr.md#if-expressions
clbr://internal.invalid/book/OEBPS/expressions/loop-expr.md#predicate-loops
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#lazy-boolean-operators
clbr://internal.invalid/book/OEBPS/types/enum.md
clbr://internal.invalid/book/OEBPS/items/implementations.md
clbr://internal.invalid/book/OEBPS/items/traits.md
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#clone
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#copy
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#sized
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#send
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#sync
clbr://internal.invalid/book/OEBPS/types/bool

Operations on boolean values
When using certain operator expressions with a boolean type for its

operands, they evaluate using the rules of boolean logic.
r[type.bool.expr.not]

Logical not

b !b

true false

false true

r[type.bool.expr.or]

Logical or

a b a | b

true true true

true false true

false true true

false false false

r[type.bool.expr.and]

Logical and

a b a & b

true true true

true false false

false true false

false false false

https://en.wikipedia.org/wiki/Boolean_algebra
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#negation-operators
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#arithmetic-and-logical-binary-operators
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#arithmetic-and-logical-binary-operators

r[type.bool.expr.xor]

Logical xor

a b a ^ b

true true false

true false true

false true true

false false false

r[type.bool.expr.cmp]

Comparisons
r[type.bool.expr.cmp.eq]

a b a == b

true true true

true false false

false true false

false false true

r[type.bool.expr.cmp.greater]

a b a > b

true true false

true false true

false true false

false false false

r[type.bool.expr.cmp.not-eq]

clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#arithmetic-and-logical-binary-operators
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#comparison-operators
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#comparison-operators

a != b is the same as !(a == b)
r[type.bool.expr.cmp.greater-eq]

a >= b is the same as a == b | a > b
r[type.bool.expr.cmp.less]

a < b is the same as !(a >= b)
r[type.bool.expr.cmp.less-eq]

a <= b is the same as a == b | a < b
r[type.bool.validity]

Bit validity
The single byte of a bool is guaranteed to be initialized (in other words,

transmute::<bool, u8>(...) is always sound -- but since some bit
patterns are invalid bool s, the inverse is not always sound).

r[type.numeric]

Numeric types
r[type.numeric.int]

Integer types
r[type.numeric.int.unsigned] The unsigned integer types consist of:

Type Minimum Maximum
u8 0 28-1

u16 0 216-1

u32 0 232-1

u64 0 264-1

u128 0 2128-1

r[type.numeric.int.signed] The signed two's complement integer types
consist of:

Type Minimum Maximum
i8 -(27) 27-1

i16 -(215) 215-1

i32 -(231) 231-1

i64 -(263) 263-1

i128 -(2127) 2127-1

r[type.numeric.float]

Floating-point types
The IEEE 754-2008 "binary32" and "binary64" floating-point types are

f32 and f64 , respectively.
r[type.numeric.int.size]

Machine-dependent integer types
r[type.numeric.int.size.usize] The usize type is an unsigned integer

type with the same number of bits as the platform's pointer type. It can
represent every memory address in the process.

[!NOTE] While a usize can represent every address, converting a
pointer to a usize is not necessarily a reversible operation. For more
information, see the documentation for type cast expressions,
[std::ptr], and [provenance][std::ptr#provenance] in particular.

r[type.numeric.int.size.isize] The isize type is a signed integer type
with the same number of bits as the platform's pointer type. The theoretical
upper bound on object and array size is the maximum isize value. This
ensures that isize can be used to calculate differences between pointers
into an object or array and can address every byte within an object along
with one byte past the end.

r[type.numeric.int.size.minimum] usize and isize are at least 16-bits
wide.

[!NOTE] Many pieces of Rust code may assume that pointers,
usize , and isize are either 32-bit or 64-bit. As a consequence, 16-
bit pointer support is limited and may require explicit care and
acknowledgment from a library to support.

r[type.numeric.validity]

clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#type-cast-expressions

Bit validity
For every numeric type, T , the bit validity of T is equivalent to the bit

validity of [u8; size_of::<T>()] . An uninitialized byte is not a valid u8 .

r[type.text]

Textual types
r[type.text.intro] The types char and str hold textual data.
r[type.text.char-value] A value of type char is a Unicode scalar value

(i.e. a code point that is not a surrogate), represented as a 32-bit unsigned
word in the 0x0000 to 0xD7FF or 0xE000 to 0x10FFFF range.

r[type.text.char-precondition] It is immediate undefined behavior to
create a char that falls outside this range. A [char] is effectively a UCS-4
/ UTF-32 string of length 1.

r[type.text.str-value] A value of type str is represented the same way as
[u8] , a slice of 8-bit unsigned bytes. However, the Rust standard library
makes extra assumptions about str : methods working on str assume and
ensure that the data in there is valid UTF-8. Calling a str method with a
non-UTF-8 buffer can cause undefined behavior now or in the future.

r[type.text.str-unsized] Since str is a dynamically sized type, it can
only be instantiated through a pointer type, such as &str .

r[type.text.layout]

http://www.unicode.org/glossary/#unicode_scalar_value
clbr://internal.invalid/book/OEBPS/behavior-considered-undefined.md
clbr://internal.invalid/book/OEBPS/behavior-considered-undefined.md
clbr://internal.invalid/book/OEBPS/dynamically-sized-types.md

Layout and bit validity
r[type.layout.char-layout] char is guaranteed to have the same size and

alignment as u32 on all platforms.
r[type.layout.char-validity] Every byte of a char is guaranteed to be

initialized (in other words, transmute::<char, [u8; size_of::<char>
()]>(...) is always sound -- but since some bit patterns are invalid char s,
the inverse is not always sound).

r[type.never]

Never type
r[type.never.syntax]

NeverType -> `!`

r[type.never.intro] The never type ! is a type with no values,
representing the result of computations that never complete.

r[type.never.coercion] Expressions of type ! can be coerced into any
other type.

r[type.never.constraint] The ! type can only appear in function return
types presently, indicating it is a diverging function that never returns.
fn foo() -> ! {
 panic!("This call never returns.");
}

unsafe extern "C" {
 pub safe fn no_return_extern_func() -> !;
}

r[type.tuple]

Tuple types
r[type.tuple.syntax]

TupleType ->
 `(` `)`
 | `(` (Type `,`)+ Type? `)`

r[type.tuple.intro] Tuple types are a family of structural types1 for
heterogeneous lists of other types.

The syntax for a tuple type is a parenthesized, comma-separated list of
types.

r[type.tuple.restriction] 1-ary tuples require a comma after their element
type to be disambiguated with a parenthesized type.

r[type.tuple.field-number] A tuple type has a number of fields equal to
the length of the list of types. This number of fields determines the arity of
the tuple. A tuple with n fields is called an n-ary tuple. For example, a
tuple with 2 fields is a 2-ary tuple.

r[type.tuple.field-name] Fields of tuples are named using increasing
numeric names matching their position in the list of types. The first field is
0 . The second field is 1 . And so on. The type of each field is the type of
the same position in the tuple's list of types.

r[type.tuple.unit] For convenience and historical reasons, the tuple type
with no fields (()) is often called unit or the unit type. Its one value is also
called unit or the unit value.

Some examples of tuple types:

() (unit)
(i32,) (1-ary tuple)
(f64, f64)

(String, i32)

(i32, String) (different type from the previous example)
(i32, f64, Vec<String>, Option<bool>)

clbr://internal.invalid/book/OEBPS/types.md#parenthesized-types

r[type.tuple.constructor] Values of this type are constructed using a tuple
expression. Furthermore, various expressions will produce the unit value if
there is no other meaningful value for it to evaluate to.

r[type.tuple.access] Tuple fields can be accessed by either a tuple index
expression or pattern matching.
1

Structural types are always equivalent if their internal types are
equivalent. For a nominal version of tuples, see tuple structs.

clbr://internal.invalid/book/OEBPS/expressions/tuple-expr.md#tuple-expressions
clbr://internal.invalid/book/OEBPS/expressions/tuple-expr.md#tuple-indexing-expressions
clbr://internal.invalid/book/OEBPS/patterns.md#tuple-patterns
clbr://internal.invalid/book/OEBPS/types/struct.md

r[type.array]

Array types
r[type.array.syntax]

ArrayType -> `[` Type `;` Expression `]`

r[type.array.intro] An array is a fixed-size sequence of N elements of
type T . The array type is written as [T; N] .

r[type.array.constraint] The size is a constant expression that evaluates to
a usize .

Examples:
// A stack-allocated array
let array: [i32; 3] = [1, 2, 3];

// A heap-allocated array, coerced to a slice
let boxed_array: Box<[i32]> = Box::new([1, 2, 3]);

r[type.array.index] All elements of arrays are always initialized, and
access to an array is always bounds-checked in safe methods and operators.

[!NOTE] The [Vec<T>] standard library type provides a heap-
allocated resizable array type.

clbr://internal.invalid/book/OEBPS/const_eval.md#constant-expressions
clbr://internal.invalid/book/OEBPS/types/numeric.md#machine-dependent-integer-types

r[type.slice]

Slice types
r[type.slice.syntax]

SliceType -> `[` Type `]`

r[type.slice.intro] A slice is a dynamically sized type representing a
'view' into a sequence of elements of type T . The slice type is written as
[T] .

r[type.slice.unsized] Slice types are generally used through pointer
types. For example:

&[T] : a 'shared slice', often just called a 'slice'. It doesn't own the data
it points to; it borrows it.
&mut [T] : a 'mutable slice'. It mutably borrows the data it points to.
Box<[T]> : a 'boxed slice'

Examples:
// A heap-allocated array, coerced to a slice
let boxed_array: Box<[i32]> = Box::new([1, 2, 3]);

// A (shared) slice into an array
let slice: &[i32] = &boxed_array[..];

r[type.slice.safe] All elements of slices are always initialized, and access
to a slice is always bounds-checked in safe methods and operators.

clbr://internal.invalid/book/OEBPS/dynamically-sized-types.md

r[type.struct]

Struct types
r[type.struct.intro] A struct type is a heterogeneous product of other

types, called the fields of the type.1

r[type.struct.constructor] New instances of a struct can be constructed
with a struct expression.

r[type.struct.layout] The memory layout of a struct is undefined by
default to allow for compiler optimizations like field reordering, but it can
be fixed with the repr attribute. In either case, fields may be given in any
order in a corresponding struct expression; the resulting struct value will
always have the same memory layout.

r[type.struct.field-visibility] The fields of a struct may be qualified by
visibility modifiers, to allow access to data in a struct outside a module.

r[type.struct.tuple] A tuple struct type is just like a struct type, except
that the fields are anonymous.

r[type.struct.unit] A unit-like struct type is like a struct type, except that
it has no fields. The one value constructed by the associated struct
expression is the only value that inhabits such a type.
1

struct types are analogous to struct types in C, the record types of
the ML family, or the struct types of the Lisp family.

clbr://internal.invalid/book/OEBPS/expressions/struct-expr.md
clbr://internal.invalid/book/OEBPS/type-layout.md#representations
clbr://internal.invalid/book/OEBPS/visibility-and-privacy.md
clbr://internal.invalid/book/OEBPS/expressions/struct-expr.md

r[type.enum]

Enumerated types
r[type.enum.intro] An enumerated type is a nominal, heterogeneous

disjoint union type, denoted by the name of an enum item. 1

r[type.enum.declaration] An enum item declares both the type and a
number of variants, each of which is independently named and has the
syntax of a struct, tuple struct or unit-like struct.

r[type.enum.constructor] New instances of an enum can be constructed
with a struct expression.

r[type.enum.value] Any enum value consumes as much memory as the
largest variant for its corresponding enum type, as well as the size needed to
store a discriminant.

r[type.enum.name] Enum types cannot be denoted structurally as types,
but must be denoted by named reference to an enum item.
1

The enum type is analogous to a data constructor declaration in
Haskell, or a pick ADT in Limbo.

clbr://internal.invalid/book/OEBPS/items/enumerations.md
clbr://internal.invalid/book/OEBPS/items/enumerations.md
clbr://internal.invalid/book/OEBPS/expressions/struct-expr.md
clbr://internal.invalid/book/OEBPS/items/enumerations.md

r[type.union]

Union types
r[type.union.intro] A union type is a nominal, heterogeneous C-like

union, denoted by the name of a union item.
r[type.union.access] Unions have no notion of an "active field". Instead,

every union access transmutes parts of the content of the union to the type
of the accessed field.

r[type.union.safety] Since transmutes can cause unexpected or undefined
behaviour, unsafe is required to read from a union field.

r[type.union.constraint] Union field types are also restricted to a subset
of types which ensures that they never need dropping. See the item
documentation for further details.

r[type.union.layout] The memory layout of a union is undefined by
default (in particular, fields do not have to be at offset 0), but the #

[repr(...)] attribute can be used to fix a layout.

clbr://internal.invalid/book/OEBPS/items/unions.md
clbr://internal.invalid/book/OEBPS/items/unions.md

r[type.fn-item]

Function item types
r[type.fn-item.intro] When referred to, a function item, or the constructor

of a tuple-like struct or enum variant, yields a zero-sized value of its
function item type.

r[type.fn-item.unique] That type explicitly identifies the function - its
name, its type arguments, and its early-bound lifetime arguments (but not
its late-bound lifetime arguments, which are only assigned when the
function is called) - so the value does not need to contain an actual function
pointer, and no indirection is needed when the function is called.

r[type.fn-item.name] There is no syntax that directly refers to a function
item type, but the compiler will display the type as something like fn(u32)
-> i32 {fn_name} in error messages.

Because the function item type explicitly identifies the function, the item
types of different functions - different items, or the same item with different
generics - are distinct, and mixing them will create a type error:
fn foo<T>() { }
let x = &mut foo::<i32>;
*x = foo::<u32>; //~ ERROR mismatched types

r[type.fn-item.coercion] However, there is a coercion from function
items to function pointers with the same signature, which is triggered not
only when a function item is used when a function pointer is directly
expected, but also when different function item types with the same
signature meet in different arms of the same if or match :
let want_i32 = false;
fn foo<T>() { }

// `foo_ptr_1` has function pointer type `fn()` here
let foo_ptr_1: fn() = foo::<i32>;

// ... and so does `foo_ptr_2` - this type-checks.
let foo_ptr_2 = if want_i32 {
 foo::<i32>

clbr://internal.invalid/book/OEBPS/type-coercions.md
clbr://internal.invalid/book/OEBPS/types/function-pointer.md

} else {
 foo::<u32>
};

r[type.fn-item.traits] All function items implement [Fn], [FnMut],
[FnOnce], Copy , Clone , Send , and Sync .

clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#copy
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#clone
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#send
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#sync

r[type.closure]

Closure types
r[type.closure.intro] A closure expression produces a closure value with

a unique, anonymous type that cannot be written out. A closure type is
approximately equivalent to a struct which contains the captured values. For
instance, the following closure:
#[derive(Debug)]
struct Point { x: i32, y: i32 }
struct Rectangle { left_top: Point, right_bottom: Point }

fn f<F : FnOnce() -> String> (g: F) {
 println!("{}", g());
}

let mut rect = Rectangle {
 left_top: Point { x: 1, y: 1 },
 right_bottom: Point { x: 0, y: 0 }
};

let c = || {
 rect.left_top.x += 1;
 rect.right_bottom.x += 1;
 format!("{:?}", rect.left_top)
};
f(c); // Prints "Point { x: 2, y: 1 }".

generates a closure type roughly like the following:
// Note: This is not exactly how it is translated, this is only
for
// illustration.

struct Closure<'a> {
 left_top : &'a mut Point,
 right_bottom_x : &'a mut i32,
}

clbr://internal.invalid/book/OEBPS/expressions/closure-expr.md

impl<'a> FnOnce<()> for Closure<'a> {
 type Output = String;
 extern "rust-call" fn call_once(self, args: ()) -> String {
 self.left_top.x += 1;
 *self.right_bottom_x += 1;
 format!("{:?}", self.left_top)
 }
}

so that the call to f works as if it were:
f(Closure{ left_top: &mut rect.left_top, right_bottom_x: &mut
rect.right_bottom.x });

r[type.closure.capture]

Capture modes
r[type.closure.capture.intro] A capture mode determines how a place

expression from the environment is borrowed or moved into the closure.
The capture modes are:

1. Immutable borrow (ImmBorrow) --- The place expression is captured as
a shared reference.

2. Unique immutable borrow (UniqueImmBorrow) --- This is similar to an
immutable borrow, but must be unique as described below.

3. Mutable borrow (MutBorrow) --- The place expression is captured as a
mutable reference.

4. Move (ByValue) --- The place expression is captured by moving the
value into the closure.

r[type.closure.capture.precedence] Place expressions from the
environment are captured from the first mode that is compatible with how
the captured value is used inside the closure body. The mode is not affected
by the code surrounding the closure, such as the lifetimes of involved
variables or fields, or of the closure itself.

r[type.closure.capture.copy]

Copy values
Values that implement Copy that are moved into the closure are captured

with the ImmBorrow mode.
let x = [0; 1024];
let c = || {
 let y = x; // x captured by ImmBorrow
};

r[type.closure.async.input]

Async input capture
Async closures always capture all input arguments, regardless of

whether or not they are used within the body.

clbr://internal.invalid/book/OEBPS/expressions.md#place-expressions-and-value-expressions
clbr://internal.invalid/book/OEBPS/types/pointer.md#references--and-mut
clbr://internal.invalid/book/OEBPS/types/pointer.md#mutable-references-mut
clbr://internal.invalid/book/OEBPS/expressions.md#moved-and-copied-types
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#copy

Capture Precision
r[type.closure.capture.precision.capture-path] A capture path is a

sequence starting with a variable from the environment followed by zero or
more place projections that were applied to that variable.

r[type.closure.capture.precision.place-projection] A place projection is a
field access, tuple index, dereference (and automatic dereferences), or array
or slice index expression applied to a variable.

r[type.closure.capture.precision.intro] The closure borrows or moves the
capture path, which may be truncated based on the rules described below.

For example:
struct SomeStruct {
 f1: (i32, i32),
}
let s = SomeStruct { f1: (1, 2) };

let c = || {
 let x = s.f1.1; // s.f1.1 captured by ImmBorrow
};
c();

Here the capture path is the local variable s , followed by a field access
.f1 , and then a tuple index .1 . This closure captures an immutable borrow
of s.f1.1 .

r[type.closure.capture.precision.shared-prefix]

Shared prefix
In the case where a capture path and one of the ancestor’s of that path

are both captured by a closure, the ancestor path is captured with the
highest capture mode among the two captures, CaptureMode =

max(AncestorCaptureMode, DescendantCaptureMode) , using the strict
weak ordering:

ImmBorrow < UniqueImmBorrow < MutBorrow < ByValue

Note that this might need to be applied recursively.

clbr://internal.invalid/book/OEBPS/expressions/field-expr.md
clbr://internal.invalid/book/OEBPS/expressions/tuple-expr.md#tuple-indexing-expressions
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#the-dereference-operator
clbr://internal.invalid/book/OEBPS/expressions/array-expr.md#array-and-slice-indexing-expressions

// In this example, there are three different capture paths
with a shared ancestor:
fn move_value<T>(_: T){}
let s = String::from("S");
let t = (s, String::from("T"));
let mut u = (t, String::from("U"));

let c = || {
 println!("{:?}", u); // u captured by ImmBorrow
 u.1.truncate(0); // u.0 captured by MutBorrow
 move_value(u.0.0); // u.0.0 captured by ByValue
};
c();

Overall this closure will capture u by ByValue .
r[type.closure.capture.precision.dereference-shared]

Rightmost shared reference truncation
The capture path is truncated at the rightmost dereference in the capture

path if the dereference is applied to a shared reference.
This truncation is allowed because fields that are read through a shared

reference will always be read via a shared reference or a copy. This helps
reduce the size of the capture when the extra precision does not yield any
benefit from a borrow checking perspective.

The reason it is the rightmost dereference is to help avoid a shorter
lifetime than is necessary. Consider the following example:
struct Int(i32);
struct B<'a>(&'a i32);

struct MyStruct<'a> {
 a: &'static Int,
 b: B<'a>,
}

fn foo<'a, 'b>(m: &'a MyStruct<'b>) -> impl FnMut() + 'static

{
 let c = || drop(&m.a.0);
 c
}

If this were to capture m , then the closure would no longer outlive
'static , since m is constrained to 'a . Instead, it captures (*(*m).a) by
ImmBorrow .

r[type.closure.capture.precision.wildcard]

Wildcard pattern bindings
Closures only capture data that needs to be read. Binding a value with a

wildcard pattern does not count as a read, and thus won't be captured. For
example, the following closures will not capture x :
let x = String::from("hello");
let c = || {
 let _ = x; // x is not captured
};
c();

let c = || match x { // x is not captured
 _ => println!("Hello World!")
};
c();

This also includes destructuring of tuples, structs, and enums. Fields
matched with the [RestPattern] or [StructPatternEtCetera] are also not
considered as read, and thus those fields will not be captured. The following
illustrates some of these:
let x = (String::from("a"), String::from("b"));
let c = || {
 let (first, ..) = x; // captures `x.0` ByValue
};
// The first tuple field has been moved into the closure.
// The second tuple field is still accessible.

clbr://internal.invalid/book/OEBPS/patterns.md#wildcard-pattern

println!("{:?}", x.1);
c();

struct Example {
 f1: String,
 f2: String,
}

let e = Example {
 f1: String::from("first"),
 f2: String::from("second"),
};
let c = || {
 let Example { f2, .. } = e; // captures `e.f2` ByValue
};
// Field f2 cannot be accessed since it is moved into the
closure.
// Field f1 is still accessible.
println!("{:?}", e.f1);
c();

r[type.closure.capture.precision.wildcard.array-slice] Partial captures of
arrays and slices are not supported; the entire slice or array is always
captured even if used with wildcard pattern matching, indexing, or sub-
slicing. For example:
#[derive(Debug)]
struct Example;
let x = [Example, Example];

let c = || {
 let [first, _] = x; // captures all of `x` ByValue
};
c();
println!("{:?}", x[1]); // ERROR: borrow of moved value: `x`

r[type.closure.capture.precision.wildcard.initialized] Values that are
matched with wildcards must still be initialized.

let x: i32;
let c = || {
 let _ = x; // ERROR: used binding `x` isn't initialized
};

r[type.closure.capture.precision.move-dereference]

Capturing references in move contexts
Because it is not allowed to move fields out of a reference, move

closures will only capture the prefix of a capture path that runs up to, but
not including, the first dereference of a reference. The reference itself will
be moved into the closure.
struct T(String, String);

let mut t = T(String::from("foo"), String::from("bar"));
let t_mut_ref = &mut t;
let mut c = move || {
 t_mut_ref.0.push_str("123"); // captures `t_mut_ref`
ByValue
};
c();

r[type.closure.capture.precision.raw-pointer-dereference]

Raw pointer dereference
Because it is unsafe to dereference a raw pointer, closures will only

capture the prefix of a capture path that runs up to, but not including, the
first dereference of a raw pointer.
struct T(String, String);

let t = T(String::from("foo"), String::from("bar"));
let t_ptr = &t as *const T;

let c = || unsafe {
 println!("{}", (*t_ptr).0); // captures `t_ptr` by
ImmBorrow

};
c();

r[type.closure.capture.precision.union]

Union fields
Because it is unsafe to access a union field, closures will only capture

the prefix of a capture path that runs up to the union itself.
union U {
 a: (i32, i32),
 b: bool,
}
let u = U { a: (123, 456) };

let c = || {
 let x = unsafe { u.a.0 }; // captures `u` ByValue
};
c();

// This also includes writing to fields.
let mut u = U { a: (123, 456) };

let mut c = || {
 u.b = true; // captures `u` with MutBorrow
};
c();

r[type.closure.capture.precision.unaligned]

Reference into unaligned structs
Because it is undefined behavior to create references to unaligned fields

in a structure, closures will only capture the prefix of the capture path that
runs up to, but not including, the first field access into a structure that uses
the packed representation. This includes all fields, even those that are
aligned, to protect against compatibility concerns should any of the fields in
the structure change in the future.

clbr://internal.invalid/book/OEBPS/behavior-considered-undefined.md
clbr://internal.invalid/book/OEBPS/type-layout.md#the-alignment-modifiers

#[repr(packed)]
struct T(i32, i32);

let t = T(2, 5);
let c = || {
 let a = t.0; // captures `t` with ImmBorrow
};
// Copies out of `t` are ok.
let (a, b) = (t.0, t.1);
c();

Similarly, taking the address of an unaligned field also captures the
entire struct:
#[repr(packed)]
struct T(String, String);

let mut t = T(String::new(), String::new());
let c = || {
 let a = std::ptr::addr_of!(t.1); // captures `t` with
ImmBorrow
};
let a = t.0; // ERROR: cannot move out of `t.0` because it is
borrowed
c();

but the above works if it is not packed since it captures the field
precisely:
struct T(String, String);

let mut t = T(String::new(), String::new());
let c = || {
 let a = std::ptr::addr_of!(t.1); // captures `t.1` with
ImmBorrow
};
// The move here is allowed.

let a = t.0;
c();

r[type.closure.capture.precision.box-deref]

Box vs other Deref implementations
The implementation of the Deref trait for Box is treated differently

from other Deref implementations, as it is considered a special entity.
For example, let us look at examples involving Rc and Box . The *rc is

desugared to a call to the trait method deref defined on Rc , but since
*box is treated differently, it is possible to do a precise capture of the
contents of the Box .

r[type.closure.capture.precision.box-non-move.not-moved]

Box with non-move closure
In a non- move closure, if the contents of the Box are not moved into the

closure body, the contents of the Box are precisely captured.
struct S(String);

let b = Box::new(S(String::new()));
let c_box = || {
 let x = &(*b).0; // captures `(*b).0` by ImmBorrow
};
c_box();

// Contrast `Box` with another type that implements Deref:
let r = std::rc::Rc::new(S(String::new()));
let c_rc = || {
 let x = &(*r).0; // captures `r` by ImmBorrow
};
c_rc();

r[type.closure.capture.precision.box-non-move.moved] However, if the
contents of the Box are moved into the closure, then the box is entirely

clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#deref-and-derefmut
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#boxt

captured. This is done so the amount of data that needs to be moved into the
closure is minimized.
// This is the same as the example above except the closure
// moves the value instead of taking a reference to it.

struct S(String);

let b = Box::new(S(String::new()));
let c_box = || {
 let x = (*b).0; // captures `b` with ByValue
};
c_box();

r[type.closure.capture.precision.box-move.read]

Box with move closure
Similarly to moving contents of a Box in a non- move closure, reading

the contents of a Box in a move closure will capture the Box entirely.
struct S(i32);

let b = Box::new(S(10));
let c_box = move || {
 let x = (*b).0; // captures `b` with ByValue
};

r[type.closure.unique-immutable]

Unique immutable borrows in captures
Captures can occur by a special kind of borrow called a unique

immutable borrow, which cannot be used anywhere else in the language and
cannot be written out explicitly. It occurs when modifying the referent of a
mutable reference, as in the following example:
let mut b = false;
let x = &mut b;
let mut c = || {
 // An ImmBorrow and a MutBorrow of `x`.
 let a = &x;
 *x = true; // `x` captured by UniqueImmBorrow
};
// The following line is an error:
// let y = &x;
c();
// However, the following is OK.
let z = &x;

In this case, borrowing x mutably is not possible, because x is not mut .
But at the same time, borrowing x immutably would make the assignment
illegal, because a & &mut reference might not be unique, so it cannot safely
be used to modify a value. So a unique immutable borrow is used: it
borrows x immutably, but like a mutable borrow, it must be unique.

In the above example, uncommenting the declaration of y will produce
an error because it would violate the uniqueness of the closure's borrow of
x ; the declaration of z is valid because the closure's lifetime has expired at
the end of the block, releasing the borrow.

r[type.closure.call]

Call traits and coercions
r[type.closure.call.intro] Closure types all implement [FnOnce],

indicating that they can be called once by consuming ownership of the
closure. Additionally, some closures implement more specific call traits:

r[type.closure.call.fn-mut]

A closure which does not move out of any captured variables
implements [FnMut], indicating that it can be called by mutable
reference.

r[type.closure.call.fn]

A closure which does not mutate or move out of any captured
variables implements [Fn], indicating that it can be called by shared
reference.

[!NOTE] move closures may still implement [Fn] or [FnMut], even
though they capture variables by move. This is because the traits
implemented by a closure type are determined by what the closure
does with captured values, not how it captures them.

r[type.closure.non-capturing] Non-capturing closures are closures that
don't capture anything from their environment. Non-async, non-capturing
closures can be coerced to function pointers (e.g., fn()) with the matching
signature.
let add = |x, y| x + y;

let mut x = add(5,7);

type Binop = fn(i32, i32) -> i32;
let bo: Binop = add;
x = bo(5,7);

r[type.closure.async.traits]

Async closure traits

r[type.closure.async.traits.fn-family] Async closures have a further
restriction of whether or not they implement [FnMut] or [Fn].

The [Future] returned by the async closure has similar capturing
characteristics as a closure. It captures place expressions from the async
closure based on how they are used. The async closure is said to be lending
to its [Future] if it has either of the following properties:

The Future includes a mutable capture.
The async closure captures by value, except when the value is
accessed with a dereference projection.

If the async closure is lending to its Future , then [FnMut] and [Fn] are
not implemented. [FnOnce] is always implemented.

Example: The first clause for a mutable capture can be illustrated
with the following:
fn takes_callback<Fut: Future>(c: impl FnMut() -> Fut) {}

fn f() {
 let mut x = 1i32;
 let c = async || {
 x = 2; // x captured with MutBorrow
 };
 takes_callback(c); // ERROR: async closure does not
implement `FnMut`
}

The second clause for a regular value capture can be illustrated with
the following:
fn takes_callback<Fut: Future>(c: impl Fn() -> Fut) {}

fn f() {
 let x = &1i32;
 let c = async move || {
 let a = x + 2; // x captured ByValue
 };
 takes_callback(c); // ERROR: async closure does not

implement `Fn`
}

The exception of the the second clause can be illustrated by using a
dereference, which does allow Fn and FnMut to be implemented:
fn takes_callback<Fut: Future>(c: impl Fn() -> Fut) {}

fn f() {
 let x = &1i32;
 let c = async move || {
 let a = *x + 2;
 };
 takes_callback(c); // OK: implements `Fn`
}

r[type.closure.async.traits.async-family] Async closures implement
[AsyncFn], [AsyncFnMut], and [AsyncFnOnce] in an analogous way as
regular closures implement [Fn], [FnMut], and [FnOnce]; that is,
depending on the use of the captured variables in its body.

r[type.closure.traits]

Other traits
r[type.closure.traits.intro] All closure types implement Sized .

Additionally, closure types implement the following traits if allowed to do
so by the types of the captures it stores:

Clone

Copy

Sync

Send

r[type.closure.traits.behavior] The rules for Send and Sync match those
for normal struct types, while Clone and Copy behave as if derived. For
Clone , the order of cloning of the captured values is left unspecified.

Because captures are often by reference, the following general rules
arise:

clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#sized
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#clone
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#copy
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#sync
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#send
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#send
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#sync
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#clone
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#copy
clbr://internal.invalid/book/OEBPS/attributes/derive.md
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#clone

A closure is Sync if all captured values are Sync .
A closure is Send if all values captured by non-unique immutable
reference are Sync , and all values captured by unique immutable or
mutable reference, copy, or move are Send .
A closure is Clone or Copy if it does not capture any values by unique
immutable or mutable reference, and if all values it captures by copy
or move are Clone or Copy , respectively.

r[type.closure.drop-order]

clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#sync
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#sync
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#send
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#sync
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#send
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#clone
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#copy
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#clone
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#copy

Drop Order
If a closure captures a field of a composite types such as structs, tuples,

and enums by value, the field's lifetime would now be tied to the closure.
As a result, it is possible for disjoint fields of a composite types to be
dropped at different times.
{
 let tuple =
 (String::from("foo"), String::from("bar")); // --+
 { // |
 let c = || { // ----------------------------+ |
 // tuple.0 is captured into the closure | |
 drop(tuple.0); // | |
 }; // | |
 } // 'c' and 'tuple.0' dropped here ------------+ |
} // tuple.1 dropped here -----------------------------+

r[type.closure.capture.precision.edition2018.entirety]

Edition 2018 and before
Closure types difference

In Edition 2018 and before, closures always capture a variable in its
entirety, without its precise capture path. This means that for the example
used in the Closure types section, the generated closure type would instead
look something like this:
struct Closure<'a> {
 rect : &'a mut Rectangle,
}

impl<'a> FnOnce<()> for Closure<'a> {
 type Output = String;
 extern "rust-call" fn call_once(self, args: ()) -> String {
 self.rect.left_top.x += 1;
 self.rect.right_bottom.x += 1;
 format!("{:?}", self.rect.left_top)
 }
}

and the call to f would work as follows:
f(Closure { rect: rect });

r[type.closure.capture.precision.edition2018.composite]

Capture precision difference
Composite types such as structs, tuples, and enums are always captured

in its entirety, not by individual fields. As a result, it may be necessary to
borrow into a local variable in order to capture a single field:
use std::collections::HashSet;

struct SetVec {
 set: HashSet<u32>,
 vec: Vec<u32>
}

impl SetVec {
 fn populate(&mut self) {
 let vec = &mut self.vec;
 self.set.iter().for_each(|&n| {
 vec.push(n);
 })
 }
}

If, instead, the closure were to use self.vec directly, then it would
attempt to capture self by mutable reference. But since self.set is
already borrowed to iterate over, the code would not compile.

r[type.closure.capture.precision.edition2018.move] If the move keyword
is used, then all captures are by move or, for Copy types, by copy,
regardless of whether a borrow would work. The move keyword is usually
used to allow the closure to outlive the captured values, such as if the
closure is being returned or used to spawn a new thread.

r[type.closure.capture.precision.edition2018.wildcard] Regardless of if
the data will be read by the closure, i.e. in case of wild card patterns, if a
variable defined outside the closure is mentioned within the closure the
variable will be captured in its entirety.

r[type.closure.capture.precision.edition2018.drop-order]

Drop order difference
As composite types are captured in their entirety, a closure which

captures one of those composite types by value would drop the entire
captured variable at the same time as the closure gets dropped.
{
 let tuple =
 (String::from("foo"), String::from("bar"));
 {
 let c = || { // --------------------------+
 // tuple is captured into the closure |
 drop(tuple.0); // |

 }; // |
 } // 'c' and 'tuple' dropped here ------------+
}

r[type.pointer]

Pointer types
r[type.pointer.intro] All pointers are explicit first-class values. They can

be moved or copied, stored into data structs, and returned from functions.
r[type.pointer.reference]

References (& and &mut)
r[type.pointer.reference.syntax]

ReferenceType -> `&` Lifetime? `mut`? TypeNoBounds

r[type.pointer.reference.shared]

Shared references (&)
r[type.pointer.reference.shared.intro] Shared references point to memory

which is owned by some other value.
r[type.pointer.reference.shared.constraint-mutation] When a shared

reference to a value is created, it prevents direct mutation of the value.
Interior mutability provides an exception for this in certain circumstances.
As the name suggests, any number of shared references to a value may
exist. A shared reference type is written &type , or &'a type when you
need to specify an explicit lifetime.

r[type.pointer.reference.shared.copy] Copying a reference is a "shallow"
operation: it involves only copying the pointer itself, that is, pointers are
Copy . Releasing a reference has no effect on the value it points to, but
referencing of a temporary value will keep it alive during the scope of the
reference itself.

r[type.pointer.reference.mut]

Mutable references (&mut)
r[type.pointer.reference.mut.intro] Mutable references point to memory

which is owned by some other value. A mutable reference type is written
&mut type or &'a mut type .

r[type.pointer.reference.mut.copy] A mutable reference (that hasn't been
borrowed) is the only way to access the value it points to, so is not Copy .

r[type.pointer.raw]

clbr://internal.invalid/book/OEBPS/interior-mutability.md
clbr://internal.invalid/book/OEBPS/expressions.md#temporaries

Raw pointers (*const and *mut)
r[type.pointer.raw.syntax]

RawPointerType -> `*` (`mut` | `const`) TypeNoBounds

r[type.pointer.raw.intro] Raw pointers are pointers without safety or
liveness guarantees. Raw pointers are written as *const T or *mut T . For
example *const i32 means a raw pointer to a 32-bit integer.

r[type.pointer.raw.copy] Copying or dropping a raw pointer has no effect
on the lifecycle of any other value.

r[type.pointer.raw.safety] Dereferencing a raw pointer is an unsafe

operation.
This can also be used to convert a raw pointer to a reference by

reborrowing it (&* or &mut *). Raw pointers are generally discouraged;
they exist to support interoperability with foreign code, and writing
performance-critical or low-level functions.

r[type.pointer.raw.cmp] When comparing raw pointers they are
compared by their address, rather than by what they point to. When
comparing raw pointers to dynamically sized types they also have their
additional data compared.

r[type.pointer.raw.constructor] Raw pointers can be created directly
using &raw const for *const pointers and &raw mut for *mut pointers.

r[type.pointer.smart]

clbr://internal.invalid/book/OEBPS/unsafety.md
clbr://internal.invalid/book/OEBPS/dynamically-sized-types.md

Smart Pointers
The standard library contains additional 'smart pointer' types beyond

references and raw pointers.
r[type.pointer.validity]

Bit validity
r[type.pointer.validity.pointer-fragment] Despite pointers and references

being similar to usize s in the machine code emitted on most platforms, the
semantics of transmuting a reference or pointer type to a non-pointer type is
currently undecided. Thus, it may not be valid to transmute a pointer or
reference type, P , to a [u8; size_of::<P>()] .

r[type.pointer.validity.raw] For thin raw pointers (i.e., for P = *const T
or P = *mut T for T: Sized), the inverse direction (transmuting from an
integer or array of integers to P) is always valid. However, the pointer
produced via such a transmutation may not be dereferenced (not even if T
has size zero).

r[type.fn-pointer]

Function pointer types
r[type.fn-pointer.syntax]

BareFunctionType ->
 ForLifetimes? FunctionTypeQualifiers `fn`
 `(` FunctionParametersMaybeNamedVariadic? `)`
BareFunctionReturnType?

FunctionTypeQualifiers -> `unsafe`? (`extern` Abi?)?

BareFunctionReturnType -> `->` TypeNoBounds

FunctionParametersMaybeNamedVariadic ->
 MaybeNamedFunctionParameters |
MaybeNamedFunctionParametersVariadic

MaybeNamedFunctionParameters ->
 MaybeNamedParam (`,` MaybeNamedParam)* `,`?

MaybeNamedParam ->
 OuterAttribute* ((IDENTIFIER | `_`) `:`)? Type

MaybeNamedFunctionParametersVariadic ->
 (MaybeNamedParam `,`)* MaybeNamedParam `,`
OuterAttribute* `...`

r[type.fn-pointer.intro] Function pointer types, written using the fn

keyword, refer to a function whose identity is not necessarily known at
compile-time.

An example where Binop is defined as a function pointer type:
fn add(x: i32, y: i32) -> i32 {
 x + y
}

let mut x = add(5,7);

type Binop = fn(i32, i32) -> i32;
let bo: Binop = add;
x = bo(5,7);

r[type.fn-pointer.coercion] Function pointers can be created via a
coercion from both function items and non-capturing, non-async closures.

r[type.fn-pointer.qualifiers] The unsafe qualifier indicates that the
type's value is an unsafe function, and the extern qualifier indicates it is an
extern function.

r[type.fn-pointer.constraint-variadic] Variadic parameters can only be
specified with extern function types with the "C" or "cdecl" calling
convention.

This also includes the corresponding [-unwind variants]
[items.fn.extern.unwind].

r[type.fn-pointer.attributes]

clbr://internal.invalid/book/OEBPS/types/function-item.md
clbr://internal.invalid/book/OEBPS/types/closure.md
clbr://internal.invalid/book/OEBPS/unsafe-keyword.md
clbr://internal.invalid/book/OEBPS/items/functions.md#extern-function-qualifier
clbr://internal.invalid/book/OEBPS/items/external-blocks.md

Attributes on function pointer parameters
Attributes on function pointer parameters follow the same rules and

restrictions as regular function parameters.

clbr://internal.invalid/book/OEBPS/items/functions.md#attributes-on-function-parameters

r[type.trait-object]

Trait objects
r[type.trait-object.syntax]

TraitObjectType -> `dyn`? TypeParamBounds

TraitObjectTypeOneBound -> `dyn`? TraitBound

r[type.trait-object.intro] A trait object is an opaque value of another type
that implements a set of traits. The set of traits is made up of a dyn
compatible base trait plus any number of auto traits.

r[type.trait-object.impls] Trait objects implement the base trait, its auto
traits, and any supertraits of the base trait.

r[type.trait-object.name] Trait objects are written as the keyword dyn
followed by a set of trait bounds, but with the following restrictions on the
trait bounds.

r[type.trait-object.constraint] There may not be more than one non-auto
trait, no more than one lifetime, and opt-out bounds (e.g. ?Sized) are not
allowed. Furthermore, paths to traits may be parenthesized.

For example, given a trait Trait , the following are all trait objects:

dyn Trait

dyn Trait + Send

dyn Trait + Send + Sync

dyn Trait + 'static

dyn Trait + Send + 'static

dyn Trait +

dyn 'static + Trait .
dyn (Trait)

r[type.trait-object.syntax-edition2021]

[!EDITION-2021] Before the 2021 edition, the dyn keyword may
be omitted.

r[type.trait-object.syntax-edition2018]

clbr://internal.invalid/book/OEBPS/items/traits.md#dyn-compatibility
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#auto-traits
clbr://internal.invalid/book/OEBPS/items/traits.md#supertraits

[!EDITION-2018] In the 2015 edition, if the first bound of the trait
object is a path that starts with :: , then the dyn will be treated as a
part of the path. The first path can be put in parenthesis to get around
this. As such, if you want a trait object with the trait
::your_module::Trait , you should write it as dyn

(::your_module::Trait) .
Beginning in the 2018 edition, dyn is a true keyword and is not

allowed in paths, so the parentheses are not necessary.

r[type.trait-object.alias] Two trait object types alias each other if the base
traits alias each other and if the sets of auto traits are the same and the
lifetime bounds are the same. For example, dyn Trait + Send +

UnwindSafe is the same as dyn Trait + UnwindSafe + Send .
r[type.trait-object.unsized] Due to the opaqueness of which concrete

type the value is of, trait objects are dynamically sized types. Like all DSTs,
trait objects are used behind some type of pointer; for example &dyn

SomeTrait or Box<dyn SomeTrait> . Each instance of a pointer to a trait
object includes:

a pointer to an instance of a type T that implements SomeTrait
a virtual method table, often just called a vtable, which contains, for
each method of SomeTrait and its supertraits that T implements, a
pointer to T 's implementation (i.e. a function pointer).

The purpose of trait objects is to permit "late binding" of methods.
Calling a method on a trait object results in virtual dispatch at runtime: that
is, a function pointer is loaded from the trait object vtable and invoked
indirectly. The actual implementation for each vtable entry can vary on an
object-by-object basis.

An example of a trait object:
trait Printable {
 fn stringify(&self) -> String;
}

impl Printable for i32 {

clbr://internal.invalid/book/OEBPS/dynamically-sized-types.md
clbr://internal.invalid/book/OEBPS/items/traits.md#supertraits

 fn stringify(&self) -> String { self.to_string() }
}

fn print(a: Box<dyn Printable>) {
 println!("{}", a.stringify());
}

fn main() {
 print(Box::new(10) as Box<dyn Printable>);
}

In this example, the trait Printable occurs as a trait object in both the
type signature of print , and the cast expression in main .

r[type.trait-object.lifetime-bounds]

Trait Object Lifetime Bounds
Since a trait object can contain references, the lifetimes of those

references need to be expressed as part of the trait object. This lifetime is
written as Trait + 'a . There are defaults that allow this lifetime to usually
be inferred with a sensible choice.

clbr://internal.invalid/book/OEBPS/lifetime-elision.md#default-trait-object-lifetimes

r[type.impl-trait]

Impl trait
r[type.impl-trait.syntax]

ImplTraitType -> `impl` TypeParamBounds

ImplTraitTypeOneBound -> `impl` TraitBound

r[type.impl-trait.intro] impl Trait provides ways to specify unnamed
but concrete types that implement a specific trait. It can appear in two sorts
of places: argument position (where it can act as an anonymous type
parameter to functions), and return position (where it can act as an abstract
return type).
trait Trait {}
impl Trait for () {}

// argument position: anonymous type parameter
fn foo(arg: impl Trait) {
}

// return position: abstract return type
fn bar() -> impl Trait {
}

r[type.impl-trait.param]

Anonymous type parameters
[!NOTE] This is often called "impl Trait in argument position".

(The term "parameter" is more correct here, but "impl Trait in
argument position" is the phrasing used during the development of this
feature, and it remains in parts of the implementation.)

r[type.impl-trait.param.intro] Functions can use impl followed by a set
of trait bounds to declare a parameter as having an anonymous type. The
caller must provide a type that satisfies the bounds declared by the
anonymous type parameter, and the function can only use the methods
available through the trait bounds of the anonymous type parameter.

