
Learn Rust With Entirely Too
Many Linked Lists

Got any issues or want to check out all the final code at once?
Everything's on Github!

NOTE: The current edition of this book is written against Rust
2018, which was first released with rustc 1.31 (Dec 8, 2018). If your
rust toolchain is new enough, the Cargo.toml file that cargo new

creates should contain the line edition = "2018" (or if you're
reading this in the far future, perhaps some even larger number!).
Using an older toolchain is possible, but unlocks a secret hardmode,
where you get extra compiler errors that go completely unmentioned in
the text of this book. Wow, sounds like fun!

I fairly frequently get asked how to implement a linked list in Rust. The
answer honestly depends on what your requirements are, and it's obviously
not super easy to answer the question on the spot. As such I've decided to
write this book to comprehensively answer the question once and for all.

In this series I will teach you basic and advanced Rust programming
entirely by having you implement 6 linked lists. In doing so, you should
learn:

The following pointer types: & , &mut , Box , Rc , Arc , *const , *mut ,
NonNull (?)
Ownership, borrowing, inherited mutability, interior mutability, Copy
All The Keywords: struct, enum, fn, pub, impl, use, ...
Pattern matching, generics, destructors
Testing, installing new toolchains, using miri
Unsafe Rust: raw pointers, aliasing, stacked borrows, UnsafeCell,
variance

Yes, linked lists are so truly awful that you deal with all of these
concepts in making them real.

https://github.com/rust-unofficial/too-many-lists

Everything's in the sidebar (may be collapsed on mobile), but for quick
reference, here's what we're going to be making:

1. A Bad Singly-Linked Stack
2. An Ok Singly-Linked Stack
3. A Persistent Singly-Linked Stack
4. A Bad But Safe Doubly-Linked Deque
5. An Unsafe Singly-Linked Queue
6. TODO: An Ok Unsafe Doubly-Linked Deque
7. Bonus: A Bunch of Silly Lists
Just so we're all the same page, I'll be writing out all the commands that

I feed into my terminal. I'll also be using Rust's standard package manager,
Cargo, to develop the project. Cargo isn't necessary to write a Rust
program, but it's so much better than using rustc directly. If you just want to
futz around you can also run some simple programs in the browser via
play.rust-lang.org.

In later sections, we'll be using "rustup" to install extra Rust tooling. I
strongly recommend installing all of your Rust toolchains using rustup.

Let's get started and make our project:
> cargo new --lib lists
> cd lists

We'll put each list in a separate file so that we don't lose any of our work.
It should be noted that the authentic Rust learning experience involves

writing code, having the compiler scream at you, and trying to figure out
what the heck that means. I will be carefully ensuring that this occurs as
frequently as possible. Learning to read and understand Rust's generally
excellent compiler errors and documentation is incredibly important to
being a productive Rust programmer.

Although actually that's a lie. In writing this I encountered way more
compiler errors than I show. In particular, in the later chapters I won't be
showing a lot of the random "I typed (copy-pasted) bad" errors that you
expect to encounter in every language. This is a guided tour of having the
compiler scream at us.

clbr://internal.invalid/book/OEBPS/first.md
clbr://internal.invalid/book/OEBPS/second.md
clbr://internal.invalid/book/OEBPS/third.md
clbr://internal.invalid/book/OEBPS/fourth.md
clbr://internal.invalid/book/OEBPS/fifth.md
clbr://internal.invalid/book/OEBPS/sixth.md
clbr://internal.invalid/book/OEBPS/infinity.md
https://play.rust-lang.org/
https://www.rust-lang.org/tools/install

We're going to be going pretty slow, and I'm honestly not going to be
very serious pretty much the entire time. I think programming should be
fun, dang it! If you're the type of person who wants maximally information-
dense, serious, and formal content, this book is not for you. Nothing I will
ever make is for you. You are wrong.

An Obligatory Public Service
Announcement

Just so we're totally 100% clear: I hate linked lists. With a passion.
Linked lists are terrible data structures. Now of course there's several great
use cases for a linked list:

You want to do a lot of splitting or merging of big lists. A lot.
You're doing some awesome lock-free concurrent thing.
You're writing a kernel/embedded thing and want to use an intrusive
list.
You're using a pure functional language and the limited semantics and
absence of mutation makes linked lists easier to work with.
... and more!

But all of these cases are super rare for anyone writing a Rust program.
99% of the time you should just use a Vec (array stack), and 99% of the
other 1% of the time you should be using a VecDeque (array deque). These
are blatantly superior data structures for most workloads due to less
frequent allocation, lower memory overhead, true random access, and cache
locality.

Linked lists are as niche and vague of a data structure as a trie. Few
would balk at me claiming a trie is a niche structure that your average
programmer could happily never learn in an entire productive career -- and
yet linked lists have some bizarre celebrity status. We teach every
undergrad how to write a linked list. It's the only niche collection I couldn't
kill from std::collections. It's the list in C++!

We should all as a community say no to linked lists as a "standard" data
structure. It's a fine data structure with several great use cases, but those use
cases are exceptional, not common.

Several people apparently read the first paragraph of this PSA and then
stop reading. Like, literally they'll try to rebut my argument by listing one
of the things in my list of great use cases. The thing right after the first
paragraph!

https://doc.rust-lang.org/std/collections/struct.LinkedList.html
http://en.cppreference.com/w/cpp/container/list

Just so I can link directly to a detailed argument, here are several
attempts at counter-arguments I have seen, and my response to them. Feel
free to skip to the first chapter if you just want to learn some Rust!

clbr://internal.invalid/book/OEBPS/first.md

Performance doesn't always matter
Yes! Maybe your application is I/O-bound or the code in question is in

some cold case that just doesn't matter. But this isn't even an argument for
using a linked list. This is an argument for using whatever at all. Why settle
for a linked list? Use a linked hash map!

If performance doesn't matter, then it's surely fine to apply the natural
default of an array.

They have O(1) split-append-insert-remove if you
have a pointer there

Yep! Although as Bjarne Stroustrup notes this doesn't actually matter if
the time it takes to get that pointer completely dwarfs the time it would take
to just copy over all the elements in an array (which is really quite fast).

Unless you have a workload that is heavily dominated by splitting and
merging costs, the penalty every other operation takes due to caching
effects and code complexity will eliminate any theoretical gains.

But yes, if you're profiling your application to spend a lot of time in
splitting and merging, you may have gains in a linked list.

https://www.youtube.com/watch?v=YQs6IC-vgmo

I can't afford amortization
You've already entered a pretty niche space -- most can afford

amortization. Still, arrays are amortized in the worst case. Just because
you're using an array, doesn't mean you have amortized costs. If you can
predict how many elements you're going to store (or even have an upper-
bound), you can pre-reserve all the space you need. In my experience it's
very common to be able to predict how many elements you'll need. In Rust
in particular, all iterators provide a size_hint for exactly this case.

Then push and pop will be truly O(1) operations. And they're going to
be considerably faster than push and pop on linked list. You do a pointer
offset, write the bytes, and increment an integer. No need to go to any kind
of allocator.

How's that for low latency?
But yes, if you can't predict your load, there are worst-case latency

savings to be had!

Linked lists waste less space
Well, this is complicated. A "standard" array resizing strategy is to grow

or shrink so that at most half the array is empty. This is indeed a lot of
wasted space. Especially in Rust, we don't automatically shrink collections
(it's a waste if you're just going to fill it back up again), so the wastage can
approach infinity!

But this is a worst-case scenario. In the best-case, an array stack only has
three pointers of overhead for the entire array. Basically no overhead.

Linked lists on the other hand unconditionally waste space per element.
A singly-linked list wastes one pointer while a doubly-linked list wastes
two. Unlike an array, the relative wasteage is proportional to the size of the
element. If you have huge elements this approaches 0 waste. If you have
tiny elements (say, bytes), then this can be as much as 16x memory
overhead (8x on 32-bit)!

