
Rust 🦀 and WebAssembly 🕸
This small book describes how to use Rust and WebAssembly together.

https://www.rust-lang.org/
https://webassembly.org/


Who is this book for?
This book is for anyone interested in compiling Rust to WebAssembly

for fast, reliable code on the Web. You should know some Rust, and be
familiar with JavaScript, HTML, and CSS. You don't need to be an expert
in any of them.

Don't know Rust yet? Start with The Rust Programming Language first.
Don't know JavaScript, HTML, or CSS? Learn about them on MDN.

https://doc.rust-lang.org/book/
https://developer.mozilla.org/en-US/docs/Learn


How to read this book
You should read the motivation for using Rust and WebAssembly

together, as well as familiarize yourself with the background and concepts
first.

The tutorial is written to be read from start to finish. You should follow
along: writing, compiling, and running the tutorial's code yourself. If you
haven't used Rust and WebAssembly together before, do the tutorial!

The reference sections may be perused in any order.

💡  Tip: You can search through this book by clicking on the 🔍
icon at the top of the page, or by pressing the s  key.



Contributing to this book
This book is open source! Find a typo? Did we overlook something?

Send us a pull request!

https://github.com/rustwasm/book


Why Rust and WebAssembly?



Low-Level Control with High-Level Ergonomics
JavaScript Web applications struggle to attain and retain reliable

performance. JavaScript's dynamic type system and garbage collection
pauses don't help. Seemingly small code changes can result in drastic
performance regressions if you accidentally wander off the JIT's happy
path.

Rust gives programmers low-level control and reliable performance. It is
free from the non-deterministic garbage collection pauses that plague
JavaScript. Programmers have control over indirection, monomorphization,
and memory layout.



Small .wasm Sizes
Code size is incredibly important since the .wasm  must be downloaded

over the network. Rust lacks a runtime, enabling small .wasm  sizes because
there is no extra bloat included like a garbage collector. You only pay (in
code size) for the functions you actually use.



Do Not Rewrite Everything
Existing code bases don't need to be thrown away. You can start by

porting your most performance-sensitive JavaScript functions to Rust to
gain immediate benefits. And you can even stop there if you want to.



Plays Well With Others
Rust and WebAssembly integrates with existing JavaScript tooling. It

supports ECMAScript modules and you can continue using the tooling you
already love, like npm and Webpack.



The Amenities You Expect
Rust has the modern amenities that developers have come to expect,

such as:

strong package management with cargo ,
expressive (and zero-cost) abstractions,
and a welcoming community! 😊



Background and Concepts
This section provides the context necessary for diving into Rust and

WebAssembly development.



What is WebAssembly?
WebAssembly (wasm) is a simple machine model and executable format

with an extensive specification. It is designed to be portable, compact, and
execute at or near native speeds.

As a programming language, WebAssembly is comprised of two formats
that represent the same structures, albeit in different ways:

1. The .wat  text format (called wat  for "WebAssembly Text") uses
S-expressions, and bears some resemblance to the Lisp family of
languages like Scheme and Clojure.

2. The .wasm  binary format is lower-level and intended for
consumption directly by wasm virtual machines. It is conceptually
similar to ELF and Mach-O.

For reference, here is a factorial function in wat :
(module 
  (func $fac (param f64) (result f64) 
    local.get 0 
    f64.const 1 
    f64.lt 
    if (result f64) 
      f64.const 1 
    else 
      local.get 0 
      local.get 0 
      f64.const 1 
      f64.sub 
      call $fac 
      f64.mul 
    end) 
  (export "fac" (func $fac))) 

If you're curious about what a wasm  file looks like you can use the
wat2wasm demo with the above code.

https://webassembly.github.io/spec/
https://en.wikipedia.org/wiki/S-expression
https://webassembly.github.io/wabt/demo/wat2wasm/


Linear Memory
WebAssembly has a very simple memory model. A wasm module has

access to a single "linear memory", which is essentially a flat array of bytes.
This memory can be grown by a multiple of the page size (64K). It cannot
be shrunk.

https://webassembly.github.io/spec/core/syntax/modules.html#syntax-mem
https://webassembly.github.io/spec/core/syntax/instructions.html#syntax-instr-memory


Is WebAssembly Just for the Web?
Although it has currently gathered attention in the JavaScript and Web

communities in general, wasm makes no assumptions about its host
environment. Thus, it makes sense to speculate that wasm will become a
"portable executable" format that is used in a variety of contexts in the
future. As of today, however, wasm is mostly related to JavaScript (JS),
which comes in many flavors (including both on the Web and Node.js).

https://nodejs.org/


Tutorial: Conway's Game of Life
This is a tutorial that implements Conway's Game of Life in Rust and

WebAssembly.

https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life


Who is this tutorial for?
This tutorial is for anyone who already has basic Rust and JavaScript

experience, and wants to learn how to use Rust, WebAssembly, and
JavaScript together.

You should be comfortable reading and writing basic Rust, JavaScript,
and HTML. You definitely do not need to be an expert.



What will I learn?

How to set up a Rust toolchain for compiling to WebAssembly.
A workflow for developing polyglot programs made from Rust,

WebAssembly, JavaScript, HTML, and CSS.
How to design APIs to take maximum advantage of both Rust and

WebAssembly's strengths and also JavaScript's strengths.
How to debug WebAssembly modules compiled from Rust.
How to time profile Rust and WebAssembly programs to make

them faster.
How to size profile Rust and WebAssembly programs to make 

.wasm  binaries smaller and faster to download over the network.



Setup
This section describes how to set up the toolchain for compiling Rust

programs to WebAssembly and integrate them into JavaScript.



The Rust Toolchain
You will need the standard Rust toolchain, including rustup , rustc ,

and cargo .
Follow these instructions to install the Rust toolchain.
The Rust and WebAssembly experience is riding the Rust release trains

to stable! That means we don't require any experimental feature flags.
However, we do require Rust 1.30 or newer.

https://www.rust-lang.org/tools/install


wasm-pack
wasm-pack  is your one-stop shop for building, testing, and publishing

Rust-generated WebAssembly.
Get wasm-pack  here!

https://rustwasm.github.io/wasm-pack/installer/


cargo-generate
cargo-generate  helps you get up and running quickly with a new Rust

project by leveraging a pre-existing git repository as a template.
Install cargo-generate  with this command:

cargo install cargo-generate 

https://github.com/ashleygwilliams/cargo-generate


npm
npm  is a package manager for JavaScript. We will use it to install and

run a JavaScript bundler and development server. At the end of the tutorial,
we will publish our compiled .wasm  to the npm  registry.

Follow these instructions to install npm .
If you already have npm  installed, make sure it is up to date with this

command:
npm install npm@latest -g 

https://www.npmjs.com/get-npm


Hello, World!
This section will show you how to build and run your first Rust and

WebAssembly program: a Web page that alerts "Hello, World!"
Make sure you have followed the setup instructions before beginning.



Clone the Project Template
The project template comes pre-configured with sane defaults, so you

can quickly build, integrate, and package your code for the Web.
Clone the project template with this command:

cargo generate --git https://github.com/rustwasm/wasm-pack-
template 

This should prompt you for the new project's name. We will use "wasm-
game-of-life".
wasm-game-of-life 



What's Inside
Enter the new wasm-game-of-life  project

cd wasm-game-of-life 

and let's take a look at its contents:
wasm-game-of-life/ 
├── Cargo.toml 
├── LICENSE_APACHE 
├── LICENSE_MIT 
├── README.md 
└── src 
    ├── lib.rs 
    └── utils.rs 

Let's take a look at a couple of these files in detail.

wasm-game-of-life/Cargo.toml
The Cargo.toml  file specifies dependencies and metadata for cargo ,

Rust's package manager and build tool. This one comes pre-configured with
a wasm-bindgen  dependency, a few optional dependencies we will dig into
later, and the crate-type  properly initialized for generating .wasm

libraries.

wasm-game-of-life/src/lib.rs
The src/lib.rs  file is the root of the Rust crate that we are compiling

to WebAssembly. It uses wasm-bindgen  to interface with JavaScript. It
imports the window.alert  JavaScript function, and exports the greet  Rust
function, which alerts a greeting message.
mod utils; 
 
use wasm_bindgen::prelude::*; 
 
// When the `wee_alloc` feature is enabled, use `wee_alloc` as 
the global 



// allocator. 
#[cfg(feature = "wee_alloc")] 
#[global_allocator] 
static ALLOC: wee_alloc::WeeAlloc = wee_alloc::WeeAlloc::INIT; 
 
#[wasm_bindgen] 
extern { 
    fn alert(s: &str); 
} 
 
#[wasm_bindgen] 
pub fn greet() { 
    alert("Hello, wasm-game-of-life!"); 
} 

wasm-game-of-life/src/utils.rs
The src/utils.rs  module provides common utilities to make working

with Rust compiled to WebAssembly easier. We will take a look at some of
these utilities in more detail later in the tutorial, such as when we look at
debugging our wasm code, but we can ignore this file for now.



Build the Project
We use wasm-pack  to orchestrate the following build steps:

Ensure that we have Rust 1.30 or newer and the wasm32-unknown-
unknown  target installed via rustup ,
Compile our Rust sources into a WebAssembly .wasm  binary via 
cargo ,
Use wasm-bindgen  to generate the JavaScript API for using our Rust-
generated WebAssembly.

To do all of that, run this command inside the project directory:
wasm-pack build 

When the build has completed, we can find its artifacts in the pkg
directory, and it should have these contents:
pkg/ 
├── package.json 
├── README.md 
├── wasm_game_of_life_bg.wasm 
├── wasm_game_of_life.d.ts 
└── wasm_game_of_life.js 

The README.md  file is copied from the main project, but the others are
completely new.

wasm-game-of-
life/pkg/wasm_game_of_life_bg.wasm

The .wasm  file is the WebAssembly binary that is generated by the Rust
compiler from our Rust sources. It contains the compiled-to-wasm versions
of all of our Rust functions and data. For example, it has an exported
"greet" function.

wasm-game-of-life/pkg/wasm_game_of_life.js



The .js  file is generated by wasm-bindgen  and contains JavaScript
glue for importing DOM and JavaScript functions into Rust and exposing a
nice API to the WebAssembly functions to JavaScript. For example, there is
a JavaScript greet  function that wraps the greet  function exported from
the WebAssembly module. Right now, this glue isn't doing much, but when
we start passing more interesting values back and forth between wasm and
JavaScript, it will help shepherd those values across the boundary.
import * as wasm from './wasm_game_of_life_bg'; 
 
// ... 
 
export function greet() { 
    return wasm.greet(); 
} 

wasm-game-of-life/pkg/wasm_game_of_life.d.ts
The .d.ts  file contains TypeScript type declarations for the JavaScript

glue. If you are using TypeScript, you can have your calls into
WebAssembly functions type checked, and your IDE can provide
autocompletions and suggestions! If you aren't using TypeScript, you can
safely ignore this file.
export function greet(): void; 

wasm-game-of-life/pkg/package.json
The package.json  file contains metadata about the generated

JavaScript and WebAssembly package. This is used by npm and JavaScript
bundlers to determine dependencies across packages, package names,
versions, and a bunch of other stuff. It helps us integrate with JavaScript
tooling and allows us to publish our package to npm.
{ 
  "name": "wasm-game-of-life", 
  "collaborators": [ 
    "Your Name <your.email@example.com>" 
  ], 

http://www.typescriptlang.org/
https://docs.npmjs.com/files/package.json


  "description": null, 
  "version": "0.1.0", 
  "license": null, 
  "repository": null, 
  "files": [ 
    "wasm_game_of_life_bg.wasm", 
    "wasm_game_of_life.d.ts" 
  ], 
  "main": "wasm_game_of_life.js", 
  "types": "wasm_game_of_life.d.ts" 
} 



Putting it into a Web Page
To take our wasm-game-of-life  package and use it in a Web page, we

use the create-wasm-app  JavaScript project template.
Run this command within the wasm-game-of-life  directory:

npm init wasm-app www 

Here's what our new wasm-game-of-life/www  subdirectory contains:
wasm-game-of-life/www/ 
├── bootstrap.js 
├── index.html 
├── index.js 
├── LICENSE-APACHE 
├── LICENSE-MIT 
├── package.json 
├── README.md 
└── webpack.config.js 

Once again, let's take a closer look at some of these files.

wasm-game-of-life/www/package.json
This package.json  comes pre-configured with webpack  and webpack-

dev-server  dependencies, as well as a dependency on hello-wasm-pack ,
which is a version of the initial wasm-pack-template  package that has
been published to npm.

wasm-game-of-life/www/webpack.config.js
This file configures webpack and its local development server. It comes

pre-configured, and you shouldn't have to tweak this at all to get webpack
and its local development server working.

wasm-game-of-life/www/index.html
This is the root HTML file for the Web page. It doesn't do much other

than load bootstrap.js , which is a very thin wrapper around index.js .

https://github.com/rustwasm/create-wasm-app


<!DOCTYPE html> 
<html> 
  <head> 
    <meta charset="utf-8"> 
    <title>Hello wasm-pack!</title> 
  </head> 
  <body> 
    <script src="./bootstrap.js"></script> 
  </body> 
</html> 

wasm-game-of-life/www/index.js
The index.js  is the main entry point for our Web page's JavaScript. It

imports the hello-wasm-pack  npm package, which contains the default 
wasm-pack-template 's compiled WebAssembly and JavaScript glue, then
it calls hello-wasm-pack 's greet  function.
import * as wasm from "hello-wasm-pack"; 
 
wasm.greet(); 

Install the dependencies
First, ensure that the local development server and its dependencies are

installed by running npm install  within the wasm-game-of-life/www
subdirectory:
npm install 

This command only needs to be run once, and will install the webpack
JavaScript bundler and its development server.

Note that webpack  is not required for working with Rust and
WebAssembly, it is just the bundler and development server we've
chosen for convenience here. Parcel and Rollup should also support
importing WebAssembly as ECMAScript modules. You can also use
Rust and WebAssembly without a bundler if you prefer!

https://rustwasm.github.io/docs/wasm-bindgen/examples/without-a-bundler.html


Using our Local wasm-game-of-life Package in 
www

Rather than use the hello-wasm-pack  package from npm, we want to
use our local wasm-game-of-life  package instead. This will allow us to
incrementally develop our Game of Life program.