For example, these two forms are almost equivalent:
trait Trait {}

// generic type parameter
fn with_generic_type<T: Trait>(arg: T) {
}

// impl Trait in argument position
fn with_impl_trait(arg: impl Trait) {
}

r[type.impl-trait.param.generic] That is, impl Trait in argument
position is syntactic sugar for a generic type parameter like <T: Trait> ,
except that the type is anonymous and doesn't appear in the
[GenericParams] list.

[!NOTE] For function parameters, generic type parameters and
impl Trait are not exactly equivalent. With a generic parameter such
as <T: Trait> , the caller has the option to explicitly specify the
generic argument for T at the call site using [GenericArgs], for
example, foo::<usize>(1) . Changing a parameter from either one to
the other can constitute a breaking change for the callers of a function,
since this changes the number of generic arguments.

r[type.impl-trait.return]

Abstract return types
[!NOTE] This is often called "impl Trait in return position".

r[type.impl-trait.return.intro] Functions can use impl Trait to return an
abstract return type. These types stand in for another concrete type where
the caller may only use the methods declared by the specified Trait .

r[type.impl-trait.return.constraint-body] Each possible return value from
the function must resolve to the same concrete type.

impl Trait in return position allows a function to return an unboxed
abstract type. This is particularly useful with closures and iterators. For
example, closures have a unique, un-writable type. Previously, the only way
to return a closure from a function was to use a trait object:
fn returns_closure() -> Box<dyn Fn(i32) -> i32> {
 Box::new(|x| x + 1)
}

This could incur performance penalties from heap allocation and
dynamic dispatch. It wasn't possible to fully specify the type of the closure,
only to use the Fn trait. That means that the trait object is necessary.
However, with impl Trait , it is possible to write this more simply:
fn returns_closure() -> impl Fn(i32) -> i32 {
 |x| x + 1
}

which also avoids the drawbacks of using a boxed trait object.
Similarly, the concrete types of iterators could become very complex,

incorporating the types of all previous iterators in a chain. Returning impl
Iterator means that a function only exposes the Iterator trait as a
bound on its return type, instead of explicitly specifying all of the other
iterator types involved.

r[type.impl-trait.return-in-trait]

clbr://internal.invalid/book/OEBPS/types/closure.md
clbr://internal.invalid/book/OEBPS/types/trait-object.md

Return-position impl Trait in traits and trait
implementations

r[type.impl-trait.return-in-trait.intro] Functions in traits may also use
impl Trait as a syntax for an anonymous associated type.

r[type.impl-trait.return-in-trait.desugaring] Every impl Trait in the
return type of an associated function in a trait is desugared to an anonymous
associated type. The return type that appears in the implementation's
function signature is used to determine the value of the associated type.

r[type.impl-trait.generic-captures]

Capturing
Behind each return-position impl Trait abstract type is some hidden

concrete type. For this concrete type to use a generic parameter, that generic
parameter must be captured by the abstract type.

r[type.impl-trait.generic-capture.auto]

Automatic capturing
r[type.impl-trait.generic-capture.auto.intro] Return-position impl Trait

abstract types automatically capture all in-scope generic parameters,
including generic type, const, and lifetime parameters (including higher-
ranked ones).

r[type.impl-trait.generic-capture.edition2024]

[!EDITION-2024] Before the 2024 edition, on free functions and
on associated functions and methods of inherent impls, generic
lifetime parameters that do not appear in the bounds of the abstract
return type are not automatically captured.

r[type.impl-trait.generic-capture.precise]

Precise capturing
r[type.impl-trait.generic-capture.precise.use] The set of generic