Actually, it's more like 23x (11x on 32-bit) because padding will be
added to the byte to align the whole node's size to a pointer.

This is also assuming the best-case for your allocator: that allocating and
deallocating nodes is being done densely and you're not losing memory to
fragmentation.

But yes, if you have huge elements, can't predict your load, and have a
decent allocator, there are memory savings to be had!

I use linked lists all the time in <functional
language>

Great! Linked lists are super elegant to use in functional languages
because you can manipulate them without any mutation, can describe them
recursively, and also work with infinite lists due to the magic of laziness.

Specifically, linked lists are nice because they represent an iteration
without the need for any mutable state. The next step is just visiting the next
sublist.

Rust mostly does this kind of thing with iterators. They can be infinite
and you can map, filter, reverse, and concatenate them just like a functional
list, and it will all be done just as lazily!

Rust also lets you easily talk about sub-arrays with slices. Your usual
head/tail split in a functional language is just slice.split_at_mut(1) . For
a long time, Rust had an experimental system for pattern matching on slices
which was super cool, but the feature was simplified when it was stabilized.
Still, basic slice patterns are neat! And of course, slices can be turned into
iterators!

But yes, if you're limited to immutable semantics, linked lists can be very
nice.

Note that I'm not saying that functional programming is necessarily
weak or bad. However it is fundamentally semantically limited: you're
largely only allowed to talk about how things are, and not how they should
be done. This is actually a feature, because it enables the compiler to do
tons of exotic transformations and potentially figure out the best way to do
things without you having to worry about it. However this comes at the cost
of being able to worry about it. There are usually escape hatches, but at
some limit you're just writing procedural code again.

Even in functional languages, you should endeavour to use the
appropriate data structure for the job when you actually need a data
structure. Yes, singly-linked lists are your primary tool for control flow, but
they're a really poor way to actually store a bunch of data and query it.

https://doc.rust-lang.org/std/iter/trait.Iterator.html
https://doc.rust-lang.org/std/primitive.slice.html
https://doc.rust-lang.org/std/primitive.slice.html#method.split_at_mut
https://doc.rust-lang.org/edition-guide/rust-2018/slice-patterns.html
https://wiki.haskell.org/GHC_optimisations#Fusion

Linked lists are great for building concurrent data
structures!

Yes! Although writing a concurrent data structure is really a whole
different beast, and isn't something that should be taken lightly. Certainly
not something many people will even consider doing. Once one's been
written, you're also not really choosing to use a linked list. You're choosing
to use an MPSC queue or whatever. The implementation strategy is pretty
far removed in this case!

But yes, linked lists are the defacto heroes of the dark world of lock-free
concurrency.

Mumble mumble kernel embedded something
something intrusive.

It's niche. You're talking about a situation where you're not even using
your language's runtime. Is that not a red flag that you're doing something
strange?

It's also wildly unsafe.
But sure. Build your awesome zero-allocation lists on the stack.

Iterators don't get invalidated by unrelated
insertions/removals

That's a delicate dance you're playing. Especially if you don't have a
garbage collector. I might argue that your control flow and ownership
patterns are probably a bit too tangled, depending on the details.

But yes, you can do some really cool crazy stuff with cursors.

They're simple and great for teaching!
Well, yeah. You're reading a book dedicated to that premise. Well,

singly-linked lists are pretty simple. Doubly-linked lists can get kinda
gnarly, as we'll see.

Take a Breath
Ok. That's out of the way. Let's write a bajillion linked lists.
On to the first chapter!

clbr://internal.invalid/book/OEBPS/first.md

A Bad Singly-Linked Stack
This one's gonna be by far the longest, as we need to introduce basically

all of Rust, and are gonna build up some things "the hard way" to better
understand the language.

We'll put our first list in src/first.rs . We need to tell Rust that
first.rs is something that our lib uses. All that requires is that we put this
at the top of src/lib.rs (which Cargo made for us):
// in lib.rs
pub mod first;

Basic Data Layout
Alright, so what's a linked list? Well basically, it's a bunch of pieces of

data on the heap (hush, kernel people!) that point to each other in sequence.
Linked lists are something procedural programmers shouldn't touch with a
10-foot pole, and what functional programmers use for everything. It seems
fair, then, that we should ask functional programmers for the definition of a
linked list. They will probably give you something like the following
definition:
List a = Empty | Elem a (List a)

Which reads approximately as "A List is either Empty or an Element
followed by a List". This is a recursive definition expressed as a sum type,
which is a fancy name for "a type that can have different values which may
be different types". Rust calls sum types enum s! If you're coming from a C-
like language, this is exactly the enum you know and love, but in overdrive.
So let's transcribe this functional definition into Rust!

For now we'll avoid generics to keep things simple. We'll only support
storing signed 32-bit integers:
// in first.rs

// pub says we want people outside this module to be able to
use List
pub enum List {
 Empty,
 Elem(i32, List),
}

phew, I'm swamped. Let's just go ahead and compile that:
> cargo build

error[E0072]: recursive type `first::List` has infinite size
 --> src/first.rs:4:1
 |
4 | pub enum List {

 | ^^^^^^^^^^^^^ recursive type has infinite size
5 | Empty,
6 | Elem(i32, List),
 | ---- recursive without indirection
 |
 = help: insert indirection (e.g., a `Box`, `Rc`, or `&`) at
some point to make `first::List` representable

Well. I don't know about you, but I certainly feel betrayed by the
functional programming community.

If we actually check out the error message (after we get over the whole
betrayal thing), we can see that rustc is actually telling us exactly how to
solve this problem:

insert indirection (e.g., a Box , Rc , or &) at some point to make
first::List representable

Alright, box . What's that? Let's google rust box ...

std::boxed::Box - Rust

Lesse here...

pub struct Box<T>(_);

A pointer type for heap allocation. See the module-level
documentation for more.

clicks link

Box<T> , casually referred to as a 'box', provides the simplest form
of heap allocation in Rust. Boxes provide ownership for this
allocation, and drop their contents when they go out of scope.

Examples
Creating a box:
let x = Box::new(5);

Creating a recursive data structure:

#[derive(Debug)]
enum List<T> {

https://doc.rust-lang.org/std/boxed/struct.Box.html
https://doc.rust-lang.org/std/boxed/

 Cons(T, Box<List<T>>),
 Nil,
}

fn main() {
 let list: List<i32> = List::Cons(1, Box::new(List::Cons(2,
Box::new(List::Nil))));
 println!("{:?}", list);
}

This will print Cons(1, Box(Cons(2, Box(Nil)))) .
Recursive structures must be boxed, because if the definition of

Cons looked like this:
Cons(T, List<T>),

It wouldn't work. This is because the size of a List depends on how
many elements are in the list, and so we don't know how much
memory to allocate for a Cons. By introducing a Box, which has a
defined size, we know how big Cons needs to be.

Wow, uh. That is perhaps the most relevant and helpful documentation I
have ever seen. Literally the first thing in the documentation is exactly what
we're trying to write, why it didn't work, and how to fix it.

Dang, docs rule.
Ok, let's do that:

pub enum List {
 Empty,
 Elem(i32, Box<List>),
}

> cargo build

 Finished dev [unoptimized + debuginfo] target(s) in 0.22s

Hey it built!
...but this is actually a really foolish definition of a List, for a few

reasons.
Consider a list with two elements:

[] = Stack
() = Heap

[Elem A, ptr] -> (Elem B, ptr) -> (Empty, *junk*)

There are two key issues:

We're allocating a node that just says "I'm not actually a Node"
One of our nodes isn't heap-allocated at all.