Open up wasm-game-of-life/www/package.json  and next to 
"devDependencies" , add the "dependencies"  field, including a "wasm-
game-of-life": "file:../pkg"  entry:
{ 
  // ... 
  "dependencies": {                     // Add this three 
lines block! 
    "wasm-game-of-life": "file:../pkg" 
  }, 
  "devDependencies": { 
    //... 
  } 
} 

Next, modify wasm-game-of-life/www/index.js  to import wasm-

game-of-life  instead of the hello-wasm-pack  package:
import * as wasm from "wasm-game-of-life"; 
 
wasm.greet(); 

Since we declared a new dependency, we need to install it:
npm install 

Our Web page is now ready to be served locally!



Serving Locally
Next, open a new terminal for the development server. Running the

server in a new terminal lets us leave it running in the background, and
doesn't block us from running other commands in the meantime. In the new
terminal, run this command from within the wasm-game-of-life/www

directory:
npm run start 

Navigate your Web browser to http://localhost:8080/ and you should be
greeted with an alert message:

Anytime you make changes and want them reflected on
http://localhost:8080/, just re-run the wasm-pack build  command within
the wasm-game-of-life  directory.

http://localhost:8080/
clbr://internal.invalid/book/OEBPS/images/game-of-life/hello-world.png
http://localhost:8080/


Exercises

Modify the greet  function in wasm-game-of-life/src/lib.rs  to
take a name: &str  parameter that customizes the alerted message, and
pass your name to the greet  function from inside wasm-game-of-
life/www/index.js . Rebuild the .wasm  binary with wasm-pack 
build , then refresh http://localhost:8080/ in your Web browser and
you should see a customized greeting!

Answer

http://localhost:8080/


Rules of Conway's Game of Life
Note: If you are already familiar with Conway's Game of Life and its

rules, feel free to skip to the next section!
Wikipedia gives a great description of the rules of Conway's Game of

Life:

The universe of the Game of Life is an infinite two-dimensional
orthogonal grid of square cells, each of which is in one of two possible
states, alive or dead, or "populated" or "unpopulated". Every cell
interacts with its eight neighbours, which are the cells that are
horizontally, vertically, or diagonally adjacent. At each step in time,
the following transitions occur:

1. Any live cell with fewer than two live neighbours dies, as if
caused by underpopulation.

2. Any live cell with two or three live neighbours lives on to the
next generation.

3. Any live cell with more than three live neighbours dies, as if
by overpopulation.

4. Any dead cell with exactly three live neighbours becomes a
live cell, as if by reproduction.

The initial pattern constitutes the seed of the system. The first
generation is created by applying the above rules simultaneously to
every cell in the seed—births and deaths occur simultaneously, and the
discrete moment at which this happens is sometimes called a tick (in
other words, each generation is a pure function of the preceding one).
The rules continue to be applied repeatedly to create further
generations.

Consider the following initial universe:

https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life


We can calculate the next generation by considering each cell. The top
left cell is dead. Rule (4) is the only transition rule that applies to dead cells.
However, because the top left cell does not have exactly three live
neighbors, the transition rule does not apply, and it remains dead in the next
generation. The same goes for every other cell in the first row as well.

Things get interesting when we consider the top live cell, in the second
row, third column. For live cells, any of the first three rules potentially
applies. In this cell's case, it has only one live neighbor, and therefore rule
(1) applies: this cell will die in the next generation. The same fate awaits the
bottom live cell.

The middle live cell has two live neighbors: the top and bottom live
cells. This means that rule (2) applies, and it remains live in the next
generation.

The final interesting cases are the dead cells just to the left and right of
the middle live cell. The three live cells are all neighbors both of these cells,
which means that rule (4) applies, and these cells will become alive in the
next generation.

Put it all together, and we get this universe after the next tick:

From these simple, deterministic rules, strange and exciting behavior
emerges:

Gosper's glider gun Pulsar Space ship





Exercises

Compute by hand the next tick of our example universe. Notice
anything familiar?

Answer
Can you find an initial universe that is stable? That is, a universe in

which every generation is always the same.
Answer



Implementing Conway's Game of
Life



Design
Before we dive in, we have some design choices to consider.

Infinite Universe
The Game of Life is played in an infinite universe, but we do not have

infinite memory and compute power. Working around this rather annoying
limitation usually comes in one of three flavors:

1. Keep track of which subset of the universe has interesting things
happening, and expand this region as needed. In the worst case, this
expansion is unbounded and the implementation will get slower and
slower and eventually run out of memory.

2. Create a fixed-size universe, where cells on the edges have fewer
neighbors than cells in the middle. The downside with this approach is
that infinite patterns, like gliders, that reach the end of the universe are
snuffed out.

3. Create a fixed-size, periodic universe, where cells on the edges have
neighbors that wrap around to the other side of the universe. Because
neighbors wrap around the edges of the universe, gliders can keep
running forever.

We will implement the third option.

Interfacing Rust and JavaScript
⚡ This is one of the most important concepts to understand and take

away from this tutorial!

JavaScript's garbage-collected heap — where Object s, Array s, and DOM
nodes are allocated — is distinct from WebAssembly's linear memory space,
where our Rust values live. WebAssembly currently has no direct access to
the garbage-collected heap (as of April 2018, this is expected to change with
the "Interface Types" proposal). JavaScript, on the other hand, can read and
write to the WebAssembly linear memory space, but only as an ArrayBuffer
of scalar values ( u8 , i32 , f64 , etc...). WebAssembly functions also take and
return scalar values. These are the building blocks from which all
WebAssembly and JavaScript communication is constituted.

https://github.com/WebAssembly/interface-types/blob/master/proposals/interface-types/Explainer.md
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer


wasm_bindgen  defines a common understanding of how to work with
compound structures across this boundary. It involves boxing Rust structures,
and wrapping the pointer in a JavaScript class for usability, or indexing into a
table of JavaScript objects from Rust. wasm_bindgen  is very convenient, but
it does not remove the need to consider our data representation, and what
values and structures are passed across this boundary. Instead, think of it as a
tool for implementing the interface design you choose.

When designing an interface between WebAssembly and JavaScript, we
want to optimize for the following properties:

1. Minimizing copying into and out of the WebAssembly linear
memory. Unnecessary copies impose unnecessary overhead.

2. Minimizing serializing and deserializing. Similar to copies,
serializing and deserializing also imposes overhead, and often imposes
copying as well. If we can pass opaque handles to a data structure —
instead of serializing it on one side, copying it into some known location
in the WebAssembly linear memory, and deserializing on the other side
— we can often reduce a lot of overhead. wasm_bindgen  helps us define
and work with opaque handles to JavaScript Object s or boxed Rust
structures.

As a general rule of thumb, a good JavaScript↔WebAssembly interface
design is often one where large, long-lived data structures are implemented as
Rust types that live in the WebAssembly linear memory, and are exposed to
JavaScript as opaque handles. JavaScript calls exported WebAssembly
functions that take these opaque handles, transform their data, perform heavy
computations, query the data, and ultimately return a small, copy-able result.
By only returning the small result of the computation, we avoid copying
and/or serializing everything back and forth between the JavaScript garbage-
collected heap and the WebAssembly linear memory.

Interfacing Rust and JavaScript in our Game of
Life

Let's start by enumerating some hazards to avoid. We don't want to copy
the whole universe into and out of the WebAssembly linear memory on every



tick. We do not want to allocate objects for every cell in the universe, nor do
we want to impose a cross-boundary call to read and write each cell.

Where does this leave us? We can represent the universe as a flat array that
lives in the WebAssembly linear memory, and has a byte for each cell. 0  is a
dead cell and 1  is a live cell.

Here is what a 4 by 4 universe looks like in memory:

To find the array index of the cell at a given row and column in the
universe, we can use this formula:
index(row, column, universe) = row * width(universe) + column 

We have several ways of exposing the universe's cells to JavaScript. To
begin, we will implement std::fmt::Display  for Universe , which we can
use to generate a Rust String  of the cells rendered as text characters. This
Rust String is then copied from the WebAssembly linear memory into a
JavaScript String in the JavaScript's garbage-collected heap, and is then
displayed by setting HTML textContent . Later in the chapter, we'll evolve
this implementation to avoid copying the universe's cells between heaps and
to render to <canvas> .

Another viable design alternative would be for Rust to return a list of every
cell that changed states after each tick, instead of exposing the whole universe
to JavaScript. This way, JavaScript wouldn't need to iterate over the whole
universe when rendering, only the relevant subset. The trade off is that this
delta-based design is slightly more difficult to implement.

https://doc.rust-lang.org/1.25.0/std/fmt/trait.Display.html


Rust Implementation
In the last chapter, we cloned an initial project template. We will modify

that project template now.
Let's begin by removing the alert  import and greet  function from 

wasm-game-of-life/src/lib.rs , and replacing them with a type definition
for cells:
#[wasm_bindgen] 
#[repr(u8)] 
#[derive(Clone, Copy, Debug, PartialEq, Eq)] 
pub enum Cell { 
    Dead = 0, 
    Alive = 1, 
} 

It is important that we have #[repr(u8)] , so that each cell is represented
as a single byte. It is also important that the Dead  variant is 0  and that the 
Alive  variant is 1 , so that we can easily count a cell's live neighbors with
addition.

Next, let's define the universe. The universe has a width and a height, and a
vector of cells of length width * height .
#[wasm_bindgen] 
pub struct Universe { 
    width: u32, 
    height: u32, 
    cells: Vec<Cell>, 
} 

To access the cell at a given row and column, we translate the row and
column into an index into the cells vector, as described earlier:
impl Universe { 
    fn get_index(&self, row: u32, column: u32) -> usize { 
        (row * self.width + column) as usize 
    } 
 



    // ... 
} 

In order to calculate the next state of a cell, we need to get a count of how
many of its neighbors are alive. Let's write a live_neighbor_count  method
to do just that!
impl Universe { 
    // ... 
 
    fn live_neighbor_count(&self, row: u32, column: u32) -> u8 
{ 
        let mut count = 0; 
        for delta_row in [self.height - 1, 0, 
1].iter().cloned() { 
            for delta_col in [self.width - 1, 0, 
1].iter().cloned() { 
                if delta_row == 0 && delta_col == 0 { 
                    continue; 
                } 
 
                let neighbor_row = (row + delta_row) % 
self.height; 
                let neighbor_col = (column + delta_col) % 
self.width; 
                let idx = self.get_index(neighbor_row, 
neighbor_col); 
                count += self.cells[idx] as u8; 
            } 
        } 
        count 
    } 
} 

The live_neighbor_count  method uses deltas and modulo to avoid
special casing the edges of the universe with if s. When applying a delta of 
-1 , we add self.height - 1  and let the modulo do its thing, rather than



attempting to subtract 1 . row  and column  can be 0 , and if we attempted to
subtract 1  from them, there would be an unsigned integer underflow.

Now we have everything we need to compute the next generation from the
current one! Each of the Game's rules follows a straightforward translation
into a condition on a match  expression. Additionally, because we want
JavaScript to control when ticks happen, we will put this method inside a #
[wasm_bindgen]  block, so that it gets exposed to JavaScript.
/// Public methods, exported to JavaScript. 
#[wasm_bindgen] 
impl Universe { 
    pub fn tick(&mut self) { 
        let mut next = self.cells.clone(); 
 
        for row in 0..self.height { 
            for col in 0..self.width { 
                let idx = self.get_index(row, col); 
                let cell = self.cells[idx]; 
                let live_neighbors = 
self.live_neighbor_count(row, col); 
 
                let next_cell = match (cell, live_neighbors) { 
                    // Rule 1: Any live cell with fewer than 
two live neighbours 
                    // dies, as if caused by underpopulation. 
                    (Cell::Alive, x) if x < 2 => Cell::Dead, 
                    // Rule 2: Any live cell with two or three 
live neighbours 
                    // lives on to the next generation. 
                    (Cell::Alive, 2) | (Cell::Alive, 3) => 
Cell::Alive, 
                    // Rule 3: Any live cell with more than 
three live 
                    // neighbours dies, as if by 
overpopulation. 
                    (Cell::Alive, x) if x > 3 => Cell::Dead, 



                    // Rule 4: Any dead cell with exactly three 
live neighbours 
                    // becomes a live cell, as if by 
reproduction. 
                    (Cell::Dead, 3) => Cell::Alive, 
                    // All other cells remain in the same 
state. 
                    (otherwise, _) => otherwise, 
                }; 
 
                next[idx] = next_cell; 
            } 
        } 
 
        self.cells = next; 
    } 
 
    // ... 
} 

So far, the state of the universe is represented as a vector of cells. To make
this human readable, let's implement a basic text renderer. The idea is to write
the universe line by line as text, and for each cell that is alive, print the
Unicode character ◼  ("black medium square"). For dead cells, we'll print ◻
(a "white medium square").

By implementing the Display  trait from Rust's standard library, we can
add a way to format a structure in a user-facing manner. This will also
automatically give us a to_string  method.
use std::fmt; 
 
impl fmt::Display for Universe { 
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { 
        for line in self.cells.as_slice().chunks(self.width as 
usize) { 
            for &cell in line { 
                let symbol = if cell == Cell::Dead { '◻' } else 

https://doc.rust-lang.org/1.25.0/std/fmt/trait.Display.html
https://doc.rust-lang.org/1.25.0/std/string/trait.ToString.html


{ '◼' }; 
                write!(f, "{}", symbol)?; 
            } 
            write!(f, "\n")?; 
        } 
 
        Ok(()) 
    } 
} 

Finally, we define a constructor that initializes the universe with an
interesting pattern of live and dead cells, as well as a render  method:
/// Public methods, exported to JavaScript. 
#[wasm_bindgen] 
impl Universe { 
    // ... 
 
    pub fn new() -> Universe { 
        let width = 64; 
        let height = 64; 
 
        let cells = (0..width * height) 
            .map(|i| { 
                if i % 2 == 0 || i % 7 == 0 { 
                    Cell::Alive 
                } else { 
                    Cell::Dead 
                } 
            }) 
            .collect(); 
 
        Universe { 
            width, 
            height, 
            cells, 
        } 
    } 



 
    pub fn render(&self) -> String { 
        self.to_string() 
    } 
} 

With that, the Rust half of our Game of Life implementation is complete!
Recompile it to WebAssembly by running wasm-pack build  within the 

wasm-game-of-life  directory.