parameters captured by a return-position impl Trait abstract type may be
explicitly controlled with a use<..> bound. If present, only the generic
parameters listed in the use<..> bound will be captured. E.g.:
fn capture<'a, 'b, T>(x: &'a (), y: T) -> impl Sized + use<'a,
T> {
 //
~~~~~~~~~~~~~~~~~~~~~~~ 
  //                                     Captures `'a` and `T` 
only. 
  (x, y) 
} 

r[type.impl-trait.generic-capture.precise.constraint-single] Currently,
only one use<..>  bound may be present in a bounds list, all in-scope type
and const generic parameters must be included, and all lifetime parameters
that appear in other bounds of the abstract type must be included.

r[type.impl-trait.generic-capture.precise.constraint-lifetime] Within the 
use<..>  bound, any lifetime parameters present must appear before all
type and const generic parameters, and the elided lifetime ( '_ ) may be
present if it is otherwise allowed to appear within the impl Trait  return
type.

r[type.impl-trait.generic-capture.precise.constraint-param-impl-trait]
Because all in-scope type parameters must be included by name, a use<..>
bound may not be used in the signature of items that use argument-position 
impl Trait , as those items have anonymous type parameters in scope.

r[type.impl-trait.generic-capture.precise.constraint-in-trait] Any 
use<..>  bound that is present in an associated function in a trait definition
must include all generic parameters of the trait, including the implicit Self
generic type parameter of the trait.

clbr://internal.invalid/book/OEBPS/trait-bounds.md#use-bounds


Differences between generics and impl Trait in
return position

In argument position, impl Trait  is very similar in semantics to a
generic type parameter. However, there are significant differences between
the two in return position. With impl Trait , unlike with a generic type
parameter, the function chooses the return type, and the caller cannot
choose the return type.

The function:
# trait Trait {} 
fn foo<T: Trait>() -> T { 
    // ... 
# panic!() 
} 

allows the caller to determine the return type, T , and the function returns
that type.

The function:
# trait Trait {} 
# impl Trait for () {} 
fn foo() -> impl Trait { 
    // ... 
} 

doesn't allow the caller to determine the return type. Instead, the function
chooses the return type, but only promises that it will implement Trait .

r[type.impl-trait.constraint]



Limitations
impl Trait  can only appear as a parameter or return type of a non-

extern  function. It cannot be the type of a let  binding, field type, or
appear inside a type alias.



r[type.generic]



Type parameters
Within the body of an item that has type parameter declarations, the

names of its type parameters are types:
fn to_vec<A: Clone>(xs: &[A]) -> Vec<A> { 
    if xs.is_empty() { 
        return vec![]; 
    } 
    let first: A = xs[0].clone(); 
    let mut rest: Vec<A> = to_vec(&xs[1..]); 
    rest.insert(0, first); 
    rest 
} 

Here, first  has type A , referring to to_vec 's A  type parameter; and 
rest  has type Vec<A> , a vector with element type A .



r[type.inferred]



Inferred type
r[type.inferred.syntax]

InferredType -> `_` 

r[type.inferred.intro] The inferred type asks the compiler to infer the
type if possible based on the surrounding information available.

r[type.inferred.constraint] It cannot be used in item signatures.
It is often used in generic arguments:

let x: Vec<_> = (0..10).collect(); 



r[dynamic-sized]



Dynamically Sized Types
r[dynamic-sized.intro] Most types have a fixed size that is known at

compile time and implement the trait Sized . A type with a size that is
known only at run-time is called a dynamically sized type (DST) or,
informally, an unsized type. Slices and trait objects are two examples of
DSTs.

r[dynamic-sized.restriction] Such types can only be used in certain
cases:

r[dynamic-sized.pointer-types]

Pointer types to DSTs are sized but have twice the size of pointers to
sized types

Pointers to slices also store the number of elements of the slice.
Pointers to trait objects also store a pointer to a vtable.

r[dynamic-sized.question-sized]

DSTs can be provided as type arguments to generic type parameters
having the special ?Sized  bound. They can also be used for associated
type definitions when the corresponding associated type declaration
has a ?Sized  bound. By default, any type parameter or associated type
has a Sized  bound, unless it is relaxed using ?Sized .

r[dynamic-sized.trait-impl]

Traits may be implemented for DSTs. Unlike with generic type
parameters, Self: ?Sized  is the default in trait definitions.

r[dynamic-sized.struct-field]

Structs may contain a DST as the last field; this makes the struct itself
a DST.

[!NOTE] Variables, function parameters, const items, and static
items must be Sized .

clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#sized
clbr://internal.invalid/book/OEBPS/types/slice.md
clbr://internal.invalid/book/OEBPS/types/trait-object.md
clbr://internal.invalid/book/OEBPS/types/pointer.md
clbr://internal.invalid/book/OEBPS/variables.md
clbr://internal.invalid/book/OEBPS/items/constant-items.md
clbr://internal.invalid/book/OEBPS/items/static-items.md


r[layout]



Type Layout
r[layout.intro] The layout of a type is its size, alignment, and the relative

offsets of its fields. For enums, how the discriminant is laid out and
interpreted is also part of type layout.

r[layout.guarantees] Type layout can be changed with each compilation.
Instead of trying to document exactly what is done, we only document what
is guaranteed today.

Note that even types with the same layout can still differ in how they are
passed across function boundaries. For function call ABI compatibility of
types, see here.

r[layout.properties]

clbr://internal.invalid/book/core/primitive.fn.md#abi-compatibility


Size and Alignment
All values have an alignment and size.
r[layout.properties.align] The alignment of a value specifies what

addresses are valid to store the value at. A value of alignment n  must only
be stored at an address that is a multiple of n. For example, a value with an
alignment of 2 must be stored at an even address, while a value with an
alignment of 1 can be stored at any address. Alignment is measured in
bytes, and must be at least 1, and always a power of 2. The alignment of a
value can be checked with the align_of_val  function.

r[layout.properties.size] The size of a value is the offset in bytes between
successive elements in an array with that item type including alignment
padding. The size of a value is always a multiple of its alignment. Note that
some types are zero-sized; 0 is considered a multiple of any alignment (for
example, on some platforms, the type [u16; 0]  has size 0 and alignment
2). The size of a value can be checked with the size_of_val  function.

r[layout.properties.sized] Types where all values have the same size and
alignment, and both are known at compile time, implement the Sized  trait
and can be checked with the size_of  and align_of  functions. Types that
are not Sized  are known as dynamically sized types. Since all values of a 
Sized  type share the same size and alignment, we refer to those shared
values as the size of the type and the alignment of the type respectively.

r[layout.primitive]

std::mem::align_of_val
std::mem::size_of_val
std::marker::Sized
std::mem::size_of
std::mem::align_of
std::marker::Sized
clbr://internal.invalid/book/OEBPS/dynamically-sized-types.md


Primitive Data Layout
r[layout.primitive.size] The size of most primitives is given in this table.

Type size_of::<Type>()

bool 1

u8  / i8 1

u16  / i16 2

u32  / i32 4

u64  / i64 8

u128  / i128 16

usize  / isize See below

f32 4

f64 8

char 4

r[layout.primitive.size-int] usize  and isize  have a size big enough to
contain every address on the target platform. For example, on a 32 bit
target, this is 4 bytes, and on a 64 bit target, this is 8 bytes.

r[layout.primitive.align] The alignment of primitives is platform-
specific. In most cases, their alignment is equal to their size, but it may be
less. In particular, i128  and u128  are often aligned to 4 or 8 bytes even
though their size is 16, and on many 32-bit platforms, i64 , u64 , and f64
are only aligned to 4 bytes, not 8.

r[layout.pointer]



Pointers and References Layout
r[layout.pointer.intro] Pointers and references have the same layout.

Mutability of the pointer or reference does not change the layout.
r[layout.pointer.thin] Pointers to sized types have the same size and

alignment as usize .
r[layout.pointer.unsized] Pointers to unsized types are sized. The size

and alignment is guaranteed to be at least equal to the size and alignment of
a pointer.

[!NOTE] Though you should not rely on this, all pointers to DSTs
are currently twice the size of the size of usize  and have the same
alignment.

r[layout.array]



Array Layout
An array of [T; N]  has a size of size_of::<T>() * N  and the same

alignment of T . Arrays are laid out so that the zero-based nth  element of
the array is offset from the start of the array by n * size_of::<T>()  bytes.

r[layout.slice]



Slice Layout
Slices have the same layout as the section of the array they slice.

[!NOTE] This is about the raw [T]  type, not pointers ( &[T] , 
Box<[T]> , etc.) to slices.

r[layout.str]



str Layout
String slices are a UTF-8 representation of characters that have the same

layout as slices of type [u8] .
r[layout.tuple]



Tuple Layout
r[layout.tuple.general] Tuples are laid out according to the Rust

representation.
r[layout.tuple.unit] The exception to this is the unit tuple ( () ), which is

guaranteed as a zero-sized type to have a size of 0 and an alignment of 1.
r[layout.trait-object]



Trait Object Layout
Trait objects have the same layout as the value the trait object is of.

[!NOTE] This is about the raw trait object types, not pointers ( &dyn 
Trait , Box<dyn Trait> , etc.) to trait objects.

r[layout.closure]



Closure Layout
Closures have no layout guarantees.
r[layout.repr]



Representations
r[layout.repr.intro] All user-defined composite types ( struct s, enum s,

and union s) have a representation that specifies what the layout is for the
type.

r[layout.repr.kinds] The possible representations for a type are:

Rust  (default)
C

The primitive representations
transparent

r[layout.repr.attribute] The representation of a type can be changed by
applying the repr  attribute to it. The following example shows a struct
with a C  representation.
#[repr(C)] 
struct ThreeInts { 
    first: i16, 
    second: i8, 
    third: i32 
} 

r[layout.repr.align-packed] The alignment may be raised or lowered with
the align  and packed  modifiers respectively. They alter the representation
specified in the attribute. If no representation is specified, the default one is
altered.
// Default representation, alignment lowered to 2. 
#[repr(packed(2))] 
struct PackedStruct { 
    first: i16, 
    second: i8, 
    third: i32 
} 
 
// C representation, alignment raised to 8 



#[repr(C, align(8))] 
struct AlignedStruct { 
    first: i16, 
    second: i8, 
    third: i32 
} 

[!NOTE] As a consequence of the representation being an attribute
on the item, the representation does not depend on generic parameters.
Any two types with the same name have the same representation. For
example, Foo<Bar>  and Foo<Baz>  both have the same representation.

r[layout.repr.inter-field] The representation of a type can change the
padding between fields, but does not change the layout of the fields
themselves. For example, a struct with a C  representation that contains a
struct Inner  with the Rust  representation will not change the layout of 
Inner .

r[layout.repr.rust]

The Rust Representation
r[layout.repr.rust.intro] The Rust  representation is the default

representation for nominal types without a repr  attribute. Using this
representation explicitly through a repr  attribute is guaranteed to be the
same as omitting the attribute entirely.

r[layout.repr.rust.layout] The only data layout guarantees made by this
representation are those required for soundness. They are:

1. The fields are properly aligned.
2. The fields do not overlap.
3. The alignment of the type is at least the maximum alignment of its

fields.
r[layout.repr.rust.alignment] Formally, the first guarantee means that the

offset of any field is divisible by that field's alignment.
r[layout.repr.rust.field-storage] The second guarantee means that the

fields can be ordered such that the offset plus the size of any field is less



than or equal to the offset of the next field in the ordering. The ordering
does not have to be the same as the order in which the fields are specified in
the declaration of the type.

Be aware that the second guarantee does not imply that the fields have
distinct addresses: zero-sized types may have the same address as other
fields in the same struct.

r[layout.repr.rust.unspecified] There are no other guarantees of data
layout made by this representation.

r[layout.repr.c]

The C Representation
r[layout.repr.c.intro] The C  representation is designed for dual purposes.

One purpose is for creating types that are interoperable with the C
Language. The second purpose is to create types that you can soundly
perform operations on that rely on data layout such as reinterpreting values
as a different type.

Because of this dual purpose, it is possible to create types that are not
useful for interfacing with the C programming language.

r[layout.repr.c.constraint] This representation can be applied to structs,
unions, and enums. The exception is zero-variant enums for which the C
representation is an error.

r[layout.repr.c.struct]

#[repr(C)] Structs
r[layout.repr.c.struct.align] The alignment of the struct is the alignment

of the most-aligned field in it.
r[layout.repr.c.struct.size-field-offset] The size and offset of fields is

determined by the following algorithm.
Start with a current offset of 0 bytes.
For each field in declaration order in the struct, first determine the size

and alignment of the field. If the current offset is not a multiple of the field's
alignment, then add padding bytes to the current offset until it is a multiple
of the field's alignment. The offset for the field is what the current offset is
now. Then increase the current offset by the size of the field.

clbr://internal.invalid/book/OEBPS/items/enumerations.md#zero-variant-enums


Finally, the size of the struct is the current offset rounded up to the
nearest multiple of the struct's alignment.

Here is this algorithm described in pseudocode.
/// Returns the amount of padding needed after `offset` to 
ensure that the 
/// following address will be aligned to `alignment`. 
fn padding_needed_for(offset: usize, alignment: usize) -> usize 
{ 
    let misalignment = offset % alignment; 
    if misalignment > 0 { 
        // round up to next multiple of `alignment` 
        alignment - misalignment 
    } else { 
        // already a multiple of `alignment` 
        0 
    } 
} 
 
struct.alignment = struct.fields().map(|field| 
field.alignment).max(); 
 
let current_offset = 0; 
 
for field in struct.fields_in_declaration_order() { 
    // Increase the current offset so that it's a multiple of 
the alignment 
    // of this field. For the first field, this will always be 
zero. 
    // The skipped bytes are called padding bytes. 
    current_offset += padding_needed_for(current_offset, 
field.alignment); 
 
    struct[field].offset = current_offset; 
 
    current_offset += field.size; 



} 
 
struct.size = current_offset + 
padding_needed_for(current_offset, struct.alignment); 

[!WARNING] This pseudocode uses a naive algorithm that ignores
overflow issues for the sake of clarity. To perform memory layout
computations in actual code, use Layout .

[!NOTE] This algorithm can produce zero-sized structs. In C, an
empty struct declaration like struct Foo { }  is illegal. However,
both gcc and clang support options to enable such structs, and assign
them size zero. C++, in contrast, gives empty structs a size of 1, unless
they are inherited from or they are fields that have the 
[[no_unique_address]]  attribute, in which case they do not increase
the overall size of the struct.

r[layout.repr.c.union]

#[repr(C)] Unions
r[layout.repr.c.union.intro] A union declared with #[repr(C)]  will have

the same size and alignment as an equivalent C union declaration in the C
language for the target platform.

r[layout.repr.c.union.size-align] The union will have a size of the
maximum size of all of its fields rounded to its alignment, and an alignment
of the maximum alignment of all of its fields. These maximums may come
from different fields.
#[repr(C)] 
union Union { 
    f1: u16, 
    f2: [u8; 4], 
} 
 
assert_eq!(std::mem::size_of::<Union>(), 4);  // From f2 
assert_eq!(std::mem::align_of::<Union>(), 2); // From f1 
 
#[repr(C)] 

std::alloc::Layout


union SizeRoundedUp { 
   a: u32, 
   b: [u16; 3], 
} 
 
assert_eq!(std::mem::size_of::<SizeRoundedUp>(), 8);  // Size 
of 6 from b, 
                                                      // 
rounded up to 8 from 
                                                      // 
alignment of a. 
assert_eq!(std::mem::align_of::<SizeRoundedUp>(), 4); // From 
a 

r[layout.repr.c.enum]

#[repr(C)] Field-less Enums
For field-less enums, the C  representation has the size and alignment of

the default enum  size and alignment for the target platform's C ABI.

[!NOTE] The enum representation in C is implementation defined,
so this is really a "best guess". In particular, this may be incorrect
when the C code of interest is compiled with certain flags.

[!WARNING] There are crucial differences between an enum  in the
C language and Rust's field-less enums with this representation. An 
enum  in C is mostly a typedef  plus some named constants; in other
words, an object of an enum  type can hold any integer value. For
example, this is often used for bitflags in C . In contrast, Rust’s field-
less enums can only legally hold the discriminant values, everything
else is undefined behavior. Therefore, using a field-less enum in FFI to
model a C enum  is often wrong.

r[layout.repr.c.adt]

#[repr(C)] Enums With Fields

clbr://internal.invalid/book/OEBPS/items/enumerations.md#field-less-enum
clbr://internal.invalid/book/OEBPS/items/enumerations.md#field-less-enum
clbr://internal.invalid/book/OEBPS/items/enumerations.md#field-less-enum
clbr://internal.invalid/book/OEBPS/behavior-considered-undefined.md


r[layout.repr.c.adt.intro] The representation of a repr(C)  enum with
fields is a repr(C)  struct with two fields, also called a "tagged union" in C:

r[layout.repr.c.adt.tag]

a repr(C)  version of the enum with all fields removed ("the tag")
r[layout.repr.c.adt.fields]

a repr(C)  union of repr(C)  structs for the fields of each variant that
had them ("the payload")

[!NOTE] Due to the representation of repr(C)  structs and unions,
if a variant has a single field there is no difference between putting that
field directly in the union or wrapping it in a struct; any system which
wishes to manipulate such an enum 's representation may therefore use
whichever form is more convenient or consistent for them.

// This Enum has the same representation as ... 
#[repr(C)] 
enum MyEnum { 
    A(u32), 
    B(f32, u64), 
    C { x: u32, y: u8 }, 
    D, 
 } 
 
// ... this struct. 
#[repr(C)] 
struct MyEnumRepr { 
    tag: MyEnumDiscriminant, 
    payload: MyEnumFields, 
} 
 
// This is the discriminant enum. 
#[repr(C)] 
enum MyEnumDiscriminant { A, B, C, D } 
 



// This is the variant union. 
#[repr(C)] 
union MyEnumFields { 
    A: MyAFields, 
    B: MyBFields, 
    C: MyCFields, 
    D: MyDFields, 
} 
 
#[repr(C)] 
#[derive(Copy, Clone)] 
struct MyAFields(u32); 
 
#[repr(C)] 
#[derive(Copy, Clone)] 
struct MyBFields(f32, u64); 
 
#[repr(C)] 
#[derive(Copy, Clone)] 
struct MyCFields { x: u32, y: u8 } 
 
// This struct could be omitted (it is a zero-sized type), and 
it must be in 
// C/C++ headers. 
#[repr(C)] 
#[derive(Copy, Clone)] 
struct MyDFields; 

r[layout.repr.primitive]

Primitive representations
r[layout.repr.primitive.intro] The primitive representations are the

representations with the same names as the primitive integer types. That is: 
u8 , u16 , u32 , u64 , u128 , usize , i8 , i16 , i32 , i64 , i128 , and isize .

r[layout.repr.primitive.constraint] Primitive representations can only be
applied to enumerations and have different behavior whether the enum has



fields or no fields. It is an error for zero-variant enums to have a primitive
representation. Combining two primitive representations together is an
error.

r[layout.repr.primitive.enum]

Primitive Representation of Field-less Enums
For field-less enums, primitive representations set the size and alignment

to be the same as the primitive type of the same name. For example, a field-
less enum with a u8  representation can only have discriminants between 0
and 255 inclusive.

r[layout.repr.primitive.adt]

Primitive Representation of Enums With Fields
The representation of a primitive representation enum is a repr(C)

union of repr(C)  structs for each variant with a field. The first field of
each struct in the union is the primitive representation version of the enum
with all fields removed ("the tag") and the remaining fields are the fields of
that variant.

[!NOTE] This representation is unchanged if the tag is given its
own member in the union, should that make manipulation more clear
for you (although to follow the C++ standard the tag member should
be wrapped in a struct ).

// This enum has the same representation as ... 
#[repr(u8)] 
enum MyEnum { 
    A(u32), 
    B(f32, u64), 
    C { x: u32, y: u8 }, 
    D, 
 } 
 
// ... this union. 
#[repr(C)] 
union MyEnumRepr { 

clbr://internal.invalid/book/OEBPS/items/enumerations.md#zero-variant-enums
clbr://internal.invalid/book/OEBPS/items/enumerations.md#field-less-enum


    A: MyVariantA, 
    B: MyVariantB, 
    C: MyVariantC, 
    D: MyVariantD, 
} 
 
// This is the discriminant enum. 
#[repr(u8)] 
#[derive(Copy, Clone)] 
enum MyEnumDiscriminant { A, B, C, D } 
 
#[repr(C)] 
#[derive(Clone, Copy)] 
struct MyVariantA(MyEnumDiscriminant, u32); 
 
#[repr(C)] 
#[derive(Clone, Copy)] 
struct MyVariantB(MyEnumDiscriminant, f32, u64); 
 
#[repr(C)] 
#[derive(Clone, Copy)] 
struct MyVariantC { tag: MyEnumDiscriminant, x: u32, y: u8 } 
 
#[repr(C)] 
#[derive(Clone, Copy)] 
struct MyVariantD(MyEnumDiscriminant); 

r[layout.repr.primitive-c]

Combining primitive representations of enums with fields and 
#[repr(C)]

For enums with fields, it is also possible to combine repr(C)  and a
primitive representation (e.g., repr(C, u8) ). This modifies the repr(C)
by changing the representation of the discriminant enum to the chosen
primitive instead. So, if you chose the u8  representation, then the
discriminant enum would have a size and alignment of 1 byte.



The discriminant enum from the example earlier then becomes:
#[repr(C, u8)] // `u8` was added 
enum MyEnum { 
    A(u32), 
    B(f32, u64), 
    C { x: u32, y: u8 }, 
    D, 
 } 
 
// ... 
 
#[repr(u8)] // So `u8` is used here instead of `C` 
enum MyEnumDiscriminant { A, B, C, D } 
 
// ... 

For example, with a repr(C, u8)  enum it is not possible to have 257
unique discriminants ("tags") whereas the same enum with only a repr(C)
attribute will compile without any problems.

Using a primitive representation in addition to repr(C)  can change the
size of an enum from the repr(C)  form:
#[repr(C)] 
enum EnumC { 
    Variant0(u8), 
    Variant1, 
} 
 
#[repr(C, u8)] 
enum Enum8 { 
    Variant0(u8), 
    Variant1, 
} 
 
#[repr(C, u16)] 
enum Enum16 { 



    Variant0(u8), 
    Variant1, 
} 
 
// The size of the C representation is platform dependent 
assert_eq!(std::mem::size_of::<EnumC>(), 8); 
// One byte for the discriminant and one byte for the value in 
Enum8::Variant0 
assert_eq!(std::mem::size_of::<Enum8>(), 2); 
// Two bytes for the discriminant and one byte for the value 
in Enum16::Variant0 
// plus one byte of padding. 
assert_eq!(std::mem::size_of::<Enum16>(), 4); 

r[layout.repr.alignment]

The alignment modifiers
r[layout.repr.alignment.intro] The align  and packed  modifiers can be

used to respectively raise or lower the alignment of struct s and union s. 
packed  may also alter the padding between fields (although it will not alter
the padding inside of any field). On their own, align  and packed  do not
provide guarantees about the order of fields in the layout of a struct or the
layout of an enum variant, although they may be combined with
representations (such as C ) which do provide such guarantees.

r[layout.repr.alignment.constraint-alignment] The alignment is specified
as an integer parameter in the form of #[repr(align(x))]  or #

[repr(packed(x))] . The alignment value must be a power of two from 1
up to 229. For packed , if no value is given, as in #[repr(packed)] , then
the value is 1.

r[layout.repr.alignment.align] For align , if the specified alignment is
less than the alignment of the type without the align  modifier, then the
alignment is unaffected.

r[layout.repr.alignment.packed] For packed , if the specified alignment
is greater than the type's alignment without the packed  modifier, then the



alignment and layout is unaffected.
r[layout.repr.alignment.packed-fields] The alignments of each field, for

the purpose of positioning fields, is the smaller of the specified alignment
and the alignment of the field's type.

r[layout.repr.alignment.packed-padding] Inter-field padding is
guaranteed to be the minimum required in order to satisfy each field's
(possibly altered) alignment (although note that, on its own, packed  does
not provide any guarantee about field ordering). An important consequence
of these rules is that a type with #[repr(packed(1))]  (or #

[repr(packed)] ) will have no inter-field padding.
r[layout.repr.alignment.constraint-exclusive] The align  and packed

modifiers cannot be applied on the same type and a packed  type cannot
transitively contain another align ed type. align  and packed  may only be
applied to the Rust  and C  representations.

r[layout.repr.alignment.enum] The align  modifier can also be applied
on an enum . When it is, the effect on the enum 's alignment is the same as if
the enum  was wrapped in a newtype struct  with the same align

modifier.

[!NOTE] References to unaligned fields are not allowed because it
is undefined behavior. When fields are unaligned due to an alignment
modifier, consider the following options for using references and
dereferences:
#[repr(packed)] 
struct Packed { 
    f1: u8, 
    f2: u16, 
} 
let mut e = Packed { f1: 1, f2: 2 }; 
// Instead of creating a reference to a field, copy the 
value to a local variable. 
let x = e.f2; 
// Or in situations like `println!` which creates a 
reference, use braces 

clbr://internal.invalid/book/OEBPS/behavior-considered-undefined.md


// to change it to a copy of the value. 
println!("{}", {e.f2}); 
// Or if you need a pointer, use the unaligned methods 
for reading and writing 
// instead of dereferencing the pointer directly. 
let ptr: *const u16 = &raw const e.f2; 
let value = unsafe { ptr.read_unaligned() }; 
let mut_ptr: *mut u16 = &raw mut e.f2; 
unsafe { mut_ptr.write_unaligned(3) } 

r[layout.repr.transparent]

The transparent Representation
r[layout.repr.transparent.constraint-field] The transparent

representation can only be used on a struct  or an enum  with a single
variant that has:

any number of fields with size 0 and alignment 1 (e.g. 
PhantomData<T> ), and
at most one other field.

r[layout.repr.transparent.layout-abi] Structs and enums with this
representation have the same layout and ABI as the only non-size 0 non-
alignment 1 field, if present, or unit otherwise.

This is different than the C  representation because a struct with the C
representation will always have the ABI of a C  struct  while, for example,
a struct with the transparent  representation with a primitive field will
have the ABI of the primitive field.

r[layout.repr.transparent.constraint-exclusive] Because this
representation delegates type layout to another type, it cannot be used with
any other representation.

clbr://internal.invalid/book/OEBPS/items/structs.md
clbr://internal.invalid/book/OEBPS/items/enumerations.md
clbr://internal.invalid/book/OEBPS/special-types-and-traits.md#phantomdatat


r[interior-mut]



Interior Mutability
r[interior-mut.intro] Sometimes a type needs to be mutated while having

multiple aliases. In Rust this is achieved using a pattern called interior
mutability.

r[interior-mut.shared-ref] A type has interior mutability if its internal
state can be changed through a shared reference to it.

r[interior-mut.no-constraint] This goes against the usual requirement that
the value pointed to by a shared reference is not mutated.

r[interior-mut.unsafe-cell] [ std::cell::UnsafeCell<T> ] type is the
only allowed way to disable this requirement. When UnsafeCell<T>  is
immutably aliased, it is still safe to mutate, or obtain a mutable reference to,
the T  it contains.

r[interior-mut.mut-unsafe-cell] As with all other types, it is undefined
behavior to have multiple &mut UnsafeCell<T>  aliases.

r[interior-mut.abstraction] Other types with interior mutability can be
created by using UnsafeCell<T>  as a field. The standard library provides a
variety of types that provide safe interior mutability APIs.

r[interior-mut.ref-cell] For example, [ std::cell::RefCell<T> ] uses
run-time borrow checks to ensure the usual rules around multiple
references.

r[interior-mut.atomic] The [ std::sync::atomic ] module contains types
that wrap a value that is only accessed with atomic operations, allowing the
value to be shared and mutated across threads.

clbr://internal.invalid/book/OEBPS/types/pointer.md#shared-references-
clbr://internal.invalid/book/OEBPS/behavior-considered-undefined.md


r[subtype]



Subtyping and Variance
r[subtype.intro] Subtyping is implicit and can occur at any stage in type

checking or inference.
r[subtype.kinds] Subtyping is restricted to two cases: variance with

respect to lifetimes and between types with higher ranked lifetimes. If we
were to erase lifetimes from types, then the only subtyping would be due to
type equality.

Consider the following example: string literals always have 'static
lifetime. Nevertheless, we can assign s  to t :
fn bar<'a>() { 
    let s: &'static str = "hi"; 
    let t: &'a str = s; 
} 

Since 'static  outlives the lifetime parameter 'a , &'static str  is a
subtype of &'a str .

r[subtype.higher-ranked] Higher-ranked function pointers and trait
objects have another subtype relation. They are subtypes of types that are
given by substitutions of the higher-ranked lifetimes. Some examples:
// Here 'a is substituted for 'static 
let subtype: &(for<'a> fn(&'a i32) -> &'a i32) = &((|x| x) as 
fn(&_) -> &_); 
let supertype: &(fn(&'static i32) -> &'static i32) = subtype; 
 
// This works similarly for trait objects 
let subtype: &(dyn for<'a> Fn(&'a i32) -> &'a i32) = &|x| x; 
let supertype: &(dyn Fn(&'static i32) -> &'static i32) = 
subtype; 
 
// We can also substitute one higher-ranked lifetime for 
another 
let subtype: &(for<'a, 'b> fn(&'a i32, &'b i32)) = &((|x, y| 

clbr://internal.invalid/book/nomicon/hrtb.html
clbr://internal.invalid/book/OEBPS/types/function-pointer.md
clbr://internal.invalid/book/OEBPS/types/trait-object.md


{}) as fn(&_, &_)); 
let supertype: &for<'c> fn(&'c i32, &'c i32) = subtype; 

r[subtyping.variance]



Variance
r[subtyping.variance.intro] Variance is a property that generic types have

with respect to their arguments. A generic type's variance in a parameter is
how the subtyping of the parameter affects the subtyping of the type.

r[subtyping.variance.covariant]

F<T>  is covariant over T  if T  being a subtype of U  implies that F<T>
is a subtype of F<U>  (subtyping "passes through")

r[subtyping.variance.contravariant]

F<T>  is contravariant over T  if T  being a subtype of U  implies that 
F<U>  is a subtype of F<T>

r[subtyping.variance.invariant]

F<T>  is invariant over T  otherwise (no subtyping relation can be
derived)

r[subtyping.variance.builtin-types] Variance of types is automatically
determined as follows

Type Variance in 
'a

Variance in 
T

&'a T covariant covariant

&'a mut T covariant invariant

*const T covariant

*mut T invariant

[T]  and [T; n] covariant

fn() -> T covariant

fn(T) -> () contravariant

std::cell::UnsafeCell<T> invariant



Type Variance in 
'a

Variance in 
T

std::marker::PhantomData<T

>

covariant

dyn Trait<T> + 'a covariant invariant

r[subtyping.variance.user-composite-types] The variance of other 
struct , enum , and union  types is decided by looking at the variance of
the types of their fields. If the parameter is used in positions with different
variances then the parameter is invariant. For example the following struct
is covariant in 'a  and T  and invariant in 'b , 'c , and U .
use std::cell::UnsafeCell; 
struct Variance<'a, 'b, 'c, T, U: 'a> { 
    x: &'a U,               // This makes `Variance` covariant 
in 'a, and would 
                            // make it covariant in U, but U 
is used later 
    y: *const T,            // Covariant in T 
    z: UnsafeCell<&'b f64>, // Invariant in 'b 
    w: *mut U,              // Invariant in U, makes the whole 
struct invariant 
 
    f: fn(&'c ()) -> &'c () // Both co- and contravariant, 
makes 'c invariant 
                            // in the struct. 
} 

r[subtyping.variance.builtin-composite-types] When used outside of an 
struct , enum , or union , the variance for parameters is checked at each
location separately.
# use std::cell::UnsafeCell; 
fn generic_tuple<'short, 'long: 'short>( 
    // 'long is used inside of a tuple in both a co- and 
invariant position. 



    x: (&'long u32, UnsafeCell<&'long u32>), 
) { 
    // As the variance at these positions is computed 
separately, 
    // we can freely shrink 'long in the covariant position. 
    let _: (&'short u32, UnsafeCell<&'long u32>) = x; 
} 
 
fn takes_fn_ptr<'short, 'middle: 'short>( 
    // 'middle is used in both a co- and contravariant 
position. 
    f: fn(&'middle ()) -> &'middle (), 
) { 
    // As the variance at these positions is computed 
separately, 
    // we can freely shrink 'middle in the covariant position 
    // and extend it in the contravariant position. 
    let _: fn(&'static ()) -> &'short () = f; 
} 



r[bound]



Trait and lifetime bounds
r[bound.syntax]

TypeParamBounds -> TypeParamBound ( `+` TypeParamBound )* `+`? 
 
TypeParamBound -> Lifetime | TraitBound | UseBound 
 
TraitBound -> 
      ( `?` | ForLifetimes )? TypePath 
    | `(` ( `?` | ForLifetimes )? TypePath `)` 
 
LifetimeBounds -> ( Lifetime `+` )* Lifetime? 
 
Lifetime -> 
      LIFETIME_OR_LABEL 
    | `'static` 
    | `'_` 
 
UseBound -> `use` UseBoundGenericArgs 
 
UseBoundGenericArgs -> 
      `<` `>` 
    | `<` ( UseBoundGenericArg `,`)* UseBoundGenericArg `,`? 
`>` 
 
UseBoundGenericArg -> 
      Lifetime 
    | IDENTIFIER 
    | `Self` 

r[bound.intro] Trait and lifetime bounds provide a way for generic items
to restrict which types and lifetimes are used as their parameters. Bounds
can be provided on any type in a where clause. There are also shorter forms
for certain common cases:

clbr://internal.invalid/book/OEBPS/items/traits.md#trait-bounds
clbr://internal.invalid/book/OEBPS/items/generics.md
clbr://internal.invalid/book/OEBPS/items/generics.md#where-clauses


Bounds written after declaring a generic parameter: fn f<A: Copy>() 
{}  is the same as fn f<A>() where A: Copy {} .
In trait declarations as supertraits: trait Circle : Shape {}  is
equivalent to trait Circle where Self : Shape {} .
In trait declarations as bounds on associated types: trait A { type 
B: Copy; }  is equivalent to trait A where Self::B: Copy { type 
B; } .

r[bound.satisfaction] Bounds on an item must be satisfied when using
the item. When type checking and borrow checking a generic item, the
bounds can be used to determine that a trait is implemented for a type. For
example, given Ty: Trait

In the body of a generic function, methods from Trait  can be called
on Ty  values. Likewise associated constants on the Trait  can be
used.
Associated types from Trait  can be used.
Generic functions and types with a T: Trait  bounds can be used with
Ty  being used for T .

# type Surface = i32; 
trait Shape { 
    fn draw(&self, surface: Surface); 
    fn name() -> &'static str; 
} 
 
fn draw_twice<T: Shape>(surface: Surface, sh: T) { 
    sh.draw(surface);           // Can call method because T: 
Shape 
    sh.draw(surface); 
} 
 
fn copy_and_draw_twice<T: Copy>(surface: Surface, sh: T) where 
T: Shape { 
    let shape_copy = sh;        // doesn't move sh because T: 
Copy 

clbr://internal.invalid/book/OEBPS/items/generics.md
clbr://internal.invalid/book/OEBPS/items/traits.md#supertraits
clbr://internal.invalid/book/OEBPS/items/associated-items.md#associated-types


    draw_twice(surface, sh);    // Can use generic function 
because T: Shape 
} 
 
struct Figure<S: Shape>(S, S); 
 
fn name_figure<U: Shape>( 
    figure: Figure<U>,          // Type Figure<U> is well-
formed because U: Shape 
) { 
    println!( 
        "Figure of two {}", 
        U::name(),              // Can use associated function 
    ); 
} 

r[bound.trivial] Bounds that don't use the item's parameters or higher-
ranked lifetimes are checked when the item is defined. It is an error for such
a bound to be false.

r[bound.special] [ Copy ], [ Clone ], and [ Sized ] bounds are also checked
for certain generic types when using the item, even if the use does not
provide a concrete type. It is an error to have Copy  or Clone  as a bound on
a mutable reference, trait object, or slice. It is an error to have Sized  as a
bound on a trait object or slice.
struct A<'a, T> 
where 
    i32: Default,           // Allowed, but not useful 
    i32: Iterator,          // Error: `i32` is not an iterator 
    &'a mut T: Copy,        // (at use) Error: the trait bound 
is not satisfied 
    [T]: Sized,             // (at use) Error: size cannot be 
known at compilation 
{ 
    f: &'a T, 

clbr://internal.invalid/book/OEBPS/types/trait-object.md
clbr://internal.invalid/book/OEBPS/types/slice.md


} 
struct UsesA<'a, T>(A<'a, T>); 

r[bound.trait-object] Trait and lifetime bounds are also used to name trait
objects.

r[bound.sized]

clbr://internal.invalid/book/OEBPS/types/trait-object.md


?Sized
?  is only used to relax the implicit [ Sized ] trait bound for type

parameters or associated types. ?Sized  may not be used as a bound for
other types.

r[bound.lifetime]

clbr://internal.invalid/book/OEBPS/types/parameters.md
clbr://internal.invalid/book/OEBPS/items/associated-items.md#associated-types


Lifetime bounds
r[bound.lifetime.intro] Lifetime bounds can be applied to types or to

other lifetimes.
r[bound.lifetime.outlive-lifetime] The bound 'a: 'b  is usually read as 

'a  outlives 'b . 'a: 'b  means that 'a  lasts at least as long as 'b , so a
reference &'a ()  is valid whenever &'b ()  is valid.
fn f<'a, 'b>(x: &'a i32, mut y: &'b i32) where 'a: 'b { 
    y = x;                      // &'a i32 is a subtype of &'b 
i32 because 'a: 'b 
    let r: &'b &'a i32 = &&0;   // &'b &'a i32 is well formed 
because 'a: 'b 
} 

r[bound.lifetime.outlive-type] T: 'a  means that all lifetime parameters
of T  outlive 'a . For example, if 'a  is an unconstrained lifetime parameter,
then i32: 'static  and &'static str: 'a  are satisfied, but Vec<&'a 
()>: 'static  is not.

r[bound.higher-ranked]



Higher-ranked trait bounds
r[bound.higher-ranked.syntax]

ForLifetimes -> `for` GenericParams 

r[bound.higher-ranked.intro] Trait bounds may be higher ranked over
lifetimes. These bounds specify a bound that is true for all lifetimes. For
example, a bound such as for<'a> &'a T: PartialEq<i32>  would
require an implementation like
# struct T; 
impl<'a> PartialEq<i32> for &'a T { 
    // ... 
#    fn eq(&self, other: &i32) -> bool {true} 
} 

and could then be used to compare a &'a T  with any lifetime to an i32 .
Only a higher-ranked bound can be used here, because the lifetime of the

reference is shorter than any possible lifetime parameter on the function:
fn call_on_ref_zero<F>(f: F) where for<'a> F: Fn(&'a i32) { 
    let zero = 0; 
    f(&zero); 
} 

r[bound.higher-ranked.trait] Higher-ranked lifetimes may also be
specified just before the trait: the only difference is the scope of the lifetime
parameter, which extends only to the end of the following trait instead of
the whole bound. This function is equivalent to the last one.
fn call_on_ref_zero<F>(f: F) where F: for<'a> Fn(&'a i32) { 
    let zero = 0; 
    f(&zero); 
} 

r[bound.implied]

clbr://internal.invalid/book/OEBPS/names/scopes.md#higher-ranked-trait-bound-scopes


Implied bounds
r[bound.implied.intro] Lifetime bounds required for types to be well-

formed are sometimes inferred.
fn requires_t_outlives_a<'a, T>(x: &'a T) {} 

The type parameter T  is required to outlive 'a  for the type &'a T  to be
well-formed. This is inferred because the function signature contains the
type &'a T  which is only valid if T: 'a  holds.

r[bound.implied.context] Implied bounds are added for all parameters
and outputs of functions. Inside of requires_t_outlives_a  you can
assume T: 'a  to hold even if you don't explicitly specify this:
fn requires_t_outlives_a_not_implied<'a, T: 'a>() {} 
 
fn requires_t_outlives_a<'a, T>(x: &'a T) { 
    // This compiles, because `T: 'a` is implied by 
    // the reference type `&'a T`. 
    requires_t_outlives_a_not_implied::<'a, T>(); 
} 

# fn requires_t_outlives_a_not_implied<'a, T: 'a>() {} 
fn not_implied<'a, T>() { 
    // This errors, because `T: 'a` is not implied by 
    // the function signature. 
    requires_t_outlives_a_not_implied::<'a, T>(); 
} 

r[bound.implied.trait] Only lifetime bounds are implied, trait bounds still
have to be explicitly added. The following example therefore causes an
error:
use std::fmt::Debug; 
struct IsDebug<T: Debug>(T); 
// error[E0277]: `T` doesn't implement `Debug` 
fn doesnt_specify_t_debug<T>(x: IsDebug<T>) {} 

r[bound.implied.def] Lifetime bounds are also inferred for type
definitions and impl blocks for any type:



struct Struct<'a, T> { 
    // This requires `T: 'a` to be well-formed 
    // which is inferred by the compiler. 
    field: &'a T, 
} 
 
enum Enum<'a, T> { 
    // This requires `T: 'a` to be well-formed, 
    // which is inferred by the compiler. 
    // 
    // Note that `T: 'a` is required even when only 
    // using `Enum::OtherVariant`. 
    SomeVariant(&'a T), 
    OtherVariant, 
} 
 
trait Trait<'a, T: 'a> {} 
 
// This would error because `T: 'a` is not implied by any type 
// in the impl header. 
//     impl<'a, T> Trait<'a, T> for () {} 
 
// This compiles as `T: 'a` is implied by the self type `&'a 
T`. 
impl<'a, T> Trait<'a, T> for &'a T {} 

r[bound.use]



Use bounds
Certain bounds lists may include a use<..>  bound to control which

generic parameters are captured by the impl Trait  abstract return type.
See precise capturing for more details.

clbr://internal.invalid/book/OEBPS/types/impl-trait.md#abstract-return-types
clbr://internal.invalid/book/OEBPS/types/impl-trait.md#precise-capturing


r[coerce]



Type coercions
r[coerce.intro] Type coercions are implicit operations that change the

type of a value. They happen automatically at specific locations and are
highly restricted in what types actually coerce.

r[coerce.as] Any conversions allowed by coercion can also be explicitly
performed by the type cast operator, as .

Coercions are originally defined in RFC 401 and expanded upon in RFC
1558.

r[coerce.site]

clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#type-cast-expressions
https://github.com/rust-lang/rfcs/blob/master/text/0401-coercions.md
https://github.com/rust-lang/rfcs/blob/master/text/1558-closure-to-fn-coercion.md


Coercion sites
r[coerce.site.intro] A coercion can only occur at certain coercion sites in

a program; these are typically places where the desired type is explicit or
can be derived by propagation from explicit types (without type inference).
Possible coercion sites are:

r[coerce.site.let]

let  statements where an explicit type is given.
For example, &mut 42  is coerced to have type &i8  in the

following:
let _: &i8 = &mut 42; 

r[coerce.site.value]

static  and const  item declarations (similar to let  statements).
r[coerce.site.argument]

Arguments for function calls
The value being coerced is the actual parameter, and it is coerced to

the type of the formal parameter.
For example, &mut 42  is coerced to have type &i8  in the

following:
fn bar(_: &i8) { } 
 
fn main() { 
    bar(&mut 42); 
} 

For method calls, the receiver ( self  parameter) type is coerced
differently, see the documentation on method-call expressions for
details.

r[coerce.site.constructor]

Instantiations of struct, union, or enum variant fields

clbr://internal.invalid/book/OEBPS/expressions/method-call-expr.md


For example, &mut 42  is coerced to have type &i8  in the
following:
struct Foo<'a> { x: &'a i8 } 
 
fn main() { 
    Foo { x: &mut 42 }; 
} 

r[coerce.site.return]

Function results—either the final line of a block if it is not
semicolon-terminated or any expression in a return  statement

For example, x  is coerced to have type &dyn Display  in the
following:
use std::fmt::Display; 
fn foo(x: &u32) -> &dyn Display { 
    x 
} 

r[coerce.site.subexpr] If the expression in one of these coercion sites is a
coercion-propagating expression, then the relevant sub-expressions in that
expression are also coercion sites. Propagation recurses from these new
coercion sites. Propagating expressions and their relevant sub-expressions
are:

r[coerce.site.array]

Array literals, where the array has type [U; n] . Each sub-expression
in the array literal is a coercion site for coercion to type U .

r[coerce.site.repeat]

Array literals with repeating syntax, where the array has type [U; n] .
The repeated sub-expression is a coercion site for coercion to type U .

r[coerce.site.tuple]



Tuples, where a tuple is a coercion site to type (U_0, U_1, ..., 
U_n) . Each sub-expression is a coercion site to the respective type, e.g.
the zeroth sub-expression is a coercion site to type U_0 .

r[coerce.site.parenthesis]

Parenthesized sub-expressions ( (e) ): if the expression has type U ,
then the sub-expression is a coercion site to U .

r[coerce.site.block]

Blocks: if a block has type U , then the last expression in the block (if it
is not semicolon-terminated) is a coercion site to U . This includes
blocks which are part of control flow statements, such as if / else , if
the block has a known type.

r[coerce.types]



Coercion types
r[coerce.types.intro] Coercion is allowed between the following types:
r[coerce.types.reflexive]

T  to U  if T  is a subtype of U  (reflexive case)
r[coerce.types.transitive]

T_1  to T_3  where T_1  coerces to T_2  and T_2  coerces to T_3
(transitive case)

Note that this is not fully supported yet.
r[coerce.types.mut-reborrow]

&mut T  to &T
r[coerce.types.mut-pointer]

*mut T  to *const T
r[coerce.types.ref-to-pointer]

&T  to *const T
r[coerce.types.mut-to-pointer]

&mut T  to *mut T
r[coerce.types.deref]

&T  or &mut T  to &U  if T  implements Deref<Target = U> . For
example:
use std::ops::Deref; 
 
struct CharContainer { 
    value: char, 
} 
 
impl Deref for CharContainer { 

clbr://internal.invalid/book/OEBPS/subtyping.md


    type Target = char; 
 
    fn deref<'a>(&'a self) -> &'a char { 
        &self.value 
    } 
} 
 
fn foo(arg: &char) {} 
 
fn main() { 
    let x = &mut CharContainer { value: 'y' }; 
    foo(x); //&mut CharContainer is coerced to &char. 
} 

r[coerce.types.deref-mut]

&mut T  to &mut U  if T  implements DerefMut<Target = U> .
r[coerce.types.unsize]

TyCtor( T ) to TyCtor( U ), where TyCtor( T ) is one of

&T

&mut T

*const T

*mut T

Box<T>

and where U  can be obtained from T  by unsized coercion.
r[coerce.types.fn]

Function item types to fn  pointers
r[coerce.types.closure]

Non capturing closures to fn  pointers
r[coerce.types.never]



!  to any T
r[coerce.unsize]

Unsized Coercions
r[coerce.unsize.intro] The following coercions are called unsized 

coercions , since they relate to converting types to unsized types, and are
permitted in a few cases where other coercions are not, as described above.
They can still happen anywhere else a coercion can occur.

r[coerce.unsize.trait] Two traits, Unsize  and CoerceUnsized , are used
to assist in this process and expose it for library use. The following
coercions are built-ins and, if T  can be coerced to U  with one of them, then
an implementation of Unsize<U>  for T  will be provided:

r[coerce.unsize.slice]

[T; n]  to [T] .
r[coerce.unsize.trait-object]

T  to dyn U , when T  implements U + Sized , and U  is dyn
compatible.

r[coerce.unsize.trait-upcast]

dyn T  to dyn U , when U  is one of T 's supertraits.

This allows dropping auto traits, i.e. dyn T + Auto  to dyn U  is
allowed.
This allows adding auto traits if the principal trait has the auto
trait as a super trait, i.e. given trait T: U + Send {} , dyn T  to 
dyn T + Send  or to dyn U + Send  coercions are allowed.

r[coerce.unsized.composite]

Foo<..., T, ...>  to Foo<..., U, ...> , when:

Foo  is a struct.
T  implements Unsize<U> .

std::marker::Unsize
std::ops::CoerceUnsized
clbr://internal.invalid/book/OEBPS/items/traits.md#dyn-compatibility
clbr://internal.invalid/book/OEBPS/items/traits.md#supertraits


The last field of Foo  has a type involving T .
If that field has type Bar<T> , then Bar<T>  implements 
Unsize<Bar<U>> .
T is not part of the type of any other fields.

r[coerce.unsized.pointer] Additionally, a type Foo<T>  can implement 
CoerceUnsized<Foo<U>>  when T  implements Unsize<U>  or 
CoerceUnsized<Foo<U>> . This allows it to provide an unsized coercion to 
Foo<U> .

[!NOTE] While the definition of the unsized coercions and their
implementation has been stabilized, the traits themselves are not yet
stable and therefore can't be used directly in stable Rust.

r[coerce.least-upper-bound]



Least upper bound coercions
r[coerce.least-upper-bound.intro] In some contexts, the compiler must

coerce together multiple types to try and find the most general type. This is
called a "Least Upper Bound" coercion. LUB coercion is used and only
used in the following situations:

To find the common type for a series of if branches.
To find the common type for a series of match arms.
To find the common type for array elements.
To find the type for the return type of a closure with multiple return
statements.
To check the type for the return type of a function with multiple return
statements.

r[coerce.least-upper-bound.target] In each such case, there are a set of
types T0..Tn  to be mutually coerced to some target type T_t , which is
unknown to start.

r[coerce.least-upper-bound.computation] Computing the LUB coercion
is done iteratively. The target type T_t  begins as the type T0 . For each new
type Ti , we consider whether

r[coerce.least-upper-bound.computation-identity]

If Ti  can be coerced to the current target type T_t , then no change is
made.

r[coerce.least-upper-bound.computation-replace]

Otherwise, check whether T_t  can be coerced to Ti ; if so, the T_t  is
changed to Ti . (This check is also conditioned on whether all of the
source expressions considered thus far have implicit coercions.)

r[coerce.least-upper-bound.computation-unify]

If not, try to compute a mutual supertype of T_t  and Ti , which will
become the new target type.

Examples:



# let (a, b, c) = (0, 1, 2); 
// For if branches 
let bar = if true { 
    a 
} else if false { 
    b 
} else { 
    c 
}; 
 
// For match arms 
let baw = match 42 { 
    0 => a, 
    1 => b, 
    _ => c, 
}; 
 
// For array elements 
let bax = [a, b, c]; 
 
// For closure with multiple return statements 
let clo = || { 
    if true { 
        a 
    } else if false { 
        b 
    } else { 
        c 
    } 
}; 
let baz = clo(); 
 
// For type checking of function with multiple return 
statements 
fn foo() -> i32 { 



    let (a, b, c) = (0, 1, 2); 
    match 42 { 
        0 => a, 
        1 => b, 
        _ => c, 
    } 
} 

In these examples, types of the ba*  are found by LUB coercion. And the
compiler checks whether LUB coercion result of a , b , c  is i32  in the
processing of the function foo .

Caveat
This description is obviously informal. Making it more precise is

expected to proceed as part of a general effort to specify the Rust type
checker more precisely.



rdestructors

clbr://internal.invalid/book/OEBPS/destructors.md


Destructors
r[destructors.intro] When an initialized variable or temporary goes out of

scope, its destructor is run, or it is dropped. Assignment also runs the
destructor of its left-hand operand, if it's initialized. If a variable has been
partially initialized, only its initialized fields are dropped.

r[destructors.operation] The destructor of a type T  consists of:

1. If T: Drop, calling <T as std::ops::Drop>::drop
2. Recursively running the destructor of all of its fields.

The fields of a struct are dropped in declaration order.
The fields of the active enum variant are dropped in declaration
order.
The fields of a tuple are dropped in order.
The elements of an array or owned slice are dropped from the
first element to the last.
The variables that a closure captures by move are dropped in an
unspecified order.
Trait objects run the destructor of the underlying type.
Other types don't result in any further drops.

r[destructors.drop_in_place] If a destructor must be run manually, such
as when implementing your own smart pointer,
[ std::ptr::drop_in_place ] can be used.

Some examples:
struct PrintOnDrop(&'static str); 
 
impl Drop for PrintOnDrop { 
    fn drop(&mut self) { 
        println!("{}", self.0); 
    } 
} 
 
let mut overwritten = PrintOnDrop("drops when overwritten"); 

clbr://internal.invalid/book/OEBPS/glossary.md#initialized
clbr://internal.invalid/book/OEBPS/variables.md
clbr://internal.invalid/book/OEBPS/expressions.md#temporaries
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#assignment-expressions
std::ops::Drop::drop
clbr://internal.invalid/book/OEBPS/types/struct.md
clbr://internal.invalid/book/OEBPS/types/enum.md
clbr://internal.invalid/book/OEBPS/types/tuple.md
clbr://internal.invalid/book/OEBPS/types/array.md
clbr://internal.invalid/book/OEBPS/types/slice.md
clbr://internal.invalid/book/OEBPS/types/closure.md
clbr://internal.invalid/book/OEBPS/types/trait-object.md


overwritten = PrintOnDrop("drops when scope ends"); 
 
let tuple = (PrintOnDrop("Tuple first"), PrintOnDrop("Tuple 
second")); 
 
let moved; 
// No destructor run on assignment. 
moved = PrintOnDrop("Drops when moved"); 
// Drops now, but is then uninitialized. 
moved; 
 
// Uninitialized does not drop. 
let uninitialized: PrintOnDrop; 
 
// After a partial move, only the remaining fields are 
dropped. 
let mut partial_move = (PrintOnDrop("first"), 
PrintOnDrop("forgotten")); 
// Perform a partial move, leaving only `partial_move.0` 
initialized. 
core::mem::forget(partial_move.1); 
// When partial_move's scope ends, only the first field is 
dropped. 

r[destructors.scope]



Drop scopes
r[destructors.scope.intro] Each variable or temporary is associated to a

drop scope. When control flow leaves a drop scope all variables associated
to that scope are dropped in reverse order of declaration (for variables) or
creation (for temporaries).

r[destructors.scope.desugaring] Drop scopes can be determined by
replacing for , if , and while  expressions with equivalent expressions
using match , loop  and break .

r[destructors.scope.operators] Overloaded operators are not
distinguished from built-in operators and binding modes are not considered.

r[destructors.scope.list] Given a function, or closure, there are drop
scopes for:

r[destructors.scope.function]

The entire function
r[destructors.scope.statement]

Each statement
r[destructors.scope.expression]

Each expression
r[destructors.scope.block]

Each block, including the function body

In the case of a block expression, the scope for the block and the
expression are the same scope.

r[destructors.scope.match-arm]

Each arm of a match  expression
r[destructors.scope.nesting] Drop scopes are nested within one another

as follows. When multiple scopes are left at once, such as when returning
from a function, variables are dropped from the inside outwards.

clbr://internal.invalid/book/OEBPS/expressions/loop-expr.md#iterator-loops
clbr://internal.invalid/book/OEBPS/expressions/if-expr.md#if-expressions
clbr://internal.invalid/book/OEBPS/expressions/loop-expr.md#predicate-loops
clbr://internal.invalid/book/OEBPS/expressions/match-expr.md
clbr://internal.invalid/book/OEBPS/expressions/loop-expr.md#infinite-loops
clbr://internal.invalid/book/OEBPS/patterns.md#binding-modes
clbr://internal.invalid/book/OEBPS/statements.md
clbr://internal.invalid/book/OEBPS/expressions.md
clbr://internal.invalid/book/OEBPS/expressions/block-expr.md


r[destructors.scope.nesting.function]

The entire function scope is the outer most scope.
r[destructors.scope.nesting.function-body]

The function body block is contained within the scope of the entire
function.

r[destructors.scope.nesting.expr-statement]

The parent of the expression in an expression statement is the scope of
the statement.

r[destructors.scope.nesting.let-initializer]

The parent of the initializer of a let  statement is the let  statement's
scope.

r[destructors.scope.nesting.statement]

The parent of a statement scope is the scope of the block that contains
the statement.

r[destructors.scope.nesting.match-guard]

The parent of the expression for a match  guard is the scope of the arm
that the guard is for.

r[destructors.scope.nesting.match-arm]

The parent of the expression after the =>  in a match  expression is the
scope of the arm that it's in.

r[destructors.scope.nesting.match]

The parent of the arm scope is the scope of the match  expression that
it belongs to.

r[destructors.scope.nesting.other]

The parent of all other scopes is the scope of the immediately
enclosing expression.

clbr://internal.invalid/book/OEBPS/statements.md#let-statements


r[destructors.scope.params]

Scopes of function parameters
All function parameters are in the scope of the entire function body, so

are dropped last when evaluating the function. Each actual function
parameter is dropped after any bindings introduced in that parameter's
pattern.
# struct PrintOnDrop(&'static str); 
# impl Drop for PrintOnDrop { 
#     fn drop(&mut self) { 
#         println!("drop({})", self.0); 
#     } 
# } 
// Drops `y`, then the second parameter, then `x`, then the 
first parameter 
fn patterns_in_parameters( 
    (x, _): (PrintOnDrop, PrintOnDrop), 
    (_, y): (PrintOnDrop, PrintOnDrop), 
) {} 
 
// drop order is 3 2 0 1 
patterns_in_parameters( 
    (PrintOnDrop("0"), PrintOnDrop("1")), 
    (PrintOnDrop("2"), PrintOnDrop("3")), 
); 

r[destructors.scope.bindings]

Scopes of local variables
r[destructors.scope.bindings.intro] Local variables declared in a let

statement are associated to the scope of the block that contains the let