On the surface, these two seem to cancel each-other out. We heap-
allocate an extra node, but one of our nodes doesn't need to be heap-
allocated at all. However, consider the following potential layout for our
list:
[ptr] -> (Elem A, ptr) -> (Elem B, *null*)

In this layout we now unconditionally heap allocate our nodes. The key
difference is the absence of the junk from our first layout. What is this junk?
To understand that, we'll need to look at how an enum is laid out in
memory.

In general, if we have an enum like:
enum Foo {
 D1(T1),
 D2(T2),
 ...
 Dn(Tn),
}

A Foo will need to store some integer to indicate which variant of the
enum it represents (D1 , D2 , .. Dn). This is the tag of the enum. It will also
need enough space to store the largest of T1 , T2 , .. Tn (plus some extra
space to satisfy alignment requirements).

The big takeaway here is that even though Empty is a single bit of
information, it necessarily consumes enough space for a pointer and an
element, because it has to be ready to become an Elem at any time.
Therefore the first layout heap allocates an extra element that's just full of
junk, consuming a bit more space than the second layout.

One of our nodes not being allocated at all is also, perhaps surprisingly,
worse than always allocating it. This is because it gives us a non-uniform
node layout. This doesn't have much of an appreciable effect on pushing
and popping nodes, but it does have an effect on splitting and merging lists.

Consider splitting a list in both layouts:
layout 1:

[Elem A, ptr] -> (Elem B, ptr) -> (Elem C, ptr) -> (Empty
junk)

split off C:

[Elem A, ptr] -> (Elem B, ptr) -> (Empty *junk*)
[Elem C, ptr] -> (Empty *junk*)

layout 2:

[ptr] -> (Elem A, ptr) -> (Elem B, ptr) -> (Elem C, *null*)

split off C:

[ptr] -> (Elem A, ptr) -> (Elem B, *null*)
[ptr] -> (Elem C, *null*)

Layout 2's split involves just copying B's pointer to the stack and nulling
the old value out. Layout 1 ultimately does the same thing, but also has to
copy C from the heap to the stack. Merging is the same process in reverse.

One of the few nice things about a linked list is that you can construct
the element in the node itself, and then freely shuffle it around lists without
ever moving it. You just fiddle with pointers and stuff gets "moved". Layout
1 trashes this property.

Alright, I'm reasonably convinced Layout 1 is bad. How do we rewrite
our List? Well, we could do something like:
pub enum List {
 Empty,
 ElemThenEmpty(i32),

 ElemThenNotEmpty(i32, Box<List>),
}

Hopefully this seems like an even worse idea to you. Most notably, this
really complicates our logic, because there is now a completely invalid
state: ElemThenNotEmpty(0, Box(Empty)) . It also still suffers from non-
uniformly allocating our elements.

However it does have one interesting property: it totally avoids
allocating the Empty case, reducing the total number of heap allocations by
1. Unfortunately, in doing so it manages to waste even more space! This is
because the previous layout took advantage of the null pointer optimization.

We previously saw that every enum has to store a tag to specify which
variant of the enum its bits represent. However, if we have a special kind of
enum:
enum Foo {
 A,
 B(ContainsANonNullPtr),
}

the null pointer optimization kicks in, which eliminates the space needed
for the tag. If the variant is A, the whole enum is set to all 0 's. Otherwise,
the variant is B. This works because B can never be all 0 's, since it contains
a non-zero pointer. Slick!

Can you think of other enums and types that could do this kind of
optimization? There's actually a lot! This is why Rust leaves enum layout
totally unspecified. There are a few more complicated enum layout
optimizations that Rust will do for us, but the null pointer one is definitely
the most important! It means & , &mut , Box , Rc , Arc , Vec , and several
other important types in Rust have no overhead when put in an Option !
(We'll get to most of these in due time.)

So how do we avoid the extra junk, uniformly allocate, and get that
sweet null-pointer optimization? We need to better separate out the idea of
having an element from allocating another list. To do this, we have to think
a little more C-like: structs!

While enums let us declare a type that can contain one of several values,
structs let us declare a type that contains many values at once. Let's break
our List into two types: A List, and a Node.

As before, a List is either Empty or has an element followed by another
List. By representing the "has an element followed by another List" case by
an entirely separate type, we can hoist the Box to be in a more optimal
position:
struct Node {
 elem: i32,
 next: List,
}

pub enum List {
 Empty,
 More(Box<Node>),
}

Let's check our priorities:

Tail of a list never allocates extra junk: check!
enum is in delicious null-pointer-optimized form: check!
All elements are uniformly allocated: check!

Alright! We actually just constructed exactly the layout that we used to
demonstrate that our first layout (as suggested by the official Rust
documentation) was problematic.
> cargo build

warning: private type `first::Node` in public interface (error
E0446)
 --> src/first.rs:8:10
 |
8 | More(Box<Node>),
 | ^^^^^^^^^
 |
 = note: #[warn(private_in_public)] on by default

 = warning: this was previously accepted by the compiler but
 is being phased out; it will become a hard error in a
future release!

:(
Rust is mad at us again. We marked the List as public (because we

want people to be able to use it), but not the Node . The problem is that the
internals of an enum are totally public, and we're not allowed to publicly
talk about private types. We could make all of Node totally public, but
generally in Rust we favour keeping implementation details private. Let's
make List a struct, so that we can hide the implementation details:
pub struct List {
 head: Link,
}

enum Link {
 Empty,
 More(Box<Node>),
}

struct Node {
 elem: i32,
 next: Link,
}

Because List is a struct with a single field, its size is the same as that
field. Yay zero-cost abstractions!
> cargo build

warning: field is never used: `head`
 --> src/first.rs:2:5
 |
2 | head: Link,
 | ^^^^^^^^^^
 |

 = note: #[warn(dead_code)] on by default

warning: variant is never constructed: `Empty`
 --> src/first.rs:6:5
 |
6 | Empty,
 | ^^^^^

warning: variant is never constructed: `More`
 --> src/first.rs:7:5
 |
7 | More(Box<Node>),
 | ^^^^^^^^^^^^^^^

warning: field is never used: `elem`
 --> src/first.rs:11:5
 |
11 | elem: i32,
 | ^^^^^^^^^

warning: field is never used: `next`
 --> src/first.rs:12:5
 |
12 | next: Link,
 | ^^^^^^^^^^

Alright, that compiled! Rust is pretty mad, because as far as it can tell,
everything we've written is totally useless: we never use head , and no one
who uses our library can either since it's private. Transitively, that means
Link and Node are useless too. So let's solve that! Let's implement some
code for our List!

New
To associate actual code with a type, we use impl blocks:

impl List {
 // TODO, make code happen
}

Now we just need to figure out how to actually write code. In Rust we
declare a function like so:
fn foo(arg1: Type1, arg2: Type2) -> ReturnType {
 // body
}

The first thing we want is a way to construct a list. Since we hide the
implementation details, we need to provide that as a function. The usual
way to do that in Rust is to provide a static method, which is just a normal
function inside an impl :
impl List {
 pub fn new() -> Self {
 List { head: Link::Empty }
 }
}

A few notes on this:

Self is an alias for "that type I wrote at the top next to impl ". Great for
not repeating yourself!
We create an instance of a struct in much the same way we declare it,
except instead of providing the types of its fields, we initialize them
with values.
We refer to variants of an enum using :: , which is the namespacing
operator.
The last expression of a function is implicitly returned. This makes
simple functions a little neater. You can still use return to return early
like other C-like languages.

Ownership 101
Now that we can construct a list, it'd be nice to be able to do something

with it. We do that with "normal" (non-static) methods. Methods are a
special case of function in Rust because of the self argument, which
doesn't have a declared type:
fn foo(self, arg2: Type2) -> ReturnType {
 // body
}

There are 3 primary forms that self can take: self , &mut self , and
&self . These 3 forms represent the three primary forms of ownership in
Rust:

self - Value
&mut self - mutable reference
&self - shared reference

A value represents true ownership. You can do whatever you want with
a value: move it, destroy it, mutate it, or loan it out via a reference. When
you pass something by value, it's moved to the new location. The new
location now owns the value, and the old location can no longer access it.
For this reason most methods don't want self -- it would be pretty lame if
trying to work with a list made it go away!