Rendering with JavaScript
First, let's add a <pre>  element to wasm-game-of-life/www/index.html

to render the universe into, just above the <script>  tag:
<body> 
  <pre id="game-of-life-canvas"></pre> 
  <script src="./bootstrap.js"></script> 
</body> 

Additionally, we want the <pre>  centered in the middle of the Web page.
We can use CSS flex boxes to accomplish this task. Add the following 
<style>  tag inside wasm-game-of-life/www/index.html 's <head> :
<style> 
  body { 
    position: absolute; 
    top: 0; 
    left: 0; 
    width: 100%; 
    height: 100%; 
    display: flex; 
    flex-direction: column; 
    align-items: center; 
    justify-content: center; 
  } 
</style> 

At the top of wasm-game-of-life/www/index.js , let's fix our import to
bring in the Universe  rather than the old greet  function:
import { Universe } from "wasm-game-of-life"; 

Also, let's get that <pre>  element we just added and instantiate a new
universe:
const pre = document.getElementById("game-of-life-canvas"); 
const universe = Universe.new(); 

The JavaScript runs in a requestAnimationFrame  loop. On each iteration,
it draws the current universe to the <pre> , and then calls Universe::tick .

https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame


const renderLoop = () => { 
  pre.textContent = universe.render(); 
  universe.tick(); 
 
  requestAnimationFrame(renderLoop); 
}; 

To start the rendering process, all we have to do is make the initial call for
the first iteration of the rendering loop:
requestAnimationFrame(renderLoop); 

Make sure your development server is still running (run npm run start
inside wasm-game-of-life/www ) and this is what http://localhost:8080/
should look like:

http://localhost:8080/


clbr://internal.invalid/book/OEBPS/images/game-of-life/initial-game-of-life-pre.png


Rendering to Canvas Directly from Memory
Generating (and allocating) a String  in Rust and then having wasm-

bindgen  convert it to a valid JavaScript string makes unnecessary copies of
the universe's cells. As the JavaScript code already knows the width and
height of the universe, and can read WebAssembly's linear memory that make
up the cells directly, we'll modify the render  method to return a pointer to
the start of the cells array.

Also, instead of rendering Unicode text, we'll switch to using the Canvas
API. We will use this design in the rest of the tutorial.

Inside wasm-game-of-life/www/index.html , let's replace the <pre>  we
added earlier with a <canvas>  we will render into (it too should be within the
<body> , before the <script>  that loads our JavaScript):
<body> 
  <canvas id="game-of-life-canvas"></canvas> 
  <script src='./bootstrap.js'></script> 
</body> 

To get the necessary information from the Rust implementation, we'll need
to add some more getter functions for a universe's width, height, and pointer
to its cells array. All of these are exposed to JavaScript as well. Make these
additions to wasm-game-of-life/src/lib.rs :
/// Public methods, exported to JavaScript. 
#[wasm_bindgen] 
impl Universe { 
    // ... 
 
    pub fn width(&self) -> u32 { 
        self.width 
    } 
 
    pub fn height(&self) -> u32 { 
        self.height 
    } 
 

https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API


    pub fn cells(&self) -> *const Cell { 
        self.cells.as_ptr() 
    } 
} 

Next, in wasm-game-of-life/www/index.js , let's also import Cell  from 
wasm-game-of-life , and define some constants that we will use when
rendering to the canvas:
import { Universe, Cell } from "wasm-game-of-life"; 
 
const CELL_SIZE = 5; // px 
const GRID_COLOR = "#CCCCCC"; 
const DEAD_COLOR = "#FFFFFF"; 
const ALIVE_COLOR = "#000000"; 

Now, let's rewrite the rest of this JavaScript code to no longer write to the 
<pre> 's textContent  but instead draw to the <canvas> :
// Construct the universe, and get its width and height. 
const universe = Universe.new(); 
const width = universe.width(); 
const height = universe.height(); 
 
// Give the canvas room for all of our cells and a 1px border 
// around each of them. 
const canvas = document.getElementById("game-of-life-canvas"); 
canvas.height = (CELL_SIZE + 1) * height + 1; 
canvas.width = (CELL_SIZE + 1) * width + 1; 
 
const ctx = canvas.getContext('2d'); 
 
const renderLoop = () => { 
  universe.tick(); 
 
  drawGrid(); 
  drawCells(); 
 



  requestAnimationFrame(renderLoop); 
}; 

To draw the grid between cells, we draw a set of equally-spaced horizontal
lines, and a set of equally-spaced vertical lines. These lines criss-cross to form
the grid.
const drawGrid = () => { 
  ctx.beginPath(); 
  ctx.strokeStyle = GRID_COLOR; 
 
  // Vertical lines. 
  for (let i = 0; i <= width; i++) { 
    ctx.moveTo(i * (CELL_SIZE + 1) + 1, 0); 
    ctx.lineTo(i * (CELL_SIZE + 1) + 1, (CELL_SIZE + 1) * 
height + 1); 
  } 
 
  // Horizontal lines. 
  for (let j = 0; j <= height; j++) { 
    ctx.moveTo(0,                           j * (CELL_SIZE + 1) 
+ 1); 
    ctx.lineTo((CELL_SIZE + 1) * width + 1, j * (CELL_SIZE + 1) 
+ 1); 
  } 
 
  ctx.stroke(); 
}; 

We can directly access WebAssembly's linear memory via memory , which
is defined in the raw wasm module wasm_game_of_life_bg . To draw the
cells, we get a pointer to the universe's cells, construct a Uint8Array

overlaying the cells buffer, iterate over each cell, and draw a white or black
rectangle depending on whether the cell is dead or alive, respectively. By
working with pointers and overlays, we avoid copying the cells across the
boundary on every tick.
// Import the WebAssembly memory at the top of the file. 
import { memory } from "wasm-game-of-



life/wasm_game_of_life_bg"; 
 
// ... 
 
const getIndex = (row, column) => { 
  return row * width + column; 
}; 
 
const drawCells = () => { 
  const cellsPtr = universe.cells(); 
  const cells = new Uint8Array(memory.buffer, cellsPtr, width * 
height); 
 
  ctx.beginPath(); 
 
  for (let row = 0; row < height; row++) { 
    for (let col = 0; col < width; col++) { 
      const idx = getIndex(row, col); 
 
      ctx.fillStyle = cells[idx] === Cell.Dead 
        ? DEAD_COLOR 
        : ALIVE_COLOR; 
 
      ctx.fillRect( 
        col * (CELL_SIZE + 1) + 1, 
        row * (CELL_SIZE + 1) + 1, 
        CELL_SIZE, 
        CELL_SIZE 
      ); 
    } 
  } 
 
  ctx.stroke(); 
}; 

To start the rendering process, we'll use the same code as above to start the
first iteration of the rendering loop:



drawGrid(); 
drawCells(); 
requestAnimationFrame(renderLoop); 

Note that we call drawGrid()  and drawCells()  here before we call 
requestAnimationFrame() . The reason we do this is so that the initial state
of the universe is drawn before we make modifications. If we instead simply
called requestAnimationFrame(renderLoop) , we'd end up with a situation
where the first frame that was drawn would actually be after the first call to 
universe.tick() , which is the second "tick" of the life of these cells.



It Works!
Rebuild the WebAssembly and bindings glue by running this command

from within the root wasm-game-of-life  directory:
wasm-pack build 

Make sure your development server is still running. If it isn't, start it again
from within the wasm-game-of-life/www  directory:
npm run start 

If you refresh http://localhost:8080/, you should be greeted with an
exciting display of life!

As an aside, there is also a really neat algorithm for implementing the
Game of Life called hashlife. It uses aggressive memoizing and can actually
get exponentially faster to compute future generations the longer it runs!

http://localhost:8080/
clbr://internal.invalid/book/OEBPS/images/game-of-life/initial-game-of-life.png
https://en.wikipedia.org/wiki/Hashlife


Given that, you might be wondering why we didn't implement hashlife in this
tutorial. It is out of scope for this text, where we are focusing on Rust and
WebAssembly integration, but we highly encourage you to go learn about
hashlife on your own!



Exercises

Initialize the universe with a single space ship.
Instead of hard-coding the initial universe, generate a random one,

where each cell has a fifty-fifty chance of being alive or dead.
Hint: use the js-sys  crate to import the Math.random  JavaScript

function.
Answer
Representing each cell with a byte makes iterating over cells easy, but

it comes at the cost of wasting memory. Each byte is eight bits, but we
only require a single bit to represent whether each cell is alive or dead.
Refactor the data representation so that each cell uses only a single bit of
space.

Answer

https://crates.io/crates/js-sys
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random


Testing Conway's Game of Life
Now that we have our Rust implementation of the Game of Life

rendering in the browser with JavaScript, let's talk about testing our Rust-
generated WebAssembly functions.

We are going to test our tick  function to make sure that it gives us the
output that we expect.

Next, we'll want to create some setter and getter functions inside our
existing impl Universe  block in the wasm_game_of_life/src/lib.rs

file. We are going to create a set_width  and a set_height  function so we
can create Universe s of different sizes.
#[wasm_bindgen] 
impl Universe {  
    // ... 
 
    /// Set the width of the universe. 
    /// 
    /// Resets all cells to the dead state. 
    pub fn set_width(&mut self, width: u32) { 
        self.width = width; 
        self.cells = (0..width * self.height).map(|_i| 
Cell::Dead).collect(); 
    } 
 
    /// Set the height of the universe. 
    /// 
    /// Resets all cells to the dead state. 
    pub fn set_height(&mut self, height: u32) { 
        self.height = height; 
        self.cells = (0..self.width * height).map(|_i| 
Cell::Dead).collect(); 
    } 



 
} 

We are going to create another impl Universe  block inside our 
wasm_game_of_life/src/lib.rs  file without the #[wasm_bindgen]

attribute. There are a few functions we need for testing that we don't want to
expose to our JavaScript. Rust-generated WebAssembly functions cannot
return borrowed references. Try compiling the Rust-generated
WebAssembly with the attribute and take a look at the errors you get.

We are going to write the implementation of get_cells  to get the
contents of the cells  of a Universe . We'll also write a set_cells

function so we can set cells  in a specific row and column of a Universe
to be Alive.
impl Universe { 
    /// Get the dead and alive values of the entire universe. 
    pub fn get_cells(&self) -> &[Cell] { 
        &self.cells 
    } 
 
    /// Set cells to be alive in a universe by passing the row 
and column 
    /// of each cell as an array. 
    pub fn set_cells(&mut self, cells: &[(u32, u32)]) { 
        for (row, col) in cells.iter().cloned() { 
            let idx = self.get_index(row, col); 
            self.cells[idx] = Cell::Alive; 
        } 
    } 
 
} 

Now we're going to create our test in the 
wasm_game_of_life/tests/web.rs  file.

Before we do that, there is already one working test in the file. You can
confirm that the Rust-generated WebAssembly test is working by running 



wasm-pack test --chrome --headless  in the wasm-game-of-life

directory. You can also use the --firefox , --safari , and --node  options
to test your code in those browsers.

In the wasm_game_of_life/tests/web.rs  file, we need to export our 
wasm_game_of_life  crate and the Universe  type.
extern crate wasm_game_of_life; 
use wasm_game_of_life::Universe; 

In the wasm_game_of_life/tests/web.rs  file we'll want to create some
spaceship builder functions.

We'll want one for our input spaceship that we'll call the tick  function
on and we'll want the expected spaceship we will get after one tick. We
picked the cells that we want to initialize as Alive  to create our spaceship
in the input_spaceship  function. The position of the spaceship in the 
expected_spaceship  function after the tick of the input_spaceship  was
calculated manually. You can confirm for yourself that the cells of the input
spaceship after one tick is the same as the expected spaceship.
#[cfg(test)] 
pub fn input_spaceship() -> Universe { 
    let mut universe = Universe::new(); 
    universe.set_width(6); 
    universe.set_height(6); 
    universe.set_cells(&[(1,2), (2,3), (3,1), (3,2), (3,3)]); 
    universe 
} 
 
#[cfg(test)] 
pub fn expected_spaceship() -> Universe { 
    let mut universe = Universe::new(); 
    universe.set_width(6); 
    universe.set_height(6); 
    universe.set_cells(&[(2,1), (2,3), (3,2), (3,3), (4,2)]); 
    universe 
} 



Now we will write the implementation for our test_tick  function.
First, we create an instance of our input_spaceship()  and our 
expected_spaceship() . Then, we call tick  on the input_universe .
Finally, we use the assert_eq!  macro to call get_cells()  to ensure that 
input_universe  and expected_universe  have the same Cell  array
values. We add the #[wasm_bindgen_test]  attribute to our code block so
we can test our Rust-generated WebAssembly code and use wasm-pack 
test  to test the WebAssembly code.
#[wasm_bindgen_test] 
pub fn test_tick() { 
    // Let's create a smaller Universe with a small spaceship 
to test! 
    let mut input_universe = input_spaceship(); 
 
    // This is what our spaceship should look like 
    // after one tick in our universe. 
    let expected_universe = expected_spaceship(); 
 
    // Call `tick` and then see if the cells in the 
`Universe`s are the same. 
    input_universe.tick(); 
    assert_eq!(&input_universe.get_cells(), 
&expected_universe.get_cells()); 
} 

Run the tests within the wasm-game-of-life  directory by running 
wasm-pack test --firefox --headless .



Debugging
Before we write much more code, we will want to have some debugging

tools in our belt for when things go wrong. Take a moment to review the
reference page listing tools and approaches available for debugging Rust-
generated WebAssembly.