statement. Local variables declared in a match  expression are associated to
the arm scope of the match  arm that they are declared in.
# struct PrintOnDrop(&'static str); 
# impl Drop for PrintOnDrop { 



#     fn drop(&mut self) { 
#         println!("drop({})", self.0); 
#     } 
# } 
let declared_first = PrintOnDrop("Dropped last in outer 
scope"); 
{ 
    let declared_in_block = PrintOnDrop("Dropped in inner 
scope"); 
} 
let declared_last = PrintOnDrop("Dropped first in outer 
scope"); 

r[destructors.scope.bindings.match-pattern-order] If multiple patterns are
used in the same arm for a match  expression, then an unspecified pattern
will be used to determine the drop order.

r[destructors.scope.temporary]

Temporary scopes
r[destructors.scope.temporary.intro] The temporary scope of an

expression is the scope that is used for the temporary variable that holds the
result of that expression when used in a place context, unless it is promoted.

r[destructors.scope.temporary.enclosing] Apart from lifetime extension,
the temporary scope of an expression is the smallest scope that contains the
expression and is one of the following:

The entire function.
A statement.
The body of an if , while  or loop  expression.
The else  block of an if  expression.
The non-pattern matching condition expression of an if  or while
expression, or a match  guard.
The body expression for a match arm.
Each operand of a lazy boolean expression.

clbr://internal.invalid/book/OEBPS/expressions.md#place-expressions-and-value-expressions
clbr://internal.invalid/book/OEBPS/destructors.md#constant-promotion
clbr://internal.invalid/book/OEBPS/expressions/if-expr.md#if-expressions
clbr://internal.invalid/book/OEBPS/expressions/loop-expr.md#predicate-loops
clbr://internal.invalid/book/OEBPS/expressions/loop-expr.md#infinite-loops
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#lazy-boolean-operators


The pattern-matching condition(s) and consequent body of if
([destructors.scope.temporary.edition2024]).
The pattern-matching condition and loop body of while .
The entirety of the tail expression of a block
([destructors.scope.temporary.edition2024]).

[!NOTE] The scrutinee of a match  expression is not a temporary
scope, so temporaries in the scrutinee can be dropped after the match
expression. For example, the temporary for 1  in match 1 { ref mut 
z => z };  lives until the end of the statement.

r[destructors.scope.temporary.edition2024]

[!EDITION-2024] The 2024 edition added two new temporary
scope narrowing rules: if let  temporaries are dropped before the 
else  block, and temporaries of tail expressions of blocks are dropped
immediately after the tail expression is evaluated.

Some examples:
# #![allow(irrefutable_let_patterns)] 
# struct PrintOnDrop(&'static str); 
# impl Drop for PrintOnDrop { 
#     fn drop(&mut self) { 
#         println!("drop({})", self.0); 
#     } 
# } 
let local_var = PrintOnDrop("local var"); 
 
// Dropped once the condition has been evaluated 
if PrintOnDrop("If condition").0 == "If condition" { 
    // Dropped at the end of the block 
    PrintOnDrop("If body").0 
} else { 
    unreachable!() 
}; 
 
if let "if let scrutinee" = PrintOnDrop("if let scrutinee").0 

clbr://internal.invalid/book/OEBPS/expressions/if-expr.md#if-expressions
clbr://internal.invalid/book/OEBPS/expressions/loop-expr.md#predicate-loops
clbr://internal.invalid/book/OEBPS/glossary.md#scrutinee


{ 
    PrintOnDrop("if let consequent").0 
    // `if let consequent` dropped here 
} 
// `if let scrutinee` is dropped here 
else { 
    PrintOnDrop("if let else").0 
    // `if let else` dropped here 
}; 
 
while let x = PrintOnDrop("while let scrutinee").0 { 
    PrintOnDrop("while let loop body").0; 
    break; 
    // `while let loop body` dropped here. 
    // `while let scrutinee` dropped here. 
} 
 
// Dropped before the first || 
(PrintOnDrop("first operand").0 == "" 
// Dropped before the ) 
|| PrintOnDrop("second operand").0 == "") 
// Dropped before the ; 
|| PrintOnDrop("third operand").0 == ""; 
 
// Scrutinee is dropped at the end of the function, before 
local variables 
// (because this is the tail expression of the function body 
block). 
match PrintOnDrop("Matched value in final expression") { 
    // Dropped once the condition has been evaluated 
    _ if PrintOnDrop("guard condition").0 == "" => (), 
    _ => (), 
} 

r[destructors.scope.operands]



Operands
Temporaries are also created to hold the result of operands to an

expression while the other operands are evaluated. The temporaries are
associated to the scope of the expression with that operand. Since the
temporaries are moved from once the expression is evaluated, dropping
them has no effect unless one of the operands to an expression breaks out of
the expression, returns, or panics.
# struct PrintOnDrop(&'static str); 
# impl Drop for PrintOnDrop { 
#     fn drop(&mut self) { 
#         println!("drop({})", self.0); 
#     } 
# } 
loop { 
    // Tuple expression doesn't finish evaluating so operands 
drop in reverse order 
    ( 
        PrintOnDrop("Outer tuple first"), 
        PrintOnDrop("Outer tuple second"), 
        ( 
            PrintOnDrop("Inner tuple first"), 
            PrintOnDrop("Inner tuple second"), 
            break, 
        ), 
        PrintOnDrop("Never created"), 
    ); 
} 

r[destructors.scope.const-promotion]

Constant promotion
Promotion of a value expression to a 'static  slot occurs when the

expression could be written in a constant and borrowed, and that borrow
could be dereferenced where the expression was originally written, without
changing the runtime behavior. That is, the promoted expression can be

clbr://internal.invalid/book/OEBPS/panic.md


evaluated at compile-time and the resulting value does not contain interior
mutability or destructors (these properties are determined based on the
value where possible, e.g. &None  always has the type &'static 

Option<_> , as it contains nothing disallowed).
r[destructors.scope.lifetime-extension]

Temporary lifetime extension
[!NOTE] The exact rules for temporary lifetime extension are

subject to change. This is describing the current behavior only.

r[destructors.scope.lifetime-extension.let] The temporary scopes for
expressions in let  statements are sometimes extended to the scope of the
block containing the let  statement. This is done when the usual temporary
scope would be too small, based on certain syntactic rules. For example:
let x = &mut 0; 
// Usually a temporary would be dropped by now, but the 
temporary for `0` lives 
// to the end of the block. 
println!("{}", x); 

r[destructors.scope.lifetime-extension.static] Lifetime extension also
applies to static  and const  items, where it makes temporaries live until
the end of the program. For example:
const C: &Vec<i32> = &Vec::new(); 
// Usually this would be a dangling reference as the `Vec` 
would only 
// exist inside the initializer expression of `C`, but instead 
the 
// borrow gets lifetime-extended so it effectively has 
`'static` lifetime. 
println!("{:?}", C); 

r[destructors.scope.lifetime-extension.sub-expressions] If a borrow,
dereference, field, or tuple indexing expression has an extended temporary
scope then so does its operand. If an indexing expression has an extended

clbr://internal.invalid/book/OEBPS/interior-mutability.md
clbr://internal.invalid/book/OEBPS/destructors.md
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#borrow-operators
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#the-dereference-operator
clbr://internal.invalid/book/OEBPS/expressions/field-expr.md
clbr://internal.invalid/book/OEBPS/expressions/tuple-expr.md#tuple-indexing-expressions
clbr://internal.invalid/book/OEBPS/expressions/array-expr.md#array-and-slice-indexing-expressions


temporary scope then the indexed expression also has an extended
temporary scope.

r[destructors.scope.lifetime-extension.patterns]

Extending based on patterns
r[destructors.scope.lifetime-extension.patterns.extending] An extending

pattern is either

An identifier pattern that binds by reference or mutable reference.
A struct, tuple, tuple struct, or slice pattern where at least one of the
direct subpatterns is an extending pattern.

So ref x , V(ref x)  and [ref x, y]  are all extending patterns, but x ,
&ref x  and &(ref x,)  are not.

r[destructors.scope.lifetime-extension.patterns.let] If the pattern in a let
statement is an extending pattern then the temporary scope of the initializer
expression is extended.

r[destructors.scope.lifetime-extension.exprs]

Extending based on expressions
For a let statement with an initializer, an extending expression is an

expression which is one of the following:

The initializer expression.
The operand of an extending borrow expression.
The operand(s) of an extending array, cast, braced struct, or tuple
expression.
The arguments to an extending tuple struct or tuple variant constructor
expression.
The final expression of any extending block expression.

So the borrow expressions in &mut 0 , (&1, &mut 2) , and Some(&mut 
3)  are all extending expressions. The borrows in &0 + &1  and f(&mut 0)
are not.

The operand of any extending borrow expression has its temporary
scope extended.

clbr://internal.invalid/book/OEBPS/patterns.md#identifier-patterns
clbr://internal.invalid/book/OEBPS/patterns.md#struct-patterns
clbr://internal.invalid/book/OEBPS/patterns.md#tuple-patterns
clbr://internal.invalid/book/OEBPS/patterns.md#tuple-struct-patterns
clbr://internal.invalid/book/OEBPS/patterns.md#slice-patterns
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#borrow-operators
clbr://internal.invalid/book/OEBPS/expressions/array-expr.md#array-expressions
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#type-cast-expressions
clbr://internal.invalid/book/OEBPS/expressions/struct-expr.md
clbr://internal.invalid/book/OEBPS/expressions/tuple-expr.md#tuple-expressions
clbr://internal.invalid/book/OEBPS/type.struct.tuple
clbr://internal.invalid/book/OEBPS/type.enum.declaration
clbr://internal.invalid/book/OEBPS/expressions/block-expr.md


Examples
Here are some examples where expressions have extended temporary

scopes:
# fn temp() {} 
# trait Use { fn use_temp(&self) -> &Self { self } } 
# impl Use for () {} 
// The temporary that stores the result of `temp()` lives in 
the same scope 
// as x in these cases. 
let x = &temp(); 
let x = &temp() as &dyn Send; 
let x = (&*&temp(),); 
let x = { [Some(&temp()) ] }; 
let ref x = temp(); 
let ref x = *&temp(); 
# x; 

Here are some examples where expressions don't have extended
temporary scopes:
# fn temp() {} 
# trait Use { fn use_temp(&self) -> &Self { self } } 
# impl Use for () {} 
// The temporary that stores the result of `temp()` only lives 
until the 
// end of the let statement in these cases. 
 
let x = std::convert::identity(&temp()); // ERROR 
let x = (&temp()).use_temp();  // ERROR 
# x; 

r[destructors.forget]



Not running destructors
r[destructors.manually-suppressing]

Manually suppressing destructors
[ std::mem::forget ] can be used to prevent the destructor of a variable

from being run, and [ std::mem::ManuallyDrop ] provides a wrapper to
prevent a variable or field from being dropped automatically.

[!NOTE] Preventing a destructor from being run via
[ std::mem::forget ] or other means is safe even if it has a type that
isn't 'static . Besides the places where destructors are guaranteed to
run as defined by this document, types may not safely rely on a
destructor being run for soundness.

r[destructors.process-termination]

Process termination without unwinding
There are some ways to terminate the process without unwinding, in

which case destructors will not be run.
The standard library provides [ std::process::exit ] and

[ std::process::abort ] to do this explicitly. Additionally, if the [panic
handler][panic.panic_handler.std] is set to abort , panicking will always
terminate the process without destructors being run.

There is one additional case to be aware of: when a panic reaches a non-
unwinding ABI boundary, either no destructors will run, or all destructors
up until the ABI boundary will run.

clbr://internal.invalid/book/OEBPS/panic.md#unwinding
clbr://internal.invalid/book/OEBPS/items/functions.md#unwinding


r[lifetime-elision]



Lifetime elision
Rust has rules that allow lifetimes to be elided in various places where

the compiler can infer a sensible default choice.
r[lifetime-elision.function]



Lifetime elision in functions
r[lifetime-elision.function.intro] In order to make common patterns more

ergonomic, lifetime arguments can be elided in function item, function
pointer, and closure trait signatures. The following rules are used to infer
lifetime parameters for elided lifetimes.

r[lifetime-elision.function.lifetimes-not-inferred] It is an error to elide
lifetime parameters that cannot be inferred.

r[lifetime-elision.function.explicit-placeholder] The placeholder lifetime,
'_ , can also be used to have a lifetime inferred in the same way. For
lifetimes in paths, using '_  is preferred.

r[lifetime-elision.function.only-functions] Trait object lifetimes follow
different rules discussed below.

r[lifetime-elision.function.implicit-lifetime-parameters]

Each elided lifetime in the parameters becomes a distinct lifetime
parameter.

r[lifetime-elision.function.output-lifetime]

If there is exactly one lifetime used in the parameters (elided or not),
that lifetime is assigned to all elided output lifetimes.

r[lifetime-elision.function.receiver-lifetime] In method signatures there
is another rule

If the receiver has type &Self  or &mut Self , then the lifetime of that
reference to Self  is assigned to all elided output lifetime parameters.

Examples:
# trait T {} 
# trait ToCStr {} 
# struct Thing<'a> {f: &'a i32} 
# struct Command; 
# 
# trait Example { 
fn print1(s: &str);                                   // 

clbr://internal.invalid/book/OEBPS/types/function-item.md
clbr://internal.invalid/book/OEBPS/types/function-pointer.md
clbr://internal.invalid/book/OEBPS/types/closure.md


elided 
fn print2(s: &'_ str);                                // also 
elided 
fn print3<'a>(s: &'a str);                            // 
expanded 
 
fn debug1(lvl: usize, s: &str);                       // 
elided 
fn debug2<'a>(lvl: usize, s: &'a str);                // 
expanded 
 
fn substr1(s: &str, until: usize) -> &str;            // 
elided 
fn substr2<'a>(s: &'a str, until: usize) -> &'a str;  // 
expanded 
 
fn get_mut1(&mut self) -> &mut dyn T;                 // 
elided 
fn get_mut2<'a>(&'a mut self) -> &'a mut dyn T;       // 
expanded 
 
fn args1<T: ToCStr>(&mut self, args: &[T]) -> &mut Command; 
// elided 
fn args2<'a, 'b, T: ToCStr>(&'a mut self, args: &'b [T]) -> 
&'a mut Command; // expanded 
 
fn other_args1<'a>(arg: &str) -> &'a str;             // 
elided 
fn other_args2<'a, 'b>(arg: &'b str) -> &'a str;      // 
expanded 
 
fn new1(buf: &mut [u8]) -> Thing<'_>;                 // 
elided - preferred 
fn new2(buf: &mut [u8]) -> Thing;                     // 
elided 
fn new3<'a>(buf: &'a mut [u8]) -> Thing<'a>;          // 



expanded 
# } 
 
type FunPtr1 = fn(&str) -> &str;                      // 
elided 
type FunPtr2 = for<'a> fn(&'a str) -> &'a str;        // 
expanded 
 
type FunTrait1 = dyn Fn(&str) -> &str;                // 
elided 
type FunTrait2 = dyn for<'a> Fn(&'a str) -> &'a str;  // 
expanded 

// The following examples show situations where it is not 
allowed to elide the 
// lifetime parameter. 
 
# trait Example { 
// Cannot infer, because there are no parameters to infer from. 
fn get_str() -> &str;                                 // 
ILLEGAL 
 
// Cannot infer, ambiguous if it is borrowed from the first or 
second parameter. 
fn frob(s: &str, t: &str) -> &str;                    // 
ILLEGAL 
# } 

r[lifetime-elision.trait-object]



Default trait object lifetimes
r[lifetime-elision.trait-object.intro] The assumed lifetime of references

held by a trait object is called its default object lifetime bound. These were
defined in RFC 599 and amended in RFC 1156.

r[lifetime-elision.trait-object.explicit-bound] These default object
lifetime bounds are used instead of the lifetime parameter elision rules
defined above when the lifetime bound is omitted entirely.

r[lifetime-elision.trait-object.explicit-placeholder] If '_  is used as the
lifetime bound then the bound follows the usual elision rules.

r[lifetime-elision.trait-object.containing-type] If the trait object is used
as a type argument of a generic type then the containing type is first used to
try to infer a bound.

r[lifetime-elision.trait-object.containing-type-unique]

If there is a unique bound from the containing type then that is the
default

r[lifetime-elision.trait-object.containing-type-explicit]

If there is more than one bound from the containing type then an
explicit bound must be specified

r[lifetime-elision.trait-object.trait-bounds] If neither of those rules apply,
then the bounds on the trait are used:

r[lifetime-elision.trait-object.trait-unique]

If the trait is defined with a single lifetime bound then that bound is
used.

r[lifetime-elision.trait-object.static-lifetime]

If 'static  is used for any lifetime bound then 'static  is used.
r[lifetime-elision.trait-object.default]

If the trait has no lifetime bounds, then the lifetime is inferred in
expressions and is 'static  outside of expressions.

clbr://internal.invalid/book/OEBPS/types/trait-object.md
https://github.com/rust-lang/rfcs/blob/master/text/0599-default-object-bound.md
https://github.com/rust-lang/rfcs/blob/master/text/1156-adjust-default-object-bounds.md


// For the following trait... 
trait Foo { } 
 
// These two are the same because Box<T> has no lifetime bound 
on T 
type T1 = Box<dyn Foo>; 
type T2 = Box<dyn Foo + 'static>; 
 
// ...and so are these: 
impl dyn Foo {} 
impl dyn Foo + 'static {} 
 
// ...so are these, because &'a T requires T: 'a 
type T3<'a> = &'a dyn Foo; 
type T4<'a> = &'a (dyn Foo + 'a); 
 
// std::cell::Ref<'a, T> also requires T: 'a, so these are the 
same 
type T5<'a> = std::cell::Ref<'a, dyn Foo>; 
type T6<'a> = std::cell::Ref<'a, dyn Foo + 'a>; 

// This is an example of an error. 
# trait Foo { } 
struct TwoBounds<'a, 'b, T: ?Sized + 'a + 'b> { 
    f1: &'a i32, 
    f2: &'b i32, 
    f3: T, 
} 
type T7<'a, 'b> = TwoBounds<'a, 'b, dyn Foo>; 
//                                  ^^^^^^^ 
// Error: the lifetime bound for this object type cannot be 
deduced from context 

r[lifetime-elision.trait-object.innermost-type] Note that the innermost
object sets the bound, so &'a Box<dyn Foo>  is still &'a Box<dyn Foo + 
'static> .



// For the following trait... 
trait Bar<'a>: 'a { } 
 
// ...these two are the same: 
type T1<'a> = Box<dyn Bar<'a>>; 
type T2<'a> = Box<dyn Bar<'a> + 'a>; 
 
// ...and so are these: 
impl<'a> dyn Bar<'a> {} 
impl<'a> dyn Bar<'a> + 'a {} 

r[lifetime-elision.const-static]



const and static elision
r[lifetime-elision.const-static.implicit-static] Both constant and static

declarations of reference types have implicit 'static  lifetimes unless an
explicit lifetime is specified. As such, the constant declarations involving 
'static  above may be written without the lifetimes.
// STRING: &'static str 
const STRING: &str = "bitstring"; 
 
struct BitsNStrings<'a> { 
    mybits: [u32; 2], 
    mystring: &'a str, 
} 
 
// BITS_N_STRINGS: BitsNStrings<'static> 
const BITS_N_STRINGS: BitsNStrings<'_> = BitsNStrings { 
    mybits: [1, 2], 
    mystring: STRING, 
}; 

r[lifetime-elision.const-static.fn-references] Note that if the static  or 
const  items include function or closure references, which themselves
include references, the compiler will first try the standard elision rules. If it
is unable to resolve the lifetimes by its usual rules, then it will error. By way
of example:
# struct Foo; 
# struct Bar; 
# struct Baz; 
# fn somefunc(a: &Foo, b: &Bar, c: &Baz) -> usize {42} 
// Resolved as `for<'a> fn(&'a str) -> &'a str`. 
const RESOLVED_SINGLE: fn(&str) -> &str = |x| x; 
 
// Resolved as `for<'a, 'b, 'c> Fn(&'a Foo, &'b Bar, &'c Baz) 
-> usize`. 

clbr://internal.invalid/book/OEBPS/items/constant-items.md
clbr://internal.invalid/book/OEBPS/items/static-items.md


const RESOLVED_MULTIPLE: &dyn Fn(&Foo, &Bar, &Baz) -> usize = 
&somefunc; 

# struct Foo; 
# struct Bar; 
# struct Baz; 
# fn somefunc<'a,'b>(a: &'a Foo, b: &'b Bar) -> &'a Baz 
{unimplemented!()} 
// There is insufficient information to bound the return 
reference lifetime 
// relative to the argument lifetimes, so this is an error. 
const RESOLVED_STATIC: &dyn Fn(&Foo, &Bar) -> &Baz = &somefunc; 
//                                            ^ 
// this function's return type contains a borrowed value, but 
the signature 
// does not say whether it is borrowed from argument 1 or 
argument 2 



r[lang-types]



Special types and traits
r[lang-types.intro] Certain types and traits that exist in the standard

library are known to the Rust compiler. This chapter documents the special
features of these types and traits.

r[lang-types.box]

clbr://internal.invalid/book/OEBPS/std


Box<T>
r[lang-types.box.intro] [ Box<T> ] has a few special features that Rust

doesn't currently allow for user defined types.
r[lang-types.box.deref]

The dereference operator for Box<T>  produces a place which can be
moved from. This means that the *  operator and the destructor of 
Box<T>  are built-in to the language.

r[lang-types.box.receiver]

Methods can take Box<Self>  as a receiver.
r[lang-types.box.fundamental]

A trait may be implemented for Box<T>  in the same crate as T , which
the orphan rules prevent for other generic types.

r[lang-types.rc]

clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#the-dereference-operator
clbr://internal.invalid/book/OEBPS/items/associated-items.md#associated-functions-and-methods
clbr://internal.invalid/book/OEBPS/items/implementations.md#trait-implementation-coherence


Rc<T>
r[lang-types.rc.receiver] Methods can take Rc<Self>  as a receiver.
r[lang-types.arc]

clbr://internal.invalid/book/OEBPS/items/associated-items.md#associated-functions-and-methods
std::rc::Rc


Arc<T>
r[lang-types.arc.receiver] Methods can take Arc<Self>  as a receiver.
r[lang-types.pin]

clbr://internal.invalid/book/OEBPS/items/associated-items.md#associated-functions-and-methods
std::sync::Arc


Pin<P>
r[lang-types.pin.receiver] Methods can take Pin<P>  as a receiver.
r[lang-types.unsafe-cell]

clbr://internal.invalid/book/OEBPS/items/associated-items.md#associated-functions-and-methods
std::pin::Pin


UnsafeCell<T>
r[lang-types.unsafe-cell.interior-mut] [ std::cell::UnsafeCell<T> ] is

used for interior mutability. It ensures that the compiler doesn't perform
optimisations that are incorrect for such types.

r[lang-types.unsafe-cell.read-only-alloc] It also ensures that static

items which have a type with interior mutability aren't placed in memory
marked as read only.

r[lang-types.phantom-data]

clbr://internal.invalid/book/OEBPS/interior-mutability.md
clbr://internal.invalid/book/OEBPS/items/static-items.md


PhantomData<T>
[ std::marker::PhantomData<T> ] is a zero-sized, minimum alignment,

type that is considered to own a T  for the purposes of variance, drop check,
and auto traits.

r[lang-types.ops]

clbr://internal.invalid/book/OEBPS/subtyping.md#variance
clbr://internal.invalid/book/nomicon/dropck.html


Operator Traits
The traits in [ std::ops ] and [ std::cmp ] are used to overload operators,

indexing expressions, and call expressions.
r[lang-types.deref]

clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md
clbr://internal.invalid/book/OEBPS/expressions/array-expr.md#array-and-slice-indexing-expressions
clbr://internal.invalid/book/OEBPS/expressions/call-expr.md


Deref and DerefMut
As well as overloading the unary *  operator, Deref  and DerefMut  are

also used in method resolution and deref coercions.
r[lang-types.drop]

std::ops::Deref
std::ops::DerefMut
clbr://internal.invalid/book/OEBPS/expressions/method-call-expr.md
clbr://internal.invalid/book/OEBPS/type-coercions.md#coercion-types


Drop
The [ Drop ] trait provides a destructor, to be run whenever a value of

this type is to be destroyed.
r[lang-types.copy]

clbr://internal.invalid/book/OEBPS/destructors.md


Copy
r[lang-types.copy.intro] The [ Copy ] trait changes the semantics of a type

implementing it.
r[lang-types.copy.behavior] Values whose type implements Copy  are

copied rather than moved upon assignment.
r[lang-types.copy.constraint] Copy  can only be implemented for types

which do not implement Drop , and whose fields are all Copy . For enums,
this means all fields of all variants have to be Copy . For unions, this means
all variants have to be Copy .

r[lang-types.copy.builtin-types] Copy  is implemented by the compiler
for

r[lang-types.copy.tuple]

Tuples of Copy  types
r[lang-types.copy.fn-pointer]

Function pointers
r[lang-types.copy.fn-item]

Function items
r[lang-types.copy.closure]

Closures that capture no values or that only capture values of Copy
types

r[lang-types.clone]

clbr://internal.invalid/book/OEBPS/types/tuple.md
clbr://internal.invalid/book/OEBPS/types/function-pointer.md
clbr://internal.invalid/book/OEBPS/types/function-item.md
clbr://internal.invalid/book/OEBPS/types/closure.md


Clone
r[lang-types.clone.intro] The [ Clone ] trait is a supertrait of Copy , so it

also needs compiler generated implementations.
r[lang-types.clone.builtin-types] It is implemented by the compiler for

the following types:
r[lang-types.clone.builtin-copy]

Types with a built-in Copy  implementation (see above)
r[lang-types.clone.tuple]

Tuples of Clone  types
r[lang-types.clone.closure]

Closures that only capture values of Clone  types or capture no values
from the environment

r[lang-types.send]

clbr://internal.invalid/book/OEBPS/types/tuple.md
clbr://internal.invalid/book/OEBPS/types/closure.md


Send
The [ Send ] trait indicates that a value of this type is safe to send from

one thread to another.
r[lang-types.sync]



Sync
r[lang-types.sync.intro] The [ Sync ] trait indicates that a value of this

type is safe to share between multiple threads.
r[lang-types.sync.static-constraint] This trait must be implemented for all

types used in immutable static  items.
r[lang-types.termination]

clbr://internal.invalid/book/OEBPS/items/static-items.md


Termination
The Termination  trait indicates the acceptable return types for the main

function and test functions.
r[lang-types.auto-traits]

std::process::Termination
clbr://internal.invalid/book/OEBPS/crates-and-source-files.md#main-functions
clbr://internal.invalid/book/OEBPS/attributes/testing.md#the-test-attribute


Auto traits
The [ Send ], [ Sync ], Unpin , UnwindSafe , and RefUnwindSafe  traits

are auto traits. Auto traits have special properties.
r[lang-types.auto-traits.auto-impl] If no explicit implementation or

negative implementation is written out for an auto trait for a given type,
then the compiler implements it automatically according to the following
rules:

r[lang-types.auto-traits.builtin-composite]

&T , &mut T , *const T , *mut T , [T; n] , and [T]  implement the
trait if T  does.

r[lang-types.auto-traits.fn-item-pointer]

Function item types and function pointers automatically implement the
trait.

r[lang-types.auto-traits.aggregate]

Structs, enums, unions, and tuples implement the trait if all of their
fields do.

r[lang-types.auto-traits.closure]

Closures implement the trait if the types of all of their captures do. A
closure that captures a T  by shared reference and a U  by value
implements any auto traits that both &T  and U  do.

r[lang-types.auto-traits.generic-impl] For generic types (counting the
built-in types above as generic over T ), if a generic implementation is
available, then the compiler does not automatically implement it for types
that could use the implementation except that they do not meet the requisite
trait bounds. For instance, the standard library implements Send  for all &T
where T  is Sync ; this means that the compiler will not implement Send  for
&T  if T  is Send  but not Sync .

r[lang-types.auto-traits.negative] Auto traits can also have negative
implementations, shown as impl !AutoTrait for T  in the standard

std::marker::Unpin
std::panic::UnwindSafe
std::panic::RefUnwindSafe


library documentation, that override the automatic implementations. For
example *mut T  has a negative implementation of Send , and so *mut T  is
not Send , even if T  is. There is currently no stable way to specify
additional negative implementations; they exist only in the standard library.

r[lang-types.auto-traits.trait-object-marker] Auto traits may be added as
an additional bound to any trait object, even though normally only one trait
is allowed. For instance, Box<dyn Debug + Send + UnwindSafe>  is a valid
type.

r[lang-types.sized]

clbr://internal.invalid/book/OEBPS/types/trait-object.md


Sized
r[lang-types.sized.intro] The [ Sized ] trait indicates that the size of this

type is known at compile-time; that is, it's not a dynamically sized type.
r[lang-types.sized.implicit-sized] Type parameters (except Self  in

traits) are Sized  by default, as are associated types.
r[lang-types.sized.implicit-impl] Sized  is always implemented

automatically by the compiler, not by implementation items.
r[lang-types.sized.relaxation] These implicit Sized  bounds may be

relaxed by using the special ?Sized  bound.

clbr://internal.invalid/book/OEBPS/dynamically-sized-types.md
clbr://internal.invalid/book/OEBPS/types/parameters.md
clbr://internal.invalid/book/OEBPS/items/associated-items.md#associated-types
clbr://internal.invalid/book/OEBPS/items/implementations.md


r[names]



Names
r[names.intro] An entity is a language construct that can be referred to in

some way within the source program, usually via a path. Entities include
types, items, generic parameters, variable bindings, loop labels, lifetimes,
fields, attributes, and lints.

r[names.decl] A declaration is a syntactical construct that can introduce
a name to refer to an entity. Entity names are valid within a scope --- a
region of source text where that name may be referenced.

r[names.explicit-decl] Some entities are explicitly declared in the source
code, and some are implicitly declared as part of the language or compiler
extensions.

r[names.path] Paths are used to refer to an entity, possibly in another
module or type.

r[names.lifetime] Lifetimes and loop labels use a dedicated syntax using
a leading quote.

r[names.namespace] Names are segregated into different namespaces,
allowing entities in different namespaces to share the same name without
conflict.

r[names.resolution] Name resolution is the compile-time process of tying
paths, identifiers, and labels to entity declarations.

r[names.visibility] Access to certain names may be restricted based on
their visibility.

r[names.explicit]

clbr://internal.invalid/book/OEBPS/paths.md
clbr://internal.invalid/book/OEBPS/types.md
clbr://internal.invalid/book/OEBPS/items.md
clbr://internal.invalid/book/OEBPS/items/generics.md
clbr://internal.invalid/book/OEBPS/patterns.md
clbr://internal.invalid/book/OEBPS/expressions/loop-expr.md#loop-labels
clbr://internal.invalid/book/OEBPS/tokens.md#lifetimes-and-loop-labels
clbr://internal.invalid/book/OEBPS/expressions/field-expr.md
clbr://internal.invalid/book/OEBPS/attributes.md
clbr://internal.invalid/book/OEBPS/attributes/diagnostics.md#lint-check-attributes
clbr://internal.invalid/book/OEBPS/names/scopes.md
clbr://internal.invalid/book/OEBPS/paths.md
clbr://internal.invalid/book/OEBPS/tokens.md#lifetimes-and-loop-labels
clbr://internal.invalid/book/OEBPS/names/namespaces.md
clbr://internal.invalid/book/OEBPS/names/name-resolution.md
clbr://internal.invalid/book/OEBPS/visibility-and-privacy.md


Explicitly declared entities
r[names.explicit.list] Entities that explicitly introduce a name in the

source code are:
r[names.explicit.item-decl]

Items:

Module declarations
External crate declarations
Use declarations
Function declarations and function parameters
Type aliases
struct, union, enum, enum variant declarations, and their named
fields
Constant item declarations
Static item declarations
Trait item declarations and their associated items
External block items
macro_rules  declarations and matcher metavariables
Implementation associated items

r[names.explicit.expr]

Expressions:

Closure parameters
while let  pattern bindings
for  pattern bindings
if let  pattern bindings
match  pattern bindings
Loop labels

r[names.explicit.generics]

Generic parameters
r[names.explicit.higher-ranked-bounds]

clbr://internal.invalid/book/OEBPS/items.md
clbr://internal.invalid/book/OEBPS/items/modules.md
clbr://internal.invalid/book/OEBPS/items/extern-crates.md
clbr://internal.invalid/book/OEBPS/items/use-declarations.md
clbr://internal.invalid/book/OEBPS/items/functions.md
clbr://internal.invalid/book/OEBPS/items/functions.md#function-parameters
clbr://internal.invalid/book/OEBPS/items/type-aliases.md
clbr://internal.invalid/book/OEBPS/items/structs.md
clbr://internal.invalid/book/OEBPS/items/unions.md
clbr://internal.invalid/book/OEBPS/items/enumerations.md
clbr://internal.invalid/book/OEBPS/items/constant-items.md
clbr://internal.invalid/book/OEBPS/items/static-items.md
clbr://internal.invalid/book/OEBPS/items/traits.md
clbr://internal.invalid/book/OEBPS/items/associated-items.md
clbr://internal.invalid/book/OEBPS/items/external-blocks.md
clbr://internal.invalid/book/OEBPS/macros-by-example.md
clbr://internal.invalid/book/OEBPS/macros-by-example.md#metavariables
clbr://internal.invalid/book/OEBPS/items/implementations.md
clbr://internal.invalid/book/OEBPS/expressions.md
clbr://internal.invalid/book/OEBPS/expressions/closure-expr.md
clbr://internal.invalid/book/OEBPS/expressions/loop-expr.md#while-let-patterns
clbr://internal.invalid/book/OEBPS/expressions/loop-expr.md#iterator-loops
clbr://internal.invalid/book/OEBPS/expressions/if-expr.md#if-let-patterns
clbr://internal.invalid/book/OEBPS/expressions/match-expr.md
clbr://internal.invalid/book/OEBPS/expressions/loop-expr.md#loop-labels
clbr://internal.invalid/book/OEBPS/items/generics.md


Higher ranked trait bounds
r[names.explicit.binding]

let  statement pattern bindings
r[names.explicit.macro_use]

The macro_use  attribute can introduce macro names from another
crate

r[names.explicit.macro_export]

The macro_export  attribute can introduce an alias for the macro into
the crate root

r[names.explicit.macro-invocation] Additionally, macro invocations and
attributes can introduce names by expanding to one of the above items.

r[names.implicit]

clbr://internal.invalid/book/OEBPS/trait-bounds.md#higher-ranked-trait-bounds
clbr://internal.invalid/book/OEBPS/statements.md#let-statements
clbr://internal.invalid/book/OEBPS/macros-by-example.md#the-macro_use-attribute
clbr://internal.invalid/book/OEBPS/macros-by-example.md#path-based-scope
clbr://internal.invalid/book/OEBPS/macros.md#macro-invocation
clbr://internal.invalid/book/OEBPS/attributes.md


Implicitly declared entities
r[names.implicit.list] The following entities are implicitly defined by the

language, or are introduced by compiler options and extensions:
r[names.implicit.primitive-types]

Language prelude:

Boolean type --- bool
Textual types --- char  and str
Integer types --- i8 , i16 , i32 , i64 , i128 , u8 , u16 , u32 , u64 ,
u128

Machine-dependent integer types --- usize  and isize
floating-point types --- f32  and f64

r[names.implicit.builtin-attributes]

Built-in attributes
r[names.implicit.prelude]

Standard library prelude items, attributes, and macros
r[names.implicit.stdlib]

Standard library crates in the root module
r[names.implicit.extern-prelude]

External crates linked by the compiler
r[names.implicit.tool-attributes]

Tool attributes
r[names.implicit.lints]

Lints and tool lint attributes
r[names.implicit.derive-helpers]

clbr://internal.invalid/book/OEBPS/names/preludes.md#language-prelude
clbr://internal.invalid/book/OEBPS/types/boolean.md
clbr://internal.invalid/book/OEBPS/types/textual.md
clbr://internal.invalid/book/OEBPS/types/numeric.md#integer-types
clbr://internal.invalid/book/OEBPS/types/numeric.md#machine-dependent-integer-types
clbr://internal.invalid/book/OEBPS/types/numeric.md#floating-point-types
clbr://internal.invalid/book/OEBPS/attributes.md#built-in-attributes-index
clbr://internal.invalid/book/OEBPS/names/preludes.md#standard-library-prelude
clbr://internal.invalid/book/OEBPS/names/preludes.md#extern-prelude
clbr://internal.invalid/book/OEBPS/names/preludes.md#extern-prelude
clbr://internal.invalid/book/OEBPS/attributes.md#tool-attributes
clbr://internal.invalid/book/OEBPS/attributes/diagnostics.md#lint-check-attributes
clbr://internal.invalid/book/OEBPS/attributes/diagnostics.md#tool-lint-attributes


Derive helper attributes are valid within an item without being
explicitly imported

r[names.implicit.lifetime-static]

The 'static  lifetime
r[names.implicit.root] Additionally, the crate root module does not have

a name, but can be referred to with certain path qualifiers or aliases.

clbr://internal.invalid/book/OEBPS/procedural-macros.md#derive-macro-helper-attributes
clbr://internal.invalid/book/OEBPS/keywords.md#weak-keywords
clbr://internal.invalid/book/OEBPS/paths.md#path-qualifiers


r[names.namespaces]



Namespaces
r[names.namespaces.intro] A namespace is a logical grouping of

declared names. Names are segregated into separate namespaces based on
the kind of entity the name refers to. Namespaces allow the occurrence of a
name in one namespace to not conflict with the same name in another
namespace.

There are several different namespaces that each contain different kinds
of entities. The usage of a name will look for the declaration of that name in
different namespaces, based on the context, as described in the name
resolution chapter.

r[names.namespaces.kinds] The following is a list of namespaces, with
their corresponding entities:

Type Namespace

Module declarations
External crate declarations
External crate prelude items
Struct, union, enum, enum variant declarations
Trait item declarations
Type aliases
Associated type declarations
Built-in types: boolean, numeric, and textual
Generic type parameters
Self  type
Tool attribute modules

Value Namespace

Function declarations
Constant item declarations
Static item declarations
Struct constructors
Enum variant constructors

clbr://internal.invalid/book/OEBPS/names.md
clbr://internal.invalid/book/OEBPS/names/name-resolution.md
clbr://internal.invalid/book/OEBPS/items/modules.md
clbr://internal.invalid/book/OEBPS/items/extern-crates.md
clbr://internal.invalid/book/OEBPS/names/preludes.md#extern-prelude
clbr://internal.invalid/book/OEBPS/items/structs.md
clbr://internal.invalid/book/OEBPS/items/unions.md
clbr://internal.invalid/book/OEBPS/items/enumerations.md
clbr://internal.invalid/book/OEBPS/items/traits.md
clbr://internal.invalid/book/OEBPS/items/type-aliases.md
clbr://internal.invalid/book/OEBPS/items/associated-items.md#associated-types
clbr://internal.invalid/book/OEBPS/types/boolean.md
clbr://internal.invalid/book/OEBPS/types/numeric.md
clbr://internal.invalid/book/OEBPS/types/textual.md
clbr://internal.invalid/book/OEBPS/items/generics.md
clbr://internal.invalid/book/OEBPS/paths.md#self-1
clbr://internal.invalid/book/OEBPS/attributes.md#tool-attributes
clbr://internal.invalid/book/OEBPS/items/functions.md
clbr://internal.invalid/book/OEBPS/items/constant-items.md
clbr://internal.invalid/book/OEBPS/items/static-items.md
clbr://internal.invalid/book/OEBPS/items/structs.md
clbr://internal.invalid/book/OEBPS/items/enumerations.md


Self  constructors
Generic const parameters
Associated const declarations
Associated function declarations
Local bindings --- let , if let , while let , for , match  arms,
function parameters, closure parameters
Captured closure variables

Macro Namespace

macro_rules  declarations
Built-in attributes
Tool attributes
Function-like procedural macros
Derive macros
Derive macro helpers
Attribute macros

Lifetime Namespace

Generic lifetime parameters
Label Namespace

Loop labels
Block labels

An example of how overlapping names in different namespaces can be
used unambiguously:
// Foo introduces a type in the type namespace and a 
constructor in the value 
// namespace. 
struct Foo(u32); 
 
// The `Foo` macro is declared in the macro namespace. 
macro_rules! Foo { 
    () => {}; 
} 
 

clbr://internal.invalid/book/OEBPS/paths.md#self-1
clbr://internal.invalid/book/OEBPS/items/generics.md#const-generics
clbr://internal.invalid/book/OEBPS/items/associated-items.md#associated-constants
clbr://internal.invalid/book/OEBPS/items/associated-items.md#associated-functions-and-methods
clbr://internal.invalid/book/OEBPS/statements.md#let-statements
clbr://internal.invalid/book/OEBPS/expressions/if-expr.md#if-let-patterns
clbr://internal.invalid/book/OEBPS/expressions/loop-expr.md#while-let-patterns
clbr://internal.invalid/book/OEBPS/expressions/loop-expr.md#iterator-loops
clbr://internal.invalid/book/OEBPS/expressions/match-expr.md
clbr://internal.invalid/book/OEBPS/items/functions.md#function-parameters
clbr://internal.invalid/book/OEBPS/expressions/closure-expr.md
clbr://internal.invalid/book/OEBPS/expressions/closure-expr.md
clbr://internal.invalid/book/OEBPS/macros-by-example.md
clbr://internal.invalid/book/OEBPS/attributes.md#built-in-attributes-index
clbr://internal.invalid/book/OEBPS/attributes.md#tool-attributes
clbr://internal.invalid/book/OEBPS/procedural-macros.md#function-like-procedural-macros
clbr://internal.invalid/book/OEBPS/procedural-macros.md#derive-macros
clbr://internal.invalid/book/OEBPS/procedural-macros.md#derive-macro-helper-attributes
clbr://internal.invalid/book/OEBPS/procedural-macros.md#attribute-macros
clbr://internal.invalid/book/OEBPS/items/generics.md
clbr://internal.invalid/book/OEBPS/expressions/loop-expr.md#loop-labels
clbr://internal.invalid/book/OEBPS/expressions/loop-expr.md#labelled-block-expressions


// `Foo` in the `f` parameter type refers to `Foo` in the type 
namespace. 
// `'Foo` introduces a new lifetime in the lifetime namespace. 
fn example<'Foo>(f: Foo) { 
    // `Foo` refers to the `Foo` constructor in the value 
namespace. 
    let ctor = Foo; 
    // `Foo` refers to the `Foo` macro in the macro namespace. 
    Foo!{} 
    // `'Foo` introduces a label in the label namespace. 
    'Foo: loop { 
        // `'Foo` refers to the `'Foo` lifetime parameter, and 
`Foo` 
        // refers to the type namespace. 
        let x: &'Foo Foo; 
        // `'Foo` refers to the label. 
        break 'Foo; 
    } 
} 

r[names.namespaces.without]



Named entities without a namespace
The following entities have explicit names, but the names are not a part

of any specific namespace.

Fields
r[names.namespaces.without.fields] Even though struct, enum, and

union fields are named, the named fields do not live in an explicit
namespace. They can only be accessed via a field expression, which only
inspects the field names of the specific type being accessed.

Use declarations
r[names.namespaces.without.use] A use declaration has named aliases

that it imports into scope, but the use  item itself does not belong to a
specific namespace. Instead, it can introduce aliases into multiple
namespaces, depending on the item kind being imported.

r[names.namespaces.sub-namespaces]

clbr://internal.invalid/book/OEBPS/expressions/field-expr.md
clbr://internal.invalid/book/OEBPS/items/use-declarations.md


Sub-namespaces
r[names.namespaces.sub-namespaces.intro] The macro namespace is

split into two sub-namespaces: one for bang-style macros and one for
attributes. When an attribute is resolved, any bang-style macros in scope
will be ignored. And conversely resolving a bang-style macro will ignore
attribute macros in scope. This prevents one style from shadowing another.

For example, the cfg  attribute and the cfg  macro are two different
entities with the same name in the macro namespace, but they can still be
used in their respective context.

r[names.namespaces.sub-namespaces.use-shadow] It is still an error for
a use  import to shadow another macro, regardless of their sub-namespaces.

clbr://internal.invalid/book/OEBPS/macros.md
clbr://internal.invalid/book/OEBPS/attributes.md
clbr://internal.invalid/book/OEBPS/conditional-compilation.md#the-cfg-attribute
clbr://internal.invalid/book/OEBPS/conditional-compilation.md#the-cfg-macro
clbr://internal.invalid/book/OEBPS/items/use-declarations.md


r[names.scopes]



Scopes
r[names.scopes.intro] A scope is the region of source text where a named

entity may be referenced with that name. The following sections provide
details on the scoping rules and behavior, which depend on the kind of
entity and where it is declared. The process of how names are resolved to
entities is described in the name resolution chapter. More information on
"drop scopes" used for the purpose of running destructors may be found in
the destructors chapter.

r[names.scopes.items]

clbr://internal.invalid/book/OEBPS/names.md
clbr://internal.invalid/book/OEBPS/names/name-resolution.md
clbr://internal.invalid/book/OEBPS/destructors.md


Item scopes
r[names.scopes.items.module] The name of an item declared directly in

a module has a scope that extends from the start of the module to the end of
the module. These items are also members of the module and can be
referred to with a path leading from their module.

r[names.scopes.items.statement] The name of an item declared as a
statement has a scope that extends from the start of the block the item
statement is in until the end of the block.

r[names.scopes.items.duplicate] It is an error to introduce an item with a
duplicate name of another item in the same namespace within the same
module or block. Asterisk glob imports have special behavior for dealing
with duplicate names and shadowing, see the linked chapter for more
details.

r[names.scopes.items.shadow-prelude] Items in a module may shadow
items in a prelude.

r[names.scopes.items.nested-modules] Item names from outer modules
are not in scope within a nested module. A path may be used to refer to an
item in another module.

r[names.scopes.associated-items]

Associated item scopes
r[names.scopes.associated-items.scope] Associated items are not scoped

and can only be referred to by using a path leading from the type or trait
they are associated with. Methods can also be referred to via call
expressions.

r[names.scopes.associated-items.duplicate] Similar to items within a
module or block, it is an error to introduce an item within a trait or
implementation that is a duplicate of another item in the trait or impl in the
same namespace.

r[names.scopes.pattern-bindings]

clbr://internal.invalid/book/OEBPS/items.md
clbr://internal.invalid/book/OEBPS/items/modules.md
clbr://internal.invalid/book/OEBPS/paths.md
clbr://internal.invalid/book/OEBPS/statements.md
clbr://internal.invalid/book/OEBPS/names/namespaces.md
clbr://internal.invalid/book/OEBPS/items/use-declarations.md
clbr://internal.invalid/book/OEBPS/paths.md
clbr://internal.invalid/book/OEBPS/items/associated-items.md
clbr://internal.invalid/book/OEBPS/paths.md
clbr://internal.invalid/book/OEBPS/items/associated-items.md#methods
clbr://internal.invalid/book/OEBPS/expressions/call-expr.md


Pattern binding scopes
The scope of a local variable pattern binding depends on where it is

used:
r[names.scopes.pattern-bindings.let]

let  statement bindings range from just after the let  statement until
the end of the block where it is declared. r[names.scopes.pattern-
bindings.parameter]
Function parameter bindings are within the body of the function.
r[names.scopes.pattern-bindings.closure]
Closure parameter bindings are within the closure body.
r[names.scopes.pattern-bindings.loop]
for  bindings are within the loop body. r[names.scopes.pattern-
bindings.let-chains]
if let  and while let  bindings are valid in the following conditions
as well as the consequent block. r[names.scopes.pattern-
bindings.match-arm]
match  arms bindings are within the match guard and the match arm
expression.

r[names.scopes.pattern-bindings.items] Local variable scopes do not
extend into item declarations.

Pattern binding shadowing
r[names.scopes.pattern-bindings.shadow] Pattern bindings are allowed to

shadow any name in scope with the following exceptions which are an
error:

Const generic parameters
Static items
Const items
Constructors for structs and enums

The following example illustrates how local bindings can shadow item
declarations:

clbr://internal.invalid/book/OEBPS/patterns.md
clbr://internal.invalid/book/OEBPS/statements.md#let-statements
clbr://internal.invalid/book/OEBPS/items/functions.md#function-parameters
clbr://internal.invalid/book/OEBPS/expressions/closure-expr.md
clbr://internal.invalid/book/OEBPS/expressions/loop-expr.md#iterator-loops
clbr://internal.invalid/book/OEBPS/expressions/if-expr.md#if-let-patterns
clbr://internal.invalid/book/OEBPS/expressions/loop-expr.md#while-let-patterns
clbr://internal.invalid/book/OEBPS/expressions/match-expr.md
clbr://internal.invalid/book/OEBPS/expressions/match-expr.md#match-guards
clbr://internal.invalid/book/OEBPS/items/generics.md#const-generics
clbr://internal.invalid/book/OEBPS/items/static-items.md
clbr://internal.invalid/book/OEBPS/items/constant-items.md
clbr://internal.invalid/book/OEBPS/items/structs.md
clbr://internal.invalid/book/OEBPS/items/enumerations.md


fn shadow_example() { 
    // Since there are no local variables in scope yet, this 
resolves to the function. 
    foo(); // prints `function` 
    let foo = || println!("closure"); 
    fn foo() { println!("function"); } 
    // This resolves to the local closure since it shadows the 
item. 
    foo(); // prints `closure` 
} 

r[names.scopes.generic-parameters]



Generic parameter scopes
r[names.scopes.generic-parameters.param-list] Generic parameters are

declared in a [GenericParams] list. The scope of a generic parameter is
within the item it is declared on.

r[names.scopes.generic-parameters.order-independent] All parameters
are in scope within the generic parameter list regardless of the order they
are declared. The following shows some examples where a parameter may
be referenced before it is declared:
// The 'b bound is referenced before it is declared. 
fn params_scope<'a: 'b, 'b>() {} 
 
# trait SomeTrait<const Z: usize> {} 
// The const N is referenced in the trait bound before it is 
declared. 
fn f<T: SomeTrait<N>, const N: usize>() {} 

r[names.scopes.generic-parameters.bounds] Generic parameters are also
in scope for type bounds and where clauses, for example:
# trait SomeTrait<'a, T> {} 
// The <'a, U> for `SomeTrait` refer to the 'a and U 
parameters of `bounds_scope`. 
fn bounds_scope<'a, T: SomeTrait<'a, U>, U>() {} 
 
fn where_scope<'a, T, U>() 
    where T: SomeTrait<'a, U> 
{} 

r[names.scopes.generic-parameters.inner-items] It is an error for items
declared inside a function to refer to a generic parameter from their outer
scope.
fn example<T>() { 
    fn inner(x: T) {} // ERROR: can't use generic parameters 
from outer function 
} 

clbr://internal.invalid/book/OEBPS/items.md


Generic parameter shadowing
r[names.scopes.generic-parameters.shadow] It is an error to shadow a

generic parameter with the exception that items declared within functions
are allowed to shadow generic parameter names from the function.
fn example<'a, T, const N: usize>() { 
    // Items within functions are allowed to shadow generic 
parameter in scope. 
    fn inner_lifetime<'a>() {} // OK 
    fn inner_type<T>() {} // OK 
    fn inner_const<const N: usize>() {} // OK 
} 

trait SomeTrait<'a, T, const N: usize> { 
    fn example_lifetime<'a>() {} // ERROR: 'a is already in use 
    fn example_type<T>() {} // ERROR: T is already in use 
    fn example_const<const N: usize>() {} // ERROR: N is 
already in use 
    fn example_mixed<const T: usize>() {} // ERROR: T is 
already in use 
} 

r[names.scopes.lifetimes]

Lifetime scopes
Lifetime parameters are declared in a [GenericParams] list and higher-

ranked trait bounds.
r[names.scopes.lifetimes.special] The 'static  lifetime and placeholder

lifetime '_  have a special meaning and cannot be declared as a parameter.

Lifetime generic parameter scopes
r[names.scopes.lifetimes.generic] Constant and static items and const

contexts only ever allow 'static  lifetime references, so no other lifetime
may be in scope within them. Associated consts do allow referring to
lifetimes declared in their trait or implementation.

Higher-ranked trait bound scopes

clbr://internal.invalid/book/OEBPS/trait-bounds.md#higher-ranked-trait-bounds
clbr://internal.invalid/book/OEBPS/lifetime-elision.md
clbr://internal.invalid/book/OEBPS/items/constant-items.md
clbr://internal.invalid/book/OEBPS/items/static-items.md
clbr://internal.invalid/book/OEBPS/const_eval.md#const-context
clbr://internal.invalid/book/OEBPS/items/associated-items.md#associated-constants


r[names.scopes.lifetimes.higher-ranked] The scope of a lifetime
parameter declared as a higher-ranked trait bound depends on the scenario
where it is used.

As a [TypeBoundWhereClauseItem] the declared lifetimes are in scope
in the type and the type bounds.
As a [TraitBound] the declared lifetimes are in scope within the bound
type path.
As a [BareFunctionType] the declared lifetimes are in scope within the
function parameters and return type.

# trait Trait<'a>{} 
 
fn where_clause<T>() 
    // 'a is in scope in both the type and the type bounds. 
    where for <'a> &'a T: Trait<'a> 
{} 
 
fn bound<T>() 
    // 'a is in scope within the bound. 
    where T: for <'a> Trait<'a> 
{} 
 
# struct Example<'a> { 
#     field: &'a u32 
# } 
 
// 'a is in scope in both the parameters and return type. 
type FnExample = for<'a> fn(x: Example<'a>) -> Example<'a>; 

Impl trait restrictions
r[names.scopes.lifetimes.impl-trait] Impl trait types can only reference

lifetimes declared on a function or implementation.
# trait Trait1 { 
#     type Item; 
# } 

clbr://internal.invalid/book/OEBPS/trait-bounds.md#higher-ranked-trait-bounds
clbr://internal.invalid/book/OEBPS/types/impl-trait.md


# trait Trait2<'a> {} 
# 
# struct Example; 
# 
# impl Trait1 for Example { 
#     type Item = Element; 
# } 
# 
# struct Element; 
# impl<'a> Trait2<'a> for Element {} 
# 
// The `impl Trait2` here is not allowed to refer to 'b but it 
is allowed to 
// refer to 'a. 
fn foo<'a>() -> impl for<'b> Trait1<Item = impl Trait2<'a> + 
use<'a>> { 
    // ... 
#    Example 
} 

r[names.scopes.loop-label]



Loop label scopes
r[names.scopes.loop-label.scope] Loop labels may be declared by a loop

expression. The scope of a loop label is from the point it is declared till the
end of the loop expression. The scope does not extend into items, closures,
async blocks, const arguments, const contexts, and the iterator expression of
the defining for  loop.
'a: for n in 0..3 { 
    if n % 2 == 0 { 
        break 'a; 
    } 
    fn inner() { 
        // Using 'a here would be an error. 
        // break 'a; 
    } 
} 
 
// The label is in scope for the expression of `while` loops. 
'a: while break 'a {}         // Loop does not run. 
'a: while let _ = break 'a {} // Loop does not run. 
 
// The label is not in scope in the defining `for` loop: 
'a: for outer in 0..5 { 
    // This will break the outer loop, skipping the inner loop 
and stopping 
    // the outer loop. 
    'a: for inner in { break 'a; 0..1 } { 
        println!("{}", inner); // This does not run. 
    } 
    println!("{}", outer); // This does not run, either. 
} 
 

r[names.scopes.loop-label.shadow] Loop labels may shadow labels of
the same name in outer scopes. References to a label refer to the closest
definition.

clbr://internal.invalid/book/OEBPS/expressions/loop-expr.md#loop-labels
clbr://internal.invalid/book/OEBPS/expressions/loop-expr.md
clbr://internal.invalid/book/OEBPS/items.md
clbr://internal.invalid/book/OEBPS/expressions/closure-expr.md
clbr://internal.invalid/book/OEBPS/expressions/block-expr.md#async-blocks
clbr://internal.invalid/book/OEBPS/items/generics.md#const-generics
clbr://internal.invalid/book/OEBPS/const_eval.md#const-context
clbr://internal.invalid/book/OEBPS/expressions/loop-expr.md#iterator-loops


// Loop label shadowing example. 
'a: for outer in 0..5 { 
    'a: for inner in 0..5 { 
        // This terminates the inner loop, but the outer loop 
continues to run. 
        break 'a; 
    } 
} 

r[names.scopes.prelude]



Prelude scopes
r[names.scopes.prelude.intro] Preludes bring entities into scope of every

module. The entities are not members of the module, but are implicitly
queried during name resolution.

r[names.scopes.prelude.shadow] The prelude names may be shadowed
by declarations in a module.

r[names.scopes.prelude.layers] The preludes are layered such that one
shadows another if they contain entities of the same name. The order that
preludes may shadow other preludes is the following where earlier entries
may shadow later ones:

1. Extern prelude
2. Tool prelude
3. macro_use prelude
4. Standard library prelude
5. Language prelude
r[names.scopes.macro_rules]

clbr://internal.invalid/book/OEBPS/names/preludes.md
clbr://internal.invalid/book/OEBPS/names/name-resolution.md
clbr://internal.invalid/book/OEBPS/names/preludes.md#extern-prelude
clbr://internal.invalid/book/OEBPS/names/preludes.md#tool-prelude
clbr://internal.invalid/book/OEBPS/names/preludes.md#macro_use-prelude
clbr://internal.invalid/book/OEBPS/names/preludes.md#standard-library-prelude
clbr://internal.invalid/book/OEBPS/names/preludes.md#language-prelude


macro_rules scopes
The scope of macro_rules  macros is described in the Macros By

Example chapter. The behavior depends on the use of the macro_use  and 
macro_export  attributes.

r[names.scopes.derive]

clbr://internal.invalid/book/OEBPS/macros-by-example.md
clbr://internal.invalid/book/OEBPS/macros-by-example.md#the-macro_use-attribute
clbr://internal.invalid/book/OEBPS/macros-by-example.md#path-based-scope


Derive macro helper attributes
r[names.scopes.derive.scope] Derive macro helper attributes are in scope

in the item where their corresponding derive  attribute is specified. The
scope extends from just after the derive  attribute to the end of the item.

r[names.scopes.derive.shadow] Helper attributes shadow other attributes
of the same name in scope.

r[names.scopes.self]

clbr://internal.invalid/book/OEBPS/procedural-macros.md#derive-macro-helper-attributes
clbr://internal.invalid/book/OEBPS/attributes/derive.md


Self scope
r[names.scopes.self.intro] Although Self  is a keyword with special

meaning, it interacts with name resolution in a way similar to normal
names.

r[names.scopes.self.def-scope] The implicit Self  type in the definition
of a struct, enum, union, trait, or implementation is treated similarly to a
generic parameter, and is in scope in the same way as a generic type
parameter.

r[names.scopes.self.impl-scope] The implicit Self  constructor in the
value namespace of an implementation is in scope within the body of the
implementation (the implementation's associated items).
// Self type within struct definition. 
struct Recursive { 
    f1: Option<Box<Self>> 
} 
 
// Self type within generic parameters. 
struct SelfGeneric<T: Into<Self>>(T); 
 