A mutable reference represents temporary exclusive access to a value
that you don't own. You're allowed to do absolutely anything you want to a
value you have a mutable reference to as long you leave it in a valid state
when you're done (it would be rude to the owner otherwise!). This means
you can actually completely overwrite the value. A really useful special
case of this is swapping a value out for another, which we'll be using a lot.
The only thing you can't do with an &mut is move the value out with no
replacement. &mut self is great for methods that want to mutate self .

A shared reference represents temporary shared access to a value that
you don't own. Because you have shared access, you're generally not

allowed to mutate anything. Think of & as putting the value out on display
in a museum. & is great for methods that only want to observe self .

Later we'll see that the rule about mutation can be bypassed in certain
cases. This is why shared references aren't called immutable references.
Really, mutable references could be called unique references, but we've
found that relating ownership to mutability gives the right intuition 99% of
the time.

Push
So let's write pushing a value onto a list. push mutates the list, so we'll

want to take &mut self . We also need to take an i32 to push:
impl List {
 pub fn push(&mut self, elem: i32) {
 // TODO
 }
}

First things first, we need to make a node to store our element in:
 pub fn push(&mut self, elem: i32) {
 let new_node = Node {
 elem: elem,
 next: ?????
 };
 }

What goes next ? Well, the entire old list! Can we... just do that?
impl List {
 pub fn push(&mut self, elem: i32) {
 let new_node = Node {
 elem: elem,
 next: self.head,
 };
 }
}

> cargo build
error[E0507]: cannot move out of borrowed content
 --> src/first.rs:19:19
 |
19 | next: self.head,
 | ^^^^^^^^^ cannot move out of borrowed
content

Nooooope. Rust is telling us the right thing, but it's certainly not obvious
what exactly it means, or what to do about it:

cannot move out of borrowed content

We're trying to move the self.head field out to next , but Rust doesn't
want us doing that. This would leave self only partially initialized when
we end the borrow and "give it back" to its rightful owner. As we said
before, that's the one thing you can't do with an &mut : It would be super
rude, and Rust is very polite (it would also be incredibly dangerous, but
surely that isn't why it cares).

What if we put something back? Namely, the node that we're creating:
pub fn push(&mut self, elem: i32) {
 let new_node = Box::new(Node {
 elem: elem,
 next: self.head,
 });

 self.head = Link::More(new_node);
}

> cargo build
error[E0507]: cannot move out of borrowed content
 --> src/first.rs:19:19
 |
19 | next: self.head,
 | ^^^^^^^^^ cannot move out of borrowed
content

No dice. In principle, this is something Rust could actually accept, but it
won't (for various reasons -- the most serious being exception safety). We
need some way to get the head without Rust noticing that it's gone. For
advice, we turn to infamous Rust Hacker Indiana Jones:

https://doc.rust-lang.org/nightly/nomicon/exception-safety.html

Ah yes, Indy suggests the mem::replace maneuver. This incredibly
useful function lets us steal a value out of a borrow by replacing it with
another value. Let's just pull in std::mem at the top of the file, so that mem
is in local scope:
use std::mem;

and use it appropriately:
pub fn push(&mut self, elem: i32) {
 let new_node = Box::new(Node {
 elem: elem,
 next: mem::replace(&mut self.head, Link::Empty),
 });

 self.head = Link::More(new_node);
}

Here we replace self.head temporarily with Link::Empty before
replacing it with the new head of the list. I'm not gonna lie: this is a pretty
unfortunate thing to have to do. Sadly, we must (for now).

But hey, that's push all done! Probably. We should probably test it,
honestly. Right now the easiest way to do that is probably to write pop , and
make sure that it produces the right results.

Pop
Like push , pop wants to mutate the list. Unlike push , we actually want

to return something. But pop also has to deal with a tricky corner case:
what if the list is empty? To represent this case, we use the trusty Option
type:
pub fn pop(&mut self) -> Option<i32> {
 // TODO
}

Option<T> is an enum that represents a value that may exist. It can
either be Some(T) or None . We could make our own enum for this like we
did for Link, but we want our users to be able to understand what the heck
our return type is, and Option is so ubiquitous that everyone knows it. In
fact, it's so fundamental that it's implicitly imported into scope in every file,
as well as its variants Some and None (so we don't have to say
Option::None).

The pointy bits on Option<T> indicate that Option is actually generic
over T. That means that you can make an Option for any type!

So uh, we have this Link thing, how do we figure out if it's Empty or
has More? Pattern matching with match !
pub fn pop(&mut self) -> Option<i32> {
 match self.head {
 Link::Empty => {
 // TODO
 }
 Link::More(node) => {
 // TODO
 }
 };
}

> cargo build

error[E0308]: mismatched types
 --> src/first.rs:27:30
 |
27 | pub fn pop(&mut self) -> Option<i32> {
 | --- ^^^^^^^^^^^ expected enum
`std::option::Option`, found ()
 | |
 | this function's body doesn't return
 |
 = note: expected type `std::option::Option<i32>`
 found type `()`

Whoops, pop has to return a value, and we're not doing that yet. We
could return None , but in this case it's probably a better idea to return
unimplemented!() , to indicate that we aren't done implementing the
function. unimplemented!() is a macro (! indicates a macro) that panics
the program when we get to it (~crashes it in a controlled manner).
pub fn pop(&mut self) -> Option<i32> {
 match self.head {
 Link::Empty => {
 // TODO
 }
 Link::More(node) => {
 // TODO
 }
 };
 unimplemented!()
}

Unconditional panics are an example of a diverging function. Diverging
functions never return to the caller, so they may be used in places where a
value of any type is expected. Here, unimplemented!() is being used in
place of a value of type Option<T> .

Note also that we don't need to write return in our program. The last
expression (basically line) in a function is implicitly its return value. This

https://doc.rust-lang.org/nightly/book/ch19-04-advanced-types.html#the-never-type-that-never-returns

lets us express really simple things a bit more concisely. You can always
explicitly return early with return like any other C-like language.
> cargo build

error[E0507]: cannot move out of borrowed content
 --> src/first.rs:28:15
 |
28 | match self.head {
 | ^^^^^^^^^
 | |
 | cannot move out of borrowed content
 | help: consider borrowing here: `&self.head`
...
32 | Link::More(node) => {
 | ---- data moved here
 |
note: move occurs because `node` has type
`std::boxed::Box<first::Node>`, which does not implement the
`Copy` trait
 --> src/first.rs:32:24
 |
32 | Link::More(node) => {
 | ^^^^

Come on Rust, get off our back! As always, Rust is hella mad at us.
Thankfully, this time it's also giving us the full scoop! By default, a pattern
match will try to move its contents into the new branch, but we can't do this
because we don't own self by-value here.
help: consider borrowing here: `&self.head`

Rust says we should add a reference to our match to fix that. � Let's
try it:
pub fn pop(&mut self) -> Option<i32> {
 match &self.head {
 Link::Empty => {
 // TODO

 }
 Link::More(node) => {
 // TODO
 }
 };
 unimplemented!()
}

> cargo build

warning: unused variable: `node`
 --> src/first.rs:32:24
 |
32 | Link::More(node) => {
 | ^^^^ help: consider prefixing with
an underscore: `_node`
 |
 = note: #[warn(unused_variables)] on by default

warning: field is never used: `elem`
 --> src/first.rs:13:5
 |
13 | elem: i32,
 | ^^^^^^^^^
 |
 = note: #[warn(dead_code)] on by default

warning: field is never used: `next`
 --> src/first.rs:14:5
 |
14 | next: Link,
 | ^^^^^^^^^^

Hooray, compiling again! Now let's figure out that logic. We want to
make an Option, so let's make a variable for that. In the Empty case we
need to return None. In the More case we need to return Some(i32) , and
change the head of the list. So, let's try to do basically that?

pub fn pop(&mut self) -> Option<i32> {
 let result;
 match &self.head {
 Link::Empty => {
 result = None;
 }
 Link::More(node) => {
 result = Some(node.elem);
 self.head = node.next;
 }
 };
 result
}

> cargo build
 Compiling lists v0.1.0 (/Users/ADesires/dev/temp/lists)
error[E0507]: cannot move out of borrowed content
 --> src/first.rs:35:29
 |
35 | self.head = node.next;
 | ^^^^^^^^^ cannot move out of
borrowed content

head
desk
We're trying to move out of node when all we have is a shared reference

to it.
We should probably step back and think about what we're trying to do.