Enable Logging for Panics
If our code panics, we want informative error messages to appear in the

developer console.
Our wasm-pack-template  comes with an optional, enabled-by-default

dependency on the console_error_panic_hook  crate that is configured in 
wasm-game-of-life/src/utils.rs . All we need to do is install the hook in
an initialization function or common code path. We can call it inside the 
Universe::new  constructor in wasm-game-of-life/src/lib.rs :
pub fn new() -> Universe { 
    utils::set_panic_hook(); 
 
    // ... 
} 

https://github.com/rustwasm/console_error_panic_hook


Add Logging to our Game of Life
Let's use the console.log  function via the web-sys  crate to add some

logging about each cell in our Universe::tick  function.
First, add web-sys  as a dependency and enable its "console"  feature in 

wasm-game-of-life/Cargo.toml :
[dependencies] 
 
# ... 
 
[dependencies.web-sys] 
version = "0.3" 
features = [ 
  "console", 
] 

For ergonomics, we'll wrap the console.log  function up in a println! -
style macro:
extern crate web_sys; 
 
// A macro to provide `println!(..)`-style syntax for 
`console.log` logging. 
macro_rules! log { 
    ( $( $t:tt )* ) => { 
        web_sys::console::log_1(&format!( $( $t )* ).into()); 
    } 
} 

Now, we can start logging messages to the console by inserting calls to 
log  in Rust code. For example, to log each cell's state, live neighbors count,
and next state, we could modify wasm-game-of-life/src/lib.rs  like this:
diff --git a/src/lib.rs b/src/lib.rs 
index f757641..a30e107 100755 
--- a/src/lib.rs 
+++ b/src/lib.rs 
@@ -123,6 +122,14 @@ impl Universe { 



                 let cell = self.cells[idx]; 
                 let live_neighbors = 
self.live_neighbor_count(row, col); 
 
+                log!( 
+                    "cell[{}, {}] is initially {:?} and has {} 
live neighbors", 
+                    row, 
+                    col, 
+                    cell, 
+                    live_neighbors 
+                ); 
+ 
                 let next_cell = match (cell, live_neighbors) { 
                     // Rule 1: Any live cell with fewer than 
two live neighbours 
                     // dies, as if caused by underpopulation. 
@@ -140,6 +147,8 @@ impl Universe { 
                     (otherwise, _) => otherwise, 
                 }; 
 
+                log!("    it becomes {:?}", next_cell); 
+ 
                 next[idx] = next_cell; 
             } 
         } 



Using a Debugger to Pause Between Each Tick
Browser's stepping debuggers are useful for inspecting the JavaScript that

our Rust-generated WebAssembly interacts with.
For example, we can use the debugger to pause on each iteration of our 

renderLoop  function by placing a JavaScript debugger;  statement above
our call to universe.tick() .
const renderLoop = () => { 
  debugger; 
  universe.tick(); 
 
  drawGrid(); 
  drawCells(); 
 
  requestAnimationFrame(renderLoop); 
}; 

This provides us with a convenient checkpoint for inspecting logged
messages, and comparing the currently rendered frame to the previous one.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/debugger
clbr://internal.invalid/book/OEBPS/images/game-of-life/debugging.png


Exercises

Add logging to the tick  function that records the row and column of
each cell that transitioned states from live to dead or vice versa.

Introduce a panic!()  in the Universe::new  method. Inspect the
panic's backtrace in your Web browser's JavaScript debugger. Disable
debug symbols, rebuild without the console_error_panic_hook
optional dependency, and inspect the stack trace again. Not as useful is
it?



Adding Interactivity
We will continue to explore the JavaScript and WebAssembly interface

by adding some interactive features to our Game of Life implementation.
We will enable users to toggle whether a cell is alive or dead by clicking on
it, and allow pausing the game, which makes drawing cell patterns a lot
easier.



Pausing and Resuming the Game
Let's add a button to toggle whether the game is playing or paused. To 

wasm-game-of-life/www/index.html , add the button right above the 
<canvas> :
<button id="play-pause"></button> 

In the wasm-game-of-life/www/index.js  JavaScript, we will make the
following changes:

Keep track of the identifier returned by the latest call to 
requestAnimationFrame , so that we can cancel the animation by
calling cancelAnimationFrame  with that identifier.

When the play/pause button is clicked, check for whether we have
the identifier for a queued animation frame. If we do, then the game is
currently playing, and we want to cancel the animation frame so that 
renderLoop  isn't called again, effectively pausing the game. If we do
not have an identifier for a queued animation frame, then we are
currently paused, and we would like to call requestAnimationFrame
to resume the game.

Because the JavaScript is driving the Rust and WebAssembly, this is all
we need to do, and we don't need to change the Rust sources.

We introduce the animationId  variable to keep track of the identifier
returned by requestAnimationFrame . When there is no queued animation
frame, we set this variable to null .
let animationId = null; 
 
// This function is the same as before, except the 
// result of `requestAnimationFrame` is assigned to 
// `animationId`. 
const renderLoop = () => { 
  drawGrid(); 
  drawCells(); 
 



  universe.tick(); 
 
  animationId = requestAnimationFrame(renderLoop); 
}; 

At any instant in time, we can tell whether the game is paused or not by
inspecting the value of animationId :
const isPaused = () => { 
  return animationId === null; 
}; 

Now, when the play/pause button is clicked, we check whether the game
is currently paused or playing, and resume the renderLoop  animation or
cancel the next animation frame respectively. Additionally, we update the
button's text icon to reflect the action that the button will take when clicked
next.
const playPauseButton = document.getElementById("play-pause"); 
 
const play = () => { 
  playPauseButton.textContent = "⏸"; 
  renderLoop(); 
}; 
 
const pause = () => { 
  playPauseButton.textContent = "▶"; 
  cancelAnimationFrame(animationId); 
  animationId = null; 
}; 
 
playPauseButton.addEventListener("click", event => { 
  if (isPaused()) { 
    play(); 
  } else { 
    pause(); 
  } 
}); 



Finally, we were previously kick-starting the game and its animation by
calling requestAnimationFrame(renderLoop)  directly, but we want to
replace that with a call to play  so that the button gets the correct initial text
icon.
// This used to be `requestAnimationFrame(renderLoop)`. 
play(); 

Refresh http://localhost:8080/ and we should now be able to pause and
resume the game by clicking on the button!

http://localhost:8080/


Toggling a Cell's State on "click" Events
Now that we can pause the game, it's time to add the ability to mutate the

cells by clicking on them.
To toggle a cell is to flip its state from alive to dead or from dead to

alive. Add a toggle  method to Cell  in wasm-game-of-life/src/lib.rs :
impl Cell { 
    fn toggle(&mut self) { 
        *self = match *self { 
            Cell::Dead => Cell::Alive, 
            Cell::Alive => Cell::Dead, 
        }; 
    } 
} 

To toggle the state of a cell at given row and column, we translate the
row and column pair into an index into the cells vector and call the toggle
method on the cell at that index:
/// Public methods, exported to JavaScript. 
#[wasm_bindgen] 
impl Universe { 
    // ... 
 
    pub fn toggle_cell(&mut self, row: u32, column: u32) { 
        let idx = self.get_index(row, column); 
        self.cells[idx].toggle(); 
    } 
} 

This method is defined within the impl  block that is annotated with #
[wasm_bindgen]  so that it can be called by JavaScript.

In wasm-game-of-life/www/index.js , we listen to click events on the 
<canvas>  element, translate the click event's page-relative coordinates into
canvas-relative coordinates, and then into a row and column, invoke the 
toggle_cell  method, and finally redraw the scene.



canvas.addEventListener("click", event => { 
  const boundingRect = canvas.getBoundingClientRect(); 
 
  const scaleX = canvas.width / boundingRect.width; 
  const scaleY = canvas.height / boundingRect.height; 
 
  const canvasLeft = (event.clientX - boundingRect.left) * 
scaleX; 
  const canvasTop = (event.clientY - boundingRect.top) * 
scaleY; 
 
  const row = Math.min(Math.floor(canvasTop / (CELL_SIZE + 
1)), height - 1); 
  const col = Math.min(Math.floor(canvasLeft / (CELL_SIZE + 
1)), width - 1); 
 
  universe.toggle_cell(row, col); 
 
  drawGrid(); 
  drawCells(); 
}); 

Rebuild with wasm-pack build  in wasm-game-of-life , then refresh
http://localhost:8080/ again and we can now draw our own patterns by
clicking on the cells and toggling their state.

http://localhost:8080/


Exercises

Introduce an <input type="range">  widget to control how many
ticks occur per animation frame.

Add a button that resets the universe to a random initial state when
clicked. Another button that resets the universe to all dead cells.

On Ctrl + Click , insert a glider centered on the target cell. On 
Shift + Click , insert a pulsar.

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/range
https://en.wikipedia.org/wiki/Glider_(Conway%27s_Life)


Time Profiling
In this chapter, we will improve the performance of our Game of Life

implementation. We will use time profiling to guide our efforts.
Familiarize yourself with the available tools for time profiling Rust and

WebAssembly code before continuing.

clbr://internal.invalid/book/OEBPS/reference/time-profiling.md


Creating a Frames Per Second Timer with the 
window.performance.now Function

This FPS timer will be useful as we investigate speeding up our Game of
Life's rendering.

We start by adding an fps  object to wasm-game-of-life/www/index.js :
const fps = new class { 
  constructor() { 
    this.fps = document.getElementById("fps"); 
    this.frames = []; 
    this.lastFrameTimeStamp = performance.now(); 
  } 
 
  render() { 
    // Convert the delta time since the last frame render into 
a measure 
    // of frames per second. 
    const now = performance.now(); 
    const delta = now - this.lastFrameTimeStamp; 
    this.lastFrameTimeStamp = now; 
    const fps = 1 / delta * 1000; 
 
    // Save only the latest 100 timings. 
    this.frames.push(fps); 
    if (this.frames.length > 100) { 
      this.frames.shift(); 
    } 
 
    // Find the max, min, and mean of our 100 latest timings. 
    let min = Infinity; 
    let max = -Infinity; 
    let sum = 0; 
    for (let i = 0; i < this.frames.length; i++) { 
      sum += this.frames[i]; 
      min = Math.min(this.frames[i], min); 



      max = Math.max(this.frames[i], max); 
    } 
    let mean = sum / this.frames.length; 
 
    // Render the statistics. 
    this.fps.textContent = ` 
Frames per Second: 
         latest = ${Math.round(fps)} 
avg of last 100 = ${Math.round(mean)} 
min of last 100 = ${Math.round(min)} 
max of last 100 = ${Math.round(max)} 
`.trim(); 
  } 
}; 

Next we call the fps  render  function on each iteration of renderLoop :
const renderLoop = () => { 
    fps.render(); //new 
 
    universe.tick(); 
    drawGrid(); 
    drawCells(); 
 
    animationId = requestAnimationFrame(renderLoop); 
}; 

Finally, don't forget to add the fps  element to wasm-game-of-

life/www/index.html , just above the <canvas> :
<div id="fps"></div> 

And add CSS to make its formatting nice:
#fps { 
  white-space: pre; 
  font-family: monospace; 
} 

And voila! Refresh http://localhost:8080 and now we have an FPS counter!

http://localhost:8080/


Time Each Universe::tick with console.time and 
console.timeEnd

To measure how long each invocation of Universe::tick  takes, we can
use console.time  and console.timeEnd  via the web-sys  crate.

First, add web-sys  as a dependency to wasm-game-of-life/Cargo.toml :
[dependencies.web-sys] 
version = "0.3" 
features = [ 
  "console", 
] 

Because there should be a corresponding console.timeEnd  invocation for
every console.time  call, it is convenient to wrap them both up in an RAII
type:
extern crate web_sys; 
use web_sys::console; 
 
pub struct Timer<'a> { 
    name: &'a str, 
} 
 
impl<'a> Timer<'a> { 
    pub fn new(name: &'a str) -> Timer<'a> { 
        console::time_with_label(name); 
        Timer { name } 
    } 
} 
 
impl<'a> Drop for Timer<'a> { 
    fn drop(&mut self) { 
        console::time_end_with_label(self.name); 
    } 
} 

https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization


Then, we can time how long each Universe::tick  takes by adding this
snippet to the top of the method:
let _timer = Timer::new("Universe::tick"); 

The time of how long each call to Universe::tick  took are now logged
in the console:

Additionally, console.time  and console.timeEnd  pairs will show up in
your browser's profiler's "timeline" or "waterfall" view:

clbr://internal.invalid/book/OEBPS/images/game-of-life/console-time.png
clbr://internal.invalid/book/OEBPS/images/game-of-life/console-time-in-profiler.png


Growing our Game of Life Universe
⚠ This section utilizes example screenshots from Firefox. While all

modern browsers have similar tools, there might be slight nuances to
working with different developer tools. The profile information you
extract will be essentially the same, but your mileage might vary in terms
of the views you see and the naming of different tools.

What happens if we make our Game of Life universe larger? Replacing the
64 by 64 universe with a 128 by 128 universe (by modifying Universe::new
in wasm-game-of-life/src/lib.rs ) results in FPS dropping from a smooth
60 to a choppy 40-ish on my machine.

If we record a profile and look at the waterfall view, we see that each
animation frame is taking over 20 milliseconds. Recall that 60 frames per
second leaves sixteen milliseconds for the whole process of rendering a frame.
That's not just our JavaScript and WebAssembly, but also everything else the
browser is doing, such as painting.

If we look at what happens within a single animation frame, we see that the
CanvasRenderingContext2D.fillStyle  setter is very expensive!

⚠ In Firefox, if you see a line that simply says "DOM" instead of the
CanvasRenderingContext2D.fillStyle  mentioned above, you may
need to turn on the option for "Show Gecko Platform Data" in your
performance developer tools options:

clbr://internal.invalid/book/OEBPS/images/game-of-life/drawCells-before-waterfall.png


And we can confirm that this isn't an abnormality by looking at the call
tree's aggregation of many frames:

clbr://internal.invalid/book/OEBPS/images/game-of-life/profiler-firefox-show-gecko-platform.png
clbr://internal.invalid/book/OEBPS/images/game-of-life/drawCells-before-flamegraph.png
clbr://internal.invalid/book/OEBPS/images/game-of-life/drawCells-before-calltree.png


Nearly 40% of our time is spent in this setter!

⚡ We might have expected something in the tick  method to be the
performance bottleneck, but it wasn't. Always let profiling guide your
focus, since time may be spent in places you don't expect it to be.