// Self value constructor within an implementation. 
struct ImplExample(); 
impl ImplExample { 
    fn example() -> Self { // Self type 
        Self() // Self value constructor 
    } 
} 

clbr://internal.invalid/book/OEBPS/paths.md#self-1
clbr://internal.invalid/book/OEBPS/items/structs.md
clbr://internal.invalid/book/OEBPS/items/enumerations.mdr
clbr://internal.invalid/book/OEBPS/items/unions.md
clbr://internal.invalid/book/OEBPS/items/traits.md
clbr://internal.invalid/book/OEBPS/items/implementations.md
clbr://internal.invalid/book/OEBPS/names/namespaces.md
clbr://internal.invalid/book/OEBPS/items/implementations.md
clbr://internal.invalid/book/OEBPS/items/associated-items.md


r[names.preludes]



Preludes
r[names.preludes.intro] A prelude is a collection of names that are

automatically brought into scope of every module in a crate.
These prelude names are not part of the module itself: they are implicitly

queried during name resolution. For example, even though something like
[ Box ] is in scope in every module, you cannot refer to it as self::Box
because it is not a member of the current module.

r[names.preludes.kinds] There are several different preludes:

Standard library prelude
Extern prelude
Language prelude
macro_use  prelude
Tool prelude

r[names.preludes.std]

clbr://internal.invalid/book/OEBPS/names/name-resolution.md


Standard library prelude
r[names.preludes.std.intro] Each crate has a standard library prelude,

which consists of the names from a single standard library module.
r[names.preludes.std.module] The module used depends on the crate's

edition, and on whether the no_std  attribute is applied to the crate:

Edition no_std not applied no_std applied

2015 [ std::prelude::rust_
2015 ]

[ core::prelude::rust_
2015 ]

2018 [ std::prelude::rust_
2018 ]

[ core::prelude::rust_
2018 ]

2021 [ std::prelude::rust_
2021 ]

[ core::prelude::rust_
2021 ]

2024 [ std::prelude::rust_
2024 ]

[ core::prelude::rust_
2024 ]

[!NOTE] [ std::prelude::rust_2015 ] and
[ std::prelude::rust_2018 ] have the same contents as
[ std::prelude::v1 ].

[ core::prelude::rust_2015 ] and [ core::prelude::rust_2018 ]
have the same contents as [ core::prelude::v1 ].

r[names.preludes.extern]



Extern prelude
r[names.preludes.extern.intro] External crates imported with extern 

crate  in the root module or provided to the compiler (as with the --
extern  flag with rustc ) are added to the extern prelude. If imported with
an alias such as extern crate orig_name as new_name , then the symbol 
new_name  is instead added to the prelude.

r[names.preludes.extern.core] The [ core ] crate is always added to the
extern prelude.

r[names.preludes.extern.std] The [ std ] crate is added as long as the 
no_std  attribute is not specified in the crate root.

r[names.preludes.extern.edition2018]

[!EDITION-2018] In the 2015 edition, crates in the extern prelude
cannot be referenced via use declarations, so it is generally standard
practice to include extern crate  declarations to bring them into
scope.

Beginning in the 2018 edition, use declarations can reference crates
in the extern prelude, so it is considered unidiomatic to use extern 
crate .

[!NOTE] Additional crates that ship with rustc , such as [ alloc ],
and test , are not automatically included with the --extern  flag
when using Cargo. They must be brought into scope with an extern 
crate  declaration, even in the 2018 edition.
extern crate alloc; 
use alloc::rc::Rc; 

Cargo does bring in proc_macro  to the extern prelude for proc-
macro crates only.

r[names.preludes.extern.no_std]

The no_std attribute

clbr://internal.invalid/book/OEBPS/items/extern-crates.md
clbr://internal.invalid/book/OEBPS/items/use-declarations.md
clbr://internal.invalid/book/OEBPS/items/use-declarations.md
clbr://internal.invalid/book/OEBPS/names/mod@test


r[names.preludes.extern.no_std.intro] By default, the standard library is
automatically included in the crate root module. The [ std ] crate is added to
the root, along with an implicit macro_use  attribute pulling in all macros
exported from std  into the macro_use  prelude. Both [ core ] and [ std ]
are added to the extern prelude.

r[names.preludes.extern.no_std.allowed-positions] The no_std  attribute
may be applied at the crate level to prevent the [ std ] crate from being
automatically added into scope.

It does three things:
r[names.preludes.extern.no_std.extern]

Prevents std  from being added to the extern prelude.
r[names.preludes.extern.no_std.module]
Affects which module is used to make up the standard library prelude
(as described above). r[names.preludes.extern.no_std.core]
Injects the [ core ] crate into the crate root instead of [ std ], and pulls
in all macros exported from core  in the macro_use  prelude.

[!NOTE] Using the core prelude over the standard prelude is useful
when either the crate is targeting a platform that does not support the
standard library or is purposefully not using the capabilities of the
standard library. Those capabilities are mainly dynamic memory
allocation (e.g. Box  and Vec ) and file and network capabilities (e.g. 
std::fs  and std::io ).

[!WARNING] Using no_std  does not prevent the standard library
from being linked in. It is still valid to put extern crate std;  into
the crate and dependencies can also link it in.

r[names.preludes.lang]

clbr://internal.invalid/book/OEBPS/macros-by-example.md#the-macro_use-attribute
clbr://internal.invalid/book/OEBPS/attributes.md


Language prelude
r[names.preludes.lang.intro] The language prelude includes names of

types and attributes that are built-in to the language. The language prelude
is always in scope.

r[names.preludes.lang.entities] It includes the following:

Type namespace

Boolean type --- bool
Textual types --- char  and str
Integer types --- i8 , i16 , i32 , i64 , i128 , u8 , u16 , u32 , u64 ,
u128

Machine-dependent integer types --- usize  and isize
floating-point types --- f32  and f64

Macro namespace

Built-in attributes
r[names.preludes.macro_use]

clbr://internal.invalid/book/OEBPS/names/namespaces.md
clbr://internal.invalid/book/OEBPS/types/boolean.md
clbr://internal.invalid/book/OEBPS/types/textual.md
clbr://internal.invalid/book/OEBPS/types/numeric.md#integer-types
clbr://internal.invalid/book/OEBPS/types/numeric.md#machine-dependent-integer-types
clbr://internal.invalid/book/OEBPS/types/numeric.md#floating-point-types
clbr://internal.invalid/book/OEBPS/names/namespaces.md
clbr://internal.invalid/book/OEBPS/attributes.md#built-in-attributes-index


macro_use prelude
r[names.preludes.macro_use.intro] The macro_use  prelude includes

macros from external crates that were imported by the macro_use  attribute
applied to an extern crate .

r[names.preludes.tool]

clbr://internal.invalid/book/OEBPS/macros-by-example.md#the-macro_use-attribute
clbr://internal.invalid/book/OEBPS/items/extern-crates.md


Tool prelude
r[names.preludes.tool.intro] The tool prelude includes tool names for

external tools in the type namespace. See the tool attributes section for more
details.

r[names.preludes.no_implicit_prelude]

clbr://internal.invalid/book/OEBPS/names/namespaces.md
clbr://internal.invalid/book/OEBPS/attributes.md#tool-attributes


The no_implicit_prelude attribute
r[names.preludes.no_implicit_prelude.intro] The no_implicit_prelude

attribute may be applied at the crate level or on a module to indicate that it
should not automatically bring the standard library prelude, extern prelude,
or tool prelude into scope for that module or any of its descendants.

r[names.preludes.no_implicit_prelude.lang] This attribute does not affect
the language prelude.

r[names.preludes.no_implicit_prelude.edition2018]

[!EDITION-2018] In the 2015 edition, the no_implicit_prelude
attribute does not affect the macro_use  prelude, and all macros
exported from the standard library are still included in the macro_use
prelude. Starting in the 2018 edition, it will remove the macro_use
prelude.

clbr://internal.invalid/book/OEBPS/attributes.md


r[paths]



Paths
r[paths.intro] A path is a sequence of one or more path segments

separated by ::  tokens. Paths are used to refer to items, values, types,
macros, and attributes.

Two examples of simple paths consisting of only identifier segments:
x; 
x::y::z; 

clbr://internal.invalid/book/OEBPS/items.md
clbr://internal.invalid/book/OEBPS/types.md
clbr://internal.invalid/book/OEBPS/macros.md
clbr://internal.invalid/book/OEBPS/attributes.md


Types of paths
r[paths.simple]

Simple Paths
r[paths.simple.syntax]

SimplePath -> 
    `::`? SimplePathSegment (`::` SimplePathSegment)* 
 
SimplePathSegment -> 
    IDENTIFIER | `super` | `self` | `crate` | `$crate` 

r[paths.simple.intro] Simple paths are used in visibility markers,
attributes, macros, and use  items. For example:
use std::io::{self, Write}; 
mod m { 
    #[clippy::cyclomatic_complexity = "0"] 
    pub (in super) fn f1() {} 
} 

r[paths.expr]

Paths in expressions
r[paths.expr.syntax]

PathInExpression -> 
    `::`? PathExprSegment (`::` PathExprSegment)* 
 
PathExprSegment -> 
    PathIdentSegment (`::` GenericArgs)? 
 
PathIdentSegment -> 
    IDENTIFIER | `super` | `self` | `Self` | `crate` | `$crate` 
 
GenericArgs -> 
      `<` `>` 
    | `<` ( GenericArg `,` )* GenericArg `,`? `>` 

clbr://internal.invalid/book/OEBPS/visibility-and-privacy.md
clbr://internal.invalid/book/OEBPS/attributes.md
clbr://internal.invalid/book/OEBPS/macros-by-example.md
clbr://internal.invalid/book/OEBPS/items/use-declarations.md


 
GenericArg -> 
    Lifetime | Type | GenericArgsConst | GenericArgsBinding | 
GenericArgsBounds 
 
GenericArgsConst -> 
      BlockExpression 
    | LiteralExpression 
    | `-` LiteralExpression 
    | SimplePathSegment 
 
GenericArgsBinding -> 
    IDENTIFIER GenericArgs? `=` Type 
 
GenericArgsBounds -> 
    IDENTIFIER GenericArgs? `:` TypeParamBounds 

r[paths.expr.intro] Paths in expressions allow for paths with generic
arguments to be specified. They are used in various places in expressions
and patterns.

r[paths.expr.turbofish] The ::  token is required before the opening <
for generic arguments to avoid ambiguity with the less-than operator. This
is colloquially known as "turbofish" syntax.
(0..10).collect::<Vec<_>>(); 
Vec::<u8>::with_capacity(1024); 

r[paths.expr.argument-order] The order of generic arguments is restricted
to lifetime arguments, then type arguments, then const arguments, then
equality constraints.

r[paths.expr.complex-const-params] Const arguments must be
surrounded by braces unless they are a literal, an inferred const, or a single
segment path. An inferred const may not be surrounded by braces.
mod m { 
    pub const C: usize = 1; 
} 
const C: usize = m::C; 

clbr://internal.invalid/book/OEBPS/expressions.md
clbr://internal.invalid/book/OEBPS/patterns.md
clbr://internal.invalid/book/OEBPS/expressions/literal-expr.md
clbr://internal.invalid/book/OEBPS/items.generics.const.inferred
clbr://internal.invalid/book/OEBPS/items.generics.const.inferred


fn f<const N: usize>() -> [u8; N] { [0; N] } 
 
let _ = f::<1>(); // Literal. 
let _: [_; 1] = f::<_>(); // Inferred const. 
let _: [_; 1] = f::<(((_)))>(); // Inferred const. 
let _ = f::<C>(); // Single segment path. 
let _ = f::<{ m::C }>(); // Multi-segment path must be braced. 

fn f<const N: usize>() -> [u8; N] { [0; _] } 
let _: [_; 1] = f::<{ _ }>(); 
//                    ^ ERROR `_` not allowed here 

[!NOTE] In a generic argument list, an inferred const is parsed as
an [inferred type][InferredType] but then semantically treated as a
separate kind of const generic argument.

r[paths.expr.impl-trait-params] The synthetic type parameters
corresponding to impl Trait  types are implicit, and these cannot be
explicitly specified.

r[paths.qualified]

clbr://internal.invalid/book/OEBPS/items.generics.const.inferred
clbr://internal.invalid/book/OEBPS/items.generics.const.argument


Qualified paths
r[paths.qualified.syntax]

QualifiedPathInExpression -> QualifiedPathType (`::` 
PathExprSegment)+ 
 
QualifiedPathType -> `<` Type (`as` TypePath)? `>` 
 
QualifiedPathInType -> QualifiedPathType (`::` 
TypePathSegment)+ 

r[paths.qualified.intro] Fully qualified paths allow for disambiguating
the path for trait implementations and for specifying canonical paths. When
used in a type specification, it supports using the type syntax specified
below.
struct S; 
impl S { 
    fn f() { println!("S"); } 
} 
trait T1 { 
    fn f() { println!("T1 f"); } 
} 
impl T1 for S {} 
trait T2 { 
    fn f() { println!("T2 f"); } 
} 
impl T2 for S {} 
S::f();  // Calls the inherent impl. 
<S as T1>::f();  // Calls the T1 trait function. 
<S as T2>::f();  // Calls the T2 trait function. 

r[paths.type]

Paths in types
r[paths.type.syntax]

clbr://internal.invalid/book/OEBPS/items/implementations.md#trait-implementations


TypePath -> `::`? TypePathSegment (`::` TypePathSegment)* 
 
TypePathSegment -> PathIdentSegment (`::`? (GenericArgs | 
TypePathFn))? 
 
TypePathFn -> `(` TypePathFnInputs? `)` (`->` TypeNoBounds)? 
 
TypePathFnInputs -> Type (`,` Type)* `,`? 

r[paths.type.intro] Type paths are used within type definitions, trait
bounds, type parameter bounds, and qualified paths.

r[paths.type.turbofish] Although the ::  token is allowed before the
generics arguments, it is not required because there is no ambiguity like
there is in [PathInExpression].
# mod ops { 
#     pub struct Range<T> {f1: T} 
#     pub trait Index<T> {} 
#     pub struct Example<'a> {f1: &'a i32} 
# } 
# struct S; 
impl ops::Index<ops::Range<usize>> for S { /*...*/ } 
fn i<'a>() -> impl Iterator<Item = ops::Example<'a>> { 
    // ... 
#    const EXAMPLE: Vec<ops::Example<'static>> = Vec::new(); 
#    EXAMPLE.into_iter() 
} 
type G = std::boxed::Box<dyn std::ops::FnOnce(isize) -> 
isize>; 

r[paths.qualifiers]



Path qualifiers
Paths can be denoted with various leading qualifiers to change the

meaning of how it is resolved.
r[paths.qualifiers.global-root]

::
r[paths.qualifiers.global-root.intro] Paths starting with ::  are considered

to be global paths where the segments of the path start being resolved from
a place which differs based on edition. Each identifier in the path must
resolve to an item.

r[paths.qualifiers.global-root.edition2018]

[!EDITION-2018] In the 2015 Edition, identifiers resolve from the
"crate root" ( crate::  in the 2018 edition), which contains a variety of
different items, including external crates, default crates such as std  or
core , and items in the top level of the crate (including use  imports).

Beginning with the 2018 Edition, paths starting with ::  resolve
from crates in the extern prelude. That is, they must be followed by the
name of a crate.

pub fn foo() { 
    // In the 2018 edition, this accesses `std` via the extern 
prelude. 
    // In the 2015 edition, this accesses `std` via the crate 
root. 
    let now = ::std::time::Instant::now(); 
    println!("{:?}", now); 
} 

// 2015 Edition 
mod a { 
    pub fn foo() {} 
} 
mod b { 
    pub fn foo() { 

clbr://internal.invalid/book/OEBPS/names/preludes.md#extern-prelude


        ::a::foo(); // call `a`'s foo function 
        // In Rust 2018, `::a` would be interpreted as the 
crate `a`. 
    } 
} 
# fn main() {} 

r[paths.qualifiers.mod-self]

self
r[paths.qualifiers.mod-self.intro] self  resolves the path relative to the

current module.
r[paths.qualifiers.mod-self.restriction] self  can only be used as the first

segment, without a preceding :: .
r[paths.qualifiers.self-pat] In a method body, a path which consists of a

single self  segment resolves to the method's self parameter.
fn foo() {} 
fn bar() { 
    self::foo(); 
} 
struct S(bool); 
impl S { 
  fn baz(self) { 
        self.0; 
    } 
} 
# fn main() {} 

r[paths.qualifiers.type-self]

Self
r[paths.qualifiers.type-self.intro] Self , with a capital "S", is used to

refer to the current type being implemented or defined. It may be used in
the following situations:

r[paths.qualifiers.type-self.trait]



In a trait definition, it refers to the type implementing the trait.
r[paths.qualifiers.type-self.impl]

In an implementation, it refers to the type being implemented. When
implementing a tuple or unit struct, it also refers to the constructor in
the value namespace.

r[paths.qualifiers.type-self.type]

In the definition of a struct, enumeration, or union, it refers to the type
being defined. The definition is not allowed to be infinitely recursive
(there must be an indirection).

r[paths.qualifiers.type-self.scope] The scope of Self  behaves similarly
to a generic parameter; see the Self  scope section for more details.

r[paths.qualifiers.type-self.allowed-positions] Self  can only be used as
the first segment, without a preceding :: .

r[paths.qualifiers.type-self.no-generics] The Self  path cannot include
generic arguments (as in Self::<i32> ).
trait T { 
    type Item; 
    const C: i32; 
    // `Self` will be whatever type that implements `T`. 
    fn new() -> Self; 
    // `Self::Item` will be the type alias in the 
implementation. 
    fn f(&self) -> Self::Item; 
} 
struct S; 
impl T for S { 
    type Item = i32; 
    const C: i32 = 9; 
    fn new() -> Self {           // `Self` is the type `S`. 
        S 
    } 
    fn f(&self) -> Self::Item {  // `Self::Item` is the type 

clbr://internal.invalid/book/OEBPS/items/traits.md
clbr://internal.invalid/book/OEBPS/items/implementations.md
clbr://internal.invalid/book/OEBPS/items/structs.md
clbr://internal.invalid/book/OEBPS/names/namespaces.md
clbr://internal.invalid/book/OEBPS/items/structs.md
clbr://internal.invalid/book/OEBPS/items/enumerations.md
clbr://internal.invalid/book/OEBPS/items/unions.md
clbr://internal.invalid/book/OEBPS/names/scopes.md#self-scope


`i32`. 
        Self::C                  // `Self::C` is the constant 
value `9`. 
    } 
} 
 
// `Self` is in scope within the generics of a trait 
definition, 
// to refer to the type being defined. 
trait Add<Rhs = Self> { 
    type Output; 
    // `Self` can also reference associated items of the 
    // type being implemented. 
    fn add(self, rhs: Rhs) -> Self::Output; 
} 
 
struct NonEmptyList<T> { 
    head: T, 
    // A struct can reference itself (as long as it is not 
    // infinitely recursive). 
    tail: Option<Box<Self>>, 
} 

r[paths.qualifiers.super]

super
r[paths.qualifiers.super.intro] super  in a path resolves to the parent

module.
r[paths.qualifiers.super.allowed-positions] It may only be used in leading

segments of the path, possibly after an initial self  segment.
mod a { 
    pub fn foo() {} 
} 
mod b { 
    pub fn foo() { 



        super::a::foo(); // call a's foo function 
    } 
} 
# fn main() {} 

r[paths.qualifiers.super.repetition] super  may be repeated several times
after the first super  or self  to refer to ancestor modules.
mod a { 
    fn foo() {} 
 
    mod b { 
        mod c { 
            fn foo() { 
                super::super::foo(); // call a's foo function 
                self::super::super::foo(); // call a's foo 
function 
            } 
        } 
    } 
} 
# fn main() {} 

r[paths.qualifiers.crate]

crate
r[paths.qualifiers.crate.intro] crate  resolves the path relative to the

current crate.
r[paths.qualifiers.crate.allowed-positions] crate  can only be used as the

first segment, without a preceding :: .
fn foo() {} 
mod a { 
    fn bar() { 
        crate::foo(); 
    } 
} 
# fn main() {} 



r[paths.qualifiers.macro-crate]

$crate
r[paths.qualifiers.macro-crate.allowed-positions] $crate  is only used

within macro transcribers, and can only be used as the first segment,
without a preceding :: .

r[paths.qualifiers.macro-crate.hygiene] $crate  will expand to a path to
access items from the top level of the crate where the macro is defined,
regardless of which crate the macro is invoked.
pub fn increment(x: u32) -> u32 { 
    x + 1 
} 
 
#[macro_export] 
macro_rules! inc { 
    ($x:expr) => ( $crate::increment($x) ) 
} 
# fn main() { } 

r[paths.canonical]

clbr://internal.invalid/book/OEBPS/macro.decl.hygiene.crate
clbr://internal.invalid/book/OEBPS/macros-by-example.md
clbr://internal.invalid/book/OEBPS/macro.decl.hygiene.crate


Canonical paths
r[paths.canonical.intro] Items defined in a module or implementation

have a canonical path that corresponds to where within its crate it is
defined.

r[paths.canonical.alias] All other paths to these items are aliases.
r[paths.canonical.def] The canonical path is defined as a path prefix

appended by the path segment the item itself defines.
r[paths.canonical.non-canonical] Implementations and use declarations

do not have canonical paths, although the items that implementations define
do have them. Items defined in block expressions do not have canonical
paths. Items defined in a module that does not have a canonical path do not
have a canonical path. Associated items defined in an implementation that
refers to an item without a canonical path, e.g. as the implementing type,
the trait being implemented, a type parameter or bound on a type parameter,
do not have canonical paths.

r[paths.canonical.module-prefix] The path prefix for modules is the
canonical path to that module.

r[paths.canonical.bare-impl-prefix] For bare implementations, it is the
canonical path of the item being implemented surrounded by angle ( <> )
brackets.

r[paths.canonical.trait-impl-prefix] For trait implementations, it is the
canonical path of the item being implemented followed by as  followed by
the canonical path to the trait all surrounded in angle ( <> ) brackets.

r[paths.canonical.local-canonical-path] The canonical path is only
meaningful within a given crate. There is no global namespace across
crates; an item's canonical path merely identifies it within the crate.
// Comments show the canonical path of the item. 
 
mod a { // crate::a 
    pub struct Struct; // crate::a::Struct 
 
    pub trait Trait { // crate::a::Trait 

clbr://internal.invalid/book/OEBPS/items/implementations.md
clbr://internal.invalid/book/OEBPS/items/use-declarations.md
clbr://internal.invalid/book/OEBPS/items/implementations.md#trait-implementations


        fn f(&self); // crate::a::Trait::f 
    } 
 
    impl Trait for Struct { 
        fn f(&self) {} // <crate::a::Struct as 
crate::a::Trait>::f 
    } 
 
    impl Struct { 
        fn g(&self) {} // <crate::a::Struct>::g 
    } 
} 
 
mod without { // crate::without 
    fn canonicals() { // crate::without::canonicals 
        struct OtherStruct; // None 
 
        trait OtherTrait { // None 
            fn g(&self); // None 
        } 
 
        impl OtherTrait for OtherStruct { 
            fn g(&self) {} // None 
        } 
 
        impl OtherTrait for crate::a::Struct { 
            fn g(&self) {} // None 
        } 
 
        impl crate::a::Trait for OtherStruct { 
            fn f(&self) {} // None 
        } 
    } 
} 
 
# fn main() {} 





Name resolution
[!NOTE] This is a placeholder for future expansion.



r[vis]



Visibility and Privacy
r[vis.syntax]

Visibility -> 
      `pub` 
    | `pub` `(` `crate` `)` 
    | `pub` `(` `self` `)` 
    | `pub` `(` `super` `)` 
    | `pub` `(` `in` SimplePath `)` 

r[vis.intro] These two terms are often used interchangeably, and what
they are attempting to convey is the answer to the question "Can this item
be used at this location?"

r[vis.name-hierarchy] Rust's name resolution operates on a global
hierarchy of namespaces. Each level in the hierarchy can be thought of as
some item. The items are one of those mentioned above, but also include
external crates. Declaring or defining a new module can be thought of as
inserting a new tree into the hierarchy at the location of the definition.

r[vis.privacy] To control whether interfaces can be used across modules,
Rust checks each use of an item to see whether it should be allowed or not.
This is where privacy warnings are generated, or otherwise "you used a
private item of another module and weren't allowed to."

r[vis.default] By default, everything is private, with two exceptions:
Associated items in a pub  Trait are public by default; Enum variants in a 
pub  enum are also public by default. When an item is declared as pub , it
can be thought of as being accessible to the outside world. For example:
# fn main() {} 
// Declare a private struct 
struct Foo; 
 
// Declare a public struct with a private field 
pub struct Bar { 
    field: i32, 
} 



 
// Declare a public enum with two public variants 
pub enum State { 
    PubliclyAccessibleState, 
    PubliclyAccessibleState2, 
} 

r[vis.access] With the notion of an item being either public or private,
Rust allows item accesses in two cases:

1. If an item is public, then it can be accessed externally from some
module m if you can access all the item's ancestor modules from m. You
can also potentially be able to name the item through re-exports. See
below.

2. If an item is private, it may be accessed by the current module and its
descendants.

These two cases are surprisingly powerful for creating module
hierarchies exposing public APIs while hiding internal implementation
details. To help explain, here's a few use cases and what they would entail:

A library developer needs to expose functionality to crates which
link against their library. As a consequence of the first case, this means
that anything which is usable externally must be pub  from the root
down to the destination item. Any private item in the chain will
disallow external accesses.

A crate needs a global available "helper module" to itself, but it
doesn't want to expose the helper module as a public API. To
accomplish this, the root of the crate's hierarchy would have a private
module which then internally has a "public API". Because the entire
crate is a descendant of the root, then the entire local crate can access
this private module through the second case.

When writing unit tests for a module, it's often a common idiom to
have an immediate child of the module to-be-tested named mod test .
This module could access any items of the parent module through the
second case, meaning that internal implementation details could also
be seamlessly tested from the child module.



In the second case, it mentions that a private item "can be accessed" by
the current module and its descendants, but the exact meaning of accessing
an item depends on what the item is.

r[vis.usage] Accessing a module, for example, would mean looking
inside of it (to import more items). On the other hand, accessing a function
would mean that it is invoked. Additionally, path expressions and import
statements are considered to access an item in the sense that the
import/expression is only valid if the destination is in the current visibility
scope.

Here's an example of a program which exemplifies the three cases
outlined above:
// This module is private, meaning that no external crate can 
access this 
// module. Because it is private at the root of this current 
crate, however, any 
// module in the crate may access any publicly visible item in 
this module. 
mod crate_helper_module { 
 
    // This function can be used by anything in the current 
crate 
    pub fn crate_helper() {} 
 
    // This function *cannot* be used by anything else in the 
crate. It is not 
    // publicly visible outside of the `crate_helper_module`, 
so only this 
    // current module and its descendants may access it. 
    fn implementation_detail() {} 
} 
 
// This function is "public to the root" meaning that it's 
available to external 
// crates linking against this one. 
pub fn public_api() {} 



 
// Similarly to 'public_api', this module is public so 
external crates may look 
// inside of it. 
pub mod submodule { 
    use crate::crate_helper_module; 
 
    pub fn my_method() { 
        // Any item in the local crate may invoke the helper 
module's public 
        // interface through a combination of the two rules 
above. 
        crate_helper_module::crate_helper(); 
    } 
 
    // This function is hidden to any module which is not a 
descendant of 
    // `submodule` 
    fn my_implementation() {} 
 
    #[cfg(test)] 
    mod test { 
 
        #[test] 
        fn test_my_implementation() { 
            // Because this module is a descendant of 
`submodule`, it's allowed 
            // to access private items inside of `submodule` 
without a privacy 
            // violation. 
            super::my_implementation(); 
        } 
    } 
} 
 
# fn main() {} 



For a Rust program to pass the privacy checking pass, all paths must be
valid accesses given the two rules above. This includes all use statements,
expressions, types, etc.

r[vis.scoped]



pub(in path), pub(crate), pub(super), and 
pub(self)

r[vis.scoped.intro] In addition to public and private, Rust allows users to
declare an item as visible only within a given scope. The rules for pub
restrictions are as follows:

r[vis.scoped.in]

pub(in path)  makes an item visible within the provided path . path
must be a simple path which resolves to an ancestor module of the
item whose visibility is being declared. Each identifier in path  must
refer directly to a module (not to a name introduced by a use
statement).

r[vis.scoped.crate]

pub(crate)  makes an item visible within the current crate.
r[vis.scoped.super]

pub(super)  makes an item visible to the parent module. This is
equivalent to pub(in super) .

r[vis.scoped.self]

pub(self)  makes an item visible to the current module. This is
equivalent to pub(in self)  or not using pub  at all.

r[vis.scoped.edition2018]

[!EDITION-2018] Starting with the 2018 edition, paths for pub(in 
path)  must start with crate , self , or super . The 2015 edition may
also use paths starting with ::  or modules from the crate root.

Here's an example:
pub mod outer_mod { 
    pub mod inner_mod { 
        // This function is visible within `outer_mod` 



        pub(in crate::outer_mod) fn outer_mod_visible_fn() {} 
        // Same as above, this is only valid in the 2015 
edition. 
        pub(in outer_mod) fn outer_mod_visible_fn_2015() {} 
 
        // This function is visible to the entire crate 
        pub(crate) fn crate_visible_fn() {} 
 
        // This function is visible within `outer_mod` 
        pub(super) fn super_mod_visible_fn() { 
            // This function is visible since we're in the same 
`mod` 
            inner_mod_visible_fn(); 
        } 
 
        // This function is visible only within `inner_mod`, 
        // which is the same as leaving it private. 
        pub(self) fn inner_mod_visible_fn() {} 
    } 
    pub fn foo() { 
        inner_mod::outer_mod_visible_fn(); 
        inner_mod::crate_visible_fn(); 
        inner_mod::super_mod_visible_fn(); 
 
        // This function is no longer visible since we're 
outside of `inner_mod` 
        // Error! `inner_mod_visible_fn` is private 
        //inner_mod::inner_mod_visible_fn(); 
    } 
} 
 
fn bar() { 
    // This function is still visible since we're in the same 
crate 
    outer_mod::inner_mod::crate_visible_fn(); 
 



    // This function is no longer visible since we're outside 
of `outer_mod` 
    // Error! `super_mod_visible_fn` is private 
    //outer_mod::inner_mod::super_mod_visible_fn(); 
 
    // This function is no longer visible since we're outside 
of `outer_mod` 
    // Error! `outer_mod_visible_fn` is private 
    //outer_mod::inner_mod::outer_mod_visible_fn(); 
 
    outer_mod::foo(); 
} 
 
fn main() { bar() } 

[!NOTE] This syntax only adds another restriction to the visibility
of an item. It does not guarantee that the item is visible within all parts
of the specified scope. To access an item, all of its parent items up to
the current scope must still be visible as well.

r[vis.reexports]



Re-exporting and Visibility
r[vis.reexports.intro] Rust allows publicly re-exporting items through a 

pub use  directive. Because this is a public directive, this allows the item to
be used in the current module through the rules above. It essentially allows
public access into the re-exported item. For example, this program is valid:
pub use self::implementation::api; 
 
mod implementation { 
    pub mod api { 
        pub fn f() {} 
    } 
} 
 
# fn main() {} 

This means that any external crate referencing 
implementation::api::f  would receive a privacy violation, while the
path api::f  would be allowed.

r[vis.reexports.private-item] When re-exporting a private item, it can be
thought of as allowing the "privacy chain" being short-circuited through the
reexport instead of passing through the namespace hierarchy as it normally
would.



r[memory]



Memory model
[!WARNING] The memory model of Rust is incomplete and not

fully decided.

r[memory.bytes]



Bytes
r[memory.bytes.intro] The most basic unit of memory in Rust is a byte.

[!NOTE] While bytes are typically lowered to hardware bytes, Rust
uses an "abstract" notion of bytes that can make distinctions which are
absent in hardware, such as being uninitialized, or storing part of a
pointer. Those distinctions can affect whether your program has
undefined behavior, so they still have tangible impact on how
compiled Rust programs behave.

r[memory.bytes.contents] Each byte may have one of the following
values:

r[memory.bytes.init]

An initialized byte containing a u8  value and optional [provenance]
[std::ptr#provenance],

r[memory.bytes.uninit]

An uninitialized byte.

[!NOTE] The above list is not yet guaranteed to be exhaustive.



r[alloc]



Memory allocation and lifetime
r[alloc.static] The items of a program are those functions, modules, and

types that have their value calculated at compile-time and stored uniquely in
the memory image of the rust process. Items are neither dynamically
allocated nor freed.

r[alloc.dynamic] The heap is a general term that describes boxes. The
lifetime of an allocation in the heap depends on the lifetime of the box
values pointing to it. Since box values may themselves be passed in and out
of frames, or stored in the heap, heap allocations may outlive the frame they
are allocated within. An allocation in the heap is guaranteed to reside at a
single location in the heap for the whole lifetime of the allocation - it will
never be relocated as a result of moving a box value.



r[variable]



Variables
r[variable.intro] A variable is a component of a stack frame, either a

named function parameter, an anonymous temporary, or a named local
variable.

r[variable.local] A local variable (or stack-local allocation) holds a value
directly, allocated within the stack's memory. The value is a part of the stack
frame.

r[variable.local-mut] Local variables are immutable unless declared
otherwise. For example: let mut x = ... .

r[variable.param-mut] Function parameters are immutable unless
declared with mut . The mut  keyword applies only to the following
parameter. For example: |mut x, y|  and fn f(mut x: Box<i32>, y: 
Box<i32>)  declare one mutable variable x  and one immutable variable y .

r[variable.init] Local variables are not initialized when allocated.
Instead, the entire frame worth of local variables are allocated, on frame-
entry, in an uninitialized state. Subsequent statements within a function may
or may not initialize the local variables. Local variables can be used only
after they have been initialized through all reachable control flow paths.

In this next example, init_after_if  is initialized after the if

expression while uninit_after_if  is not because it is not initialized in the
else  case.
# fn random_bool() -> bool { true } 
fn initialization_example() { 
    let init_after_if: (); 
    let uninit_after_if: (); 
 
    if random_bool() { 
        init_after_if = (); 
        uninit_after_if = (); 
    } else { 
        init_after_if = (); 

clbr://internal.invalid/book/OEBPS/expressions.md#temporaries
clbr://internal.invalid/book/OEBPS/expressions/if-expr.md#if-expressions


    } 
 
    init_after_if; // ok 
    // uninit_after_if; // err: use of possibly uninitialized 
`uninit_after_if` 
} 



r[panic]



Panic
r[panic.intro] Rust provides a mechanism to prevent a function from

returning normally, and instead "panic," which is a response to an error
condition that is typically not expected to be recoverable within the context
in which the error is encountered.

r[panic.lang-ops] Some language constructs, such as out-of-bounds array
indexing, panic automatically.

r[panic.control] There are also language features that provide a level of
control over panic behavior:

A panic handler defines the behavior of a panic.
FFI ABIs may alter how panics behave.

[!NOTE] The standard library provides the capability to explicitly
panic via the [ panic!  macro][panic!].

r[panic.panic_handler]

clbr://internal.invalid/book/OEBPS/expressions/array-expr.md#array-and-slice-indexing-expressions
clbr://internal.invalid/book/OEBPS/items/functions.md#unwinding


The panic_handler attribute
r[panic.panic_handler.intro] The panic_handler  attribute can be

applied to a function to define the behavior of panics.
r[panic.panic_handler.allowed-positions] The panic_handler  attribute

can only be applied to a function with signature fn(&PanicInfo) -> ! .

[!NOTE] The PanicInfo  struct contains information about the
location of the panic.

r[panic.panic_handler.unique] There must be a single panic_handler
function in the dependency graph.

Below is shown a panic_handler  function that logs the panic message
and then halts the thread.
#![no_std] 
 
use core::fmt::{self, Write}; 
use core::panic::PanicInfo; 
 
struct Sink { 
    // .. 
#    _0: (), 
} 
# 
# impl Sink { 
#     fn new() -> Sink { Sink { _0: () }} 
# } 
# 
# impl fmt::Write for Sink { 
#     fn write_str(&mut self, _: &str) -> fmt::Result { Ok(()) 
} 
# } 
 
#[panic_handler] 
fn panic(info: &PanicInfo) -> ! { 

core::panic::PanicInfo


    let mut sink = Sink::new(); 
 
    // logs "panicked at '$reason', src/main.rs:27:4" to some 
`sink` 
    let _ = writeln!(sink, "{}", info); 
 
    loop {} 
} 

r[panic.panic_handler.std]

Standard behavior
r[panic.panic_handler.std.kinds] std  provides two different panic

handlers:

unwind  --- unwinds the stack and is potentially recoverable.
abort  ---- aborts the process and is non-recoverable.

Not all targets may provide the unwind  handler.

[!NOTE] The panic handler used when linking with std  can be set
with the -C panic  CLI flag. The default for most targets is unwind .

The standard library's panic behavior can be modified at runtime
with the [ std::panic::set_hook ] function.

r[panic.panic_handler.std.no_std] Linking a no_std  binary, dylib,
cdylib, or staticlib will require specifying your own panic handler.

r[panic.strategy]

clbr://internal.invalid/book/rustc/codegen-options/index.html#panic
clbr://internal.invalid/book/OEBPS/names/preludes.md#the-no_std-attribute


Panic strategy
r[panic.strategy.intro] The panic strategy defines the kind of panic

behavior that a crate is built to support.

[!NOTE] The panic strategy can be chosen in rustc  with the -C 
panic  CLI flag.

When generating a binary, dylib, cdylib, or staticlib and linking
with std , the -C panic  CLI flag also influences which panic handler
is used.

[!NOTE] When compiling code with the abort  panic strategy, the
optimizer may assume that unwinding across Rust frames is
impossible, which can result in both code-size and runtime speed
improvements.

[!NOTE] See [link.unwinding] for restrictions on linking crates
with different panic strategies. An implication is that crates built with
the unwind  strategy can use the abort  panic handler, but the abort
strategy cannot use the unwind  panic handler.

r[panic.unwind]

clbr://internal.invalid/book/rustc/codegen-options/index.html#panic


Unwinding
r[panic.unwind.intro] Panicking may either be recoverable or non-

recoverable, though it can be configured (by choosing a non-unwinding
panic handler) to always be non-recoverable. (The converse is not true: the 
unwind  handler does not guarantee that all panics are recoverable, only that
panicking via the panic!  macro and similar standard library mechanisms is
recoverable.)

r[panic.unwind.destruction] When a panic occurs, the unwind  handler
"unwinds" Rust frames, just as C++'s throw  unwinds C++ frames, until the
panic reaches the point of recovery (for instance at a thread boundary). This
means that as the panic traverses Rust frames, live objects in those frames
that implement Drop  will have their drop  methods called. Thus, when
normal execution resumes, no-longer-accessible objects will have been
"cleaned up" just as if they had gone out of scope normally.

[!NOTE] As long as this guarantee of resource-cleanup is
preserved, "unwinding" may be implemented without actually using
the mechanism used by C++ for the target platform.

[!NOTE] The standard library provides two mechanisms for
recovering from a panic, [ std::panic::catch_unwind ] (which
enables recovery within the panicking thread) and
[ std::thread::spawn ] (which automatically sets up panic recovery
for the spawned thread so that other threads may continue running).

r[panic.unwind.ffi]

Unwinding across FFI boundaries
r[panic.unwind.ffi.intro] It is possible to unwind across FFI boundaries

using an appropriate ABI declaration. While useful in certain cases, this
creates unique opportunities for undefined behavior, especially when
multiple language runtimes are involved.

r[panic.unwind.ffi.undefined] Unwinding with the wrong ABI is
undefined behavior:

clbr://internal.invalid/book/OEBPS/destructors.md
clbr://internal.invalid/book/OEBPS/items/functions.md#unwinding


Causing an unwind into Rust code from a foreign function that was
called via a function declaration or pointer declared with a non-
unwinding ABI, such as "C" , "system" , etc. (For example, this case
occurs when such a function written in C++ throws an exception that is
uncaught and propagates to Rust.)
Calling a Rust extern  function that unwinds (with extern "C-
unwind"  or another ABI that permits unwinding) from code that does
not support unwinding, such as code compiled with GCC or Clang
using -fno-exceptions

r[panic.unwind.ffi.catch-foreign] Catching a foreign unwinding
operation (such as a C++ exception) using [ std::panic::catch_unwind ],
[ std::thread::JoinHandle::join ], or by letting it propagate beyond the
Rust main()  function or thread root will have one of two behaviors, and it
is unspecified which will occur:

The process aborts.
The function returns a [ Result::Err ] containing an opaque type.

[!NOTE] Rust code compiled or linked with a different instance of
the Rust standard library counts as a "foreign exception" for the
purpose of this guarantee. Thus, a library that uses panic!  and is
linked against one version of the Rust standard library, invoked from
an application that uses a different version of the standard library, may
cause the entire application to abort even if the library is only used
within a child thread.

r[panic.unwind.ffi.dispose-panic] There are currently no guarantees
about the behavior that occurs when a foreign runtime attempts to dispose
of, or rethrow, a Rust panic  payload. In other words, an unwind originated
from a Rust runtime must either lead to termination of the process or be
caught by the same runtime.



r[link]



Linkage
[!NOTE] This section is described more in terms of the compiler

than of the language.

r[link.intro] The compiler supports various methods to link crates
together both statically and dynamically. This section will explore the
various methods to link crates together, and more information about native
libraries can be found in the FFI section of the book.

r[link.type] In one session of compilation, the compiler can generate
multiple artifacts through the usage of either command line flags or the 
crate_type  attribute. If one or more command line flags are specified, all 
crate_type  attributes will be ignored in favor of only building the artifacts
specified by command line.

r[link.bin]

--crate-type=bin , #![crate_type = "bin"]  - A runnable
executable will be produced. This requires that there is a main
function in the crate which will be run when the program begins
executing. This will link in all Rust and native dependencies,
producing a single distributable binary. This is the default crate type.

r[link.lib]

--crate-type=lib , #![crate_type = "lib"]  - A Rust library will
be produced. This is an ambiguous concept as to what exactly is
produced because a library can manifest itself in several forms. The
purpose of this generic lib  option is to generate the "compiler
recommended" style of library. The output library will always be
usable by rustc, but the actual type of library may change from time-
to-time. The remaining output types are all different flavors of
libraries, and the lib  type can be seen as an alias for one of them (but
the actual one is compiler-defined).

r[link.dylib]

clbr://internal.invalid/book/book/ch19-01-unsafe-rust.html#using-extern-functions-to-call-external-code


--crate-type=dylib , #![crate_type = "dylib"]  - A dynamic
Rust library will be produced. This is different from the lib  output
type in that this forces dynamic library generation. The resulting
dynamic library can be used as a dependency for other libraries and/or
executables. This output type will create *.so  files on Linux, 
*.dylib  files on macOS, and *.dll  files on Windows.

r[link.staticlib]

--crate-type=staticlib , #![crate_type = "staticlib"]  - A
static system library will be produced. This is different from other
library outputs in that the compiler will never attempt to link to 
staticlib  outputs. The purpose of this output type is to create a static
library containing all of the local crate's code along with all upstream
dependencies. This output type will create *.a  files on Linux, macOS
and Windows (MinGW), and *.lib  files on Windows (MSVC). This
format is recommended for use in situations such as linking Rust code
into an existing non-Rust application because it will not have dynamic
dependencies on other Rust code.

Note that any dynamic dependencies that the static library may
have (such as dependencies on system libraries, or dependencies on
Rust libraries that are compiled as dynamic libraries) will have to be
specified manually when linking that static library from somewhere.
The --print=native-static-libs  flag may help with this.

Note that, because the resulting static library contains the code of
all the dependencies, including the standard library, and also exports
all public symbols of them, linking the static library into an executable
or shared library may need special care. In case of a shared library the
list of exported symbols will have to be limited via e.g. a linker or
symbol version script, exported symbols list (macOS), or module
definition file (Windows). Additionally, unused sections can be
removed to remove all code of dependencies that is not actually used
(e.g. --gc-sections  or -dead_strip  for macOS).

r[link.cdylib]



--crate-type=cdylib , #![crate_type = "cdylib"]  - A dynamic
system library will be produced. This is used when compiling a
dynamic library to be loaded from another language. This output type
will create *.so  files on Linux, *.dylib  files on macOS, and *.dll
files on Windows.

r[link.rlib]

--crate-type=rlib , #![crate_type = "rlib"]  - A "Rust library"
file will be produced. This is used as an intermediate artifact and can
be thought of as a "static Rust library". These rlib  files, unlike 
staticlib  files, are interpreted by the compiler in future linkage.
This essentially means that rustc  will look for metadata in rlib  files
like it looks for metadata in dynamic libraries. This form of output is
used to produce statically linked executables as well as staticlib
outputs.

r[link.proc-macro]

--crate-type=proc-macro , #![crate_type = "proc-macro"]  - The
output produced is not specified, but if a -L  path is provided to it then
the compiler will recognize the output artifacts as a macro and it can
be loaded for a program. Crates compiled with this crate type must
only export procedural macros. The compiler will automatically set the
proc_macro  configuration option. The crates are always compiled
with the same target that the compiler itself was built with. For
example, if you are executing the compiler from Linux with an 
x86_64  CPU, the target will be x86_64-unknown-linux-gnu  even if
the crate is a dependency of another crate being built for a different
target.

r[link.repetition] Note that these outputs are stackable in the sense that if
multiple are specified, then the compiler will produce each form of output
without having to recompile. However, this only applies for outputs
specified by the same method. If only crate_type  attributes are specified,
then they will all be built, but if one or more --crate-type  command line
flags are specified, then only those outputs will be built.

clbr://internal.invalid/book/OEBPS/procedural-macros.md
clbr://internal.invalid/book/OEBPS/conditional-compilation.md


r[link.dependency] With all these different kinds of outputs, if crate A
depends on crate B, then the compiler could find B in various different
forms throughout the system. The only forms looked for by the compiler,
however, are the rlib  format and the dynamic library format. With these
two options for a dependent library, the compiler must at some point make a
choice between these two formats. With this in mind, the compiler follows
these rules when determining what format of dependencies will be used:

r[link.dependency-staticlib]

1. If a static library is being produced, all upstream dependencies are
required to be available in rlib  formats. This requirement stems from
the reason that a dynamic library cannot be converted into a static
format.

Note that it is impossible to link in native dynamic dependencies to
a static library, and in this case warnings will be printed about all
unlinked native dynamic dependencies.

r[link.dependency-rlib]

2. If an rlib  file is being produced, then there are no restrictions on
what format the upstream dependencies are available in. It is simply
required that all upstream dependencies be available for reading
metadata from.

The reason for this is that rlib  files do not contain any of their
upstream dependencies. It wouldn't be very efficient for all rlib  files
to contain a copy of libstd.rlib !

r[link.dependency-prefer-dynamic]

3. If an executable is being produced and the -C prefer-dynamic flag is
not specified, then dependencies are first attempted to be found in the 
rlib format. If some dependencies are not available in an rlib format,
then dynamic linking is attempted (see below).

r[link.dependency-dynamic]



4. If a dynamic library or an executable that is being dynamically
linked is being produced, then the compiler will attempt to reconcile
the available dependencies in either the rlib or dylib format to create a
final product.

A major goal of the compiler is to ensure that a library never
appears more than once in any artifact. For example, if dynamic
libraries B and C were each statically linked to library A, then a crate
could not link to B and C together because there would be two copies
of A. The compiler allows mixing the rlib and dylib formats, but this
restriction must be satisfied.

The compiler currently implements no method of hinting what
format a library should be linked with. When dynamically linking, the
compiler will attempt to maximize dynamic dependencies while still
allowing some dependencies to be linked in via an rlib.

For most situations, having all libraries available as a dylib is
recommended if dynamically linking. For other situations, the
compiler will emit a warning if it is unable to determine which formats
to link each library with.

In general, --crate-type=bin  or --crate-type=lib  should be
sufficient for all compilation needs, and the other options are just available
if more fine-grained control is desired over the output format of a crate.

r[link.crt]



Static and dynamic C runtimes
r[link.crt.intro] The standard library in general strives to support both

statically linked and dynamically linked C runtimes for targets as
appropriate. For example the x86_64-pc-windows-msvc  and x86_64-

unknown-linux-musl  targets typically come with both runtimes and the
user selects which one they'd like. All targets in the compiler have a default
mode of linking to the C runtime. Typically targets are linked dynamically
by default, but there are exceptions which are static by default such as:

arm-unknown-linux-musleabi

arm-unknown-linux-musleabihf

armv7-unknown-linux-musleabihf

i686-unknown-linux-musl

x86_64-unknown-linux-musl

r[link.crt.crt-static] The linkage of the C runtime is configured to respect
the crt-static  target feature. These target features are typically
configured from the command line via flags to the compiler itself. For
example to enable a static runtime you would execute:
rustc -C target-feature=+crt-static foo.rs 

whereas to link dynamically to the C runtime you would execute:
rustc -C target-feature=-crt-static foo.rs 

r[link.crt.ineffective] Targets which do not support switching between
linkage of the C runtime will ignore this flag. It's recommended to inspect
the resulting binary to ensure that it's linked as you would expect after the
compiler succeeds.

r[link.crt.target_feature] Crates may also learn about how the C runtime
is being linked. Code on MSVC, for example, needs to be compiled
differently (e.g. with /MT  or /MD ) depending on the runtime being linked.
This is exported currently through the cfg  attribute target_feature

option:
#[cfg(target_feature = "crt-static")] 
fn foo() { 

clbr://internal.invalid/book/OEBPS/conditional-compilation.md#target_feature


    println!("the C runtime should be statically linked"); 
} 
 
#[cfg(not(target_feature = "crt-static"))] 
fn foo() { 
    println!("the C runtime should be dynamically linked"); 
} 

Also note that Cargo build scripts can learn about this feature through
environment variables. In a build script you can detect the linkage via:
use std::env; 
 
fn main() { 
    let linkage = 
env::var("CARGO_CFG_TARGET_FEATURE").unwrap_or(String::new()); 
 
    if linkage.contains("crt-static") { 
        println!("the C runtime will be statically linked"); 
    } else { 
        println!("the C runtime will be dynamically linked"); 
    } 
} 

To use this feature locally, you typically will use the RUSTFLAGS

environment variable to specify flags to the compiler through Cargo. For
example to compile a statically linked binary on MSVC you would execute:
RUSTFLAGS='-C target-feature=+crt-static' cargo build --target 
x86_64-pc-windows-msvc 

r[link.foreign-code]

clbr://internal.invalid/book/cargo/reference/environment-variables.html#environment-variables-cargo-sets-for-build-scripts


Mixed Rust and foreign codebases
r[link.foreign-code.foreign-linkers] If you are mixing Rust with foreign

code (e.g. C, C++) and wish to make a single binary containing both types
of code, you have two approaches for the final binary link:

Use rustc . Pass any non-Rust libraries using -L <directory>  and -
l<library>  rustc arguments, and/or #[link]  directives in your Rust
code. If you need to link against .o  files you can use -Clink-
arg=file.o .
Use your foreign linker. In this case, you first need to generate a Rust 
staticlib  target and pass that into your foreign linker invocation. If
you need to link multiple Rust subsystems, you will need to generate a
single staticlib  perhaps using lots of extern crate  statements to
include multiple Rust rlib s. Multiple Rust staticlib  files are likely
to conflict.

Passing rlib s directly into your foreign linker is currently unsupported.

[!NOTE] Rust code compiled or linked with a different instance of
the Rust runtime counts as "foreign code" for the purpose of this
section.

r[link.unwinding]

Prohibited linkage and unwinding
r[link.unwinding.intro] Panic unwinding can only be used if the binary is

built consistently according to the following rules.
r[link.unwinding.potential] A Rust artifact is called potentially

unwinding if any of the following conditions is met:

The artifact uses the [ unwind  panic handler][panic.panic_handler].
The artifact contains a crate built with the unwind  panic strategy that
makes a call to a function using a -unwind  ABI.
The artifact makes a "Rust"  ABI call to code running in another Rust
artifact that has a separate copy of the Rust runtime, and that other

clbr://internal.invalid/book/OEBPS/panic.md#panic-strategy


artifact is potentially unwinding.

[!NOTE] This definition captures whether a "Rust"  ABI call
inside a Rust artifact can ever unwind.

r[link.unwinding.prohibited] If a Rust artifact is potentially unwinding,
then all its crates must be built with the unwind  panic strategy. Otherwise,
unwinding can cause undefined behavior.

[!NOTE] If you are using rustc  to link, these rules are enforced
automatically. If you are not using rustc  to link, you must take care
to ensure that unwinding is handled consistently across the entire
binary. Linking without rustc  includes using dlopen  or similar
facilities where linking is done by the system runtime without rustc
being involved. This can only happen when mixing code with different
-C panic  flags, so most users do not have to be concerned about this.

[!NOTE] To guarantee that a library will be sound (and linkable
with rustc ) regardless of the panic runtime used at link-time, the 
ffi_unwind_calls  lint may be used. The lint flags any calls to -
unwind  foreign functions or function pointers.

clbr://internal.invalid/book/OEBPS/panic.md#panic-strategy
clbr://internal.invalid/book/rustc/codegen-options/index.html#panic
clbr://internal.invalid/book/rustc/lints/listing/allowed-by-default.html#ffi-unwind-calls


r[asm]



Inline assembly
r[asm.intro] Support for inline assembly is provided via the asm! , 

naked_asm! , and global_asm!  macros. It can be used to embed handwritten
assembly in the assembly output generated by the compiler.

r[asm.stable-targets] Support for inline assembly is stable on the following
architectures:

x86 and x86-64
ARM
AArch64 and Arm64EC
RISC-V
LoongArch
s390x

The compiler will emit an error if an assembly macro is used on an
unsupported target.

r[asm.example]

core::arch::asm
core::arch::naked_asm
core::arch::global_asm


Example
# #[cfg(target_arch = "x86_64")] { 
use std::arch::asm; 
 
// Multiply x by 6 using shifts and adds 
let mut x: u64 = 4; 
unsafe { 
    asm!( 
        "mov {tmp}, {x}", 
        "shl {tmp}, 1", 
        "shl {x}, 2", 
        "add {x}, {tmp}", 
        x = inout(reg) x, 
        tmp = out(reg) _, 
    ); 
} 
assert_eq!(x, 4 * 6); 
# } 

r[asm.syntax]



Syntax
The following grammar specifies the arguments that can be passed to the 

asm! , global_asm!  and naked_asm!  macros.
@root AsmArgs -> FormatString (`,` FormatString)* (`,` AsmOperand)* 
`,`? 
 
FormatString -> STRING_LITERAL | RAW_STRING_LITERAL | 
MacroInvocation 
 
AsmOperand -> 
      ClobberAbi 
    | AsmOptions 
    | RegOperand 
 
ClobberAbi -> `clobber_abi` `(` Abi (`,` Abi)* `,`? `)` 
 
AsmOptions -> 
    `options` `(` ( AsmOption (`,` AsmOption)* `,`? )? `)` 
 
AsmOption -> 
      `pure` 
    | `nomem` 
    | `readonly` 
    | `preserves_flags` 
    | `noreturn` 
    | `nostack` 
    | `att_syntax` 
    | `raw` 
 
RegOperand -> (ParamName `=`)? 
    ( 
          DirSpec `(` RegSpec `)` Expression 