We want to:

Check if the list is empty.
If it's empty, just return None
If it's not empty

remove the head of the list

remove its elem
replace the list's head with its next
return Some(elem)

The key insight is we want to remove things, which means we want to
get the head of the list by value. We certainly can't do that through the
shared reference we get through &self.head . We also "only" have a
mutable reference to self , so the only way we can move stuff is to replace
it. Looks like we're doing the Empty dance again!

Let's try that:
pub fn pop(&mut self) -> Option<i32> {
 let result;
 match mem::replace(&mut self.head, Link::Empty) {
 Link::Empty => {
 result = None;
 }
 Link::More(node) => {
 result = Some(node.elem);
 self.head = node.next;
 }
 };
 result
}

cargo build

 Finished dev [unoptimized + debuginfo] target(s) in 0.22s

O M G
It compiled without any warnings!!!!!
Actually I'm going to apply my own personal lint here: we made this

result value to return, but actually we didn't need to do that at all! Just as
a function evaluates to its last expression, every block also evaluates to its
last expression. Normally we supress this behaviour with semi-colons,
which instead makes the block evaluate to the empty tuple, () . This is

actually the value that functions which don't declare a return value -- like
push -- return.

So instead, we can write pop as:
pub fn pop(&mut self) -> Option<i32> {
 match mem::replace(&mut self.head, Link::Empty) {
 Link::Empty => None,
 Link::More(node) => {
 self.head = node.next;
 Some(node.elem)
 }
 }
}

Which is a bit more concise and idiomatic. Note that the Link::Empty
branch completely lost its braces, because we only have one expression to
evaluate. Just a nice shorthand for simple cases.
cargo build

 Finished dev [unoptimized + debuginfo] target(s) in 0.22s

Nice, still works!

Testing
Alright, so we've got push and pop written, now we can actually test

out our stack! Rust and cargo support testing as a first-class feature, so this
will be super easy. All we have to do is write a function, and annotate it
with #[test] .

Generally, we try to keep our tests next to the code that it's testing in the
Rust community. However we usually make a new namespace for the tests,
to avoid conflicting with the "real" code. Just as we used mod to specify
that first.rs should be included in lib.rs , we can use mod to basically
create a whole new file inline:
// in first.rs

mod test {
 #[test]
 fn basics() {
 // TODO
 }
}

And we invoke it with cargo test .
> cargo test
 Compiling lists v0.1.0 (/Users/ADesires/dev/temp/lists)
 Finished dev [unoptimized + debuginfo] target(s) in 1.00s
 Running
/Users/ADesires/dev/lists/target/debug/deps/lists-
86544f1d97438f1f

running 1 test
test first::test::basics ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0
filtered out
; 0 filtered out

Yay our do-nothing test passed! Let's make it not-do-nothing. We'll do
that with the assert_eq! macro. This isn't some special testing magic. All
it does is compare the two things you give it, and panic the program if they
don't match. Yep, you indicate failure to the test harness by freaking out!
mod test {
 #[test]
 fn basics() {
 let mut list = List::new();

 // Check empty list behaves right
 assert_eq!(list.pop(), None);

 // Populate list
 list.push(1);
 list.push(2);
 list.push(3);

 // Check normal removal
 assert_eq!(list.pop(), Some(3));
 assert_eq!(list.pop(), Some(2));

 // Push some more just to make sure nothing's
corrupted
 list.push(4);
 list.push(5);

 // Check normal removal
 assert_eq!(list.pop(), Some(5));
 assert_eq!(list.pop(), Some(4));

 // Check exhaustion
 assert_eq!(list.pop(), Some(1));
 assert_eq!(list.pop(), None);
 }
}

> cargo test

error[E0433]: failed to resolve: use of undeclared type or
module `List`
 --> src/first.rs:43:24
 |
43 | let mut list = List::new();
 | ^^^^ use of undeclared type or
module `List`

Oops! Because we made a new module, we need to pull in List explicitly
to use it.
mod test {
 use super::List;
 // everything else the same
}

> cargo test

warning: unused import: `super::List`
 --> src/first.rs:45:9
 |
45 | use super::List;
 | ^^^^^^^^^^^
 |
 = note: #[warn(unused_imports)] on by default

 Finished dev [unoptimized + debuginfo] target(s) in 0.43s
 Running
/Users/ADesires/dev/lists/target/debug/deps/lists-
86544f1d97438f1f

running 1 test
test first::test::basics ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0
filtered out
; 0 filtered out

Yay!
What's up with that warning though...? We clearly use List in our test!
...but only when testing! To appease the compiler (and to be friendly to

our consumers), we should indicate that the whole test module should
only be compiled if we're running tests.
#[cfg(test)]
mod test {
 use super::List;
 // everything else the same
}

And that's everything for testing!

Drop
We can make a stack, push on to, pop off it, and we've even tested that it

all works right!
Do we need to worry about cleaning up our list? Technically, no, not at

all! Like C++, Rust uses destructors to automatically clean up resources
when they're done with. A type has a destructor if it implements a trait
called Drop. Traits are Rust's fancy term for interfaces. The Drop trait has
the following interface:
pub trait Drop {
 fn drop(&mut self);
}

Basically, "when you go out of scope, I'll give you a second to clean up
your affairs".

You don't actually need to implement Drop if you contain types that
implement Drop, and all you'd want to do is call their destructors. In the
case of List, all it would want to do is drop its head, which in turn would
maybe try to drop a Box<Node> . All that's handled for us automatically...
with one hitch.

The automatic handling is going to be bad.
Let's consider a simple list:

list -> A -> B -> C

When list gets dropped, it will try to drop A, which will try to drop B,
which will try to drop C. Some of you might rightly be getting nervous.
This is recursive code, and recursive code can blow the stack!

Some of you might be thinking "this is clearly tail recursive, and any
decent language would ensure that such code wouldn't blow the stack". This
is, in fact, incorrect! To see why, let's try to write what the compiler has to
do, by manually implementing Drop for our List as the compiler would:
impl Drop for List {
 fn drop(&mut self) {
 // NOTE: you can't actually explicitly call `drop` in

real Rust code;
 // we're pretending to be the compiler!
 self.head.drop(); // tail recursive - good!
 }
}

impl Drop for Link {
 fn drop(&mut self) {
 match *self {
 Link::Empty => {} // Done!
 Link::More(ref mut boxed_node) => {
 boxed_node.drop(); // tail recursive - good!
 }
 }
 }
}

impl Drop for Box<Node> {
 fn drop(&mut self) {
 self.ptr.drop(); // uh oh, not tail recursive!
 deallocate(self.ptr);
 }
}

impl Drop for Node {
 fn drop(&mut self) {
 self.next.drop();
 }
}

We can't drop the contents of the Box after deallocating, so there's no
way to drop in a tail-recursive manner! Instead we're going to have to
manually write an iterative drop for List that hoists nodes out of their
boxes.
impl Drop for List {
 fn drop(&mut self) {

 let mut cur_link = mem::replace(&mut self.head,
Link::Empty);
 // `while let` == "do this thing until this pattern
doesn't match"
 while let Link::More(mut boxed_node) = cur_link {
 cur_link = mem::replace(&mut boxed_node.next,
Link::Empty);
 // boxed_node goes out of scope and gets dropped
here;
 // but its Node's `next` field has been set to
Link::Empty
 // so no unbounded recursion occurs.
 }
 }
}

> cargo test

 Running target/debug/lists-5c71138492ad4b4a

running 1 test
test first::test::basics ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured

Great!