In the drawCells  function in wasm-game-of-life/www/index.js , the 
fillStyle  property is set once for every cell in the universe, on every
animation frame:
for (let row = 0; row < height; row++) { 
  for (let col = 0; col < width; col++) { 
    const idx = getIndex(row, col); 
 
    ctx.fillStyle = cells[idx] === DEAD 
      ? DEAD_COLOR 
      : ALIVE_COLOR; 
 
    ctx.fillRect( 
      col * (CELL_SIZE + 1) + 1, 
      row * (CELL_SIZE + 1) + 1, 
      CELL_SIZE, 
      CELL_SIZE 
    ); 
  } 
} 

Now that we have discovered that setting fillStyle  is so expensive, what
can we do to avoid setting it so often? We need to change fillStyle

depending on whether a cell is alive or dead. If we set fillStyle = 

ALIVE_COLOR  and then draw every alive cell in one pass, and then set 
fillStyle = DEAD_COLOR  and draw every dead cell in another pass, then we
only end setting fillStyle  twice, rather than once for every cell.
// Alive cells. 
ctx.fillStyle = ALIVE_COLOR; 
for (let row = 0; row < height; row++) { 
  for (let col = 0; col < width; col++) { 
    const idx = getIndex(row, col); 



    if (cells[idx] !== Cell.Alive) { 
      continue; 
    } 
 
    ctx.fillRect( 
      col * (CELL_SIZE + 1) + 1, 
      row * (CELL_SIZE + 1) + 1, 
      CELL_SIZE, 
      CELL_SIZE 
    ); 
  } 
} 
 
// Dead cells. 
ctx.fillStyle = DEAD_COLOR; 
for (let row = 0; row < height; row++) { 
  for (let col = 0; col < width; col++) { 
    const idx = getIndex(row, col); 
    if (cells[idx] !== Cell.Dead) { 
      continue; 
    } 
 
    ctx.fillRect( 
      col * (CELL_SIZE + 1) + 1, 
      row * (CELL_SIZE + 1) + 1, 
      CELL_SIZE, 
      CELL_SIZE 
    ); 
  } 
} 

After saving these changes and refreshing http://localhost:8080/, rendering
is back to a smooth 60 frames per second.

If we take another profile, we can see that only about ten milliseconds are
spent in each animation frame now.

http://localhost:8080/


Breaking down a single frame, we see that the fillStyle  cost is gone,
and most of our frame's time is spent within fillRect , drawing each cell's
rectangle.

clbr://internal.invalid/book/OEBPS/images/game-of-life/drawCells-after-waterfall.png
clbr://internal.invalid/book/OEBPS/images/game-of-life/drawCells-after-flamegraph.png


Making Time Run Faster
Some folks don't like waiting around, and would prefer if instead of one

tick of the universe occurred per animation frame, nine ticks did. We can
modify the renderLoop  function in wasm-game-of-life/www/index.js  to
do this quite easily:
for (let i = 0; i < 9; i++) { 
  universe.tick(); 
} 

On my machine, this brings us back down to only 35 frames per second.
No good. We want that buttery 60!

Now we know that time is being spent in Universe::tick , so let's add
some Timer s to wrap various bits of it in console.time  and 
console.timeEnd  calls, and see where that leads us. My hypothesis is that
allocating a new vector of cells and freeing the old vector on every tick is
costly, and taking up a significant portion of our time budget.
pub fn tick(&mut self) { 
    let _timer = Timer::new("Universe::tick"); 
 
    let mut next = { 
        let _timer = Timer::new("allocate next cells"); 
        self.cells.clone() 
    }; 
 
    { 
        let _timer = Timer::new("new generation"); 
        for row in 0..self.height { 
            for col in 0..self.width { 
                let idx = self.get_index(row, col); 
                let cell = self.cells[idx]; 
                let live_neighbors = 
self.live_neighbor_count(row, col); 
 
                let next_cell = match (cell, live_neighbors) { 
                    // Rule 1: Any live cell with fewer than 



two live neighbours 
                    // dies, as if caused by underpopulation. 
                    (Cell::Alive, x) if x < 2 => Cell::Dead, 
                    // Rule 2: Any live cell with two or three 
live neighbours 
                    // lives on to the next generation. 
                    (Cell::Alive, 2) | (Cell::Alive, 3) => 
Cell::Alive, 
                    // Rule 3: Any live cell with more than 
three live 
                    // neighbours dies, as if by 
overpopulation. 
                    (Cell::Alive, x) if x > 3 => Cell::Dead, 
                    // Rule 4: Any dead cell with exactly three 
live neighbours 
                    // becomes a live cell, as if by 
reproduction. 
                    (Cell::Dead, 3) => Cell::Alive, 
                    // All other cells remain in the same 
state. 
                    (otherwise, _) => otherwise, 
                }; 
 
                next[idx] = next_cell; 
            } 
        } 
    } 
 
    let _timer = Timer::new("free old cells"); 
    self.cells = next; 
} 

Looking at the timings, it is clear that my hypothesis is incorrect: the vast
majority of time is spent actually calculating the next generation of cells.
Allocating and freeing a vector on every tick appears to have negligible cost,
surprisingly. Another reminder to always guide our efforts with profiling!



The next section requires the nightly  compiler. It's required because of
the test feature gate we're going to use for the benchmarks. Another tool we
will install is cargo benchcmp. It's a small utility for comparing micro-
benchmarks produced by cargo bench .

Let's write a native code #[bench]  doing the same thing that our
WebAssembly is doing, but where we can use more mature profiling tools.
Here is the new wasm-game-of-life/benches/bench.rs :
#![feature(test)] 
 
extern crate test; 
extern crate wasm_game_of_life; 
 
#[bench] 
fn universe_ticks(b: &mut test::Bencher) { 
    let mut universe = wasm_game_of_life::Universe::new(); 
 
    b.iter(|| { 
        universe.tick(); 
    }); 
} 

We also have to comment out all the #[wasm_bindgen]  annotations, and
the "cdylib"  bits from Cargo.toml  or else building native code will fail and
have link errors.

clbr://internal.invalid/book/OEBPS/images/game-of-life/console-time-in-universe-tick.png
https://doc.rust-lang.org/unstable-book/library-features/test.html
https://github.com/BurntSushi/cargo-benchcmp


With all that in place, we can run cargo bench | tee before.txt  to
compile and run our benchmark! The | tee before.txt  part will take the
output from cargo bench  and put in a file called before.txt .
$ cargo bench | tee before.txt 
    Finished release [optimized + debuginfo] target(s) in 0.0 
secs 
     Running target/release/deps/wasm_game_of_life-
91574dfbe2b5a124 
 
running 0 tests 
 
test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 
filtered out 
 
     Running target/release/deps/bench-8474091a05cfa2d9 
 
running 1 test 
test universe_ticks ... bench:     664,421 ns/iter (+/- 51,926) 
 
test result: ok. 0 passed; 0 failed; 0 ignored; 1 measured; 0 
filtered out 

This also tells us where the binary lives, and we can run the benchmarks
again, but this time under our operating system's profiler. In my case, I'm
running Linux, so perf  is the profiler I'll use:
$ perf record -g target/release/deps/bench-8474091a05cfa2d9 --
bench 
running 1 test 
test universe_ticks ... bench:     635,061 ns/iter (+/- 38,764) 
 
test result: ok. 0 passed; 0 failed; 0 ignored; 1 measured; 0 
filtered out 
 
[ perf record: Woken up 1 times to write data ] 
[ perf record: Captured and wrote 0.178 MB perf.data (2349 
samples) ] 

https://perf.wiki.kernel.org/index.php/Main_Page


Loading up the profile with perf report  shows that all of our time is
spent in Universe::tick , as expected:

perf  will annotate which instructions in a function time is being spent at
if you press a :

This tells us that 26.67% of time is being spent summing neighboring cells'
values, 23.41% of time is spent getting the neighbor's column index, and
another 15.42% of time is spent getting the neighbor's row index. Of these top
three most expensive instructions, the second and third are both costly div
instructions. These div s implement the modulo indexing logic in 
Universe::live_neighbor_count .

Recall the live_neighbor_count  definition inside wasm-game-of-

life/src/lib.rs :

clbr://internal.invalid/book/OEBPS/images/game-of-life/bench-perf-report.png
clbr://internal.invalid/book/OEBPS/images/game-of-life/bench-perf-annotate.png


fn live_neighbor_count(&self, row: u32, column: u32) -> u8 { 
    let mut count = 0; 
    for delta_row in [self.height - 1, 0, 1].iter().cloned() { 
        for delta_col in [self.width - 1, 0, 1].iter().cloned() 
{ 
            if delta_row == 0 && delta_col == 0 { 
                continue; 
            } 
 
            let neighbor_row = (row + delta_row) % self.height; 
            let neighbor_col = (column + delta_col) % 
self.width; 
            let idx = self.get_index(neighbor_row, 
neighbor_col); 
            count += self.cells[idx] as u8; 
        } 
    } 
    count 
} 

The reason we used modulo was to avoid cluttering up the code with if
branches for the first or last row or column edge cases. But we are paying the
cost of a div  instruction even for the most common case, when neither row
nor column  is on the edge of the universe and they don't need the modulo
wrapping treatment. Instead, if we use if s for the edge cases and unroll this
loop, the branches should be very well-predicted by the CPU's branch
predictor.

Let's rewrite live_neighbor_count  like this:
fn live_neighbor_count(&self, row: u32, column: u32) -> u8 { 
    let mut count = 0; 
 
    let north = if row == 0 { 
        self.height - 1 
    } else { 
        row - 1 
    }; 



 
    let south = if row == self.height - 1 { 
        0 
    } else { 
        row + 1 
    }; 
 
    let west = if column == 0 { 
        self.width - 1 
    } else { 
        column - 1 
    }; 
 
    let east = if column == self.width - 1 { 
        0 
    } else { 
        column + 1 
    }; 
 
    let nw = self.get_index(north, west); 
    count += self.cells[nw] as u8; 
 
    let n = self.get_index(north, column); 
    count += self.cells[n] as u8; 
 
    let ne = self.get_index(north, east); 
    count += self.cells[ne] as u8; 
 
    let w = self.get_index(row, west); 
    count += self.cells[w] as u8; 
 
    let e = self.get_index(row, east); 
    count += self.cells[e] as u8; 
 
    let sw = self.get_index(south, west); 
    count += self.cells[sw] as u8; 
 



    let s = self.get_index(south, column); 
    count += self.cells[s] as u8; 
 
    let se = self.get_index(south, east); 
    count += self.cells[se] as u8; 
 
    count 
} 

Now let's run the benchmarks again! This time output it to after.txt .
$ cargo bench | tee after.txt 
   Compiling wasm_game_of_life v0.1.0 
(file:///home/fitzgen/wasm_game_of_life) 
    Finished release [optimized + debuginfo] target(s) in 0.82 
secs 
     Running target/release/deps/wasm_game_of_life-
91574dfbe2b5a124 
 
running 0 tests 
 
test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 
filtered out 
 
     Running target/release/deps/bench-8474091a05cfa2d9 
 
running 1 test 
test universe_ticks ... bench:      87,258 ns/iter (+/- 14,632) 
 
test result: ok. 0 passed; 0 failed; 0 ignored; 1 measured; 0 
filtered out 

That looks a whole lot better! We can see just how much better it is with
the benchcmp  tool and the two text files we created before:
$ cargo benchcmp before.txt after.txt 
 name            before.txt ns/iter  after.txt ns/iter  diff 
ns/iter   diff %  speedup 



 universe_ticks  664,421             87,258 
-577,163  -86.87%   x 7.61 

Wow! 7.61x speed up!
WebAssembly intentionally maps closely to common hardware

architectures, but we do need to make sure that this native code speed up
translates into a WebAssembly speed up as well.

Let's rebuild the .wasm  with wasm-pack build  and refresh
http://localhost:8080/. On my machine, the page is running at 60 frames per
second again, and recording another profile with the browser's profiler reveals
that each animation frame is taking about ten milliseconds.

Success!

http://localhost:8080/
clbr://internal.invalid/book/OEBPS/images/game-of-life/waterfall-after-branches-and-unrolling.png


Exercises

At this point, the next lowest hanging fruit for speeding up 
Universe::tick  is removing the allocation and free. Implement double
buffering of cells, where the Universe  maintains two vectors, never
frees either of them, and never allocates new buffers in tick .

Implement the alternative, delta-based design from the "Implementing
Life" chapter, where the Rust code returns a list of cells that changed
states to JavaScript. Does this make rendering to <canvas>  faster? Can
you implement this design without allocating a new list of deltas on
every tick?

As our profiling has shown us, 2D <canvas>  rendering is not
particularly fast. Replace the 2D canvas renderer with a WebGL renderer.
How much faster is the WebGL version? How large can you make the
universe before WebGL rendering is a bottleneck?

https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API


Shrinking .wasm Size
For .wasm  binaries that we ship to clients over the network, such as our

Game of Life Web application, we want to keep an eye on code size. The
smaller our .wasm  is, the faster our page loads get, and the happier our
users are.



How small can we get our Game of Life .wasm
binary via build configuration?

Take a moment to review the build configuration options we can tweak
to get smaller .wasm  code sizes.

With the default release build configuration (without debug symbols),
our WebAssembly binary is 29,410 bytes:
$ wc -c pkg/wasm_game_of_life_bg.wasm 
29410 pkg/wasm_game_of_life_bg.wasm 

After enabling LTO, setting opt-level = "z" , and running wasm-opt 
-Oz , the resulting .wasm  binary shrinks to only 17,317 bytes:
$ wc -c pkg/wasm_game_of_life_bg.wasm 
17317 pkg/wasm_game_of_life_bg.wasm 

And if we compress it with gzip  (which nearly every HTTP server
does) we get down to a measly 9,045 bytes!
$ gzip -9 < pkg/wasm_game_of_life_bg.wasm | wc -c 
9045 



Exercises

Use the wasm-snip  tool to remove the panicking infrastructure
functions from our Game of Life's .wasm  binary. How many bytes
does it save?

Build our Game of Life crate with and without wee_alloc  as its
global allocator. The rustwasm/wasm-pack-template  template that
we cloned to start this project has a "wee_alloc" cargo feature that you
can enable by adding it to the default  key in the [features]  section
of wasm-game-of-life/Cargo.toml :
[features] 
default = ["wee_alloc"] 

How much size does using wee_alloc  shave off of the .wasm
binary?