        | DualDirSpec `(` RegSpec `)` DualDirSpecExpression 
        | `sym` PathExpression 
        | `const` Expression 
        | `label` `{` Statements? `}` 
    ) 



 
ParamName -> IDENTIFIER_OR_KEYWORD | RAW_IDENTIFIER 
 
DualDirSpecExpression -> 
      Expression 
    | Expression `=>` Expression 
 
RegSpec -> RegisterClass | ExplicitRegister 
 
RegisterClass -> IDENTIFIER_OR_KEYWORD 
 
ExplicitRegister -> STRING_LITERAL 
 
DirSpec -> 
      `in` 
    | `out` 
    | `lateout` 
 
DualDirSpec -> 
      `inout` 
    | `inlateout` 

r[asm.scope]



Scope
r[asm.scope.intro] Inline assembly can be used in one of three ways.
r[asm.scope.asm] With the asm!  macro, the assembly code is emitted in a

function scope and integrated into the compiler-generated assembly code of a
function. This assembly code must obey strict rules to avoid undefined behavior.
Note that in some cases the compiler may choose to emit the assembly code as a
separate function and generate a call to it.
# #[cfg(target_arch = "x86_64")] { 
unsafe { core::arch::asm!("/* {} */", in(reg) 0); } 
# } 

r[asm.scope.naked_asm] With the naked_asm!  macro, the assembly code is
emitted in a function scope and constitutes the full assembly code of a function.
The naked_asm!  macro is only allowed in naked functions.
# #[cfg(target_arch = "x86_64")] { 
# #[unsafe(naked)] 
# extern "C" fn wrapper() { 
core::arch::naked_asm!("/* {} */", const 0); 
# } 
# } 

r[asm.scope.global_asm] With the global_asm!  macro, the assembly code is
emitted in a global scope, outside a function. This can be used to hand-write entire
functions using assembly code, and generally provides much more freedom to use
arbitrary registers and assembler directives.
# fn main() {} 
# #[cfg(target_arch = "x86_64")] 
core::arch::global_asm!("/* {} */", const 0); 

r[asm.ts-args]

clbr://internal.invalid/book/OEBPS/attributes/codegen.md#the-naked-attribute


Template string arguments
r[asm.ts-args.syntax] The assembler template uses the same syntax as format

strings (i.e. placeholders are specified by curly braces).
r[asm.ts-args.order] The corresponding arguments are accessed in order, by

index, or by name.
# #[cfg(target_arch = "x86_64")] { 
let x: i64; 
let y: i64; 
let z: i64; 
// This 
unsafe { core::arch::asm!("mov {}, {}", out(reg) x, in(reg) 5); } 
// ... this 
unsafe { core::arch::asm!("mov {0}, {1}", out(reg) y, in(reg) 5); } 
// ... and this 
unsafe { core::arch::asm!("mov {out}, {in}", out = out(reg) z, in = 
in(reg) 5); } 
// all have the same behavior 
assert_eq!(x, y); 
assert_eq!(y, z); 
# } 

r[asm.ts-args.no-implicit] However, implicit named arguments (introduced by
RFC #2795) are not supported.
# #[cfg(target_arch = "x86_64")] { 
let x = 5; 
// We can't refer to `x` from the scope directly, we need an operand 
like `in(reg) x` 
unsafe { core::arch::asm!("/* {x} */"); } // ERROR: no argument 
named x 
# } 
# #[cfg(not(target_arch = "x86_64"))] core::compile_error!("Test not 
supported on this arch"); 

r[asm.ts-args.one-or-more] An asm!  invocation may have one or more
template string arguments; an asm!  with multiple template string arguments is
treated as if all the strings were concatenated with a \n  between them. The
expected usage is for each template string argument to correspond to a line of
assembly code.

std::fmt#syntax
https://github.com/rust-lang/rfcs/pull/2795


# #[cfg(target_arch = "x86_64")] { 
let x: i64; 
let y: i64; 
// We can separate multiple strings as if they were written 
together 
unsafe { core::arch::asm!("mov eax, 5", "mov ecx, eax", out("rax") 
x, out("rcx") y); } 
assert_eq!(x, y); 
# } 

r[asm.ts-args.before-other-args] All template string arguments must appear
before any other arguments.
let x = 5; 
# #[cfg(target_arch = "x86_64")] { 
// The template strings need to appear first in the asm invocation 
unsafe { core::arch::asm!("/* {x} */", x = const 5, "ud2"); } // 
ERROR: unexpected token 
# } 
# #[cfg(not(target_arch = "x86_64"))] core::compile_error!("Test not 
supported on this arch"); 

r[asm.ts-args.positional-first] As with format strings, positional arguments
must appear before named arguments and explicit register operands.
# #[cfg(target_arch = "x86_64")] { 
// Named operands need to come after positional ones 
unsafe { core::arch::asm!("/* {x} {} */", x = const 5, in(reg) 5); } 
// ERROR: positional arguments cannot follow named arguments or 
explicit register arguments 
# } 
# #[cfg(not(target_arch = "x86_64"))] core::compile_error!("Test not 
supported on this arch"); 
# #[cfg(target_arch = "x86_64")] { 
// We also can't put explicit registers before positional operands 
unsafe { core::arch::asm!("/* {} */", in("eax") 0, in(reg) 5); } 
// ERROR: positional arguments cannot follow named arguments or 
explicit register arguments 
# } 
# #[cfg(not(target_arch = "x86_64"))] core::compile_error!("Test not 
supported on this arch"); 



r[asm.ts-args.register-operands] Explicit register operands cannot be used by
placeholders in the template string.
# #[cfg(target_arch = "x86_64")] { 
// Explicit register operands don't get substituted, use `eax` 
explicitly in the string 
unsafe { core::arch::asm!("/* {} */", in("eax") 5); } 
// ERROR: invalid reference to argument at index 0 
# } 
# #[cfg(not(target_arch = "x86_64"))] core::compile_error!("Test not 
supported on this arch"); 

r[asm.ts-args.at-least-once] All other named and positional operands must
appear at least once in the template string, otherwise a compiler error is generated.
# #[cfg(target_arch = "x86_64")] { 
// We have to name all of the operands in the format string 
unsafe { core::arch::asm!("", in(reg) 5, x = const 5); } 
// ERROR: multiple unused asm arguments 
# } 
# #[cfg(not(target_arch = "x86_64"))] core::compile_error!("Test not 
supported on this arch"); 

r[asm.ts-args.opaque] The exact assembly code syntax is target-specific and
opaque to the compiler except for the way operands are substituted into the
template string to form the code passed to the assembler.

r[asm.ts-args.llvm-syntax] Currently, all supported targets follow the assembly
code syntax used by LLVM's internal assembler which usually corresponds to that
of the GNU assembler (GAS). On x86, the .intel_syntax noprefix  mode of
GAS is used by default. On ARM, the .syntax unified  mode is used. These
targets impose an additional restriction on the assembly code: any assembler state
(e.g. the current section which can be changed with .section ) must be restored
to its original value at the end of the asm string. Assembly code that does not
conform to the GAS syntax will result in assembler-specific behavior. Further
constraints on the directives used by inline assembly are indicated by Directives
Support.

r[asm.operand-type]



Operand type
r[asm.operand-type.supported-operands] Several types of operands are

supported:
r[asm.operand-type.supported-operands.in]

in(<reg>) <expr>

<reg>  can refer to a register class or an explicit register. The allocated
register name is substituted into the asm template string.
The allocated register will contain the value of <expr>  at the start of
the assembly code.
The allocated register must contain the same value at the end of the
assembly code (except if a lateout  is allocated to the same register).

# #[cfg(target_arch = "x86_64")] { 
// ``in` can be used to pass values into inline assembly... 
unsafe { core::arch::asm!("/* {} */", in(reg) 5); } 
# } 

r[asm.operand-type.supported-operands.out]

out(<reg>) <expr>

<reg>  can refer to a register class or an explicit register. The allocated
register name is substituted into the asm template string.
The allocated register will contain an undefined value at the start of the
assembly code.
<expr>  must be a (possibly uninitialized) place expression, to which
the contents of the allocated register are written at the end of the
assembly code.
An underscore ( _ ) may be specified instead of an expression, which
will cause the contents of the register to be discarded at the end of the
assembly code (effectively acting as a clobber).

# #[cfg(target_arch = "x86_64")] { 
let x: i64; 
// and `out` can be used to pass values back to rust. 
unsafe { core::arch::asm!("/* {} */", out(reg) x); } 
# } 



r[asm.operand-type.supported-operands.lateout]

lateout(<reg>) <expr>

Identical to out  except that the register allocator can reuse a register
allocated to an in .
You should only write to the register after all inputs are read, otherwise
you may clobber an input.

# #[cfg(target_arch = "x86_64")] { 
let x: i64; 
// `lateout` is the same as `out` 
// but the compiler knows we don't care about the value of any 
inputs by the 
// time we overwrite it. 
unsafe { core::arch::asm!("mov {}, 5", lateout(reg) x); } 
assert_eq!(x, 5) 
# } 

r[asm.operand-type.supported-operands.inout]

inout(<reg>) <expr>

<reg>  can refer to a register class or an explicit register. The allocated
register name is substituted into the asm template string.
The allocated register will contain the value of <expr>  at the start of
the assembly code.
<expr>  must be a mutable initialized place expression, to which the
contents of the allocated register are written at the end of the assembly
code.

# #[cfg(target_arch = "x86_64")] { 
let mut x: i64 = 4; 
// `inout` can be used to modify values in-register 
unsafe { core::arch::asm!("inc {}", inout(reg) x); } 
assert_eq!(x, 5); 
# } 

r[asm.operand-type.supported-operands.inout-arrow]

inout(<reg>) <in expr> => <out expr>



Same as inout  except that the initial value of the register is taken from
the value of <in expr> .
<out expr>  must be a (possibly uninitialized) place expression, to
which the contents of the allocated register are written at the end of the
assembly code.
An underscore ( _ ) may be specified instead of an expression for <out 
expr> , which will cause the contents of the register to be discarded at
the end of the assembly code (effectively acting as a clobber).
<in expr>  and <out expr>  may have different types.

# #[cfg(target_arch = "x86_64")] { 
let x: i64; 
// `inout` can also move values to different places 
unsafe { core::arch::asm!("inc {}", inout(reg) 4u64=>x); } 
assert_eq!(x, 5); 
# } 

r[asm.operand-type.supported-operands.inlateout]

inlateout(<reg>) <expr>  / inlateout(<reg>) <in expr> => <out 
expr>

Identical to inout  except that the register allocator can reuse a register
allocated to an in  (this can happen if the compiler knows the in  has
the same initial value as the inlateout ).
You should only write to the register after all inputs are read, otherwise
you may clobber an input.

# #[cfg(target_arch = "x86_64")] { 
let mut x: i64 = 4; 
// `inlateout` is `inout` using `lateout` 
unsafe { core::arch::asm!("inc {}", inlateout(reg) x); } 
assert_eq!(x, 5); 
# } 

r[asm.operand-type.supported-operands.sym]

sym <path>

<path>  must refer to a fn  or static .



A mangled symbol name referring to the item is substituted into the asm
template string.
The substituted string does not include any modifiers (e.g. GOT, PLT,
relocations, etc).
<path>  is allowed to point to a #[thread_local]  static, in which case
the assembly code can combine the symbol with relocations (e.g. @plt , 
@TPOFF ) to read from thread-local data.

# #[cfg(target_arch = "x86_64")] { 
extern "C" fn foo() { 
    println!("Hello from inline assembly") 
} 
// `sym` can be used to refer to a function (even if it doesn't 
have an 
// external name we can directly write) 
unsafe { core::arch::asm!("call {}", sym foo, clobber_abi("C")); } 
# } 

const <expr>

<expr>  must be an integer constant expression. This expression follows
the same rules as inline const  blocks.
The type of the expression may be any integer type, but defaults to i32
just like integer literals.
The value of the expression is formatted as a string and substituted
directly into the asm template string.

# #[cfg(target_arch = "x86_64")] { 
// swizzle [0, 1, 2, 3] => [3, 2, 0, 1] 
const SHUFFLE: u8 = 0b01_00_10_11; 
let x: core::arch::x86_64::__m128 = unsafe { 
core::mem::transmute([0u32, 1u32, 2u32, 3u32]) }; 
let y: core::arch::x86_64::__m128; 
// Pass a constant value into an instruction that expects an 
immediate like `pshufd` 
unsafe { 
    core::arch::asm!("pshufd {xmm}, {xmm}, {shuffle}", 
        xmm = inlateout(xmm_reg) x=>y, 
        shuffle = const SHUFFLE 



    ); 
} 
let y: [u32; 4] = unsafe { core::mem::transmute(y) }; 
assert_eq!(y, [3, 2, 0, 1]); 
# } 

r[asm.operand-type.supported-operands.label]

label <block>

The address of the block is substituted into the asm template string. The
assembly code may jump to the substituted address.
For targets that distinguish between direct jumps and indirect jumps
(e.g. x86-64 with cf-protection  enabled), the assembly code must not
jump to the substituted address indirectly.
After execution of the block, the asm!  expression returns.
The type of the block must be unit or !  (never).
The block starts a new safety context; unsafe operations within the 
label  block must be wrapped in an inner unsafe  block, even though
the entire asm!  expression is already wrapped in unsafe .

# #[cfg(target_arch = "x86_64")] 
unsafe { 
    core::arch::asm!("jmp {}", label { 
        println!("Hello from inline assembly label"); 
    }); 
} 

r[asm.operand-type.left-to-right] Operand expressions are evaluated from left
to right, just like function call arguments. After the asm!  has executed, outputs
are written to in left to right order. This is significant if two outputs point to the
same place: that place will contain the value of the rightmost output.
# #[cfg(target_arch = "x86_64")] { 
let mut y: i64; 
// y gets its value from the second output, rather than the first 
unsafe { core::arch::asm!("mov {}, 0", "mov {}, 1", out(reg) y, 
out(reg) y); } 
assert_eq!(y, 1); 
# } 



r[asm.operand-type.naked_asm-restriction] Because naked_asm!  defines a
whole function body and the compiler cannot emit any additional code to handle
operands, it can only use sym  and const  operands.

r[asm.operand-type.global_asm-restriction] Because global_asm!  exists
outside a function, it can only use sym  and const  operands.
# fn main() {} 
// register operands aren't allowed, since we aren't in a function 
# #[cfg(target_arch = "x86_64")] 
core::arch::global_asm!("", in(reg) 5); 
// ERROR: the `in` operand cannot be used with `global_asm!` 
# #[cfg(not(target_arch = "x86_64"))] core::compile_error!("Test not 
supported on this arch"); 

# fn main() {} 
fn foo() {} 
 
# #[cfg(target_arch = "x86_64")] 
// `const` and `sym` are both allowed, however 
core::arch::global_asm!("/* {} {} */", const 0, sym foo); 

r[asm.register-operands]



Register operands
r[asm.register-operands.register-or-class] Input and output operands can be

specified either as an explicit register or as a register class from which the register
allocator can select a register. Explicit registers are specified as string literals (e.g.
"eax" ) while register classes are specified as identifiers (e.g. reg ).
# #[cfg(target_arch = "x86_64")] { 
let mut y: i64; 
// We can name both `reg`, or an explicit register like `eax` to 
get an 
// integer register 
unsafe { core::arch::asm!("mov eax, {:e}", in(reg) 5, 
lateout("eax") y); } 
assert_eq!(y, 5); 
# } 

r[asm.register-operands.equivalence-to-base-register] Note that explicit
registers treat register aliases (e.g. r14  vs lr  on ARM) and smaller views of a
register (e.g. eax  vs rax ) as equivalent to the base register.

r[asm.register-operands.error-two-operands] It is a compile-time error to use
the same explicit register for two input operands or two output operands.
# #[cfg(target_arch = "x86_64")] { 
// We can't name eax twice 
unsafe { core::arch::asm!("", in("eax") 5, in("eax") 4); } 
// ERROR: register `eax` conflicts with register `eax` 
# } 
# #[cfg(not(target_arch = "x86_64"))] core::compile_error!("Test not 
supported on this arch"); 
# #[cfg(target_arch = "x86_64")] { 
// ... even using different aliases 
unsafe { core::arch::asm!("", in("ax") 5, in("rax") 4); } 
// ERROR: register `rax` conflicts with register `ax` 
# } 
# #[cfg(not(target_arch = "x86_64"))] core::compile_error!("Test not 
supported on this arch"); 

r[asm.register-operands.error-overlapping] Additionally, it is also a compile-
time error to use overlapping registers (e.g. ARM VFP) in input operands or in
output operands.



# #[cfg(target_arch = "x86_64")] { 
// al overlaps with ax, so we can't name both of them. 
unsafe { core::arch::asm!("", in("ax") 5, in("al") 4i8); } 
// ERROR: register `al` conflicts with register `ax` 
# } 
# #[cfg(not(target_arch = "x86_64"))] core::compile_error!("Test not 
supported on this arch"); 

r[asm.register-operands.allowed-types] Only the following types are allowed
as operands for inline assembly:

Integers (signed and unsigned)
Floating-point numbers
Pointers (thin only)
Function pointers
SIMD vectors (structs defined with #[repr(simd)]  and which implement 
Copy ). This includes architecture-specific vector types defined in 
std::arch  such as __m128  (x86) or int8x16_t  (ARM).

# #[cfg(target_arch = "x86_64")] { 
extern "C" fn foo() {} 
 
// Integers are allowed... 
let y: i64 = 5; 
unsafe { core::arch::asm!("/* {} */", in(reg) y); } 
 
// and pointers... 
let py = &raw const y; 
unsafe { core::arch::asm!("/* {} */", in(reg) py); } 
 
// floats as well... 
let f = 1.0f32; 
unsafe { core::arch::asm!("/* {} */", in(xmm_reg) f); } 
 
// even function pointers and simd vectors. 
let func: extern "C" fn() = foo; 
unsafe { core::arch::asm!("/* {} */", in(reg) func); } 
 
let z = unsafe { core::arch::x86_64::_mm_set_epi64x(1, 0) }; 



unsafe { core::arch::asm!("/* {} */", in(xmm_reg) z); } 
# } 

# #[cfg(target_arch = "x86_64")] { 
struct Foo; 
let x: Foo = Foo; 
// Complex types like structs are not allowed 
unsafe { core::arch::asm!("/* {} */", in(reg) x); } 
// ERROR: cannot use value of type `Foo` for inline assembly 
# } 
# #[cfg(not(target_arch = "x86_64"))] core::compile_error!("Test not 
supported on this arch"); 

r[asm.register-operands.supported-register-classes] Here is the list of currently
supported register classes:

Architecture Register
class

Registers LLVM
constraint
code

x86 reg ax , bx , cx , dx , si , 
di , bp , r[8-15]  (x86-
64 only)

r

x86 reg_ab

cd

ax , bx , cx , dx Q

x86-32 reg_by

te

al , bl , cl , dl , ah , 
bh , ch , dh

q

x86-64 reg_by

te *
al , bl , cl , dl , sil ,
dil , bpl , r[8-15]b

q

x86 xmm_re

g

xmm[0-7]  (x86) xmm[0-
15]  (x86-64)

x

x86 ymm_re

g

ymm[0-7]  (x86) ymm[0-
15]  (x86-64)

x

x86 zmm_re

g

zmm[0-7]  (x86) zmm[0-
31]  (x86-64)

v

x86 kreg k[1-7] Yk



Architecture Register
class

Registers LLVM
constraint
code

x86 kreg0 k0 Only
clobbers

x86 x87_re

g

st([0-7]) Only
clobbers

x86 mmx_re

g

mm[0-7] Only
clobbers

x86-64 tmm_re

g

tmm[0-7] Only
clobbers

AArch64 reg x[0-30] r

AArch64 vreg v[0-31] w

AArch64 vreg_l

ow16

v[0-15] x

AArch64 preg p[0-15] , ffr Only
clobbers

Arm64EC reg x[0-12] , x[15-22] , 
x[25-27] , x30

r

Arm64EC vreg v[0-15] w

Arm64EC vreg_l

ow16

v[0-15] x

ARM
(ARM/Thumb2)

reg r[0-12] , r14 r

ARM (Thumb1) reg r[0-7] r

ARM sreg s[0-31] t

ARM sreg_l

ow16

s[0-15] x

ARM dreg d[0-31] w



Architecture Register
class

Registers LLVM
constraint
code

ARM dreg_l

ow16

d[0-15] t

ARM dreg_l

ow8

d[0-8] x

ARM qreg q[0-15] w

ARM qreg_l

ow8

q[0-7] t

ARM qreg_l

ow4

q[0-3] x

RISC-V reg x1 , x[5-7] , x[9-15] , 
x[16-31]  (non-RV32E)

r

RISC-V freg f[0-31] f

RISC-V vreg v[0-31] Only
clobbers

LoongArch reg $r1 , $r[4-20] , 
$r[23,30]

r

LoongArch freg $f[0-31] f

s390x reg r[0-10] , r[12-14] r

s390x reg_ad

dr

r[1-10] , r[12-14] a

s390x freg f[0-15] f

s390x vreg v[0-31] Only
clobbers

s390x areg a[2-15] Only
clobbers

[!NOTE]



On x86 we treat reg_byte  differently from reg  because the compiler
can allocate al  and ah  separately whereas reg  reserves the whole
register.
On x86-64 the high byte registers (e.g. ah ) are not available in the 
reg_byte  register class.
Some register classes are marked as "Only clobbers" which means that
registers in these classes cannot be used for inputs or outputs, only
clobbers of the form out(<explicit register>) _  or 
lateout(<explicit register>) _ .

r[asm.register-operands.value-type-constraints] Each register class has
constraints on which value types they can be used with. This is necessary because
the way a value is loaded into a register depends on its type. For example, on big-
endian systems, loading a i32x4  and a i8x16  into a SIMD register may result in
different register contents even if the byte-wise memory representation of both
values is identical. The availability of supported types for a particular register
class may depend on what target features are currently enabled.

Architecture Register
class

Target
feature

Allowed types

x86-32 reg None i16 , i32 , f32

x86-64 reg None i16 , i32 , f32 , i64 , f64

x86 reg_by

te

None i8

x86 xmm_re

g

sse i32 , f32 , i64 , f64 ,  
i8x16 , i16x8 , i32x4 ,
i64x2 , f32x4 , f64x2

x86 ymm_re

g

avx i32 , f32 , i64 , f64 ,  
i8x16 , i16x8 , i32x4 ,
i64x2 , f32x4 , f64x2  
i8x32 , i16x16 , i32x8 , 
i64x4 , f32x8 , f64x4



Architecture Register
class

Target
feature

Allowed types

x86 zmm_re

g

avx51

2f

i32 , f32 , i64 , f64 ,  
i8x16 , i16x8 , i32x4 ,
i64x2 , f32x4 , f64x2  
i8x32 , i16x16 , i32x8 , 
i64x4 , f32x8 , f64x4  
i8x64 , i16x32 , i32x16 , 
i64x8 , f32x16 , f64x8

x86 kreg avx51

2f

i8 , i16

x86 kreg avx51

2bw

i32 , i64

x86 mmx_re

g

N/A Only clobbers

x86 x87_re

g

N/A Only clobbers

x86 tmm_re

g

N/A Only clobbers

AArch64 reg None i8 , i16 , i32 , f32 , i64 , 
f64

AArch64 vreg neon i8 , i16 , i32 , f32 , i64 , 
f64 ,  
i8x8 , i16x4 , i32x2 , 
i64x1 , f32x2 , f64x1 , 
i8x16 , i16x8 , i32x4 ,
i64x2 , f32x4 , f64x2

AArch64 preg N/A Only clobbers

Arm64EC reg None i8 , i16 , i32 , f32 , i64 , 
f64



Architecture Register
class

Target
feature

Allowed types

Arm64EC vreg neon i8 , i16 , i32 , f32 , i64 , 
f64 ,  
i8x8 , i16x4 , i32x2 , 
i64x1 , f32x2 , f64x1 , 
i8x16 , i16x8 , i32x4 ,
i64x2 , f32x4 , f64x2

ARM reg None i8 , i16 , i32 , f32

ARM sreg vfp2 i32 , f32

ARM dreg vfp2 i64 , f64 , i8x8 , i16x4 ,
i32x2 , i64x1 , f32x2

ARM qreg neon i8x16 , i16x8 , i32x4 ,
i64x2 , f32x4

RISC-V32 reg None i8 , i16 , i32 , f32

RISC-V64 reg None i8 , i16 , i32 , f32 , i64 , 
f64

RISC-V freg f f32

RISC-V freg d f64

RISC-V vreg N/A Only clobbers

LoongArch64 reg None i8 , i16 , i32 , i64 , f32 , 
f64

LoongArch64 freg f f32

LoongArch64 freg d f64

s390x reg , 
reg_ad

dr

None i8 , i16 , i32 , i64

s390x freg None f32 , f64

s390x vreg N/A Only clobbers

s390x areg N/A Only clobbers



[!NOTE] For the purposes of the above table pointers, function pointers
and isize / usize  are treated as the equivalent integer type ( i16 / i32 / i64
depending on the target).

# #[cfg(target_arch = "x86_64")] { 
let x = 5i32; 
let y = -1i8; 
let z = unsafe { core::arch::x86_64::_mm_set_epi64x(1, 0) }; 
 
// reg is valid for `i32`, `reg_byte` is valid for `i8`, and 
xmm_reg is valid for `__m128i` 
// We can't use `tmm0` as an input or output, but we can clobber 
it. 
unsafe { core::arch::asm!("/* {} {} {} */", in(reg) x, in(reg_byte) 
y, in(xmm_reg) z, out("tmm0") _); } 
# } 

# #[cfg(target_arch = "x86_64")] { 
let z = unsafe { core::arch::x86_64::_mm_set_epi64x(1, 0) }; 
// We can't pass an `__m128i` to a `reg` input 
unsafe { core::arch::asm!("/* {} */", in(reg) z); } 
// ERROR: type `__m128i` cannot be used with this register class 
# } 
# #[cfg(not(target_arch = "x86_64"))] core::compile_error!("Test not 
supported on this arch"); 

r[asm.register-operands.smaller-value] If a value is of a smaller size than the
register it is allocated in then the upper bits of that register will have an undefined
value for inputs and will be ignored for outputs. The only exception is the freg
register class on RISC-V where f32  values are NaN-boxed in a f64  as required
by the RISC-V architecture.
# #[cfg(target_arch = "x86_64")] { 
let mut x: i64; 
// Moving a 32-bit value into a 64-bit value, oops. 
#[allow(asm_sub_register)] // rustc warns about this behavior 
unsafe { core::arch::asm!("mov {}, {}", lateout(reg) x, in(reg) 
4i32); } 
// top 32-bits are indeterminate 
assert_eq!(x, 4); // This assertion is not guaranteed to succeed 



assert_eq!(x & 0xFFFFFFFF, 4); // However, this one will succeed 
# } 

r[asm.register-operands.separate-input-output] When separate input and output
expressions are specified for an inout  operand, both expressions must have the
same type. The only exception is if both operands are pointers or integers, in
which case they are only required to have the same size. This restriction exists
because the register allocators in LLVM and GCC sometimes cannot handle tied
operands with different types.
# #[cfg(target_arch = "x86_64")] { 
// Pointers and integers can mix (as long as they are the same 
size) 
let x: isize = 0; 
let y: *mut (); 
// Transmute an `isize` to a `*mut ()`, using inline assembly magic 
unsafe { core::arch::asm!("/*{}*/", inout(reg) x=>y); } 
assert!(y.is_null()); // Extremely roundabout way to make a null 
pointer 
# } 

# #[cfg(target_arch = "x86_64")] { 
let x: i32 = 0; 
let y: f32; 
// But we can't reinterpret an `i32` to an `f32` like this 
unsafe { core::arch::asm!("/* {} */", inout(reg) x=>y); } 
// ERROR: incompatible types for asm inout argument 
# } 
# #[cfg(not(target_arch = "x86_64"))] core::compile_error!("Test not 
supported on this arch"); 

r[asm.register-names]



Register names
r[asm.register-names.supported-register-aliases] Some registers have multiple

names. These are all treated by the compiler as identical to the base register name.
Here is the list of all supported register aliases:

Architecture Base
register

Aliases

x86 ax eax , rax

x86 bx ebx , rbx

x86 cx ecx , rcx

x86 dx edx , rdx

x86 si esi , rsi

x86 di edi , rdi

x86 bp bpl , ebp , rbp

x86 sp spl , esp , rsp

x86 ip eip , rip

x86 st(0) st

x86 r[8-15] r[8-15]b , r[8-15]w , r[8-15]d

x86 xmm[0-

31]

ymm[0-31] , zmm[0-31]

AArch64 x[0-30] w[0-30]

AArch64 x29 fp

AArch64 x30 lr

AArch64 sp wsp

AArch64 xzr wzr

AArch64 v[0-31] b[0-31] , h[0-31] , s[0-31] , d[0-31] ,
q[0-31]

Arm64EC x[0-30] w[0-30]



Architecture Base
register

Aliases

Arm64EC x29 fp

Arm64EC x30 lr

Arm64EC sp wsp

Arm64EC xzr wzr

Arm64EC v[0-15] b[0-15] , h[0-15] , s[0-15] , d[0-15] ,
q[0-15]

ARM r[0-3] a[1-4]

ARM r[4-9] v[1-6]

ARM r9 rfp

ARM r10 sl

ARM r11 fp

ARM r12 ip

ARM r13 sp

ARM r14 lr

ARM r15 pc

RISC-V x0 zero

RISC-V x1 ra

RISC-V x2 sp

RISC-V x3 gp

RISC-V x4 tp

RISC-V x[5-7] t[0-2]

RISC-V x8 fp , s0

RISC-V x9 s1

RISC-V x[10-

17]

a[0-7]



Architecture Base
register

Aliases

RISC-V x[18-

27]

s[2-11]

RISC-V x[28-

31]

t[3-6]

RISC-V f[0-7] ft[0-7]

RISC-V f[8-9] fs[0-1]

RISC-V f[10-

17]

fa[0-7]

RISC-V f[18-

27]

fs[2-11]

RISC-V f[28-

31]

ft[8-11]

LoongArch $r0 $zero

LoongArch $r1 $ra

LoongArch $r2 $tp

LoongArch $r3 $sp

LoongArch $r[4-

11]

$a[0-7]

LoongArch $r[12-

20]

$t[0-8]

LoongArch $r21

LoongArch $r22 $fp , $s9

LoongArch $r[23-

31]

$s[0-8]

LoongArch $f[0-7] $fa[0-7]

LoongArch $f[8-

23]

$ft[0-15]



Architecture Base
register

Aliases

LoongArch $f[24-

31]

$fs[0-7]

# #[cfg(target_arch = "x86_64")] { 
let z = 0i64; 
// rax is an alias for eax and ax 
unsafe { core::arch::asm!("", in("rax") z); } 
# } 

r[asm.register-names.not-for-io] Some registers cannot be used for input or
output operands:

Architecture Unsupported register Reason
All sp , r15  (s390x) The stack pointer must be

restored to its original value
at the end of the assembly
code or before jumping to a 
label  block.

All bp  (x86), x29

(AArch64 and
Arm64EC), x8

(RISC-V), $fp

(LoongArch), r11

(s390x)

The frame pointer cannot be
used as an input or output.

ARM r7  or r11 On ARM the frame pointer
can be either r7  or r11

depending on the target. The
frame pointer cannot be used
as an input or output.



Architecture Unsupported register Reason
All si  (x86-32), bx

(x86-64), r6  (ARM), 
x19  (AArch64 and
Arm64EC), x9

(RISC-V), $s8

(LoongArch)

This is used internally by
LLVM as a "base pointer" for
functions with complex stack
frames.

x86 ip This is the program counter,
not a real register.

AArch64 xzr This is a constant zero
register which can't be
modified.

AArch64 x18 This is an OS-reserved
register on some AArch64
targets.

Arm64EC xzr This is a constant zero
register which can't be
modified.

Arm64EC x18 This is an OS-reserved
register.

Arm64EC x13 , x14 , x23 , 
x24 , x28 , v[16-

31] , p[0-15] , ffr

These are AArch64 registers
that are not supported for
Arm64EC.

ARM pc This is the program counter,
not a real register.

ARM r9 This is an OS-reserved
register on some ARM
targets.

RISC-V x0 This is a constant zero
register which can't be
modified.

RISC-V gp , tp These registers are reserved
and cannot be used as inputs
or outputs.



Architecture Unsupported register Reason
LoongArch $r0  or $zero This is a constant zero

register which can't be
modified.

LoongArch $r2  or $tp This is reserved for TLS.

LoongArch $r21 This is reserved by the ABI.

s390x c[0-15] Reserved by the kernel.

s390x a[0-1] Reserved for system use.

# #[cfg(target_arch = "x86_64")] { 
// bp is reserved 
unsafe { core::arch::asm!("", in("bp") 5i32); } 
// ERROR: invalid register `bp`: the frame pointer cannot be used as 
an operand for inline asm 
# } 
# #[cfg(not(target_arch = "x86_64"))] core::compile_error!("Test not 
supported on this arch"); 

r[asm.register-names.fp-bp-reserved] The frame pointer and base pointer
registers are reserved for internal use by LLVM. While asm!  statements cannot
explicitly specify the use of reserved registers, in some cases LLVM will allocate
one of these reserved registers for reg  operands. Assembly code making use of
reserved registers should be careful since reg  operands may use the same
registers.

r[asm.template-modifiers]



Template modifiers
r[asm.template-modifiers.intro] The placeholders can be augmented by

modifiers which are specified after the :  in the curly braces. These modifiers do
not affect register allocation, but change the way operands are formatted when
inserted into the template string.

r[asm.template-modifiers.only-one] Only one modifier is allowed per template
placeholder.
# #[cfg(target_arch = "x86_64")] { 
// We can't specify both `r` and `e` at the same time. 
unsafe { core::arch::asm!("/* {:er}", in(reg) 5i32); } 
// ERROR: asm template modifier must be a single character 
# } 
# #[cfg(not(target_arch = "x86_64"))] core::compile_error!("Test not 
supported on this arch"); 

r[asm.template-modifiers.supported-modifiers] The supported modifiers are a
subset of LLVM's (and GCC's) asm template argument modifiers, but do not use
the same letter codes.

Architecture Register
class

Modifier Example
output

LLVM
modifier

x86-32 reg None eax k

x86-64 reg None rax q

x86-32 reg_ab

cd

l al b

x86-64 reg l al b

x86 reg_ab

cd

h ah h

x86 reg x ax w

x86 reg e eax k

x86-64 reg r rax q

x86 reg_by

te

None al  / ah None

http://llvm.org/docs/LangRef.html#asm-template-argument-modifiers


Architecture Register
class

Modifier Example
output

LLVM
modifier

x86 xmm_re

g

None xmm0 x

x86 ymm_re

g

None ymm0 t

x86 zmm_re

g

None zmm0 g

x86 *mm_re

g

x xmm0 x

x86 *mm_re

g

y ymm0 t

x86 *mm_re

g

z zmm0 g

x86 kreg None k1 None

AArch64/Arm64EC reg None x0 x

AArch64/Arm64EC reg w w0 w

AArch64/Arm64EC reg x x0 x

AArch64/Arm64EC vreg None v0 None

AArch64/Arm64EC vreg v v0 None

AArch64/Arm64EC vreg b b0 b

AArch64/Arm64EC vreg h h0 h

AArch64/Arm64EC vreg s s0 s

AArch64/Arm64EC vreg d d0 d

AArch64/Arm64EC vreg q q0 q

ARM reg None r0 None

ARM sreg None s0 None

ARM dreg None d0 P

ARM qreg None q0 q



Architecture Register
class

Modifier Example
output

LLVM
modifier

ARM qreg e  / f d0  / d1 e  / f

RISC-V reg None x1 None

RISC-V freg None f0 None

LoongArch reg None $r1 None

LoongArch freg None $f0 None

s390x reg None %r0 None

s390x reg_ad

dr

None %r1 None

s390x freg None %f0 None

[!NOTE]

on ARM e  / f : this prints the low or high doubleword register name of
a NEON quad (128-bit) register.
on x86: our behavior for reg  with no modifiers differs from what GCC
does. GCC will infer the modifier based on the operand value type,
while we default to the full register size.
on x86 xmm_reg : the x , t  and g  LLVM modifiers are not yet
implemented in LLVM (they are supported by GCC only), but this
should be a simple change.

# #[cfg(target_arch = "x86_64")] { 
let mut x = 0x10u16; 
 
// u16::swap_bytes using `xchg` 
// low half of `{x}` is referred to by `{x:l}`, and the high half 
by `{x:h}` 
unsafe { core::arch::asm!("xchg {x:l}, {x:h}", x = inout(reg_abcd) 
x); } 
assert_eq!(x, 0x1000u16); 
# } 

r[asm.template-modifiers.smaller-value] As stated in the previous section,
passing an input value smaller than the register width will result in the upper bits



of the register containing undefined values. This is not a problem if the inline asm
only accesses the lower bits of the register, which can be done by using a template
modifier to use a subregister name in the assembly code (e.g. ax  instead of rax ).
Since this an easy pitfall, the compiler will suggest a template modifier to use
where appropriate given the input type. If all references to an operand already
have modifiers then the warning is suppressed for that operand.

r[asm.abi-clobbers]



ABI clobbers
r[asm.abi-clobbers.intro] The clobber_abi  keyword can be used to apply a

default set of clobbers to the assembly code. This will automatically insert the
necessary clobber constraints as needed for calling a function with a particular
calling convention: if the calling convention does not fully preserve the value of a
register across a call then lateout("...") _  is implicitly added to the operands
list (where the ...  is replaced by the register's name).
# #[cfg(target_arch = "x86_64")] { 
extern "C" fn foo() -> i32 { 0 } 
 
let z: i32; 
// To call a function, we have to inform the compiler that we're 
clobbering 
// callee saved registers 
unsafe { core::arch::asm!("call {}", sym foo, out("rax") z, 
clobber_abi("C")); } 
assert_eq!(z, 0); 
# } 

r[asm.abi-clobbers.many] clobber_abi  may be specified any number of
times. It will insert a clobber for all unique registers in the union of all specified
calling conventions.
# #[cfg(target_arch = "x86_64")] { 
extern "sysv64" fn foo() -> i32 { 0 } 
extern "win64" fn bar(x: i32) -> i32 { x + 1} 
 
let z: i32; 
// We can even call multiple functions with different conventions 
and 
// different saved registers 
unsafe { 
    core::arch::asm!( 
        "call {}", 
        "mov ecx, eax", 
        "call {}", 
        sym foo, 
        sym bar, 



        out("rax") z, 
        clobber_abi("C") 
    ); 
} 
assert_eq!(z, 1); 
# } 

r[asm.abi-clobbers.must-specify] Generic register class outputs are disallowed
by the compiler when clobber_abi  is used: all outputs must specify an explicit
register.
# #[cfg(target_arch = "x86_64")] { 
extern "C" fn foo(x: i32) -> i32 { 0 } 
 
let z: i32; 
// explicit registers must be used to not accidentally overlap. 
unsafe { 
    core::arch::asm!( 
        "mov eax, {:e}", 
        "call {}", 
        out(reg) z, 
        sym foo, 
        clobber_abi("C") 
    ); 
    // ERROR: asm with `clobber_abi` must specify explicit registers 
for outputs 
} 
assert_eq!(z, 0); 
# } 
# #[cfg(not(target_arch = "x86_64"))] core::compile_error!("Test not 
supported on this arch"); 

r[asm.abi-clobbers.explicit-have-precedence] Explicit register outputs have
precedence over the implicit clobbers inserted by clobber_abi : a clobber will
only be inserted for a register if that register is not used as an output.

r[asm.abi-clobbers.supported-abis] The following ABIs can be used with 
clobber_abi :

Architecture ABI name Clobbered registers



Architecture ABI name Clobbered registers
x86-32 "C" , "system" , 

"efiapi" , 
"cdecl" , 
"stdcall" , 
"fastcall"

ax , cx , dx , xmm[0-7] , 
mm[0-7] , k[0-7] , st([0-

7])

x86-64 "C" , "system"  (on
Windows), 
"efiapi" , "win64"

ax , cx , dx , r[8-11] , 
xmm[0-31] , mm[0-7] , k[0-

7] , st([0-7]) , tmm[0-7]

x86-64 "C" , "system"  (on
non-Windows), 
"sysv64"

ax , cx , dx , si , di , r[8-

11] , xmm[0-31] , mm[0-7] , 
k[0-7] , st([0-7]) , tmm[0-

7]

AArch64 "C" , "system" , 
"efiapi"

x[0-17] , x18 *, x30 , v[0-

31] , p[0-15] , ffr

Arm64EC "C" , "system" x[0-12] , x[15-17] , x30 , 
v[0-15]

ARM "C" , "system" , 
"efiapi" , "aapcs"

r[0-3] , r12 , r14 , s[0-

15] , d[0-7] , d[16-31]

RISC-V "C" , "system" , 
"efiapi"

x1 , x[5-7] , x[10-17] *, 
x[28-31] *, f[0-7] , f[10-

17] , f[28-31] , v[0-31]

LoongArch "C" , "system" $r1 , $r[4-20] , $f[0-23]

s390x "C" , "system" r[0-5] , r14 , f[0-7] , v[0-
31] , a[2-15]

[!NOTE]

On AArch64 x18  only included in the clobber list if it is not considered
as a reserved register on the target.
On RISC-V x[16-17]  and x[28-31]  only included in the clobber list
if they are not considered as reserved registers on the target.



The list of clobbered registers for each ABI is updated in rustc as architectures
gain new registers: this ensures that asm!  clobbers will continue to be correct
when LLVM starts using these new registers in its generated code.

r[asm.options]



Options
r[asm.options.supported-options] Flags are used to further influence the

behavior of the inline assembly code. Currently the following options are defined:
r[asm.options.supported-options.pure]

pure : The assembly code has no side effects, must eventually return, and its
outputs depend only on its direct inputs (i.e. the values themselves, not what
they point to) or values read from memory (unless the nomem  options is also
set). This allows the compiler to execute the assembly code fewer times than
specified in the program (e.g. by hoisting it out of a loop) or even eliminate it
entirely if the outputs are not used. The pure  option must be combined with
either the nomem  or readonly  options, otherwise a compile-time error is
emitted.

# #[cfg(target_arch = "x86_64")] { 
let x: i32 = 0; 
let z: i32; 
// pure can be used to optimize by assuming the assembly has no 
side effects 
unsafe { core::arch::asm!("inc {}", inout(reg) x => z, 
options(pure, nomem)); } 
assert_eq!(z, 1); 
# } 

# #[cfg(target_arch = "x86_64")] { 
let x: i32 = 0; 
let z: i32; 
// Either nomem or readonly must be satisfied, to indicate whether 
or not 
// memory is allowed to be read 
unsafe { core::arch::asm!("inc {}", inout(reg) x => z, 
options(pure)); } 
// ERROR: the `pure` option must be combined with either `nomem` or 
`readonly` 
assert_eq!(z, 0); 
# } 
# #[cfg(not(target_arch = "x86_64"))] core::compile_error!("Test not 
supported on this arch"); 



r[asm.options.supported-options.nomem]

nomem : The assembly code does not read from or write to any memory
accessible outside of the assembly code. This allows the compiler to cache
the values of modified global variables in registers across execution of the
assembly code since it knows that they are not read from or written to by it.
The compiler also assumes that the assembly code does not perform any kind
of synchronization with other threads, e.g. via fences.

# #[cfg(target_arch = "x86_64")] { 
let mut x = 0i32; 
let z: i32; 
// Accessing outside memory from assembly when `nomem` is 
// specified is disallowed 
unsafe { 
    core::arch::asm!("mov {val:e}, dword ptr [{ptr}]", 
        ptr = in(reg) &mut x, 
        val = lateout(reg) z, 
        options(nomem) 
    ) 
} 
 
// Writing to outside memory from assembly when `nomem` is 
// specified is also undefined behaviour 
unsafe { 
    core::arch::asm!("mov  dword ptr [{ptr}], {val:e}", 
        ptr = in(reg) &mut x, 
        val = in(reg) z, 
        options(nomem) 
    ) 
} 
# } 

# #[cfg(target_arch = "x86_64")] { 
let x: i32 = 0; 
let z: i32; 
// If we allocate our own memory, such as via `push`, however. 
// we can still use it 
unsafe { 
    core::arch::asm!("push {x}", "add qword ptr [rsp], 1", "pop 



{x}", 
        x = inout(reg) x => z, 
        options(nomem) 
    ); 
} 
assert_eq!(z, 1); 
# } 

r[asm.options.supported-options.readonly]

readonly : The assembly code does not write to any memory accessible
outside of the assembly code. This allows the compiler to cache the values of
unmodified global variables in registers across execution of the assembly
code since it knows that they are not written to by it. The compiler also
assumes that this assembly code does not perform any kind of
synchronization with other threads, e.g. via fences.

# #[cfg(target_arch = "x86_64")] { 
let mut x = 0; 
// We cannot modify outside memory when `readonly` is specified 
unsafe { 
    core::arch::asm!("mov dword ptr[{}], 1", in(reg) &mut x, 
options(readonly)) 
} 
# } 

# #[cfg(target_arch = "x86_64")] { 
let x: i64 = 0; 
let z: i64; 
// We can still read from it, though 
unsafe { 
    core::arch::asm!("mov {x}, qword ptr [{x}]", 
        x = inout(reg) &x => z, 
        options(readonly) 
    ); 
} 
assert_eq!(z, 0); 
# } 

# #[cfg(target_arch = "x86_64")] { 
let x: i64 = 0; 
let z: i64; 



// Same exception applies as with nomem. 
unsafe { 
    core::arch::asm!("push {x}", "add qword ptr [rsp], 1", "pop 
{x}", 
        x = inout(reg) x => z, 
        options(readonly) 
    ); 
} 
assert_eq!(z, 1); 
# } 

r[asm.options.supported-options.preserves_flags]

preserves_flags : The assembly code does not modify the flags register
(defined in the rules below). This allows the compiler to avoid recomputing
the condition flags after execution of the assembly code.

r[asm.options.supported-options.noreturn]

noreturn : The assembly code does not fall through; behavior is undefined if
it does. It may still jump to label  blocks. If any label  blocks return unit,
the asm!  block will return unit. Otherwise it will return !  (never). As with a
call to a function that does not return, local variables in scope are not
dropped before execution of the assembly code.

fn main() -> ! { 
# #[cfg(target_arch = "x86_64")] { 
    // We can use an instruction to trap execution inside of a 
noreturn block 
    unsafe { core::arch::asm!("ud2", options(noreturn)); } 
# } 
# #[cfg(not(target_arch = "x86_64"))] panic!("no return"); 
} 
# #[cfg(target_arch = "x86_64")] { 
// You are responsible for not falling past the end of a noreturn 
asm block 
unsafe { core::arch::asm!("", options(noreturn)); } 
# } 

# #[cfg(target_arch = "x86_64")] 
let _: () = unsafe { 
    // You may still jump to a `label` block 



    core::arch::asm!("jmp {}", label { 
        println!(); 
    }, options(noreturn)); 
}; 

r[asm.options.supported-options.nostack]

nostack : The assembly code does not push data to the stack, or write to the
stack red-zone (if supported by the target). If this option is not used then the
stack pointer is guaranteed to be suitably aligned (according to the target
ABI) for a function call.

# #[cfg(target_arch = "x86_64")] { 
// `push` and `pop` are UB when used with nostack 
unsafe { core::arch::asm!("push rax", "pop rax", options(nostack)); 
} 
# } 

r[asm.options.supported-options.att_syntax]

att_syntax : This option is only valid on x86, and causes the assembler to
use the .att_syntax prefix  mode of the GNU assembler. Register
operands are substituted in with a leading % .

# #[cfg(target_arch = "x86_64")] { 
let x: i32; 
let y = 1i32; 
// We need to use AT&T Syntax here. src, dest order for operands 
unsafe { 
    core::arch::asm!("mov {y:e}, {x:e}", 
        x = lateout(reg) x, 
        y = in(reg) y, 
        options(att_syntax) 
    ); 
} 
assert_eq!(x, y); 
# } 

r[asm.options.supported-options.raw]

raw : This causes the template string to be parsed as a raw assembly string,
with no special handling for {  and } . This is primarily useful when



including raw assembly code from an external file using include_str! .
r[asm.options.checks] The compiler performs some additional checks on

options:
r[asm.options.checks.mutually-exclusive]

The nomem  and readonly  options are mutually exclusive: it is a compile-
time error to specify both.

# #[cfg(target_arch = "x86_64")] { 
// nomem is strictly stronger than readonly, they can't be specified 
together 
unsafe { core::arch::asm!("", options(nomem, readonly)); } 
// ERROR: the `nomem` and `readonly` options are mutually exclusive 
# } 
# #[cfg(not(target_arch = "x86_64"))] core::compile_error!("Test not 
supported on this arch"); 

r[asm.options.checks.pure]

It is a compile-time error to specify pure  on an asm block with no outputs or
only discarded outputs ( _ ).

# #[cfg(target_arch = "x86_64")] { 
// pure blocks need at least one output 
unsafe { core::arch::asm!("", options(pure)); } 
// ERROR: asm with the `pure` option must have at least one output 
# } 
# #[cfg(not(target_arch = "x86_64"))] core::compile_error!("Test not 
supported on this arch"); 

r[asm.options.checks.noreturn]

It is a compile-time error to specify noreturn  on an asm block with outputs
and without labels.

# #[cfg(target_arch = "x86_64")] { 
let z: i32; 
// noreturn can't have outputs 
unsafe { core::arch::asm!("mov {:e}, 1", out(reg) z, 
options(noreturn)); } 
// ERROR: asm outputs are not allowed with the `noreturn` option 
# } 



# #[cfg(not(target_arch = "x86_64"))] core::compile_error!("Test not 
supported on this arch"); 

r[asm.options.checks.label-with-outputs]

It is a compile-time error to have any label  blocks in an asm block with
outputs.

r[asm.options.naked_asm-restriction] naked_asm!  only supports the 
att_syntax  and raw  options. The remaining options are not meaningful because
the inline assembly defines the whole function body.

r[asm.options.global_asm-restriction] global_asm!  only supports the 
att_syntax  and raw  options. The remaining options are not meaningful for
global-scope inline assembly.
# fn main() {} 
# #[cfg(target_arch = "x86_64")] 
// nomem is useless on global_asm! 
core::arch::global_asm!("", options(nomem)); 
# #[cfg(not(target_arch = "x86_64"))] core::compile_error!("Test not 
supported on this arch"); 

r[asm.rules]



Rules for inline assembly
r[asm.rules.intro] To avoid undefined behavior, these rules must be followed

when using function-scope inline assembly ( asm! ):
r[asm.rules.reg-not-input]

Any registers not specified as inputs will contain an undefined value on entry
to the assembly code.

An "undefined value" in the context of inline assembly means that the
register can (non-deterministically) have any one of the possible values
allowed by the architecture. Notably it is not the same as an LLVM 
undef  which can have a different value every time you read it (since
such a concept does not exist in assembly code).

r[asm.rules.reg-not-output]

Any registers not specified as outputs must have the same value upon exiting
the assembly code as they had on entry, otherwise behavior is undefined.

This only applies to registers which can be specified as an input or
output. Other registers follow target-specific rules.
Note that a lateout  may be allocated to the same register as an in , in
which case this rule does not apply. Code should not rely on this
however since it depends on the results of register allocation.

r[asm.rules.unwind]

Behavior is undefined if execution unwinds out of the assembly code.

This also applies if the assembly code calls a function which then
unwinds.

r[asm.rules.mem-same-as-ffi]

The set of memory locations that assembly code is allowed to read and write
are the same as those allowed for an FFI function.

If the readonly  option is set, then only memory reads are allowed.
If the nomem  option is set then no reads or writes to memory are
allowed.



These rules do not apply to memory which is private to the assembly
code, such as stack space allocated within it.

r[asm.rules.black-box]

The compiler cannot assume that the instructions in the assembly code are
the ones that will actually end up executed.

This effectively means that the compiler must treat the assembly code as
a black box and only take the interface specification into account, not
the instructions themselves.
Runtime code patching is allowed, via target-specific mechanisms.
However there is no guarantee that each block of assembly code in the
source directly corresponds to a single instance of instructions in the
object file; the compiler is free to duplicate or deduplicate the assembly
code in asm!  blocks.

r[asm.rules.stack-below-sp]

Unless the nostack  option is set, assembly code is allowed to use stack
space below the stack pointer.

On entry to the assembly code the stack pointer is guaranteed to be
suitably aligned (according to the target ABI) for a function call.
You are responsible for making sure you don't overflow the stack (e.g.
use stack probing to ensure you hit a guard page).
You should adjust the stack pointer when allocating stack memory as
required by the target ABI.
The stack pointer must be restored to its original value before leaving
the assembly code.

r[asm.rules.noreturn]

If the noreturn  option is set then behavior is undefined if execution falls
through the end of the assembly code.

r[asm.rules.pure]

If the pure  option is set then behavior is undefined if the asm!  has side-
effects other than its direct outputs. Behavior is also undefined if two
executions of the asm!  code with the same inputs result in different outputs.



When used with the nomem  option, "inputs" are just the direct inputs of
the asm! .
When used with the readonly  option, "inputs" comprise the direct
inputs of the assembly code and any memory that it is allowed to read.

r[asm.rules.preserved-registers]

These flags registers must be restored upon exiting the assembly code if the 
preserves_flags  option is set:

x86

Status flags in EFLAGS  (CF, PF, AF, ZF, SF, OF).
Floating-point status word (all).
Floating-point exception flags in MXCSR  (PE, UE, OE, ZE, DE,
IE).

ARM

Condition flags in CPSR  (N, Z, C, V)
Saturation flag in CPSR  (Q)
Greater than or equal flags in CPSR  (GE).
Condition flags in FPSCR  (N, Z, C, V)
Saturation flag in FPSCR  (QC)
Floating-point exception flags in FPSCR  (IDC, IXC, UFC, OFC,
DZC, IOC).

AArch64 and Arm64EC

Condition flags ( NZCV  register).
Floating-point status ( FPSR  register).

RISC-V

Floating-point exception flags in fcsr  ( fflags ).
Vector extension state ( vtype , vl , vcsr ).

LoongArch

Floating-point condition flags in $fcc[0-7] .
s390x



The condition code register cc .
r[asm.rules.x86-df]

On x86, the direction flag (DF in EFLAGS ) is clear on entry to the assembly
code and must be clear on exit.

Behavior is undefined if the direction flag is set on exiting the assembly
code.

r[asm.rules.x86-x87]

On x86, the x87 floating-point register stack must remain unchanged unless
all of the st([0-7])  registers have been marked as clobbered with 
out("st(0)") _, out("st(1)") _, ... .

If all x87 registers are clobbered then the x87 register stack is
guaranteed to be empty upon entering the assembly code. Assembly
code must ensure that the x87 register stack is also empty when exiting
the asssembly code.

# #[cfg(target_arch = "x86_64")] 
pub fn fadd(x: f64, y: f64) -> f64 { 
  let mut out = 0f64; 
  let mut top = 0u16; 
  // we can do complex stuff with x87 if we clobber the entire x87 
stack 
  unsafe { core::arch::asm!( 
    "fld qword ptr [{x}]", 
    "fld qword ptr [{y}])", 
    "faddp", 
    "fstp qword ptr [{out}]", 
    "xor eax, eax", 
    "fstsw ax", 
    "shl eax, 11", 
    x = in(reg) &x, 
    y = in(reg) &y, 
    out = in(reg) &mut out, 
    out("st(0)") _, out("st(1)") _, out("st(2)") _, out("st(3)") _, 
    out("st(4)") _, out("st(5)") _, out("st(6)") _, out("st(7)") _, 
    out("eax") top 



  );} 
 
  assert_eq!(top & 0x7, 0); 
  out 
} 
 
pub fn main() { 
# #[cfg(target_arch = "x86_64")]{ 
  assert_eq!(fadd(1.0, 1.0), 2.0); 
# } 
} 

r[asm.rules.arm64ec]

On arm64ec, call checkers with appropriate thunks are mandatory when
calling functions.

r[asm.rules.only-on-exit]

The requirement of restoring the stack pointer and non-output registers to
their original value only applies when exiting the assembly code.

This means that assembly code that does not fall through and does not
jump to any label  blocks, even if not marked noreturn , doesn't need
to preserve these registers.
When returning to the assembly code of a different asm!  block than
you entered (e.g. for context switching), these registers must contain the
value they had upon entering the asm!  block that you are exiting.

You cannot exit the assembly code of an asm!  block that has not
been entered. Neither can you exit the assembly code of an asm!
block whose assembly code has already been exited (without first
entering it again).
You are responsible for switching any target-specific state (e.g.
thread-local storage, stack bounds).
You cannot jump from an address in one asm!  block to an address
in another, even within the same function or block, without treating
their contexts as potentially different and requiring context
switching. You cannot assume that any particular value in those
contexts (e.g. current stack pointer or temporary values below the

https://learn.microsoft.com/en-us/windows/arm/arm64ec-abi#authoring-arm64ec-in-assembly


stack pointer) will remain unchanged between the two asm!
blocks.
The set of memory locations that you may access is the intersection
of those allowed by the asm!  blocks you entered and exited.

r[asm.rules.not-successive]

You cannot assume that two asm!  blocks adjacent in source code, even
without any other code between them, will end up in successive addresses in
the binary without any other instructions between them.

r[asm.rules.not-exactly-once]

You cannot assume that an asm!  block will appear exactly once in the output
binary. The compiler is allowed to instantiate multiple copies of the asm!
block, for example when the function containing it is inlined in multiple
places.

r[asm.rules.x86-prefix-restriction]

On x86, inline assembly must not end with an instruction prefix (such as 
LOCK ) that would apply to instructions generated by the compiler.

The compiler is currently unable to detect this due to the way inline
assembly is compiled, but may catch and reject this in the future.

r[asm.rules.preserves_flags]

[!NOTE] As a general rule, the flags covered by preserves_flags  are
those which are not preserved when performing a function call.

r[asm.naked-rules]



Rules for naked inline assembly
r[asm.naked-rules.intro] To avoid undefined behavior, these rules must be

followed when using function-scope inline assembly in naked functions
( naked_asm! ):

r[asm.naked-rules.reg-not-input]

Any registers not used for function inputs according to the calling convention
and function signature will contain an undefined value on entry to the 
naked_asm!  block.

An "undefined value" in the context of inline assembly means that the
register can (non-deterministically) have any one of the possible values
allowed by the architecture. Notably it is not the same as an LLVM 
undef  which can have a different value every time you read it (since
such a concept does not exist in assembly code).

r[asm.naked-rules.callee-saved-registers]

All callee-saved registers must have the same value upon return as they had
on entry.

r[asm.naked-rules.caller-saved-registers]

Caller-saved registers may be used freely.
r[asm.naked-rules.noreturn]

Behavior is undefined if execution falls through past the end of the assembly
code.

Every path through the assembly code is expected to terminate with a
return instruction or to diverge.

r[asm.naked-rules.mem-same-as-ffi]

The set of memory locations that assembly code is allowed to read and write
are the same as those allowed for an FFI function.

r[asm.naked-rules.black-box]

The compiler cannot assume that the instructions in the naked_asm!  block
are the ones that will actually be executed.



This effectively means that the compiler must treat the naked_asm!  as a
black box and only take the interface specification into account, not the
instructions themselves.
Runtime code patching is allowed, via target-specific mechanisms.

r[asm.naked-rules.unwind]

Unwinding out of a naked_asm!  block is allowed.

For correct behavior, the appropriate assembler directives that emit
unwinding metadata must be used.

# #[cfg(target_arch = "x86_64")] { 
#[unsafe(naked)] 
extern "sysv64-unwind" fn unwinding_naked() { 
    core::arch::naked_asm!( 
        // "CFI" here stands for "call frame information". 
        ".cfi_startproc", 
        // The CFA (canonical frame address) is the value of `rsp` 
        // before the `call`, i.e. before the return address, 
`rip`, 
        // was pushed to `rsp`, so it's eight bytes higher in 
memory 
        // than `rsp` upon function entry (after `rip` has been 
        // pushed). 
        // 
        // This is the default, so we don't have to write it. 
        //".cfi_def_cfa rsp, 8", 
        // 
        // The traditional thing to do is to preserve the base 
        // pointer, so we'll do that. 
        "push rbp", 
        // Since we've now extended the stack downward by 8 bytes 
in 
        // memory, we need to adjust the offset to the CFA from 
`rsp` 
        // by another 8 bytes. 
        ".cfi_adjust_cfa_offset 8", 
        // We also then annotate where we've stored the caller's 
value 



        // of `rbp`, relative to the CFA, so that when unwinding 
into 
        // the caller we can find it, in case we need it to 
calculate 
        // the caller's CFA relative to it. 
        // 
        // Here, we've stored the caller's `rbp` starting 16 bytes 
        // below the CFA.  I.e., starting from the CFA, there's 
first 
        // the `rip` (which starts 8 bytes below the CFA and 
continues 
        // up to it), then there's the caller's `rbp` that we just 
        // pushed. 
        ".cfi_offset rbp, -16", 
        // As is traditional, we set the base pointer to the value 
of 
        // the stack pointer.  This way, the base pointer stays the 
        // same throughout the function body. 
        "mov rbp, rsp", 
        // We can now track the offset to the CFA from the base 
        // pointer.  This means we don't need to make any further 
        // adjustments until the end, as we don't change `rbp`. 
        ".cfi_def_cfa_register rbp", 
        // We can now call a function that may panic. 
        "call {f}", 
        // Upon return, we restore `rbp` in preparation for 
returning 
        // ourselves. 
        "pop rbp", 
        // Now that we've restored `rbp`, we must specify the 
offset 
        // to the CFA again in terms of `rsp`. 
        ".cfi_def_cfa rsp, 8", 
        // Now we can return. 
        "ret", 
        ".cfi_endproc", 
        f = sym may_panic, 
    ) 



} 
 
extern "sysv64-unwind" fn may_panic() { 
    panic!("unwind"); 
} 
# } 

[!NOTE]
For more information on the cfi  assembler directives above, see these

resources:

Using as  - CFI directives
DWARF Debugging Information Format Version 5
ImperialViolet - CFI directives in assembly files

r[asm.validity]

Correctness and Validity
r[asm.validity.necessary-but-not-sufficient] In addition to all of the previous

rules, the string argument to asm!  must ultimately become--- after all other
arguments are evaluated, formatting is performed, and operands are translated---