Bonus Section For Premature Optimization!
Our implementation of drop is actually very similar to while let

Some(_) = self.pop() { } , which is certainly simpler. How is it
different, and what performance issues could result from it once we start
generalizing our list to store things other than integers?

Click to expand for answer

The Final Code
Alright, 6000 words later, here's all the code we managed to actually

write:
use std::mem;

pub struct List {
 head: Link,
}

enum Link {
 Empty,
 More(Box<Node>),
}

struct Node {
 elem: i32,
 next: Link,
}

impl List {
 pub fn new() -> Self {
 List { head: Link::Empty }
 }

 pub fn push(&mut self, elem: i32) {
 let new_node = Box::new(Node {
 elem: elem,
 next: mem::replace(&mut self.head, Link::Empty),
 });

 self.head = Link::More(new_node);
 }

 pub fn pop(&mut self) -> Option<i32> {
 match mem::replace(&mut self.head, Link::Empty) {
 Link::Empty => None,
 Link::More(node) => {
 self.head = node.next;
 Some(node.elem)
 }
 }
 }
}

impl Drop for List {
 fn drop(&mut self) {
 let mut cur_link = mem::replace(&mut self.head,
Link::Empty);

 while let Link::More(mut boxed_node) = cur_link {
 cur_link = mem::replace(&mut boxed_node.next,
Link::Empty);
 }
 }
}

#[cfg(test)]
mod test {
 use super::List;

 #[test]
 fn basics() {
 let mut list = List::new();

 // Check empty list behaves right
 assert_eq!(list.pop(), None);

 // Populate list
 list.push(1);

 list.push(2);
 list.push(3);

 // Check normal removal
 assert_eq!(list.pop(), Some(3));
 assert_eq!(list.pop(), Some(2));

 // Push some more just to make sure nothing's
corrupted
 list.push(4);
 list.push(5);

 // Check normal removal
 assert_eq!(list.pop(), Some(5));
 assert_eq!(list.pop(), Some(4));

 // Check exhaustion
 assert_eq!(list.pop(), Some(1));
 assert_eq!(list.pop(), None);
 }
}

Geez. 80 lines, and half of it was tests! Well, I did say this first one was
going to take a while!

An Ok Singly-Linked Stack
In the previous chapter we wrote up a minimum viable singly-linked

stack. However there's a few design decisions that make it kind of sucky.
Let's make it less sucky. In doing so, we will:

Deinvent the wheel
Make our list able to handle any element type
Add peeking
Make our list iterable

And in the process we'll learn about

Advanced Option use
Generics
Lifetimes
Iterators

Let's add a new file called second.rs :
// in lib.rs

pub mod first;
pub mod second;

And copy everything from first.rs into it.

Using Option
Particularly observant readers may have noticed that we actually

reinvented a really bad version of Option:
enum Link {
 Empty,
 More(Box<Node>),
}

Link is just Option<Box<Node>> . Now, it's nice not to have to write
Option<Box<Node>> everywhere, and unlike pop , we're not exposing this
to the outside world, so maybe it's fine. However Option has some really
nice methods that we've been manually implementing ourselves. Let's not
do that, and replace everything with Options. First, we'll do it naively by
just renaming everything to use Some and None:
use std::mem;

pub struct List {
 head: Link,
}

// yay type aliases!
type Link = Option<Box<Node>>;

struct Node {
 elem: i32,
 next: Link,
}

impl List {
 pub fn new() -> Self {
 List { head: None }
 }

 pub fn push(&mut self, elem: i32) {
 let new_node = Box::new(Node {
 elem: elem,
 next: mem::replace(&mut self.head, None),
 });

 self.head = Some(new_node);
 }

 pub fn pop(&mut self) -> Option<i32> {
 match mem::replace(&mut self.head, None) {
 None => None,
 Some(node) => {
 self.head = node.next;
 Some(node.elem)
 }
 }
 }
}

impl Drop for List {
 fn drop(&mut self) {
 let mut cur_link = mem::replace(&mut self.head, None);
 while let Some(mut boxed_node) = cur_link {
 cur_link = mem::replace(&mut boxed_node.next,
None);
 }
 }
}

This is marginally better, but the big wins will come from Option's
methods.

First, mem::replace(&mut option, None) is such an incredibly
common idiom that Option actually just went ahead and made it a method:
take .

pub struct List {
 head: Link,
}

type Link = Option<Box<Node>>;

struct Node {
 elem: i32,
 next: Link,
}

impl List {
 pub fn new() -> Self {
 List { head: None }
 }

 pub fn push(&mut self, elem: i32) {
 let new_node = Box::new(Node {
 elem: elem,
 next: self.head.take(),
 });

 self.head = Some(new_node);
 }

 pub fn pop(&mut self) -> Option<i32> {
 match self.head.take() {
 None => None,
 Some(node) => {
 self.head = node.next;
 Some(node.elem)
 }
 }
 }
}

impl Drop for List {
 fn drop(&mut self) {
 let mut cur_link = self.head.take();
 while let Some(mut boxed_node) = cur_link {
 cur_link = boxed_node.next.take();
 }
 }
}

Second, match option { None => None, Some(x) => Some(y) } is
such an incredibly common idiom that it was called map . map takes a
function to execute on the x in the Some(x) to produce the y in Some(y) .
We could write a proper fn and pass it to map , but we'd much rather write
what to do inline.

The way to do this is with a closure. Closures are anonymous functions
with an extra super-power: they can refer to local variables outside the
closure! This makes them super useful for doing all sorts of conditional
logic. The only place we do a match is in pop , so let's just rewrite that:
pub fn pop(&mut self) -> Option<i32> {
 self.head.take().map(|node| {
 self.head = node.next;
 node.elem
 })
}

Ah, much better. Let's make sure we didn't break anything:
> cargo test

 Running target/debug/lists-5c71138492ad4b4a

running 2 tests
test first::test::basics ... ok
test second::test::basics ... ok

test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured

Great! Let's move on to actually improving the code's behaviour.

Making it all Generic
We've already touched a bit on generics with Option and Box. However

so far we've managed to avoid declaring any new type that is actually
generic over arbitrary elements.

It turns out that's actually really easy. Let's make all of our types generic
right now:
pub struct List<T> {
 head: Link<T>,
}

type Link<T> = Option<Box<Node<T>>>;

struct Node<T> {
 elem: T,
 next: Link<T>,
}

You just make everything a little more pointy, and suddenly your code is
generic. Of course, we can't just do this, or else the compiler's going to be
Super Mad.
> cargo test

error[E0107]: wrong number of type arguments: expected 1,
found 0
 --> src/second.rs:14:6
 |
14 | impl List {
 | ^^^^ expected 1 type argument

error[E0107]: wrong number of type arguments: expected 1,
found 0
 --> src/second.rs:36:15
 |

36 | impl Drop for List {
 | ^^^^ expected 1 type argument

The problem is pretty clear: we're talking about this List thing but
that's not real anymore. Like Option and Box, we now always have to talk
about List<Something> .