We only ever instantiate a single Universe , so rather than
providing a constructor, we can export operations that manipulate a
single static mut  global instance. If this global instance also uses the
double buffering technique discussed in earlier chapters, we can make
those buffers also be static mut  globals. This removes all dynamic
allocation from our Game of Life implementation, and we can make it
a #![no_std]  crate that doesn't include an allocator. How much size
was removed from the .wasm  by completely removing the allocator
dependency?

https://github.com/rustwasm/wee_alloc


Publishing to npm
Now that we have a working, fast, and small wasm-game-of-life

package, we can publish it to npm so other JavaScript developers can reuse
it, if they ever need an off-the-shelf Game of Life implementation.



Prerequisites
First, make sure you have an npm account.
Second, make sure you are logged into your account locally, by running

this command:
wasm-pack login 

https://www.npmjs.com/signup


Publishing
Make sure that the wasm-game-of-life/pkg  build is up to date by

running wasm-pack  inside the wasm-game-of-life  directory:
wasm-pack build 

Take a moment to check out the contents of wasm-game-of-life/pkg
now, this is what we are publishing to npm in the next step!

When you're ready, run wasm-pack publish  to upload the package to
npm:
wasm-pack publish 

That's all it takes to publish to npm!
...except other folks have also done this tutorial, and therefore the wasm-

game-of-life  name is taken on npm, and that last command probably
didn't work.

Open up wasm-game-of-life/Cargo.toml  and add your username to
the end of the name  to disambiguate the package in a unique way:
[package] 
name = "wasm-game-of-life-my-username" 

Then, rebuild and publish again:
wasm-pack build 
wasm-pack publish 

This time it should work!



Reference
This section contains reference material for Rust and WebAssembly

development. It is not intended to provide a narrative and be read start to
finish. Instead, each subsection should stand on its own.



Crates You Should Know
This is a curated list of awesome crates you should know about for doing

Rust and WebAssembly development.
You can also browse all the crates published to crates.io in the

WebAssembly category.

https://crates.io/categories/wasm


Interacting with JavaScript and the DOM
wasm-bindgen | crates.io | repository

wasm-bindgen  facilitates high-level interactions between Rust and
JavaScript. It allows one to import JavaScript things into Rust and export
Rust things to JavaScript.

wasm-bindgen-futures | crates.io | repository
wasm-bindgen-futures  is a bridge connecting JavaScript Promise s

and Rust Future s. It can convert in both directions and is useful when
working with asynchronous tasks in Rust, and allows interacting with DOM
events and I/O operations.

js-sys | crates.io | repository
Raw wasm-bindgen  imports for all the JavaScript global types and

methods, such as Object , Function , eval , etc. These APIs are portable
across all standard ECMAScript environments, not just the Web, such as
Node.js.

web-sys | crates.io | repository
Raw wasm-bindgen  imports for all the Web's APIs, such as DOM

manipulation, setTimeout , Web GL, Web Audio, etc.

https://crates.io/crates/wasm-bindgen
https://github.com/rustwasm/wasm-bindgen
https://crates.io/crates/wasm-bindgen-futures
https://github.com/rustwasm/wasm-bindgen/tree/master/crates/futures
https://crates.io/crates/js-sys
https://github.com/rustwasm/wasm-bindgen/tree/master/crates/js-sys
https://crates.io/crates/web-sys
https://github.com/rustwasm/wasm-bindgen/tree/master/crates/web-sys


Error Reporting and Logging
console_error_panic_hook | crates.io | repository

This crate lets you debug panics on wasm32-unknown-unknown  by
providing a panic hook that forwards panic messages to console.error .

console_log | crates.io | repository
This crate provides a backend for the log  crate that routes logged

messages to the devtools console.

https://crates.io/crates/console_error_panic_hook
https://github.com/rustwasm/console_error_panic_hook
https://crates.io/crates/console_log
https://github.com/iamcodemaker/console_log
https://crates.io/crates/log


Dynamic Allocation
wee_alloc | crates.io | repository

The Wasm-Enabled, Elfin Allocator. A small (~1K uncompressed 
.wasm ) allocator implementation for when code size is a greater concern
than allocation performance.

https://crates.io/crates/wee_alloc
https://github.com/rustwasm/wee_alloc


Parsing and Generating .wasm Binaries

parity-wasm | crates.io | repository
Low-level WebAssembly format library for serializing, deserializing,

and building .wasm  binaries. Good support for well-known custom
sections, such as the "names" section and "reloc.WHATEVER" sections.

wasmparser | crates.io | repository
A simple, event-driven library for parsing WebAssembly binary files.

Provides the byte offsets of each parsed thing, which is necessary when
interpreting relocs, for example.

https://crates.io/crates/parity-wasm
https://github.com/paritytech/parity-wasm
https://crates.io/crates/wasmparser
https://github.com/yurydelendik/wasmparser.rs


Interpreting and Compiling WebAssembly
wasmi | crates.io | repository

An embeddable WebAssembly interpreter from Parity.

cranelift-wasm | crates.io | repository
Compile WebAssembly to the native host's machine code. Part of the

Cranelift (né Cretonne) code generator project.

https://crates.io/crates/wasmi
https://github.com/paritytech/wasmi
https://crates.io/crates/cranelift-wasm
https://github.com/bytecodealliance/wasmtime/tree/master/cranelift


Tools You Should Know
This is a curated list of awesome tools you should know about when

doing Rust and WebAssembly development.



Development, Build, and Workflow Orchestration
wasm-pack | repository

wasm-pack  seeks to be a one-stop shop for building and working with
Rust- generated WebAssembly that you would like to interoperate with
JavaScript, on the Web or with Node.js. wasm-pack  helps you build and
publish Rust-generated WebAssembly to the npm registry to be used
alongside any other JavaScript package in workflows that you already use.

https://github.com/rustwasm/wasm-pack


Optimizing and Manipulating .wasm Binaries

wasm-opt | repository
The wasm-opt  tool reads WebAssembly as input, runs transformation,

optimization, and/or instrumentation passes on it, and then emits the
transformed WebAssembly as output. Running it on the .wasm  binaries
produced by LLVM by way of rustc  will usually create .wasm  binaries
that are both smaller and execute faster. This tool is a part of the binaryen
project.

wasm2js | repository
The wasm2js  tool compiles WebAssembly into "almost asm.js". This is

great for supporting browsers that don't have a WebAssembly
implementation, such as Internet Explorer 11. This tool is a part of the 
binaryen  project.

wasm-gc | repository
A small tool to garbage collect a WebAssembly module and remove all

unneeded exports, imports, functions, etc. This is effectively a --gc-

sections  linker flag for WebAssembly.
You don't usually need to use this tool yourself because of two reasons:

1. rustc now has a new enough version of lld that it supports the --gc-
sections flag for WebAssembly. This is automatically enabled for
LTO builds.

2. The wasm-bindgen CLI tool runs wasm-gc for you automatically.

wasm-snip | repository
wasm-snip  replaces a WebAssembly function's body with an 

unreachable  instruction.
Maybe you know that some function will never be called at runtime, but

the compiler can't prove that at compile time? Snip it! Then run wasm-gc

https://github.com/WebAssembly/binaryen
https://github.com/WebAssembly/binaryen
https://github.com/alexcrichton/wasm-gc
https://github.com/rustwasm/wasm-snip


again and all the functions it transitively called (which could also never be
called at runtime) will get removed too.

This is useful for forcibly removing Rust's panicking infrastructure in
non-debug production builds.



Inspecting .wasm Binaries

twiggy | repository
twiggy  is a code size profiler for .wasm  binaries. It analyzes a binary's

call graph to answer questions like:

Why was this function included in the binary in the first place? I.e.
which exported functions are transitively calling it?
What is the retained size of this function? I.e. how much space would
be saved if I removed it and all the functions that become dead code
after its removal.

Use twiggy  to make your binaries slim!

wasm-objdump | repository
Print low-level details about a .wasm  binary and each of its sections.

Also supports disassembling into the WAT text format. It's like objdump
but for WebAssembly. This is a part of the WABT project.

wasm-nm | repository
List the imported, exported, and private function symbols defined within

a .wasm  binary. It's like nm  but for WebAssembly.

https://github.com/rustwasm/twiggy
https://github.com/WebAssembly/wabt
https://github.com/fitzgen/wasm-nm


Project Templates
The Rust and WebAssembly working group curates and maintains a

variety of project templates to help you kickstart new projects and hit the
ground running.



wasm-pack-template
This template is for starting a Rust and WebAssembly project to be used

with wasm-pack .
Use cargo generate  to clone this project template:

cargo install cargo-generate 
cargo generate --git https://github.com/rustwasm/wasm-pack-
template.git 

https://github.com/rustwasm/wasm-pack-template
https://github.com/rustwasm/wasm-pack


create-wasm-app
This template is for JavaScript projects that consume packages from

npm that were created from Rust with wasm-pack .
Use it with npm init :

mkdir my-project 
cd my-project/ 
npm init wasm-app 

This template is often used alongside wasm-pack-template , where 
wasm-pack-template  projects are installed locally with npm link , and
pulled in as a dependency for a create-wasm-app  project.

https://github.com/rustwasm/create-wasm-app
https://github.com/rustwasm/wasm-pack


rust-webpack-template
This template comes pre-configured with all the boilerplate for

compiling Rust to WebAssembly and hooking that directly into a Webpack
build pipeline with Webpack's rust-loader .

Use it with npm init :
mkdir my-project 
cd my-project/ 
npm init rust-webpack 

https://github.com/rustwasm/rust-webpack-template
https://github.com/wasm-tool/rust-loader/


Debugging Rust-Generated
WebAssembly

This section contains tips for debugging Rust-generated WebAssembly.



Building with Debug Symbols
⚡  When debugging, always make sure you are building with

debug symbols!

If you don't have debug symbols enabled, then the "name"  custom
section won't be present in the compiled .wasm  binary, and stack traces will
have function names like wasm-function[42]  rather than the Rust name of
the function, like 
wasm_game_of_life::Universe::live_neighbor_count .

When using a "debug" build (aka wasm-pack build --debug  or cargo 
build ) debug symbols are enabled by default.

With a "release" build, debug symbols are not enabled by default. To
enable debug symbols, ensure that you debug = true  in the 
[profile.release]  section of your Cargo.toml :
[profile.release] 
debug = true 



Logging with the console APIs
Logging is one of the most effective tools we have for proving and

disproving hypotheses about why our programs are buggy. On the Web, the 
console.log  function is the way to log messages to the browser's
developer tools console.

We can use the web-sys  crate to get access to the console  logging
functions:
extern crate web_sys; 
 
web_sys::console::log_1(&"Hello, world!".into()); 

Alternatively, the console.error  function has the same signature as 
console.log , but developer tools tend to also capture and display a stack
trace alongside the logged message when console.error  is used.

References

Using console.log  with the web-sys  crate:

web_sys::console::log  takes an array of values to log
web_sys::console::log_1  logs a single value
web_sys::console::log_2  logs two values
Etc...

Using console.error  with the web-sys  crate:

web_sys::console::error  takes an array of values to log
web_sys::console::error_1  logs a single value
web_sys::console::error_2  logs two values
Etc...

The console  object on MDN
Firefox Developer Tools — Web Console
Microsoft Edge Developer Tools — Console
Get Started with the Chrome DevTools Console

https://developer.mozilla.org/en-US/docs/Web/API/Console/log
https://rustwasm.github.io/wasm-bindgen/web-sys/index.html
https://developer.mozilla.org/en-US/docs/Web/API/Console/error
https://rustwasm.github.io/wasm-bindgen/api/web_sys/console/fn.log.html
https://rustwasm.github.io/wasm-bindgen/api/web_sys/console/fn.log_1.html
https://rustwasm.github.io/wasm-bindgen/api/web_sys/console/fn.log_2.html
https://rustwasm.github.io/wasm-bindgen/api/web_sys/console/fn.error.html
https://rustwasm.github.io/wasm-bindgen/api/web_sys/console/fn.error_1.html
https://rustwasm.github.io/wasm-bindgen/api/web_sys/console/fn.error_2.html
https://developer.mozilla.org/en-US/docs/Web/API/Console
https://developer.mozilla.org/en-US/docs/Tools/Web_Console
https://docs.microsoft.com/en-us/microsoft-edge/devtools-guide/console
https://developers.google.com/web/tools/chrome-devtools/console/get-started


Logging Panics
The console_error_panic_hook  crate logs unexpected panics to the

developer console via console.error . Rather than getting cryptic,
difficult-to-debug RuntimeError: unreachable executed  error messages,
this gives you Rust's formatted panic message.

All you need to do is install the hook by calling 
console_error_panic_hook::set_once()  in an initialization function or
common code path:
#[wasm_bindgen] 
pub fn init_panic_hook() { 
    console_error_panic_hook::set_once(); 
} 

https://github.com/rustwasm/console_error_panic_hook


Using a Debugger
Unfortunately, the debugging story for WebAssembly is still immature.

On most Unix systems, DWARF is used to encode the information that a
debugger needs to provide source-level inspection of a running program.
There is an alternative format that encodes similar information on
Windows. Currently, there is no equivalent for WebAssembly. Therefore,
debuggers currently provide limited utility, and we end up stepping through
raw WebAssembly instructions emitted by the compiler, rather than the
Rust source text we authored.

There is a sub-charter of the W3C WebAssembly group for
debugging, so expect this story to improve in the future!

Nonetheless, debuggers are still useful for inspecting the JavaScript that
interacts with our WebAssembly, and inspecting raw wasm state.

References

Firefox Developer Tools — Debugger
Microsoft Edge Developer Tools — Debugger
Get Started with Debugging JavaScript in Chrome DevTools

http://dwarfstd.org/
https://github.com/WebAssembly/debugging
https://developer.mozilla.org/en-US/docs/Tools/Debugger
https://docs.microsoft.com/en-us/microsoft-edge/devtools-guide/debugger
https://developers.google.com/web/tools/chrome-devtools/javascript/


Avoid the Need to Debug WebAssembly in the
First Place

If the bug is specific to interactions with JavaScript or Web APIs, then
write tests with wasm-bindgen-test .

If a bug does not involve interaction with JavaScript or Web APIs, then
try to reproduce it as a normal Rust #[test]  function, where you can
leverage your OS's mature native tooling when debugging. Use testing
crates like quickcheck  and its test case shrinkers to mechanically reduce
test cases. Ultimately, you will have an easier time finding and fixing bugs
if you can isolate them in a smaller test cases that don't require interacting
with JavaScript.