assembly that is both syntactically correct and semantically valid for the target
architecture. The formatting rules allow the compiler to generate assembly with
correct syntax. Rules concerning operands permit valid translation of Rust
operands into and out of the assembly code. Adherence to these rules is necessary,
but not sufficient, for the final expanded assembly to be both correct and valid.
For instance:

arguments may be placed in positions which are syntactically incorrect after
formatting
an instruction may be correctly written, but given architecturally invalid
operands
an architecturally unspecified instruction may be assembled into unspecified
code
a set of instructions, each correct and valid, may cause undefined behavior if
placed in immediate succession

r[asm.validity.non-exhaustive] As a result, these rules are non-exhaustive. The
compiler is not required to check the correctness and validity of the initial string
nor the final assembly that is generated. The assembler may check for correctness

https://sourceware.org/binutils/docs/as/CFI-directives.html
https://dwarfstd.org/doc/DWARF5.pdf
https://www.imperialviolet.org/2017/01/18/cfi.html


and validity but is not required to do so. When using asm! , a typographical error
may be sufficient to make a program unsound, and the rules for assembly may
include thousands of pages of architectural reference manuals. Programmers
should exercise appropriate care, as invoking this unsafe  capability comes with
assuming the responsibility of not violating rules of both the compiler or the
architecture.

r[asm.directives]

Directives Support
r[asm.directives.subset-supported] Inline assembly supports a subset of the

directives supported by both GNU AS and LLVM's internal assembler, given as
follows. The result of using other directives is assembler-specific (and may cause
an error, or may be accepted as-is).

r[asm.directives.stateful] If inline assembly includes any "stateful" directive
that modifies how subsequent assembly is processed, the assembly code must
undo the effects of any such directives before the inline assembly ends.

r[asm.directives.supported-directives] The following directives are guaranteed
to be supported by the assembler:

.2byte

.4byte

.8byte

.align

.alt_entry

.ascii

.asciz

.balign

.balignl

.balignw

.bss

.byte

.comm

.data

.def

.double

.endef



.equ

.equiv

.eqv

.fill

.float

.global

.globl

.inst

.insn

.lcomm

.long

.octa

.option

.p2align

.popsection

.private_extern

.pushsection

.quad

.scl

.section

.set

.short

.size

.skip

.sleb128

.space

.string

.text

.type

.uleb128

.word

# #[cfg(target_arch = "x86_64")] { 
let bytes: *const u8; 
let len: usize; 



unsafe { 
    core::arch::asm!( 
        "jmp 3f", "2: .ascii \"Hello World!\"", 
        "3: lea {bytes}, [2b+rip]", 
        "mov {len}, 12", 
        bytes = out(reg) bytes, 
        len = out(reg) len 
    ); 
} 
 
let s = unsafe { 
core::str::from_utf8_unchecked(core::slice::from_raw_parts(bytes, 
len)) }; 
 
assert_eq!(s, "Hello World!"); 
# } 

r[asm.target-specific-directives]

Target Specific Directive Support
r[asm.target-specific-directives.dwarf-unwinding]

Dwarf Unwinding
The following directives are supported on ELF targets that support DWARF

unwind info:

.cfi_adjust_cfa_offset

.cfi_def_cfa

.cfi_def_cfa_offset

.cfi_def_cfa_register

.cfi_endproc

.cfi_escape

.cfi_lsda

.cfi_offset

.cfi_personality

.cfi_register

.cfi_rel_offset

.cfi_remember_state



.cfi_restore

.cfi_restore_state

.cfi_return_column

.cfi_same_value

.cfi_sections

.cfi_signal_frame

.cfi_startproc

.cfi_undefined

.cfi_window_save

r[asm.target-specific-directives.structured-exception-handling]

Structured Exception Handling
On targets with structured exception Handling, the following additional

directives are guaranteed to be supported:

.seh_endproc

.seh_endprologue

.seh_proc

.seh_pushreg

.seh_savereg

.seh_setframe

.seh_stackalloc

r[asm.target-specific-directives.x86]

x86 (32-bit and 64-bit)
On x86 targets, both 32-bit and 64-bit, the following additional directives are

guaranteed to be supported:

.nops

.code16

.code32

.code64

Use of .code16 , .code32 , and .code64  directives are only supported if the
state is reset to the default before exiting the assembly code. 32-bit x86 uses 
.code32  by default, and x86_64 uses .code64  by default.

r[asm.target-specific-directives.arm-32-bit]



ARM (32-bit)
On ARM, the following additional directives are guaranteed to be supported:

.even

.fnstart

.fnend

.save

.movsp

.code

.thumb

.thumb_func



r[safety]



Unsafety
r[safety.intro] Unsafe operations are those that can potentially violate the

memory-safety guarantees of Rust's static semantics.
r[safety.unsafe-ops] The following language level features cannot be

used in the safe subset of Rust:
r[safety.unsafe-deref]

Dereferencing a raw pointer.
r[safety.unsafe-static]

Reading or writing a mutable or external static variable.
r[safety.unsafe-union-access]

Accessing a field of a union , other than to assign to it.
r[safety.unsafe-call]

Calling an unsafe function (including an intrinsic or foreign function).
r[safety.unsafe-target-feature-call]

Calling a safe function marked with a [ target_feature ]
[attributes.codegen.target_feature] from a function that does not have a
target_feature  attribute enabling the same features (see
[attributes.codegen.target_feature.safety-restrictions]).

r[safety.unsafe-impl]

Implementing an unsafe trait.
r[safety.unsafe-extern]

Declaring an extern  block1.
r[safety.unsafe-attribute]

Applying an unsafe attribute to an item.
1

clbr://internal.invalid/book/OEBPS/types/pointer.md
clbr://internal.invalid/book/OEBPS/items/static-items.md#mutable-statics
clbr://internal.invalid/book/OEBPS/items/external-blocks.md
clbr://internal.invalid/book/OEBPS/items/unions.md
clbr://internal.invalid/book/OEBPS/items/traits.md#unsafe-traits
clbr://internal.invalid/book/OEBPS/items/external-blocks.md
clbr://internal.invalid/book/OEBPS/attributes.md


Prior to the 2024 edition, extern blocks were allowed to be declared
without unsafe .



r[unsafe]



The unsafe keyword
r[unsafe.intro] The unsafe  keyword can occur in several different

contexts: unsafe functions ( unsafe fn ), unsafe blocks ( unsafe {} ),
unsafe traits ( unsafe trait ), unsafe trait implementations ( unsafe impl ),
unsafe external blocks ( unsafe extern ), and unsafe attributes ( #
[unsafe(attr)] ). It plays several different roles, depending on where it is
used and whether the unsafe_op_in_unsafe_fn  lint is enabled:

it is used to mark code that defines extra safety conditions ( unsafe 
fn , unsafe trait )
it is used to mark code that needs to satisfy extra safety conditions
( unsafe {} , unsafe impl , unsafe fn  without 
unsafe_op_in_unsafe_fn , unsafe extern , #[unsafe(attr)] )

The following discusses each of these cases. See the keyword
documentation for some illustrative examples.

r[unsafe.fn]

clbr://internal.invalid/book/rustc/lints/listing/allowed-by-default.html#unsafe-op-in-unsafe-fn
clbr://internal.invalid/book/std/keyword.unsafe.html


Unsafe functions (unsafe fn)
r[unsafe.fn.intro] Unsafe functions are functions that are not safe in all

contexts and/or for all possible inputs. We say they have extra safety
conditions, which are requirements that must be upheld by all callers and
that the compiler does not check. For example, get_unchecked  has the
extra safety condition that the index must be in-bounds. The unsafe function
should come with documentation explaining what those extra safety
conditions are.

r[unsafe.fn.safety] Such a function must be prefixed with the keyword 
unsafe  and can only be called from inside an unsafe  block, or inside 
unsafe fn  without the unsafe_op_in_unsafe_fn  lint.

r[unsafe.block]

slice::get_unchecked
clbr://internal.invalid/book/rustc/lints/listing/allowed-by-default.html#unsafe-op-in-unsafe-fn


Unsafe blocks (unsafe {})
r[unsafe.block.intro] A block of code can be prefixed with the unsafe

keyword to permit using the unsafe actions as defined in the Unsafety
chapter, such as calling other unsafe functions or dereferencing raw
pointers.

r[unsafe.block.fn-body] By default, the body of an unsafe function is
also considered to be an unsafe block; this can be changed by enabling the 
unsafe_op_in_unsafe_fn  lint.

By putting operations into an unsafe block, the programmer states that
they have taken care of satisfying the extra safety conditions of all
operations inside that block.

Unsafe blocks are the logical dual to unsafe functions: where unsafe
functions define a proof obligation that callers must uphold, unsafe blocks
state that all relevant proof obligations of functions or operations called
inside the block have been discharged. There are many ways to discharge
proof obligations; for example, there could be run-time checks or data
structure invariants that guarantee that certain properties are definitely true,
or the unsafe block could be inside an unsafe fn , in which case the block
can use the proof obligations of that function to discharge the proof
obligations arising inside the block.

Unsafe blocks are used to wrap foreign libraries, make direct use of
hardware or implement features not directly present in the language. For
example, Rust provides the language features necessary to implement
memory-safe concurrency in the language but the implementation of
threads and message passing in the standard library uses unsafe blocks.

Rust's type system is a conservative approximation of the dynamic safety
requirements, so in some cases there is a performance cost to using safe
code. For example, a doubly-linked list is not a tree structure and can only
be represented with reference-counted pointers in safe code. By using 
unsafe  blocks to represent the reverse links as raw pointers, it can be
implemented without reference counting. (See "Learn Rust With Entirely
Too Many Linked Lists" for a more in-depth exploration of this particular
example.)

clbr://internal.invalid/book/OEBPS/unsafety.md
clbr://internal.invalid/book/rustc/lints/listing/allowed-by-default.html#unsafe-op-in-unsafe-fn
https://rust-unofficial.github.io/too-many-lists/


r[unsafe.trait]



Unsafe traits (unsafe trait)
r[unsafe.trait.intro] An unsafe trait is a trait that comes with extra safety

conditions that must be upheld by implementations of the trait. The unsafe
trait should come with documentation explaining what those extra safety
conditions are.

r[unsafe.trait.safety] Such a trait must be prefixed with the keyword 
unsafe  and can only be implemented by unsafe impl  blocks.

r[unsafe.impl]



Unsafe trait implementations (unsafe impl)
When implementing an unsafe trait, the implementation needs to be

prefixed with the unsafe  keyword. By writing unsafe impl , the
programmer states that they have taken care of satisfying the extra safety
conditions required by the trait.

Unsafe trait implementations are the logical dual to unsafe traits: where
unsafe traits define a proof obligation that implementations must uphold,
unsafe implementations state that all relevant proof obligations have been
discharged.

r[unsafe.extern]



Unsafe external blocks (unsafe extern)
The programmer who declares an external block must assure that the

signatures of the items contained within are correct. Failing to do so may
lead to undefined behavior. That this obligation has been met is indicated by
writing unsafe extern .

r[unsafe.extern.edition2024]

[!EDITION-2024] Prior to edition 2024, extern  blocks were
allowed without being qualified as unsafe .

r[unsafe.attribute]

clbr://internal.invalid/book/OEBPS/items/external-blocks.md


Unsafe attributes (#[unsafe(attr)])
An unsafe attribute is one that has extra safety conditions that must be

upheld when using the attribute. The compiler cannot check whether these
conditions have been upheld. To assert that they have been, these attributes
must be wrapped in unsafe(..) , e.g. #[unsafe(no_mangle)] .

clbr://internal.invalid/book/OEBPS/attributes.md


r[undefined]



Behavior considered undefined
r[undefined.general] Rust code is incorrect if it exhibits any of the

behaviors in the following list. This includes code within unsafe  blocks
and unsafe  functions. unsafe  only means that avoiding undefined
behavior is on the programmer; it does not change anything about the fact
that Rust programs must never cause undefined behavior.

r[undefined.soundness] It is the programmer's responsibility when
writing unsafe  code to ensure that any safe code interacting with the 
unsafe  code cannot trigger these behaviors. unsafe  code that satisfies this
property for any safe client is called sound; if unsafe  code can be misused
by safe code to exhibit undefined behavior, it is unsound.

[!WARNING] The following list is not exhaustive; it may grow or
shrink. There is no formal model of Rust's semantics for what is and is
not allowed in unsafe code, so there may be more behavior considered
unsafe. We also reserve the right to make some of the behavior in that
list defined in the future. In other words, this list does not say that
anything will definitely always be undefined in all future Rust version
(but we might make such commitments for some list items in the
future).

Please read the Rustonomicon before writing unsafe code.

r[undefined.race]

Data races.
r[undefined.pointer-access]

Accessing (loading from or storing to) a place that is dangling or based
on a misaligned pointer.

r[undefined.place-projection]

Performing a place projection that violates the requirements of in-
bounds pointer arithmetic. A place projection is a field expression, a
tuple index expression, or an array/slice index expression.

clbr://internal.invalid/book/nomicon/index.html
clbr://internal.invalid/book/OEBPS/pointer#method.offset
clbr://internal.invalid/book/OEBPS/expressions/field-expr.md
clbr://internal.invalid/book/OEBPS/expressions/tuple-expr.md#tuple-indexing-expressions
clbr://internal.invalid/book/OEBPS/expressions/array-expr.md#array-and-slice-indexing-expressions


r[undefined.alias]

Breaking the pointer aliasing rules. The exact aliasing rules are not
determined yet, but here is an outline of the general principles: &T
must point to memory that is not mutated while they are live (except
for data inside an UnsafeCell<U> ), and &mut T  must point to
memory that is not read or written by any pointer not derived from the
reference and that no other reference points to while they are live. 
Box<T>  is treated similar to &'static mut T  for the purpose of these
rules. The exact liveness duration is not specified, but some bounds
exist:

For references, the liveness duration is upper-bounded by the
syntactic lifetime assigned by the borrow checker; it cannot be
live any longer than that lifetime.
Each time a reference or box is dereferenced or reborrowed, it is
considered live.
Each time a reference or box is passed to or returned from a
function, it is considered live.
When a reference (but not a Box !) is passed to a function, it is
live at least as long as that function call, again except if the &T
contains an UnsafeCell<U> .

All this also applies when values of these types are passed in a
(nested) field of a compound type, but not behind pointer indirections.

r[undefined.immutable]

Mutating immutable bytes. All bytes reachable through a const-
promoted expression are immutable, as well as bytes reachable
through borrows in static  and const  initializers that have been
lifetime-extended to 'static . The bytes owned by an immutable
binding or immutable static  are immutable, unless those bytes are
part of an UnsafeCell<U> .

Moreover, the bytes pointed to by a shared reference, including
transitively through other references (both shared and mutable) and 

std::cell::UnsafeCell
std::cell::UnsafeCell
clbr://internal.invalid/book/OEBPS/destructors.md#constant-promotion
clbr://internal.invalid/book/OEBPS/destructors.md#temporary-lifetime-extension
std::cell::UnsafeCell


Box es, are immutable; transitivity includes those references stored in
fields of compound types.

A mutation is any write of more than 0 bytes which overlaps with
any of the relevant bytes (even if that write does not change the
memory contents).

r[undefined.intrinsic]

Invoking undefined behavior via compiler intrinsics.
r[undefined.target-feature]

Executing code compiled with platform features that the current
platform does not support (see target_feature ), except if the
platform explicitly documents this to be safe.

r[undefined.call]

Calling a function with the wrong call ABI, or unwinding past a stack
frame that does not allow unwinding (e.g. by calling a "C-unwind"
function imported or transmuted as a "C"  function or function
pointer).

r[undefined.invalid]

Producing an invalid value. "Producing" a value happens any time a
value is assigned to or read from a place, passed to a function/primitive
operation or returned from a function/primitive operation.

r[undefined.asm]

Incorrect use of inline assembly. For more details, refer to the rules to
follow when writing code that uses inline assembly.

r[undefined.const-transmute-ptr2int]

In const context: transmuting or otherwise reinterpreting a pointer
(reference, raw pointer, or function pointer) into some allocated object
as a non-pointer type (such as integers). 'Reinterpreting' refers to
loading the pointer value at integer type without a cast, e.g. by doing
raw pointer casts or using a union.

clbr://internal.invalid/book/OEBPS/attributes/codegen.md#the-target_feature-attribute
clbr://internal.invalid/book/OEBPS/items/external-blocks.md#abi
clbr://internal.invalid/book/OEBPS/inline-assembly.md#rules-for-inline-assembly
clbr://internal.invalid/book/OEBPS/const_eval.md#const-context


r[undefined.runtime]

Violating assumptions of the Rust runtime. Most assumptions of the
Rust runtime are currently not explicitly documented.

For assumptions specifically related to unwinding, see the panic
documentation.
The runtime assumes that a Rust stack frame is not deallocated
without executing destructors for local variables owned by the
stack frame. This assumption can be violated by C functions like 
longjmp .

[!NOTE] Undefined behavior affects the entire program. For
example, calling a function in C that exhibits undefined behavior of C
means your entire program contains undefined behaviour that can also
affect the Rust code. And vice versa, undefined behavior in Rust can
cause adverse affects on code executed by any FFI calls to other
languages.

r[undefined.pointed-to]

clbr://internal.invalid/book/OEBPS/panic.md#unwinding-across-ffi-boundaries


Pointed-to bytes
The span of bytes a pointer or reference "points to" is determined by the

pointer value and the size of the pointee type (using size_of_val ).
r[undefined.misaligned]



Places based on misaligned pointers
r[undefined.misaligned.general] A place is said to be "based on a

misaligned pointer" if the last *  projection during place computation was
performed on a pointer that was not aligned for its type. (If there is no *
projection in the place expression, then this is accessing the field of a local
or static  and rustc will guarantee proper alignment. If there are multiple 
*  projection, then each of them incurs a load of the pointer-to-be-
dereferenced itself from memory, and each of these loads is subject to the
alignment constraint. Note that some *  projections can be omitted in
surface Rust syntax due to automatic dereferencing; we are considering the
fully expanded place expression here.)

For instance, if ptr  has type *const S  where S  has an alignment of 8,
then ptr  must be 8-aligned or else (*ptr).f  is "based on an misaligned
pointer". This is true even if the type of the field f  is u8  (i.e., a type with
alignment 1). In other words, the alignment requirement derives from the
type of the pointer that was dereferenced, not the type of the field that is
being accessed.

r[undefined.misaligned.load-store] Note that a place based on a
misaligned pointer only leads to Undefined Behavior when it is loaded from
or stored to.

r[undefined.misaligned.raw] &raw const / &raw mut  on such a place is
allowed.

r[undefined.misaligned.reference] & / &mut  on a place requires the
alignment of the field type (or else the program would be "producing an
invalid value"), which generally is a less restrictive requirement than being
based on an aligned pointer.

r[undefined.misaligned.packed] Taking a reference will lead to a
compiler error in cases where the field type might be more aligned than the
type that contains it, i.e., repr(packed) . This means that being based on an
aligned pointer is always sufficient to ensure that the new reference is
aligned, but it is not always necessary.

r[undefined.dangling]



Dangling pointers
r[undefined.dangling.general] A reference/pointer is "dangling" if not all

of the bytes it points to are part of the same live allocation (so in particular
they all have to be part of some allocation).

r[undefined.dangling.zero-size] If the size is 0, then the pointer is
trivially never "dangling" (even if it is a null pointer).

r[undefined.dangling.dynamic-size] Note that dynamically sized types
(such as slices and strings) point to their entire range, so it is important that
the length metadata is never too large.

r[undefined.dangling.alloc-limit] In particular, the dynamic size of a
Rust value (as determined by size_of_val ) must never exceed
isize::MAX , since it is impossible for a single allocation to be larger than 
isize::MAX .

r[undefined.validity]



Invalid values
r[undefined.validity.general] The Rust compiler assumes that all values

produced during program execution are "valid", and producing an invalid
value is hence immediate UB.

Whether a value is valid depends on the type:
r[undefined.validity.bool]

A bool  value must be false  ( 0 ) or true  ( 1 ).
r[undefined.validity.fn-pointer]

A fn  pointer value must be non-null.
r[undefined.validity.char]

A char  value must not be a surrogate (i.e., must not be in the range 
0xD800..=0xDFFF ) and must be equal to or less than char::MAX .

r[undefined.validity.never]

A !  value must never exist.
r[undefined.validity.scalar]

An integer ( i* / u* ), floating point value ( f* ), or raw pointer must be
initialized, i.e., must not be obtained from uninitialized memory.

r[undefined.validity.str]

A str  value is treated like [u8] , i.e. it must be initialized.
r[undefined.validity.enum]

An enum  must have a valid discriminant, and all fields of the variant
indicated by that discriminant must be valid at their respective type.

r[undefined.validity.struct]

A struct , tuple, and array requires all fields/elements to be valid at
their respective type.

clbr://internal.invalid/book/OEBPS/types/boolean.md


r[undefined.validity.union]

For a union , the exact validity requirements are not decided yet.
Obviously, all values that can be created entirely in safe code are valid.
If the union has a zero-sized field, then every possible value is valid.
Further details are still being debated.

r[undefined.validity.reference-box]

A reference or [ Box<T> ] must be aligned and non-null, it cannot be
dangling, and it must point to a valid value (in case of dynamically
sized types, using the actual dynamic type of the pointee as determined
by the metadata). Note that the last point (about pointing to a valid
value) remains a subject of some debate.

r[undefined.validity.wide]

The metadata of a wide reference, [ Box<T> ], or raw pointer must
match the type of the unsized tail:

dyn Trait  metadata must be a pointer to a compiler-generated
vtable for Trait . (For raw pointers, this requirement remains a
subject of some debate.)
Slice ( [T] ) metadata must be a valid usize . Furthermore, for
wide references and [ Box<T> ], slice metadata is invalid if it
makes the total size of the pointed-to value bigger than 
isize::MAX .

r[undefined.validity.valid-range]

If a type has a custom range of a valid values, then a valid value
must be in that range. In the standard library, this affects NonNull<T>
and NonZero<T> .

[!NOTE] rustc  achieves this with the unstable 
rustc_layout_scalar_valid_range_*  attributes.

r[undefined.validity.undef] Note: Uninitialized memory is also
implicitly invalid for any type that has a restricted set of valid values. In

https://github.com/rust-lang/unsafe-code-guidelines/issues/438
core::ptr::NonNull
core::num::NonZero


other words, the only cases in which reading uninitialized memory is
permitted are inside union s and in "padding" (the gaps between the fields
of a type).



Behavior not considered unsafe
The Rust compiler does not consider the following behaviors unsafe,

though a programmer may (should) find them undesirable, unexpected, or
erroneous.

Deadlocks
Leaks of memory and other resources
Exiting without calling destructors
Exposing randomized base addresses through pointer leaks



Integer overflow
If a program contains arithmetic overflow, the programmer has made an

error. In the following discussion, we maintain a distinction between
arithmetic overflow and wrapping arithmetic. The first is erroneous, while
the second is intentional.

When the programmer has enabled debug_assert!  assertions (for
example, by enabling a non-optimized build), implementations must insert
dynamic checks that panic  on overflow. Other kinds of builds may result
in panics  or silently wrapped values on overflow, at the implementation's
discretion.

In the case of implicitly-wrapped overflow, implementations must
provide well-defined (even if still considered erroneous) results by using
two's complement overflow conventions.

The integral types provide inherent methods to allow programmers
explicitly to perform wrapping arithmetic. For example, 
i32::wrapping_add  provides two's complement, wrapping addition.

The standard library also provides a Wrapping<T>  newtype which
ensures all standard arithmetic operations for T  have wrapping semantics.

See RFC 560 for error conditions, rationale, and more details about
integer overflow.

https://github.com/rust-lang/rfcs/blob/master/text/0560-integer-overflow.md


Logic errors
Safe code may impose extra logical constraints that can be checked at

neither compile-time nor runtime. If a program breaks such a constraint, the
behavior may be unspecified but will not result in undefined behavior. This
could include panics, incorrect results, aborts, and non-termination. The
behavior may also differ between runs, builds, or kinds of build.

For example, implementing both Hash  and Eq  requires that values
considered equal have equal hashes. Another example are data structures
like BinaryHeap , BTreeMap , BTreeSet , HashMap  and HashSet  which
describe constraints on the modification of their keys while they are in the
data structure. Violating such constraints is not considered unsafe, yet the
program is considered erroneous and its behavior unpredictable.



r[const-eval]



Constant evaluation
r[const-eval.general] Constant evaluation is the process of computing the

result of expressions during compilation. Only a subset of all expressions
can be evaluated at compile-time.

r[const-eval.const-expr]

clbr://internal.invalid/book/OEBPS/expressions.md


Constant expressions
r[const-eval.const-expr.general] Certain forms of expressions, called

constant expressions, can be evaluated at compile time.
r[const-eval.const-expr.const-context] In const contexts, these are the

only allowed expressions, and are always evaluated at compile time.
r[const-eval.const-expr.runtime-context] In other places, such as let

statements, constant expressions may be, but are not guaranteed to be,
evaluated at compile time.

r[const-eval.const-expr.error] Behaviors such as out of bounds array
indexing or overflow are compiler errors if the value must be evaluated at
compile time (i.e. in const contexts). Otherwise, these behaviors are
warnings, but will likely panic at run-time.

r[const-eval.const-expr.list] The following expressions are constant
expressions, so long as any operands are also constant expressions and do
not cause any Drop::drop  calls to be run.

r[const-eval.const-expr.literal]

Literals.
r[const-eval.const-expr.parameter]

Const parameters.
r[const-eval.const-expr.path-item]

Paths to functions and constants. Recursively defining constants is not
allowed.

r[const-eval.const-expr.path-static]

Paths to statics with these restrictions:

Writes to static  items are not allowed in any constant
evaluation context.
Reads from extern  statics are not allowed in any constant
evaluation context.

clbr://internal.invalid/book/OEBPS/statements.md#let-statements
clbr://internal.invalid/book/OEBPS/expressions/array-expr.md#array-and-slice-indexing-expressions
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#overflow
clbr://internal.invalid/book/OEBPS/destructors.md
clbr://internal.invalid/book/OEBPS/expressions/literal-expr.md
clbr://internal.invalid/book/OEBPS/items/generics.md
clbr://internal.invalid/book/OEBPS/expressions/path-expr.md
clbr://internal.invalid/book/OEBPS/items/functions.md
clbr://internal.invalid/book/OEBPS/items/constant-items.md
clbr://internal.invalid/book/OEBPS/items/static-items.md


If the evaluation is not carried out in an initializer of a static
item, then reads from any mutable static  are not allowed. A
mutable static  is a static mut  item, or a static  item with an
interior-mutable type.

These requirements are checked only when the constant is evaluated. In
other words, having such accesses syntactically occur in const contexts is
allowed as long as they never get executed.

r[const-eval.const-expr.tuple]

Tuple expressions.
r[const-eval.const-expr.array]

Array expressions.
r[const-eval.const-expr.constructor]

Struct expressions.
r[const-eval.const-expr.block]

Block expressions, including unsafe  and const  blocks.

let statements and thus irrefutable patterns, including mutable
bindings
assignment expressions
compound assignment expressions
expression statements

r[const-eval.const-expr.field]

Field expressions.
r[const-eval.const-expr.index]

Index expressions, array indexing or slice with a usize .
r[const-eval.const-expr.range]

Range expressions.
r[const-eval.const-expr.closure]

clbr://internal.invalid/book/OEBPS/expressions/tuple-expr.md
clbr://internal.invalid/book/OEBPS/expressions/array-expr.md
clbr://internal.invalid/book/OEBPS/expressions/struct-expr.md
clbr://internal.invalid/book/OEBPS/expressions/block-expr.md
clbr://internal.invalid/book/OEBPS/statements.md#let-statements
clbr://internal.invalid/book/OEBPS/patterns.md
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#assignment-expressions
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#compound-assignment-expressions
clbr://internal.invalid/book/OEBPS/statements.md#expression-statements
clbr://internal.invalid/book/OEBPS/expressions/field-expr.md
clbr://internal.invalid/book/OEBPS/expressions/array-expr.md#array-and-slice-indexing-expressions
clbr://internal.invalid/book/OEBPS/types/slice.md
clbr://internal.invalid/book/OEBPS/expressions/range-expr.md


Closure expressions which don't capture variables from the
environment.

r[const-eval.const-expr.builtin-arith-logic]

Built-in negation, arithmetic, logical, comparison or lazy boolean
operators used on integer and floating point types, bool , and char .

r[const-eval.const-expr.borrows]

All forms of borrows, including raw borrows, except borrows of
expressions whose temporary scopes would be extended (see
temporary lifetime extension) to the end of the program and which are
either:

Mutable borrows.
Shared borrows of expressions that result in values with interior
mutability.

// Due to being in tail position, this borrow extends the 
scope of the 
// temporary to the end of the program. Since the borrow is 
mutable, 
// this is not allowed in a const expression. 
const C: &u8 = &mut 0; // ERROR not allowed 
// Const blocks are similar to initializers of `const` 
items. 
let _: &u8 = const { &mut 0 }; // ERROR not allowed 
# use core::sync::atomic::AtomicU8; 
// This is not allowed as 1) the temporary scope is 
extended to the 
// end of the program and 2) the temporary has interior 
mutability. 
const C: &AtomicU8 = &AtomicU8::new(0); // ERROR not 
allowed 
# use core::sync::atomic::AtomicU8; 
// As above. 
let _: &_ = const { &AtomicU8::new(0) }; // ERROR not 
allowed 

clbr://internal.invalid/book/OEBPS/expressions/closure-expr.md
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#negation-operators
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#arithmetic-and-logical-binary-operators
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#arithmetic-and-logical-binary-operators
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#comparison-operators
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#lazy-boolean-operators
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#borrow-operators
clbr://internal.invalid/book/OEBPS/destructors.scope.lifetime-extension
clbr://internal.invalid/book/OEBPS/interior-mutability.md


# #![allow(static_mut_refs)] 
// Even though this borrow is mutable, it's not of a 
temporary, so 
// this is allowed. 
const C: &u8 = unsafe { static mut S: u8 = 0; &mut S }; 
// OK 

# use core::sync::atomic::AtomicU8; 
// Even though this borrow is of a value with interior 
mutability, 
// it's not of a temporary, so this is allowed. 
const C: &AtomicU8 = { 
    static S: AtomicU8 = AtomicU8::new(0); &S // OK 
}; 

# use core::sync::atomic::AtomicU8; 
// This shared borrow of an interior mutable temporary is 
allowed 
// because its scope is not extended. 
const C: () = { _ = &AtomicU8::new(0); }; // OK 

// Even though the borrow is mutable and the temporary 
lives to the 
// end of the program due to promotion, this is allowed 
because the 
// borrow is not in tail position and so the scope of the 
temporary 
// is not extended via temporary lifetime extension. 
const C: () = { let _: &'static mut [u8] = &mut []; }; // 
OK 
//                                              ~~ 
//                                     Promoted 
temporary. 

[!NOTE] In other words --- to focus on what's allowed rather
than what's not allowed --- shared borrows of interior mutable
data and mutable borrows are only allowed in a const context



when the borrowed place expression is transient, indirect, or
static.

A place expression is transient if it is a variable local to the
current const context or an expression whose temporary scope is
contained inside the current const context.
// The borrow is of a variable local to the 
initializer, therefore 
// this place expresssion is transient. 
const C: () = { let mut x = 0; _ = &mut x; }; 

// The borrow is of a temporary whose scope has not 
been extended, 
// therefore this place expression is transient. 
const C: () = { _ = &mut 0u8; }; 

// When a temporary is promoted but not lifetime 
extended, its 
// place expression is still treated as transient. 
const C: () = { let _: &'static mut [u8] = &mut []; 
}; 

A place expression is indirect if it is a dereference expression.
const C: () = { _ = &mut *(&mut 0); }; 

A place expression is static if it is a static  item.
# #![allow(static_mut_refs)] 
const C: &u8 = unsafe { static mut S: u8 = 0; &mut S 
}; 

[!NOTE] One surprising consequence of these rules is that we
allow this,
const C: &[u8] = { let x: &mut [u8] = &mut []; x }; 
// OK 
//                                    ~~~~~~~ 
// Empty arrays are promoted even behind mutable 
borrows. 

but we disallow this similar code:

clbr://internal.invalid/book/OEBPS/expr.place-value.place-memory-location
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#the-dereference-operator


const C: &[u8] = &mut []; // ERROR 
//               ~~~~~~~ 
//           Tail expression. 

The difference between these is that, in the first, the empty
array is promoted but its scope does not undergo temporary
lifetime extension, so we consider the place expression to be
transient (even though after promotion the place indeed lives to
the end of the program). In the second, the scope of the empty
array temporary does undergo lifetime extension, and so it is
rejected due to being a mutable borrow of a lifetime-extended
temporary (and therefore borrowing a non-transient place
expression).

The effect is surprising because temporary lifetime extension,
in this case, causes less code to compile than would without it.

See issue #143129 for more details.

r[const-eval.const-expr.deref]

The dereference operator except for raw pointers.
r[const-eval.const-expr.group]

Grouped expressions.
r[const-eval.const-expr.cast]

Cast expressions, except

pointer to address casts and
function pointer to address casts.

r[const-eval.const-expr.const-fn]

Calls of const functions and const methods.
r[const-eval.const-expr.loop]

loop and while expressions.
r[const-eval.const-expr.if-match]

clbr://internal.invalid/book/OEBPS/destructors.md#constant-promotion
clbr://internal.invalid/book/OEBPS/destructors.scope.lifetime-extension
clbr://internal.invalid/book/OEBPS/expr.place-value.place-memory-location
https://github.com/rust-lang/rust/issues/143129
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#the-dereference-operator
clbr://internal.invalid/book/OEBPS/expressions/grouped-expr.md
clbr://internal.invalid/book/OEBPS/expressions/operator-expr.md#type-cast-expressions
clbr://internal.invalid/book/OEBPS/items/functions.md#const-functions
clbr://internal.invalid/book/OEBPS/expressions/loop-expr.md#infinite-loops
clbr://internal.invalid/book/OEBPS/expressions/loop-expr.md#predicate-loops


if and match expressions.
r[const-eval.const-context]

clbr://internal.invalid/book/OEBPS/expressions/if-expr.md#if-expressions
clbr://internal.invalid/book/OEBPS/expressions/match-expr.md


Const context
r[const-eval.const-context.general] A const context is one of the

following:
r[const-eval.const-context.array-length]

Array type length expressions
r[const-eval.const-context.repeat-length]

Array repeat length expressions
r[const-eval.const-context.init]

The initializer of

constants
statics
enum discriminants

r[const-eval.const-context.generic]

A const generic argument
r[const-eval.const-context.block]

A const block
Const contexts that are used as parts of types (array type and repeat

length expressions as well as const generic arguments) can only make
restricted use of surrounding generic parameters: such an expression must
either be a single bare const generic parameter, or an arbitrary expression
not making use of any generics.

r[const-eval.const-fn]

clbr://internal.invalid/book/OEBPS/types/array.md
clbr://internal.invalid/book/OEBPS/expressions/array-expr.md
clbr://internal.invalid/book/OEBPS/items/constant-items.md
clbr://internal.invalid/book/OEBPS/items/static-items.md
clbr://internal.invalid/book/OEBPS/items/enumerations.md#discriminants
clbr://internal.invalid/book/OEBPS/items/generics.md#const-generics
clbr://internal.invalid/book/OEBPS/expressions/block-expr.md#const-blocks


Const Functions
r[const-eval.const-fn.general] A const fn is a function that one is

permitted to call from a const context.
r[const-eval.const-fn.usage] Declaring a function const  has no effect on

any existing uses, it only restricts the types that arguments and the return
type may use, and restricts the function body to constant expressions.

r[const-eval.const-fn.const-context] When called from a const context,
the function is interpreted by the compiler at compile time. The
interpretation happens in the environment of the compilation target and not
the host. So usize  is 32  bits if you are compiling against a 32  bit system,
irrelevant of whether you are building on a 64  bit or a 32  bit system.



r[abi]



Application Binary Interface (ABI)
r[abi.intro] This section documents features that affect the ABI of the

compiled output of a crate.
See extern functions for information on specifying the ABI for exporting

functions. See external blocks for information on specifying the ABI for
linking external libraries.

r[abi.used]

clbr://internal.invalid/book/OEBPS/items/functions.md#extern-function-qualifier
clbr://internal.invalid/book/OEBPS/items/external-blocks.md


The used attribute
r[abi.used.intro] The used  attribute can only be applied to static

items. This attribute forces the compiler to keep the variable in the output
object file (.o, .rlib, etc. excluding final binaries) even if the variable is not
used, or referenced, by any other item in the crate. However, the linker is
still free to remove such an item.

Below is an example that shows under what conditions the compiler
keeps a static  item in the output object file.
// foo.rs 
 
// This is kept because of `#[used]`: 
#[used] 
static FOO: u32 = 0; 
 
// This is removable because it is unused: 
#[allow(dead_code)] 
static BAR: u32 = 0; 
 
// This is kept because it is publicly reachable: 
pub static BAZ: u32 = 0; 
 
// This is kept because it is referenced by a public, 
reachable function: 
static QUUX: u32 = 0; 
 
pub fn quux() -> &'static u32 { 
    &QUUX 
} 
 
// This is removable because it is referenced by a private, 
unused (dead) function: 
static CORGE: u32 = 0; 
 

clbr://internal.invalid/book/OEBPS/items/static-items.md
clbr://internal.invalid/book/OEBPS/attributes.md


#[allow(dead_code)] 
fn corge() -> &'static u32 { 
    &CORGE 
} 

$ rustc -O --emit=obj --crate-type=rlib foo.rs 
 
$ nm -C foo.o 
0000000000000000 R foo::BAZ 
0000000000000000 r foo::FOO 
0000000000000000 R foo::QUUX 
0000000000000000 T foo::quux 

r[abi.no_mangle]



The no_mangle attribute
r[abi.no_mangle.intro] The no_mangle  attribute may be used on any

item to disable standard symbol name mangling. The symbol for the item
will be the identifier of the item's name.

r[abi.no_mangle.publicly-exported] Additionally, the item will be
publicly exported from the produced library or object file, similar to the 
used  attribute.

r[abi.no_mangle.unsafe] This attribute is unsafe as an unmangled
symbol may collide with another symbol with the same name (or with a
well-known symbol), leading to undefined behavior.
#[unsafe(no_mangle)] 
extern "C" fn foo() {} 

r[abi.no_mangle.edition2024]

[!EDITION-2024] Before the 2024 edition it is allowed to use the 
no_mangle  attribute without the unsafe  qualification.

r[abi.link_section]

clbr://internal.invalid/book/OEBPS/items.md


The link_section attribute
r[abi.link_section.intro] The link_section  attribute specifies the

section of the object file that a function or static's content will be placed
into.

r[abi.link_section.syntax] The link_section  attribute uses the
[MetaNameValueStr] syntax to specify the section name.
#[unsafe(no_mangle)] 
#[unsafe(link_section = ".example_section")] 
pub static VAR1: u32 = 1; 

r[abi.link_section.unsafe] This attribute is unsafe as it allows users to
place data and code into sections of memory not expecting them, such as
mutable data into read-only areas.

r[abi.link_section.edition2024]

[!EDITION-2024] Before the 2024 edition it is allowed to use the 
link_section  attribute without the unsafe  qualification.

r[abi.export_name]

clbr://internal.invalid/book/OEBPS/items/functions.md
clbr://internal.invalid/book/OEBPS/items/static-items.md


The export_name attribute
r[abi.export_name.intro] The export_name  attribute specifies the name

of the symbol that will be exported on a function or static.
r[abi.export_name.syntax] The export_name attribute uses the

[MetaNameValueStr] syntax to specify the symbol name.
#[unsafe(export_name = "exported_symbol_name")] 
pub fn name_in_rust() { } 

r[abi.export_name.unsafe] This attribute is unsafe as a symbol with a
custom name may collide with another symbol with the same name (or with
a well-known symbol), leading to undefined behavior.

r[abi.export_name.edition2024]

[!EDITION-2024] Before the 2024 edition it is allowed to use the 
export_name  attribute without the unsafe  qualification.

clbr://internal.invalid/book/OEBPS/items/functions.md
clbr://internal.invalid/book/OEBPS/items/static-items.md


r[runtime]



The Rust runtime
This section documents features that define some aspects of the Rust

runtime.
r[runtime.global_allocator]



The global_allocator attribute
The global_allocator  attribute is used on a static item implementing

the GlobalAlloc  trait to set the global allocator.
r[runtime.windows_subsystem]

clbr://internal.invalid/book/OEBPS/items/static-items.md
alloc::alloc::GlobalAlloc


The windows_subsystem attribute
r[runtime.windows_subsystem.intro] The windows_subsystem  attribute

may be applied at the crate level to set the subsystem when linking on a
Windows target.

r[runtime.windows_subsystem.syntax] It uses the [MetaNameValueStr]
syntax to specify the subsystem with a value of either console  or 
windows .

r[runtime.windows_subsystem.ignored] This attribute is ignored on non-
Windows targets, and for non- bin  crate types.

r[runtime.windows_subsystem.console] The "console" subsystem is the
default. If a console process is run from an existing console then it will be
attached to that console, otherwise a new console window will be created.

r[runtime.windows_subsystem.windows] The "windows" subsystem is
commonly used by GUI applications that do not want to display a console
window on startup. It will run detached from any existing console.
#![windows_subsystem = "windows"] 

https://msdn.microsoft.com/en-us/library/fcc1zstk.aspx
clbr://internal.invalid/book/OEBPS/linkage.md


Appendices



Grammar summary
The following is a summary of the grammar production rules.
{{ grammar-summary }}



r[macro.ambiguity]



Appendix: Macro Follow-Set
Ambiguity Formal Specification

This page documents the formal specification of the follow rules for
Macros By Example. They were originally specified in RFC 550, from
which the bulk of this text is copied, and expanded upon in subsequent
RFCs.

r[macro.ambiguity.convention]

clbr://internal.invalid/book/OEBPS/macros-by-example.md
https://github.com/rust-lang/rfcs/blob/master/text/0550-macro-future-proofing.md


Definitions & Conventions
r[macro.ambiguity.convention.defs]

macro : anything invocable as foo!(...)  in source code.
MBE : macro-by-example, a macro defined by macro_rules .
matcher : the left-hand-side of a rule in a macro_rules  invocation, or
a subportion thereof.
macro parser : the bit of code in the Rust parser that will parse the
input using a grammar derived from all of the matchers.
fragment : The class of Rust syntax that a given matcher will accept
(or "match").
repetition  : a fragment that follows a regular repeating pattern
NT : non-terminal, the various "meta-variables" or repetition matchers
that can appear in a matcher, specified in MBE syntax with a leading 
$  character.
simple NT : a "meta-variable" non-terminal (further discussion
below).
complex NT : a repetition matching non-terminal, specified via
repetition operators ( * , + , ? ).
token : an atomic element of a matcher; i.e. identifiers, operators,
open/close delimiters, and simple NT's.
token tree : a tree structure formed from tokens (the leaves),
complex NT's, and finite sequences of token trees.
delimiter token : a token that is meant to divide the end of one
fragment and the start of the next fragment.
separator token : an optional delimiter token in an complex NT that
separates each pair of elements in the matched repetition.
separated complex NT : a complex NT that has its own separator
token.
delimited sequence : a sequence of token trees with appropriate
open- and close-delimiters at the start and end of the sequence.



empty fragment : The class of invisible Rust syntax that separates
tokens, i.e. whitespace, or (in some lexical contexts), the empty token
sequence.
fragment specifier : The identifier in a simple NT that specifies
which fragment the NT accepts.
language : a context-free language.

Example:
macro_rules! i_am_an_mbe { 
    (start $foo:expr $($i:ident),* end) => ($foo) 
} 

r[macro.ambiguity.convention.matcher] (start $foo:expr 

$($i:ident),* end)  is a matcher. The whole matcher is a delimited
sequence (with open- and close-delimiters (  and ) ), and $foo  and $i  are
simple NT's with expr  and ident  as their respective fragment specifiers.

r[macro.ambiguity.convention.complex-nt] $(i:ident),*  is also an
NT; it is a complex NT that matches a comma-separated repetition of
identifiers. The ,  is the separator token for the complex NT; it occurs in
between each pair of elements (if any) of the matched fragment.

Another example of a complex NT is $(hi $e:expr ;)+ , which
matches any fragment of the form hi <expr>; hi <expr>; ...  where hi 
<expr>;  occurs at least once. Note that this complex NT does not have a
dedicated separator token.

(Note that Rust's parser ensures that delimited sequences always occur
with proper nesting of token tree structure and correct matching of open-
and close-delimiters.)

r[macro.ambiguity.convention.vars] We will tend to use the variable "M"
to stand for a matcher, variables "t" and "u" for arbitrary individual tokens,
and the variables "tt" and "uu" for arbitrary token trees. (The use of "tt"
does present potential ambiguity with its additional role as a fragment
specifier; but it will be clear from context which interpretation is meant.)

r[macro.ambiguity.convention.set] "SEP" will range over separator
tokens, "OP" over the repetition operators * , + , and ? , "OPEN"/"CLOSE"



over matching token pairs surrounding a delimited sequence (e.g. [  and 
] ).

r[macro.ambiguity.convention.sequence-vars] Greek letters "α" "β" "γ"
"δ" stand for potentially empty token-tree sequences. (However, the Greek
letter "ε" (epsilon) has a special role in the presentation and does not stand
for a token-tree sequence.)

This Greek letter convention is usually just employed when the
presence of a sequence is a technical detail; in particular, when we
wish to emphasize that we are operating on a sequence of token-trees,
we will use the notation "tt ..." for the sequence, not a Greek letter.

Note that a matcher is merely a token tree. A "simple NT", as mentioned
above, is an meta-variable NT; thus it is a non-repetition. For example, 
$foo:ty  is a simple NT but $($foo:ty)+  is a complex NT.

Note also that in the context of this formalism, the term "token"
generally includes simple NTs.

Finally, it is useful for the reader to keep in mind that according to the
definitions of this formalism, no simple NT matches the empty fragment,
and likewise no token matches the empty fragment of Rust syntax. (Thus,
the only NT that can match the empty fragment is a complex NT.) This is
not actually true, because the vis  matcher can match an empty fragment.
Thus, for the purposes of the formalism, we will treat $v:vis  as actually
being $($v:vis)? , with a requirement that the matcher match an empty
fragment.

r[macro.ambiguity.invariant]

The Matcher Invariants
r[macro.ambiguity.invariant.list] To be valid, a matcher must meet the

following three invariants. The definitions of FIRST and FOLLOW are
described later.

1. For any two successive token tree sequences in a matcher M (i.e. M = 
... tt uu ...) with uu ... nonempty, we must have FOLLOW(... 
tt) ∪ {ε} ⊇ FIRST(uu ...).



2. For any separated complex NT in a matcher, M = ... $(tt ...) SEP 
OP ..., we must have SEP ∈ FOLLOW(tt ...).

3. For an unseparated complex NT in a matcher, M = ... $(tt ...) OP 
..., if OP = * or +, we must have FOLLOW(tt ...) ⊇ FIRST(tt 
...).

r[macro.ambiguity.invariant.follow-matcher] The first invariant says that
whatever actual token that comes after a matcher, if any, must be
somewhere in the predetermined follow set. This ensures that a legal macro
definition will continue to assign the same determination as to where ... 
tt  ends and uu ...  begins, even as new syntactic forms are added to the
language.

r[macro.ambiguity.invariant.separated-complex-nt] The second invariant
says that a separated complex NT must use a separator token that is part of
the predetermined follow set for the internal contents of the NT. This
ensures that a legal macro definition will continue to parse an input
fragment into the same delimited sequence of tt ... 's, even as new
syntactic forms are added to the language.

r[macro.ambiguity.invariant.unseparated-complex-nt] The third invariant
says that when we have a complex NT that can match two or more copies of
the same thing with no separation in between, it must be permissible for
them to be placed next to each other as per the first invariant. This invariant
also requires they be nonempty, which eliminates a possible ambiguity.

NOTE: The third invariant is currently unenforced due to historical
oversight and significant reliance on the behaviour. It is currently
undecided what to do about this going forward. Macros that do not
respect the behaviour may become invalid in a future edition of Rust.
See the tracking issue.

r[macro.ambiguity.sets]

FIRST and FOLLOW, informally
r[macro.ambiguity.sets.intro] A given matcher M maps to three sets:

FIRST(M), LAST(M) and FOLLOW(M).
Each of the three sets is made up of tokens. FIRST(M) and LAST(M)

may also contain a distinguished non-token element ε ("epsilon"), which

https://github.com/rust-lang/rust/issues/56575


indicates that M can match the empty fragment. (But FOLLOW(M) is
always just a set of tokens.)

Informally:
r[macro.ambiguity.sets.first]

FIRST(M): collects the tokens potentially used first when matching a
fragment to M.

r[macro.ambiguity.sets.last]

LAST(M): collects the tokens potentially used last when matching a
fragment to M.

r[macro.ambiguity.sets.follow]

FOLLOW(M): the set of tokens allowed to follow immediately
after some fragment matched by M.

In other words: t ∈ FOLLOW(M) if and only if there exists
(potentially empty) token sequences α, β, γ, δ where:

M matches β,
t matches γ, and
The concatenation α β γ δ is a parseable Rust program.

r[macro.ambiguity.sets.universe] We use the shorthand ANYTOKEN to
denote the set of all tokens (including simple NTs). For example, if any
token is legal after a matcher M, then FOLLOW(M) = ANYTOKEN.

(To review one's understanding of the above informal descriptions, the
reader at this point may want to jump ahead to the examples of
FIRST/LAST before reading their formal definitions.)

r[macro.ambiguity.sets.def]

FIRST, LAST
r[macro.ambiguity.sets.def.intro] Below are formal inductive definitions

for FIRST and LAST.
r[macro.ambiguity.sets.def.notation] "A ∪ B" denotes set union, "A ∩

B" denotes set intersection, and "A \ B" denotes set difference (i.e. all



elements of A that are not present in B).
r[macro.ambiguity.sets.def.first]

FIRST
r[macro.ambiguity.sets.def.first.intro] FIRST(M) is defined by case

analysis on the sequence M and the structure of its first token-tree (if any):
r[macro.ambiguity.sets.def.first.epsilon]

if M is the empty sequence, then FIRST(M) = { ε },
r[macro.ambiguity.sets.def.first.token]

if M starts with a token t, then FIRST(M) = { t },
(Note: this covers the case where M starts with a delimited token-

tree sequence, M = OPEN tt ... CLOSE ... , in which case t = 
OPEN  and thus FIRST(M) = { OPEN  }.)

(Note: this critically relies on the property that no simple NT
matches the empty fragment.)

r[macro.ambiguity.sets.def.first.complex]

Otherwise, M is a token-tree sequence starting with a complex NT: 
M = $( tt ... ) OP α , or M = $( tt ... ) SEP OP α , (where α
is the (potentially empty) sequence of token trees for the rest of the
matcher).

Let SEP_SET(M) = { SEP } if SEP is present and ε ∈ FIRST( tt 
... ); otherwise SEP_SET(M) = {}.

Let ALPHA_SET(M) = FIRST( α ) if OP = *  or ?  and
ALPHA_SET(M) = {} if OP = + .

FIRST(M) = (FIRST( tt ... ) \ {ε}) ∪ SEP_SET(M) ∪
ALPHA_SET(M).

The definition for complex NTs deserves some justification.
SEP_SET(M) defines the possibility that the separator could be a valid first
token for M, which happens when there is a separator defined and the
repeated fragment could be empty. ALPHA_SET(M) defines the possibility



that the complex NT could be empty, meaning that M's valid first tokens are
those of the following token-tree sequences α . This occurs when either *
or ?  is used, in which case there could be zero repetitions. In theory, this
could also occur if +  was used with a potentially-empty repeating fragment,
but this is forbidden by the third invariant.

From there, clearly FIRST(M) can include any token from SEP_SET(M)
or ALPHA_SET(M), and if the complex NT match is nonempty, then any
token starting FIRST( tt ... ) could work too. The last piece to consider is
ε. SEP_SET(M) and FIRST( tt ... ) \ {ε} cannot contain ε, but
ALPHA_SET(M) could. Hence, this definition allows M to accept ε if and
only if ε ∈ ALPHA_SET(M) does. This is correct because for M to accept
ε in the complex NT case, both the complex NT and α must accept it. If OP
= + , meaning that the complex NT cannot be empty, then by definition ε ∉
ALPHA_SET(M). Otherwise, the complex NT can accept zero repetitions,
and then ALPHA_SET(M) = FOLLOW( α ). So this definition is correct
with respect to \varepsilon as well.

r[macro.ambiguity.sets.def.last]

LAST
r[macro.ambiguity.sets.def.last.intro] LAST(M), defined by case

analysis on M itself (a sequence of token-trees):
r[macro.ambiguity.sets.def.last.empty]

if M is the empty sequence, then LAST(M) = { ε }
r[macro.ambiguity.sets.def.last.token]

if M is a singleton token t, then LAST(M) = { t }
r[macro.ambiguity.sets.def.last.rep-star]

if M is the singleton complex NT repeating zero or more times, M = 
$( tt ... ) * , or M = $( tt ... ) SEP *

Let sep_set = { SEP } if SEP present; otherwise sep_set = {}.



if ε ∈ LAST( tt ... ) then LAST(M) = LAST( tt ... ) ∪
sep_set

otherwise, the sequence tt ...  must be non-empty;
LAST(M) = LAST( tt ... ) ∪ {ε}.

r[macro.ambiguity.sets.def.last.rep-plus]

if M is the singleton complex NT repeating one or more times, M = 
$( tt ... ) + , or M = $( tt ... ) SEP +

Let sep_set = { SEP } if SEP present; otherwise sep_set = {}.
if ε ∈ LAST( tt ... ) then LAST(M) = LAST( tt ... ) ∪

sep_set
otherwise, the sequence tt ...  must be non-empty;

LAST(M) = LAST( tt ... )
r[macro.ambiguity.sets.def.last.rep-question]

if M is the singleton complex NT repeating zero or one time, M = $( 
tt ...) ? , then LAST(M) = LAST( tt ... ) ∪ {ε}.

r[macro.ambiguity.sets.def.last.delim]

if M is a delimited token-tree sequence OPEN tt ... CLOSE , then
LAST(M) = { CLOSE  }.

r[macro.ambiguity.sets.def.last.sequence]

if M is a non-empty sequence of token-trees tt uu ... ,

If ε ∈ LAST( uu ... ), then LAST(M) = LAST( tt ) ∪
(LAST( uu ... ) \ { ε }).

Otherwise, the sequence uu ...  must be non-empty; then
LAST(M) = LAST( uu ... ).

Examples of FIRST and LAST



Below are some examples of FIRST and LAST. (Note in particular how
the special ε element is introduced and eliminated based on the interaction
between the pieces of the input.)

Our first example is presented in a tree structure to elaborate on how the
analysis of the matcher composes. (Some of the simpler subtrees have been
elided.)
INPUT:  $(  $d:ident   $e:expr   );*    $( $( h )* );*    $( f 
; )+   g 
            ~~~~~~~~   ~~~~~~~                ~ 
 | | |
FIRST: { $d:ident } { $e:expr } { h }

INPUT: $($d:ident $e:expr);* $($(h)*);* $(f
;)+
            ~~~~~~~~~~~~~~~~~~             ~~~~~~~ 
~~~ 
 | |
|
FIRST: { $d:ident } { h, ε } { f
}