But what's the Something we use in all these impls? Just like List, we
want our implementations to work with all the T's. So, just like List, let's
make our impl s pointy:
impl<T> List<T> {
 pub fn new() -> Self {
 List { head: None }
 }

 pub fn push(&mut self, elem: T) {
 let new_node = Box::new(Node {
 elem: elem,
 next: self.head.take(),
 });

 self.head = Some(new_node);
 }

 pub fn pop(&mut self) -> Option<T> {
 self.head.take().map(|node| {
 self.head = node.next;
 node.elem
 })
 }
}

impl<T> Drop for List<T> {
 fn drop(&mut self) {
 let mut cur_link = self.head.take();

 while let Some(mut boxed_node) = cur_link {
 cur_link = boxed_node.next.take();
 }
 }
}

...and that's it!
> cargo test

 Running target/debug/lists-5c71138492ad4b4a

running 2 tests
test first::test::basics ... ok
test second::test::basics ... ok

test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured

All of our code is now completely generic over arbitrary values of T.
Dang, Rust is easy. I'd like to make a particular shout-out to new which
didn't even change:
pub fn new() -> Self {
 List { head: None }
}

Bask in the Glory that is Self, guardian of refactoring and copy-pasta
coding. Also of interest, we don't write List<T> when we construct an
instance of list. That part's inferred for us based on the fact that we're
returning it from a function that expects a List<T> .

Alright, let's move on to totally new behaviour!

Peek
One thing we didn't even bother to implement last time was peeking.

Let's go ahead and do that. All we need to do is return a reference to the
element in the head of the list, if it exists. Sounds easy, let's try:
pub fn peek(&self) -> Option<&T> {
 self.head.map(|node| {
 &node.elem
 })
}

> cargo build

error[E0515]: cannot return reference to local data
`node.elem`
 --> src/second.rs:37:13
 |
37 | &node.elem
 | ^^^^^^^^^^ returns a reference to data owned
by the current function

error[E0507]: cannot move out of borrowed content
 --> src/second.rs:36:9
 |
36 | self.head.map(|node| {
 | ^^^^^^^^^ cannot move out of borrowed content

Sigh. What now, Rust?
Map takes self by value, which would move the Option out of the

thing it's in. Previously this was fine because we had just taken it out, but
now we actually want to leave it where it was. The correct way to handle
this is with the as_ref method on Option, which has the following
definition:

impl<T> Option<T> {
 pub fn as_ref(&self) -> Option<&T>;
}

It demotes the Option<T> to an Option to a reference to its internals. We
could do this ourselves with an explicit match but ugh no. It does mean that
we need to do an extra dereference to cut through the extra indirection, but
thankfully the . operator handles that for us.
pub fn peek(&self) -> Option<&T> {
 self.head.as_ref().map(|node| {
 &node.elem
 })
}

cargo build

 Finished dev [unoptimized + debuginfo] target(s) in 0.32s

Nailed it.
We can also make a mutable version of this method using as_mut :

pub fn peek_mut(&mut self) -> Option<&mut T> {
 self.head.as_mut().map(|node| {
 &mut node.elem
 })
}

> cargo build

EZ
Don't forget to test it:

#[test]
fn peek() {
 let mut list = List::new();
 assert_eq!(list.peek(), None);
 assert_eq!(list.peek_mut(), None);
 list.push(1); list.push(2); list.push(3);

 assert_eq!(list.peek(), Some(&3));
 assert_eq!(list.peek_mut(), Some(&mut 3));
}

cargo test

 Running target/debug/lists-5c71138492ad4b4a

running 3 tests
test first::test::basics ... ok
test second::test::basics ... ok
test second::test::peek ... ok

test result: ok. 3 passed; 0 failed; 0 ignored; 0 measured

That's nice, but we didn't really test to see if we could mutate that
peek_mut return value, did we? If a reference is mutable but nobody
mutates it, have we really tested the mutability? Let's try using map on this
Option<&mut T> to put a profound value in:
#[test]
fn peek() {
 let mut list = List::new();
 assert_eq!(list.peek(), None);
 assert_eq!(list.peek_mut(), None);
 list.push(1); list.push(2); list.push(3);

 assert_eq!(list.peek(), Some(&3));
 assert_eq!(list.peek_mut(), Some(&mut 3));
 list.peek_mut().map(|&mut value| {
 value = 42
 });

 assert_eq!(list.peek(), Some(&42));

 assert_eq!(list.pop(), Some(42));
}

> cargo test

error[E0384]: cannot assign twice to immutable variable
`value`
 --> src/second.rs:100:13
 |
99 | list.peek_mut().map(|&mut value| {
 | -----
 | |
 | first assignment to
`value`
 | help: make this
binding mutable: `mut value`
100 | value = 42
 | ^^^^^^^^^^ cannot assign twice to immutable
variable ^~~~~

The compiler is complaining that value is immutable, but we pretty
clearly wrote &mut value ; what gives? It turns out that writing the
argument of the closure that way doesn't specify that value is a mutable
reference. Instead, it creates a pattern that will be matched against the
argument to the closure; |&mut value| means "the argument is a mutable
reference, but just copy the value it points to into value , please." If we just
use |value| , the type of value will be &mut i32 and we can actually
mutate the head:
 #[test]
 fn peek() {
 let mut list = List::new();
 assert_eq!(list.peek(), None);
 assert_eq!(list.peek_mut(), None);
 list.push(1); list.push(2); list.push(3);

 assert_eq!(list.peek(), Some(&3));

 assert_eq!(list.peek_mut(), Some(&mut 3));

 list.peek_mut().map(|value| {
 *value = 42
 });

 assert_eq!(list.peek(), Some(&42));
 assert_eq!(list.pop(), Some(42));
 }

cargo test

 Running target/debug/lists-5c71138492ad4b4a

running 3 tests
test first::test::basics ... ok
test second::test::basics ... ok
test second::test::peek ... ok

test result: ok. 3 passed; 0 failed; 0 ignored; 0 measured

Much better!

IntoIter
Collections are iterated in Rust using the Iterator trait. It's a bit more

complicated than Drop :
pub trait Iterator {
 type Item;
 fn next(&mut self) -> Option<Self::Item>;
}

The new kid on the block here is type Item . This is declaring that
every implementation of Iterator has an associated type called Item. In this
case, this is the type that it can spit out when you call next .

The reason Iterator yields Option<Self::Item> is because the interface
coalesces the has_next and get_next concepts. When you have the next
value, you yield Some(value) , and when you don't you yield None . This
makes the API generally more ergonomic and safe to use and implement,
while avoiding redundant checks and logic between has_next and
get_next . Nice!

Sadly, Rust has nothing like a yield statement (yet), so we're going to
have to implement the logic ourselves. Also, there's actually 3 different
kinds of iterator each collection should endeavour to implement:

IntoIter - T
IterMut - &mut T
Iter - &T

We actually already have all the tools to implement IntoIter using List's
interface: just call pop over and over. As such, we'll just implement IntoIter
as a newtype wrapper around List:
// Tuple structs are an alternative form of struct,
// useful for trivial wrappers around other types.
pub struct IntoIter<T>(List<T>);

impl<T> List<T> {

 pub fn into_iter(self) -> IntoIter<T> {
 IntoIter(self)
 }
}

impl<T> Iterator for IntoIter<T> {
 type Item = T;
 fn next(&mut self) -> Option<Self::Item> {
 // access fields of a tuple struct numerically
 self.0.pop()
 }
}

And let's write a test:
#[test]
fn into_iter() {
 let mut list = List::new();
 list.push(1); list.push(2); list.push(3);

 let mut iter = list.into_iter();
 assert_eq!(iter.next(), Some(3));
 assert_eq!(iter.next(), Some(2));
 assert_eq!(iter.next(), Some(1));
 assert_eq!(iter.next(), None);
}

> cargo test

 Running target/debug/lists-5c71138492ad4b4a

running 4 tests
test first::test::basics ... ok
test second::test::basics ... ok
test second::test::into_iter ... ok
test second::test::peek ... ok

test result: ok. 4 passed; 0 failed; 0 ignored; 0 measured

Nice!