Note that in order to run native #[test] s without compiler and linker
errors, you will need to ensure that "rlib"  is included in the [lib.crate-
type]  array in your Cargo.toml  file.
[lib] 
crate-type ["cdylib", "rlib"] 

https://rustwasm.github.io/wasm-bindgen/wasm-bindgen-test/index.html
https://crates.io/crates/quickcheck


Time Profiling
This section describes how to profile Web pages using Rust and

WebAssembly where the goal is improving throughput or latency.

⚡  Always make sure you are using an optimized build when
profiling! wasm-pack build  will build with optimizations by default.



Available Tools
The window.performance.now() Timer

The performance.now()  function returns a monotonic timestamp
measured in milliseconds since the Web page was loaded.

Calling performance.now  has little overhead, so we can create simple,
granular measurements from it without distorting the performance of the rest
of the system and inflicting bias upon our measurements.

We can use it to time various operations, and we can access 
window.performance.now()  via the web-sys  crate:
extern crate web_sys; 
 
fn now() -> f64 { 
    web_sys::window() 
        .expect("should have a Window") 
        .performance() 
        .expect("should have a Performance") 
        .now() 
} 

The web_sys::window  function
The web_sys::Window::performance  method
The web_sys::Performance::now  method

Developer Tools Profilers
All Web browsers' built-in developer tools include a profiler. These

profilers display which functions are taking the most time with the usual kinds
of visualizations like call trees and flame graphs.

If you build with debug symbols so that the "name" custom section is
included in the wasm binary, then these profilers should display the Rust
function names instead of something opaque like wasm-function[123] .

Note that these profilers won't show inlined functions, and since Rust and
LLVM rely on inlining so heavily, the results might still end up a bit
perplexing.

https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://rustwasm.github.io/wasm-bindgen/web-sys/index.html
https://rustwasm.github.io/wasm-bindgen/api/web_sys/fn.window.html
https://rustwasm.github.io/wasm-bindgen/api/web_sys/struct.Window.html#method.performance
https://rustwasm.github.io/wasm-bindgen/api/web_sys/struct.Performance.html#method.now


Resources

Firefox Developer Tools — Performance
Microsoft Edge Developer Tools — Performance
Chrome DevTools JavaScript Profiler

The console.time and console.timeEnd Functions
The console.time  and console.timeEnd  functions allow you to log the

timing of named operations to the browser's developer tools console. You call 
console.time("some operation")  when the operation begins, and call 
console.timeEnd("some operation")  when it finishes. The string label
naming the operation is optional.

You can use these functions directly via the web-sys  crate:

web_sys::console::time_with_label("some operation")

web_sys::console::time_end_with_label("some operation")

Here is a screenshot of console.time  logs in the browser's console:

clbr://internal.invalid/book/OEBPS/images/game-of-life/profiler-with-rust-names.png
https://developer.mozilla.org/en-US/docs/Tools/Performance
https://docs.microsoft.com/en-us/microsoft-edge/devtools-guide/performance
https://developers.google.com/web/tools/chrome-devtools/rendering-tools/js-execution
https://developer.mozilla.org/en-US/docs/Web/API/Console/time
https://rustwasm.github.io/wasm-bindgen/web-sys/index.html
https://rustwasm.github.io/wasm-bindgen/api/web_sys/console/fn.time_with_label.html
https://rustwasm.github.io/wasm-bindgen/api/web_sys/console/fn.time_end_with_label.html


Additionally, console.time  and console.timeEnd  logs will show up in
your browser's profiler's "timeline" or "waterfall" view:

Using #[bench] with Native Code
The same way we can often leverage our operating system's native code

debugging tools by writing #[test] s rather than debugging on the Web, we
can leverage our operating system's native code profiling tools by writing #
[bench]  functions.

clbr://internal.invalid/book/OEBPS/images/game-of-life/console-time.png
clbr://internal.invalid/book/OEBPS/images/game-of-life/console-time-in-profiler.png


Write your benchmarks in the benches  subdirectory of your crate. Make
sure that your crate-type  includes "rlib"  or else the bench binaries won't
be able to link your main lib.

However! Make sure that you know the bottleneck is in the WebAssembly
before investing much energy in native code profiling! Use your browser's
profiler to confirm this, or else you risk wasting your time optimizing code
that isn't hot.

Resources

Using the perf  profiler on Linux
Using the Instruments.app profiler on macOS
The VTune profiler supports Windows and Linux

http://www.brendangregg.com/perf.html
https://help.apple.com/instruments/mac/current/
https://software.intel.com/en-us/vtune


Shrinking .wasm Code Size
This section will teach you how to optimize your .wasm  build for a

small code size footprint, and how to identify opportunities to change your
Rust source such that less .wasm  code is emitted.



Why Care About Code Size?
When serving a .wasm  file over the network, the smaller it is, the

faster the client can download it. Faster .wasm  downloads lead to faster
page load times, and that leads to happier users.

However, it's important to remember though that code size likely isn't
the end-all-be-all metric you're interested in, but rather something much
more vague and hard to measure like "time to first interaction". While code
size plays a large factor in this measurement (can't do anything if you don't
even have all the code yet!) it's not the only factor.

WebAssembly is typically served to users gzip'd so you'll want to be sure
to compare differences in gzip'd size for transfer times over the wire. Also
keep in mind that the WebAssembly binary format is quite amenable to gzip
compression, often getting over 50% reductions in size.

Furthermore, WebAssembly's binary format is optimized for very fast
parsing and processing. Browsers nowadays have "baseline compilers"
which parses WebAssembly and emits compiled code as fast as wasm can
come in over the network. This means that if you're using 
instantiateStreaming  the second the Web request is done the
WebAssembly module is probably ready to go. JavaScript, on the other
hand, can often take longer to not only parse but also get up to speed with
JIT compilation and such.

And finally, remember that WebAssembly is also far more optimized
than JavaScript for execution speed. You'll want to be sure to measure for
runtime comparisons between JavaScript and WebAssembly to factor that
in to how important code size is.

All this to say basically don't dismay immediately if your .wasm  file is
larger than expected! Code size may end up only being one of many factors
in the end-to-end story. Comparisons between JavaScript and
WebAssembly that only look at code size are missing the forest for the
trees.

https://hacks.mozilla.org/2018/01/making-webassembly-even-faster-firefoxs-new-streaming-and-tiering-compiler/


Optimizing Builds for Code Size
There are a bunch of configuration options we can use to get rustc  to

make smaller .wasm  binaries. In some cases, we are trading longer
compile times for smaller .wasm  sizes. In other cases, we are trading
runtime speed of the WebAssembly for smaller code size. We should be
cognizant of the trade offs of each option, and in the cases where we trade
runtime speed for code size, profile and measure to make an informed
decision about whether the trade is worth it.

Compiling with Link Time Optimizations (LTO)
In Cargo.toml , add lto = true  in the 

[profile.release]  section:
[profile.release] 
lto = true 

This gives LLVM many more opportunities to inline and prune
functions. Not only will it make the .wasm  smaller, but it will also make it
faster at runtime! The downside is that compilation will take longer.

Tell LLVM to Optimize for Size Instead of Speed
LLVM's optimization passes are tuned to improve speed, not size, by

default. We can change the goal to code size by modifying the 
[profile.release]  section in Cargo.toml  to this:
[profile.release] 
opt-level = 's' 

Or, to even more aggressively optimize for size, at further potential
speed costs:
[profile.release] 
opt-level = 'z' 

Note that, surprisingly enough, opt-level = "s"  can sometimes
result in smaller binaries than opt-level = "z" . Always measure!

Use the wasm-opt Tool



The Binaryen toolkit is a collection of WebAssembly-specific compiler
tools. It goes much further than LLVM's WebAssembly backend does, and
using its wasm-opt  tool to post-process a .wasm  binary generated by
LLVM can often get another 15-20% savings on code size. It will often
produce runtime speed ups at the same time!
# Optimize for size. 
wasm-opt -Os -o output.wasm input.wasm 
 
# Optimize aggressively for size. 
wasm-opt -Oz -o output.wasm input.wasm 
 
# Optimize for speed. 
wasm-opt -O -o output.wasm input.wasm 
 
# Optimize aggressively for speed. 
wasm-opt -O3 -o output.wasm input.wasm 

Notes about Debug Information
One of the biggest contributors to wasm binary size can be debug

information and the names  section of the wasm binary. The wasm-
pack  tool, however, removes debuginfo by default. Additionally wasm-
opt  removes the names  section by default unless -g  is also specified.

This means that if you follow the above steps you should by default not
have either debuginfo or the names section in the wasm binary. If, however,
you are manually otherwise preserving this debug information in the wasm
binary be sure to be mindful of this!

https://github.com/WebAssembly/binaryen


Size Profiling
If tweaking build configurations to optimize for code size isn't resulting

in a small enough .wasm  binary, it is time to do some profiling to see
where the remaining code size is coming from.

⚡  Just like how we let time profiling guide our speed up efforts,
we want to let size profiling guide our code size shrinking efforts. Fail
to do this and you risk wasting your own time!

The twiggy Code Size Profiler
twiggy  is a code size profiler that supports WebAssembly as input. It

analyzes a binary's call graph to answer questions like:

Why was this function included in the binary in the first place?
What is the retained size of this function? I.e. how much space

would be saved if I removed it and all the functions that become dead
code after its removal?

$ twiggy top -n 20 pkg/wasm_game_of_life_bg.wasm 
 Shallow Bytes │ Shallow % │ Item 
───────────────┼───────────┼─────────────────────
─────────────────────────────────────────────────
────────────────── 
          9158 ┊    19.65% ┊ "function names" 
subsection 
          3251 ┊     6.98% ┊ 
dlmalloc::dlmalloc::Dlmalloc::malloc::h632d10c184
fef6e8 
          2510 ┊     5.39% ┊ <str as 
core::fmt::Debug>::fmt::he0d87479d1c208ea 
          1737 ┊     3.73% ┊ data[0] 
          1574 ┊     3.38% ┊ data[3] 
          1524 ┊     3.27% ┊ 
core::fmt::Formatter::pad::h6825605b326ea2c5 
          1413 ┊     3.03% ┊ 

https://github.com/rustwasm/twiggy


std::panicking::rust_panic_with_hook::h1d3660f2e3
39513d 
          1200 ┊     2.57% ┊ 
core::fmt::Formatter::pad_integral::h06996c5859a5
7ced 
          1131 ┊     2.43% ┊ 
core::str::slice_error_fail::h6da90c14857ae01b 
          1051 ┊     2.26% ┊ 
core::fmt::write::h03ff8c7a2f3a9605 
           931 ┊     2.00% ┊ data[4] 
           864 ┊     1.85% ┊ 
dlmalloc::dlmalloc::Dlmalloc::free::h27b781e3b06b
db05 
           841 ┊     1.80% ┊ <char as 
core::fmt::Debug>::fmt::h07742d9f4a8c56f2 
           813 ┊     1.74% ┊ __rust_realloc 
           708 ┊     1.52% ┊ 
core::slice::memchr::memchr::h6243a1b2885fdb85 
           678 ┊     1.45% ┊ 
<core::fmt::builders::PadAdapter<'a> as 
core::fmt::Write>::write_str::h96b72fb7457d3062 
           631 ┊     1.35% ┊ universe_tick 
           631 ┊     1.35% ┊ 
dlmalloc::dlmalloc::Dlmalloc::dispose_chunk::hae6
c5c8634e575b8 
           514 ┊     1.10% ┊ 
std::panicking::default_hook::
{{closure}}::hfae0c204085471d5 
           503 ┊     1.08% ┊ <&'a T as 
core::fmt::Debug>::fmt::hba207e4f7abaece6 

Manually Inspecting LLVM-IR
LLVM-IR is the final intermediate representation in the compiler

toolchain before LLVM generates WebAssembly. Therefore, it is very
similar to the WebAssembly that is ultimately emitted. More LLVM-IR



generally means more .wasm  size, and if a function takes up 25% of the
LLVM-IR, then it generally will take up 25% of the .wasm . While these
numbers only hold in general, the LLVM-IR has crucial information that is
not present in the .wasm  (because of WebAssembly's lack of a debugging
format like DWARF): which subroutines were inlined into a given function.

You can generate LLVM-IR with this cargo  command:
cargo rustc --release -- --emit llvm-ir 

Then, you can use find  to locate the .ll  file containing the LLVM-
IR in cargo 's target  directory:
find target/release -type f -name '*.ll' 

References

LLVM Language Reference Manual

https://llvm.org/docs/LangRef.html


More Invasive Tools and Techniques
Tweaking build configurations to get smaller .wasm  binaries is pretty

hands off. When you need to go the extra mile, however, you are prepared
to use more invasive techniques, like rewriting source code to avoid bloat.
What follows is a collection of get-your-hands-dirty techniques you can
apply to get smaller code sizes.

Avoid String Formatting
format! , to_string , etc... can bring in a lot of code bloat. If

possible, only do string formatting in debug mode, and in release mode use
static strings.

Avoid Panicking
This is definitely easier said than done, but tools like twiggy  and

manually inspecting LLVM-IR can help you figure out which functions are
panicking.

Panics do not always appear as a panic!()  macro invocation. They
arise implicitly from many constructs, such as:

Indexing a slice panics on out of bounds indices: my_slice[i]
Division will panic if the divisor is zero: dividend / 

divisor
Unwrapping an Option  or Result : opt.unwrap()  or 

res.unwrap()
The first two can be translated into the third. Indexing can be replaced

with fallible my_slice.get(i)  operations. Division can be replaced
with checked_div  calls. Now we only have a single case to contend
with.

Unwrapping an Option  or Result  without panicking comes in two
flavors: safe and unsafe.

The safe approach is to abort  instead of panicking when encountering
a None  or an Error :



#[inline] 
pub fn unwrap_abort<T>(o: Option<T>) -> T { 
    use std::process; 
    match o { 
        Some(t) => t, 
        None => process::abort(), 
    } 
} 

Ultimately, panics translate into aborts in wasm32-unknown-
unknown  anyways, so this gives you the same behavior but without the
code bloat.