INPUT: $($d:ident $e:expr);* $($(h)*);* $(f
;)+ g
        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~    ~~~~~~~~~~~~~~ 
~~~~~~~~~   ~ 
 | |
| |
FIRST: { $d:ident, ε } { h, ε, ; } { f
} { g }

INPUT: $($d:ident $e:expr);* $($(h)*);* $(f
;)+ g


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
                                        | 
FIRST:                       { $d:ident, h, ;,  f } 

Thus:

FIRST( $($d:ident $e:expr );* $( $(h)* );* $( f ;)+ g ) = { 
$d:ident , h , ; , f  }

Note however that:

FIRST( $($d:ident $e:expr );* $( $(h)* );* $($( f ;)+ g)* ) =
{ $d:ident , h , ; , f , ε }

Here are similar examples but now for LAST.

LAST( $d:ident $e:expr ) = { $e:expr  }
LAST( $( $d:ident $e:expr );* ) = { $e:expr , ε }
LAST( $( $d:ident $e:expr );* $(h)* ) = { $e:expr , ε, h  }
LAST( $( $d:ident $e:expr );* $(h)* $( f ;)+ ) = { ;  }
LAST( $( $d:ident $e:expr );* $(h)* $( f ;)+ g ) = { g  }

r[macro.ambiguity.sets.def.follow]

FOLLOW(M)
r[macro.ambiguity.sets.def.follow.intro] Finally, the definition for

FOLLOW(M) is built up as follows. pat, expr, etc. represent simple
nonterminals with the given fragment specifier.

r[macro.ambiguity.sets.def.follow.pat]

FOLLOW(pat) = { => , , , = , | , if , in }`.
r[macro.ambiguity.sets.def.follow.expr-stmt]

FOLLOW(expr) = FOLLOW(expr_2021) = FOLLOW(stmt) = { => , 
, , ; }`.

r[macro.ambiguity.sets.def.follow.ty-path]



FOLLOW(ty) = FOLLOW(path) = { { , [ , , , => , : , = , > , >> , ; , | ,
as , where , block nonterminals}.

r[macro.ambiguity.sets.def.follow.vis]

FOLLOW(vis) = { , l any keyword or identifier except a non-raw 
priv ; any token that can begin a type; ident, ty, and path
nonterminals}.

r[macro.ambiguity.sets.def.follow.simple]

FOLLOW(t) = ANYTOKEN for any other simple token, including
block, ident, tt, item, lifetime, literal and meta simple nonterminals,
and all terminals.

r[macro.ambiguity.sets.def.follow.other-matcher]

FOLLOW(M), for any other M, is defined as the intersection, as t
ranges over (LAST(M) \ {ε}), of FOLLOW(t).

r[macro.ambiguity.sets.def.follow.type-first] The tokens that can begin a
type are, as of this writing, { ( , [ , ! , * , & , && , ? , lifetimes, > , >> , :: ,
any non-keyword identifier, super , self , Self , extern , crate , $crate ,
_ , for , impl , fn , unsafe , typeof , dyn }, although this list may not be
complete because people won't always remember to update the appendix
when new ones are added.

Examples of FOLLOW for complex M:

FOLLOW( $( $d:ident $e:expr )* ) = FOLLOW( $e:expr )
FOLLOW( $( $d:ident $e:expr )* $(;)* ) = FOLLOW( $e:expr )
∩ ANYTOKEN = FOLLOW( $e:expr )
FOLLOW( $( $d:ident $e:expr )* $(;)* $( f |)+ ) =
ANYTOKEN

Examples of valid and invalid matchers
With the above specification in hand, we can present arguments for why

particular matchers are legal and others are not.



($ty:ty < foo ,)  : illegal, because FIRST( < foo , ) = { <  } ⊈
FOLLOW( ty )

($ty:ty , foo <)  : legal, because FIRST( , foo < ) = { ,  } is ⊆
FOLLOW( ty ).

($pa:pat $pb:pat $ty:ty ,)  : illegal, because FIRST( $pb:pat 
$ty:ty , ) = { $pb:pat  } ⊈ FOLLOW( pat ), and also
FIRST( $ty:ty , ) = { $ty:ty  } ⊈ FOLLOW( pat ).

( $($a:tt $b:tt)* ; )  : legal, because FIRST( $b:tt ) = { 
$b:tt  } is ⊆ FOLLOW( tt ) = ANYTOKEN, as is FIRST( ; ) = { ;
}.

( $($t:tt),* , $(t:tt),* )  : legal, (though any attempt to
actually use this macro will signal a local ambiguity error during
expansion).

($ty:ty $(; not sep)* -)  : illegal, because FIRST( $(; not 
sep)* - ) = { ; , -  } is not in FOLLOW( ty ).

($($ty:ty)-+)  : illegal, because separator -  is not in
FOLLOW( ty ).

($($e:expr)*)  : illegal, because expr NTs are not in
FOLLOW(expr NT).



Influences
Rust is not a particularly original language, with design elements coming

from a wide range of sources. Some of these are listed below (including
elements that have since been removed):

SML, OCaml: algebraic data types, pattern matching, type inference,
semicolon statement separation
C++: references, RAII, smart pointers, move semantics,
monomorphization, memory model
ML Kit, Cyclone: region based memory management
Haskell (GHC): typeclasses, type families
Newsqueak, Alef, Limbo: channels, concurrency
Erlang: message passing, thread failure, linked thread failure,
lightweight concurrency
Swift: optional bindings
Scheme: hygienic macros
C#: attributes
Ruby: closure syntax, block syntax
NIL, Hermes: typestate
Unicode Annex #31: identifier and pattern syntax

http://www.unicode.org/reports/tr31/


Test summary
The following is a summary of the total tests that are linked to individual

rule identifiers within the reference.
{{summary-table}}



Glossary
Abstract syntax tree

An ‘abstract syntax tree’, or ‘AST’, is an intermediate representation of
the structure of the program when the compiler is compiling it.

Alignment
The alignment of a value specifies what addresses values are preferred to

start at. Always a power of two. References to a value must be aligned.
More.

Arity
Arity refers to the number of arguments a function or operator takes. For

some examples, f(2, 3)  and g(4, 6)  have arity 2, while h(8, 2, 6)
has arity 3. The !  operator has arity 1.

Array
An array, sometimes also called a fixed-size array or an inline array, is a

value describing a collection of elements, each selected by an index that can
be computed at run time by the program. It occupies a contiguous region of
memory.

Associated item
An associated item is an item that is associated with another item.

Associated items are defined in implementations and declared in traits.
Only functions, constants, and type aliases can be associated. Contrast to a
free item.

Blanket implementation
Any implementation where a type appears uncovered. impl<T> Foo for 

T , impl<T> Bar<T> for T , impl<T> Bar<Vec<T>> for T , and impl<T> 
Bar<T> for Vec<T>  are considered blanket impls. However, impl<T> 

clbr://internal.invalid/book/OEBPS/type-layout.md#size-and-alignment
clbr://internal.invalid/book/OEBPS/items/implementations.md
clbr://internal.invalid/book/OEBPS/items/traits.md


Bar<Vec<T>> for Vec<T>  is not a blanket impl, as all instances of T  which
appear in this impl  are covered by Vec .

Bound
Bounds are constraints on a type or trait. For example, if a bound is

placed on the argument a function takes, types passed to that function must
abide by that constraint.

Combinator
Combinators are higher-order functions that apply only functions and

earlier defined combinators to provide a result from its arguments. They can
be used to manage control flow in a modular fashion.

Crate
A crate is the unit of compilation and linking. There are different types

of crates, such as libraries or executables. Crates may link and refer to other
library crates, called external crates. A crate has a self-contained tree of
modules, starting from an unnamed root module called the crate root. Items
may be made visible to other crates by marking them as public in the crate
root, including through paths of public modules. More.

Dispatch
Dispatch is the mechanism to determine which specific version of code

is actually run when it involves polymorphism. Two major forms of
dispatch are static dispatch and dynamic dispatch. While Rust favors static
dispatch, it also supports dynamic dispatch through a mechanism called
‘trait objects’.

Dynamically sized type
A dynamically sized type (DST) is a type without a statically known size

or alignment.

Entity
An entity is a language construct that can be referred to in some way

within the source program, usually via a path. Entities include types, items,

clbr://internal.invalid/book/OEBPS/linkage.md
clbr://internal.invalid/book/OEBPS/items/modules.md
clbr://internal.invalid/book/OEBPS/items.md
clbr://internal.invalid/book/OEBPS/paths.md
clbr://internal.invalid/book/OEBPS/crates-and-source-files.md
clbr://internal.invalid/book/OEBPS/names.md
clbr://internal.invalid/book/OEBPS/paths.md
clbr://internal.invalid/book/OEBPS/types.md
clbr://internal.invalid/book/OEBPS/items.md


generic parameters, variable bindings, loop labels, lifetimes, fields,
attributes, and lints.

Expression
An expression is a combination of values, constants, variables, operators

and functions that evaluate to a single value, with or without side-effects.
For example, 2 + (3 * 4)  is an expression that returns the value 14.

Free item
An item that is not a member of an implementation, such as a free

function or a free const. Contrast to an associated item.

Fundamental traits
A fundamental trait is one where adding an impl of it for an existing type

is a breaking change. The Fn  traits and Sized  are fundamental.

Fundamental type constructors
A fundamental type constructor is a type where implementing a blanket

implementation over it is a breaking change. & , &mut , Box , and Pin  are
fundamental.

Any time a type T  is considered local, &T , &mut T , Box<T> , and 
Pin<T>  are also considered local. Fundamental type constructors cannot
cover other types. Any time the term "covered type" is used, the T  in &T , 
&mut T , Box<T> , and Pin<T>  is not considered covered.

Inhabited
A type is inhabited if it has constructors and therefore can be

instantiated. An inhabited type is not "empty" in the sense that there can be
values of the type. Opposite of Uninhabited.

Inherent implementation
An implementation that applies to a nominal type, not to a trait-type pair.

More.

Inherent method

clbr://internal.invalid/book/OEBPS/items/generics.md
clbr://internal.invalid/book/OEBPS/patterns.md
clbr://internal.invalid/book/OEBPS/tokens.md#lifetimes-and-loop-labels
clbr://internal.invalid/book/OEBPS/tokens.md#lifetimes-and-loop-labels
clbr://internal.invalid/book/OEBPS/expressions/field-expr.md
clbr://internal.invalid/book/OEBPS/attributes.md
clbr://internal.invalid/book/OEBPS/attributes/diagnostics.md#lint-check-attributes
clbr://internal.invalid/book/OEBPS/items.md
clbr://internal.invalid/book/OEBPS/items/implementations.md
clbr://internal.invalid/book/OEBPS/items/implementations.md
clbr://internal.invalid/book/OEBPS/items/implementations.md#inherent-implementations


A method defined in an inherent implementation, not in a trait
implementation.

Initialized
A variable is initialized if it has been assigned a value and hasn't since

been moved from. All other memory locations are assumed to be
uninitialized. Only unsafe Rust can create a memory location without
initializing it.

Local trait
A trait  which was defined in the current crate. A trait definition is

local or not independent of applied type arguments. Given trait Foo<T, 
U> , Foo  is always local, regardless of the types substituted for T  and U .

Local type
A struct , enum , or union  which was defined in the current crate. This

is not affected by applied type arguments. struct Foo  is considered local,
but Vec<Foo>  is not. LocalType<ForeignType>  is local. Type aliases do
not affect locality.

Module
A module is a container for zero or more items. Modules are organized

in a tree, starting from an unnamed module at the root called the crate root
or the root module. Paths may be used to refer to items from other modules,
which may be restricted by visibility rules. More

Name
A name is an identifier or lifetime or loop label that refers to an entity. A

name binding is when an entity declaration introduces an identifier or label
associated with that entity. Paths, identifiers, and labels are used to refer to
an entity.

Name resolution
Name resolution is the compile-time process of tying paths, identifiers,

and labels to entity declarations.

clbr://internal.invalid/book/OEBPS/items/associated-items.md#methods
clbr://internal.invalid/book/OEBPS/items/implementations.md#inherent-implementations
clbr://internal.invalid/book/OEBPS/items.md
clbr://internal.invalid/book/OEBPS/paths.md
clbr://internal.invalid/book/OEBPS/visibility-and-privacy.md
clbr://internal.invalid/book/OEBPS/items/modules.md
clbr://internal.invalid/book/OEBPS/names.md
clbr://internal.invalid/book/OEBPS/identifiers.md
clbr://internal.invalid/book/OEBPS/tokens.md#lifetimes-and-loop-labels
clbr://internal.invalid/book/OEBPS/paths.md
clbr://internal.invalid/book/OEBPS/names/name-resolution.md
clbr://internal.invalid/book/OEBPS/paths.md
clbr://internal.invalid/book/OEBPS/identifiers.md
clbr://internal.invalid/book/OEBPS/tokens.md#lifetimes-and-loop-labels


Namespace
A namespace is a logical grouping of declared names based on the kind

of entity the name refers to. Namespaces allow the occurrence of a name in
one namespace to not conflict with the same name in another namespace.

Within a namespace, names are organized in a hierarchy, where each
level of the hierarchy has its own collection of named entities.

Nominal types
Types that can be referred to by a path directly. Specifically enums,

structs, unions, and trait object types.

Dyn-compatible traits
Traits that can be used in trait object types ( dyn Trait ). Only traits that

follow specific rules are dyn compatible.
These were formerly known as object safe traits.

Path
A path is a sequence of one or more path segments used to refer to an

entity in the current scope or other levels of a namespace hierarchy.

Prelude
Prelude, or The Rust Prelude, is a small collection of items - mostly

traits - that are imported into every module of every crate. The traits in the
prelude are pervasive.

Scope
A scope is the region of source text where a named entity may be

referenced with that name.

Scrutinee
A scrutinee is the expression that is matched on in match  expressions

and similar pattern matching constructs. For example, in match x { A => 
1, B => 2 } , the expression x  is the scrutinee.

clbr://internal.invalid/book/OEBPS/items/enumerations.md
clbr://internal.invalid/book/OEBPS/items/structs.md
clbr://internal.invalid/book/OEBPS/items/unions.md
clbr://internal.invalid/book/OEBPS/types/trait-object.md
clbr://internal.invalid/book/OEBPS/items/traits.md
clbr://internal.invalid/book/OEBPS/types/trait-object.md
clbr://internal.invalid/book/OEBPS/items/traits.md#dyn-compatibility
clbr://internal.invalid/book/OEBPS/paths.md
clbr://internal.invalid/book/OEBPS/names/scopes.md


Size
The size of a value has two definitions.
The first is that it is how much memory must be allocated to store that

value.
The second is that it is the offset in bytes between successive elements in

an array with that item type.
It is a multiple of the alignment, including zero. The size can change

depending on compiler version (as new optimizations are made) and target
platform (similar to how usize  varies per-platform).

More.

Slice
A slice is dynamically-sized view into a contiguous sequence, written as 

[T] .
It is often seen in its borrowed forms, either mutable or shared. The

shared slice type is &[T] , while the mutable slice type is &mut [T] , where 
T  represents the element type.

Statement
A statement is the smallest standalone element of a programming

language that commands a computer to perform an action.

String literal
A string literal is a string stored directly in the final binary, and so will

be valid for the 'static  duration.
Its type is 'static  duration borrowed string slice, &'static str .

String slice
A string slice is the most primitive string type in Rust, written as str . It

is often seen in its borrowed forms, either mutable or shared. The shared
string slice type is &str , while the mutable string slice type is &mut str .

Strings slices are always valid UTF-8.

clbr://internal.invalid/book/OEBPS/type-layout.md#size-and-alignment


Trait
A trait is a language item that is used for describing the functionalities a

type must provide. It allows a type to make certain promises about its
behavior.

Generic functions and generic structs can use traits to constrain, or
bound, the types they accept.

Turbofish
Paths with generic parameters in expressions must prefix the opening

brackets with a :: . Combined with the angular brackets for generics, this
looks like a fish ::<> . As such, this syntax is colloquially referred to as
turbofish syntax.

Examples:
let ok_num = Ok::<_, ()>(5); 
let vec = [1, 2, 3].iter().map(|n| n * 2).collect::<Vec<_>>(); 

This ::  prefix is required to disambiguate generic paths with multiple
comparisons in a comma-separate list. See the bastion of the turbofish for
an example where not having the prefix would be ambiguous.

Uncovered type
A type which does not appear as an argument to another type. For

example, T  is uncovered, but the T  in Vec<T>  is covered. This is only
relevant for type arguments.

Undefined behavior
Compile-time or run-time behavior that is not specified. This may result

in, but is not limited to: process termination or corruption; improper,
incorrect, or unintended computation; or platform-specific results. More.

Uninhabited
A type is uninhabited if it has no constructors and therefore can never be

instantiated. An uninhabited type is "empty" in the sense that there are no
values of the type. The canonical example of an uninhabited type is the

https://github.com/rust-lang/rust/blob/1.58.0/src/test/ui/parser/bastion-of-the-turbofish.rs
clbr://internal.invalid/book/OEBPS/behavior-considered-undefined.md


never type ! , or an enum with no variants enum Never { } . Opposite of
Inhabited.

clbr://internal.invalid/book/OEBPS/types/never.md

	Introduction
	1. Notation
	2. Lexical structure
	2.1. Input format
	2.2. Keywords
	2.3. Identifiers
	2.4. Comments
	2.5. Whitespace
	2.6. Tokens

	3. Macros
	3.1. Macros By Example
	3.2. Procedural Macros

	4. Crates and source files
	5. Conditional compilation
	6. Items
	6.1. Modules
	6.2. Extern crates
	6.3. Use declarations
	6.4. Functions
	6.5. Type aliases
	6.6. Structs
	6.7. Enumerations
	6.8. Unions
	6.9. Constant items
	6.10. Static items
	6.11. Traits
	6.12. Implementations
	6.13. External blocks
	6.14. Generic parameters
	6.15. Associated Items

	7. Attributes
	7.1. Testing
	7.2. Derive
	7.3. Diagnostics
	7.4. Code generation
	7.5. Limits
	7.6. Type System
	7.7. Debugger

	8. Statements and expressions
	8.1. Statements
	8.2. Expressions
	8.2.1. Literal expressions
	8.2.2. Path expressions
	8.2.3. Block expressions
	8.2.4. Operator expressions
	8.2.5. Grouped expressions
	8.2.6. Array and index expressions
	8.2.7. Tuple and index expressions
	8.2.8. Struct expressions
	8.2.9. Call expressions
	8.2.10. Method call expressions
	8.2.11. Field access expressions
	8.2.12. Closure expressions
	8.2.13. Loop expressions
	8.2.14. Range expressions
	8.2.15. If expressions
	8.2.16. Match expressions
	8.2.17. Return expressions
	8.2.18. Await expressions
	8.2.19. Underscore expressions


	9. Patterns
	10. Type system
	10.1. Types
	10.1.1. Boolean type
	10.1.2. Numeric types
	10.1.3. Textual types
	10.1.4. Never type
	10.1.5. Tuple types
	10.1.6. Array types
	10.1.7. Slice types
	10.1.8. Struct types
	10.1.9. Enumerated types
	10.1.10. Union types
	10.1.11. Function item types
	10.1.12. Closure types
	10.1.13. Pointer types
	10.1.14. Function pointer types
	10.1.15. Trait object types
	10.1.16. Impl trait type
	10.1.17. Type parameters
	10.1.18. Inferred type

	10.2. Dynamically Sized Types
	10.3. Type layout
	10.4. Interior mutability
	10.5. Subtyping and Variance
	10.6. Trait and lifetime bounds
	10.7. Type coercions
	10.8. Destructors
	10.9. Lifetime elision

	11. Special types and traits
	12. Names
	12.1. Namespaces
	12.2. Scopes
	12.3. Preludes
	12.4. Paths
	12.5. Name resolution
	12.6. Visibility and privacy

	13. Memory model
	13.1. Memory allocation and lifetime
	13.2. Variables

	14. Panic
	15. Linkage
	16. Inline assembly
	17. Unsafety
	17.1. The unsafe keyword
	17.2. Behavior considered undefined
	17.3. Behavior not considered unsafe

	18. Constant Evaluation
	19. Application Binary Interface
	20. The Rust runtime
	21. Appendices
	21.1. Grammar summary
	21.2. Macro Follow-Set Ambiguity Formal Specification
	21.3. Influences
	21.4. Test summary
	21.5. Glossary