Alternatively, the unreachable  crate provides an unsafe 
unchecked_unwrap  extension method for Option  and Result
which tells the Rust compiler to assume that the Option  is Some  or the 
Result  is Ok . It is undefined behavior what happens if that assumption
does not hold. You really only want to use this unsafe approach when you
110% know that the assumption holds, and the compiler just isn't smart
enough to see it. Even if you go down this route, you should have a debug
build configuration that still does the checking, and only use unchecked
operations in release builds.

Avoid Allocation or Switch to wee_alloc
Rust's default allocator for WebAssembly is a port of dlmalloc  to

Rust. It weighs in somewhere around ten kilobytes. If you can completely
avoid dynamic allocation, then you should be able to shed those ten
kilobytes.

Completely avoiding dynamic allocation can be very difficult. But
removing allocation from hot code paths is usually much easier (and usually
helps make those hot code paths faster, as well). In these cases, replacing
the default global allocator with wee_alloc  should save you most (but
not quite all) of those ten kilobytes. wee_alloc  is an allocator designed
for situations where you need some kind of allocator, but do not need a
particularly fast allocator, and will happily trade allocation speed for
smaller code size.

https://crates.io/crates/unreachable
https://docs.rs/unreachable/1.0.0/unreachable/trait.UncheckedOptionExt.html#tymethod.unchecked_unwrap
https://github.com/rustwasm/wee_alloc


Use Trait Objects Instead of Generic Type
Parameters

When you create generic functions that use type parameters, like this:
fn whatever<T: MyTrait>(t: T) { ... } 

Then rustc  and LLVM will create a new copy of the function for each
T  type that the function is used with. This presents many opportunities for
compiler optimizations based on which particular T  each copy is working
with, but these copies add up quickly in terms of code size.

If you use trait objects instead of type parameters, like this:
fn whatever(t: Box<MyTrait>) { ... } 
// or 
fn whatever(t: &MyTrait) { ... } 
// etc... 

Then dynamic dispatch via virtual calls is used, and only a single version
of the function is emitted in the .wasm . The downside is the loss of the
compiler optimization opportunities and the added cost of indirect,
dynamically dispatched function calls.

Use the wasm-snip Tool
wasm-snip  replaces a WebAssembly function's body with an 

unreachable  instruction. This is a rather heavy, blunt hammer for
functions that kind of look like nails if you squint hard enough.

Maybe you know that some function will never be called at runtime, but
the compiler can't prove that at compile time? Snip it! Afterwards, run 
wasm-opt  again with the --dce  flag, and all the functions that the
snipped function transitively called (which could also never be called at
runtime) will get removed too.

This tool is particularly useful for removing the panicking infrastructure,
since panics ultimately translate into traps anyways.

https://github.com/fitzgen/wasm-snip


JavaScript Interoperation



Importing and Exporting JS Functions
From the Rust Side

When using wasm within a JS host, importing and exporting functions
from the Rust side is straightforward: it works very similarly to C.

WebAssembly modules declare a sequence of imports, each with a
module name and an import name. The module name for an extern { ... 
}  block can be specified using #[link(wasm_import_module)] , currently
it defaults to "env".

Exports have only a single name. In addition to any extern  functions
the WebAssembly instance's default linear memory is exported as
"memory".
// import a JS function called `foo` from the module `mod` 
#[link(wasm_import_module = "mod")] 
extern { fn foo(); } 
 
// export a Rust function called `bar` 
#[no_mangle] 
pub extern fn bar() { /* ... */ } 

Because of wasm's limited value types, these functions must operate
only on primitive numeric types.

From the JS Side
Within JS, a wasm binary turns into an ES6 module. It must be

instantiated with linear memory and have a set of JS functions matching the
expected imports. The details of instantiation are available on MDN.

The resulting ES6 module will contain all of the functions exported from
Rust, now available as JS functions.

Here is a very simple example of the whole setup in action.

https://github.com/rust-lang/rust/issues/52090
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WebAssembly/instantiateStreaming
https://www.hellorust.com/demos/add/index.html


Going Beyond Numerics
When using wasm within JS, there is a sharp split between the wasm

module's memory and the JS memory:

Each wasm module has a linear memory (described at the top of
this document), which is initialized during instantiation. JS code can
freely read and write to this memory.

By contrast, wasm code has no direct access to JS objects.
Thus, sophisticated interop happens in two main ways:

Copying in or out binary data to the wasm memory. For example,
this is one way to provide an owned String  to the Rust side.

Setting up an explicit "heap" of JS objects which are then given
"addresses". This allows wasm code to refer to JS objects indirectly
(using integers), and operate on those objects by invoking imported JS
functions.

Fortunately, this interop story is very amenable to treatment through a
generic "bindgen"-style framework: wasm-bindgen. The framework makes
it possible to write idiomatic Rust function signatures that map to idiomatic
JS functions, automatically.

https://github.com/rustwasm/wasm-bindgen


Custom Sections
Custom sections allow embedding named arbitrary data into a wasm

module. The section data is set at compile time and is read directly from the
wasm module, it cannot be modified at runtime.

In Rust, custom sections are static arrays ( [T; size] ) exposed with the 
#[link_section]  attribute:
#[link_section = "hello"] 
pub static SECTION: [u8; 24] = *b"This is a custom section"; 

This adds a custom section named hello  to the wasm file, the rust
variable name SECTION  is arbitrary, changing it wouldn't alter the
behaviour. The contents are bytes of text here but could be any arbitrary
data.

The custom sections can be read on the JS side using the 
WebAssembly.Module.customSections  function, it takes a wasm Module
and the section name as arguments and returns an Array of ArrayBuffer s.
Multiple sections may be specified using the same name, in which case they
will all appear in this array.
WebAssembly.compileStreaming(fetch("sections.wasm")) 
.then(mod => { 
  const sections = WebAssembly.Module.customSections(mod, 
"hello"); 
 
  const decoder = new TextDecoder(); 
  const text = decoder.decode(sections[0]); 
 
  console.log(text); // -> "This is a custom section" 
}); 

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WebAssembly/Module/customSections
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer


Which Crates Will Work Off-the-
Shelf with WebAssembly?

It is easiest to list the things that do not currently work with
WebAssembly; crates which avoid these things tend to be portable to
WebAssembly and usually Just Work. A good rule of thumb is that if a crate
supports embedded and #![no_std]  usage, it probably also supports
WebAssembly.



Things a Crate Might do that Won't Work with
WebAssembly

C and System Library Dependencies
There are no system libraries in wasm, so any crate that tries to bind to a

system library won't work.
Using C libraries will also probably fail to work, since wasm doesn't

have a stable ABI for cross-language communication, and cross-language
linking for wasm is very finicky. Everyone wants this to work eventually,
especially since clang  is shipping their wasm32  target by default now, but
the story isn't quite there yet.

File I/O
WebAssembly does not have access to a file system, so crates that

assume the existence of a file system — and don't have wasm-specific
workarounds — will not work.

Spawning Threads
There are plans to add threading to WebAssembly, but it isn't shipping

yet. Attempts to spawn on a thread on the wasm32-unknown-unknown  target
will panic, which triggers a wasm trap.

https://rustwasm.github.io/2018/10/24/multithreading-rust-and-wasm.html


So Which General Purpose Crates Tend to Work
Off-the-Shelf with WebAssembly?

Algorithms and Data Structures
Crates that provide the implementation of a particular algorithm or data

structure, for example A* graph search or splay trees, tend to work well
with WebAssembly.

#![no_std]
Crates that do not rely on the standard library tend to work well with

WebAssembly.

Parsers
Parsers — so long as they just take input and don't perform their own

I/O — tend to work well with WebAssembly.

Text Processing
Crates that deal with the complexities of human language when

expressed in textual form tend to work well with WebAssembly.

Rust Patterns
Shared solutions for particular situations specific to programming in

Rust tend to work well with WebAssembly.

https://crates.io/categories/algorithms
https://crates.io/categories/data-structures
https://crates.io/categories/no-std
https://crates.io/categories/parser-implementations
https://crates.io/categories/text-processing
https://crates.io/categories/rust-patterns


How to Add WebAssembly Support
to a General-Purpose Crate

This section is for general-purpose crate authors who want to support
WebAssembly.



Maybe Your Crate Already Supports
WebAssembly!

Review the information about what kinds of things can make a general-
purpose crate not portable for WebAssembly. If your crate doesn't have any
of those things, it likely already supports WebAssembly!

You can always check by running cargo build  for the WebAssembly
target:
cargo build --target wasm32-unknown-unknown 

If that command fails, then your crate doesn't support WebAssembly
right now. If it doesn't fail, then your crate might support WebAssembly.
You can be 100% sure that it does (and continues to do so!) by adding tests
for wasm and running those tests in CI.



Adding Support for WebAssembly
Avoid Performing I/O Directly

On the Web, I/O is always asynchronous, and there isn't a file system.
Factor I/O out of your library, let users perform the I/O and then pass the
input slices to your library instead.

For example, refactor this:
use std::fs; 
use std::path::Path; 
 
pub fn parse_thing(path: &Path) -> Result<MyThing, MyError> { 
    let contents = fs::read(path)?; 
    // ... 
} 

Into this:
pub fn parse_thing(contents: &[u8]) -> Result<MyThing, 
MyError> { 
    // ... 
} 

Add wasm-bindgen as a Dependency
If you need to interact with the outside world (i.e. you can't have library

consumers drive that interaction for you) then you'll need to add wasm-
bindgen  (and js-sys  and web-sys  if you need them) as a dependency for
when compilation is targeting WebAssembly:
[target.'cfg(target_arch = "wasm32")'.dependencies] 
wasm-bindgen = "0.2" 
js-sys = "0.3" 
web-sys = "0.3" 

Avoid Synchronous I/O



If you must perform I/O in your library, then it cannot be synchronous.
There is only asynchronous I/O on the Web. Use the futures  crate and the 
wasm-bindgen-futures  crate to manage asynchronous I/O. If your library
functions are generic over some future type F , then that future can be
implemented via fetch  on the Web or via non-blocking I/O provided by
the operating system.
pub fn do_stuff<F>(future: F) -> impl Future<Item = 
MyOtherThing> 
where 
    F: Future<Item = MyThing>, 
{ 
    // ... 
} 

You can also define a trait and implement it for WebAssembly and the
Web and also for native targets:
trait ReadMyThing { 
    type F: Future<Item = MyThing>; 
    fn read(&self) -> Self::F; 
} 
 
#[cfg(target_arch = "wasm32")] 
struct WebReadMyThing { 
    // ... 
} 
 
#[cfg(target_arch = "wasm32")] 
impl ReadMyThing for WebReadMyThing { 
    // ... 
} 
 
#[cfg(not(target_arch = "wasm32"))] 
struct NativeReadMyThing { 
    // ... 
} 

https://crates.io/crates/futures
https://rustwasm.github.io/wasm-bindgen/api/wasm_bindgen_futures/


 
#[cfg(not(target_arch = "wasm32"))] 
impl ReadMyThing for NativeReadMyThing { 
    // ... 
} 

Avoid Spawning Threads
Wasm doesn't support threads yet (but experimental work is ongoing), so

attempts to spawn threads in wasm will panic.
You can use #[cfg(..)] s to enable threaded and non-threaded code

paths depending on if the target is WebAssembly or not:
#![cfg(target_arch = "wasm32")] 
fn do_work() { 
    // Do work with only this thread... 
} 
 
#![cfg(not(target_arch = "wasm32"))] 
fn do_work() { 
    use std::thread; 
 
    // Spread work to helper threads.... 
    thread::spawn(|| { 
        // ... 
    }); 
} 

Another option is to factor out thread spawning from your library and
allow users to "bring their own threads" similar to factoring out file I/O and
allowing users to bring their own I/O. This has the side effect of playing
nice with applications that want to own their own custom thread pool.

https://rustwasm.github.io/2018/10/24/multithreading-rust-and-wasm.html


Maintaining Ongoing Support for WebAssembly
Building for wasm32-unknown-unknown in CI

Ensure that compilation doesn't fail when targeting WebAssembly by
having your CI script run these commands:
rustup target add wasm32-unknown-unknown 
cargo check --target wasm32-unknown-unknown 

For example, you can add this to your .travis.yml  configuration for
Travis CI:
 
matrix: 
  include: 
    - language: rust 
      rust: stable 
      name: "check wasm32 support" 
      install: rustup target add wasm32-unknown-unknown 
      script: cargo check --target wasm32-unknown-unknown 

Testing in Node.js and Headless Browsers
You can use wasm-bindgen-test  and the wasm-pack test

subcommand to run wasm tests in either Node.js or a headless browser. You
can even integrate these tests into your CI.

Learn more about testing wasm here.

https://rustwasm.github.io/wasm-bindgen/wasm-bindgen-test/index.html


Deploying Rust and WebAssembly
to Production

⚡  Deploying Web applications built with Rust and
WebAssembly is nearly identical to deploying any other Web
application!

To deploy a Web application that uses Rust-generated WebAssembly on
the client, copy the built Web application's files to your production server's
file system and configure your HTTP server to make them accessible.



Ensure that Your HTTP Server Uses the 
application/wasm MIME Type

For the fastest page loads, you'll want to use the 
WebAssembly.instantiateStreaming  function to pipeline wasm
compilation and instantiation with network transfer (or make sure your
bundler is able to use that function). However, instantiateStreaming
requires that the HTTP response has the application/wasm  MIME type
set, or else it will throw an error.

How to configure MIME types for the Apache HTTP server
How to configure MIME types for the NGINX HTTP server

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WebAssembly/instantiateStreaming
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://httpd.apache.org/docs/2.4/mod/mod_mime.html#addtype
https://nginx.org/en/docs/http/ngx_http_core_module.html#types


More Resources

Best Practices for Webpack in Production. Many Rust and
WebAssembly projects use Webpack to bundle their Rust-generated
WebAssembly, JavaScript, CSS, and HTML. This guide has tips for
getting the most out of Webpack when deploying to production
environments.
Apache documentation. Apache is a popular HTTP server for use in
production.
NGINX documentation. NGINX is a popular HTTP server for use in
production.

https://webpack.js.org/guides/production/
https://httpd.apache.org/docs/
https://docs.nginx.com/nginx/admin-guide/installing-nginx/installing-nginx-open-source/
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