Iter
Alright, let's try to implement Iter. This time we won't be able to rely on

List giving us all the features we want. We'll need to roll our own. The basic
logic we want is to hold a pointer to the current node we want to yield next.
Because that node may not exist (the list is empty or we're otherwise done
iterating), we want that reference to be an Option. When we yield an
element, we want to proceed to the current node's next node.

Alright, let's try that:
pub struct Iter<T> {
 next: Option<&Node<T>>,
}

impl<T> List<T> {
 pub fn iter(&self) -> Iter<T> {
 Iter { next: self.head.map(|node| &node) }
 }
}

impl<T> Iterator for Iter<T> {
 type Item = &T;

 fn next(&mut self) -> Option<Self::Item> {
 self.next.map(|node| {
 self.next = node.next.map(|node| &node);
 &node.elem
 })
 }
}

> cargo build

error[E0106]: missing lifetime specifier
 --> src/second.rs:72:18
 |

72 | next: Option<&Node<T>>,
 | ^ expected lifetime parameter

error[E0106]: missing lifetime specifier
 --> src/second.rs:82:17
 |
82 | type Item = &T;
 | ^ expected lifetime parameter

Oh god. Lifetimes. I've heard of these things. I hear they're a nightmare.
Let's try something new: see that error[E0106] thing? That's a

compiler error code. We can ask rustc to explain those with, well, --
explain :
> rustc --explain E0106
This error indicates that a lifetime is missing from a type.
If it is an error
inside a function signature, the problem may be with failing
to adhere to the
lifetime elision rules (see below).

Here are some simple examples of where you'll run into this
error:

struct Foo { x: &bool } // error
struct Foo<'a> { x: &'a bool } // correct

enum Bar { A(u8), B(&bool), } // error
enum Bar<'a> { A(u8), B(&'a bool), } // correct

type MyStr = &str; // error
type MyStr<'a> = &'a str; //correct
...

That uh... that didn't really clarify much (these docs assume we
understand Rust better than we currently do). But it looks like we should

add those 'a things to our struct? Let's try that.
pub struct Iter<'a, T> {
 next: Option<&'a Node<T>>,
}

> cargo build

error[E0106]: missing lifetime specifier
 --> src/second.rs:83:22
 |
83 | impl<T> Iterator for Iter<T> {
 | ^^^^^^^ expected lifetime parameter

error[E0106]: missing lifetime specifier
 --> src/second.rs:84:17
 |
84 | type Item = &T;
 | ^ expected lifetime parameter

error: aborting due to 2 previous errors

Alright I'm starting to see a pattern here... let's just add these little guys
to everything we can:
pub struct Iter<'a, T> {
 next: Option<&'a Node<T>>,
}

impl<'a, T> List<T> {
 pub fn iter(&'a self) -> Iter<'a, T> {
 Iter { next: self.head.map(|node| &'a node) }
 }
}

impl<'a, T> Iterator for Iter<'a, T> {
 type Item = &'a T;
 fn next(&'a mut self) -> Option<Self::Item> {

 self.next.map(|node| {
 self.next = node.next.map(|node| &'a node);
 &'a node.elem
 })
 }
}

> cargo build

error: expected `:`, found `node`
 --> src/second.rs:77:47
 |
77 | Iter { next: self.head.map(|node| &'a node) }
 | ---- while parsing this struct ^^^^
expected `:`

error: expected `:`, found `node`
 --> src/second.rs:85:50
 |
85 | self.next = node.next.map(|node| &'a node);
 | ^^^^
expected `:`

error[E0063]: missing field `next` in initializer of
`second::Iter<'_, _>`
 --> src/second.rs:77:9
 |
77 | Iter { next: self.head.map(|node| &'a node) }
 | ^^^^ missing `next`

Oh god. We broke Rust.
Maybe we should actually figure out what the heck this 'a lifetime stuff

even means.
Lifetimes can scare off a lot of people because they're a change to

something we've known and loved since the dawn of programming. We've

actually managed to dodge lifetimes so far, even though they've been
tangled throughout our programs this whole time.

Lifetimes are unnecessary in garbage collected languages because the
garbage collector ensures that everything magically lives as long as it needs
to. Most data in Rust is manually managed, so that data needs another
solution. C and C++ give us a clear example what happens if you just let
people take pointers to random data on the stack: pervasive unmanageable
unsafety. This can be roughly separated into two classes of error:

Holding a pointer to something that went out of scope
Holding a pointer to something that got mutated away

Lifetimes solve both of these problems, and 99% of the time, they do
this in a totally transparent way.

So what's a lifetime?
Quite simply, a lifetime is the name of a region (~block/scope) of code

somewhere in a program. That's it. When a reference is tagged with a
lifetime, we're saying that it has to be valid for that entire region. Different
things place requirements on how long a reference must and can be valid
for. The entire lifetime system is in turn just a constraint-solving system that
tries to minimize the region of every reference. If it successfully finds a set
of lifetimes that satisfies all the constraints, your program compiles!
Otherwise you get an error back saying that something didn't live long
enough.

Within a function body you generally can't talk about lifetimes, and
wouldn't want to anyway. The compiler has full information and can infer
all the constraints to find the minimum lifetimes. However at the type and
API-level, the compiler doesn't have all the information. It requires you to
tell it about the relationship between different lifetimes so it can figure out
what you're doing.

In principle, those lifetimes could also be left out, but then checking all
the borrows would be a huge whole-program analysis that would produce
mind-bogglingly non-local errors. Rust's system means all borrow checking
can be done in each function body independently, and all your errors should
be fairly local (or your types have incorrect signatures).

But we've written references in function signatures before, and it was
fine! That's because there are certain cases that are so common that Rust
will automatically pick the lifetimes for you. This is lifetime elision.

In particular:
// Only one reference in input, so the output must be derived
from that input
fn foo(&A) -> &B; // sugar for:
fn foo<'a>(&'a A) -> &'a B;

// Many inputs, assume they're all independent
fn foo(&A, &B, &C); // sugar for:
fn foo<'a, 'b, 'c>(&'a A, &'b B, &'c C);

// Methods, assume all output lifetimes are derived from
`self`
fn foo(&self, &B, &C) -> &D; // sugar for:
fn foo<'a, 'b, 'c>(&'a self, &'b B, &'c C) -> &'a D;

So what does fn foo<'a>(&'a A) -> &'a B mean? In practical terms,
all it means is that the input must live at least as long as the output. So if
you keep the output around for a long time, this will expand the region that
the input must be valid for. Once you stop using the output, the compiler
will know it's ok for the input to become invalid too.

With this system set up, Rust can ensure nothing is used after free, and
nothing is mutated while outstanding references exist. It just makes sure the
constraints all work out!

Alright. So. Iter.
Let's roll back to the no lifetimes state:

pub struct Iter<T> {
 next: Option<&Node<T>>,
}

impl<T> List<T> {
 pub fn iter(&self) -> Iter<T> {
 Iter { next: self.head.map(|node| &node) }

 }
}

impl<T> Iterator for Iter<T> {
 type Item = &T;
 fn next(&mut self) -> Option<Self::Item> {
 self.next.map(|node| {
 self.next = node.next.map(|node| &node);
 &node.elem
 })
 }
}

We need to add lifetimes only in function and type signatures:
// Iter is generic over *some* lifetime, it doesn't care
pub struct Iter<'a, T> {
 next: Option<&'a Node<T>>,
}

// No lifetime here, List doesn't have any associated
lifetimes
impl<T> List<T> {
 // We declare a fresh lifetime here for the *exact* borrow
that
 // creates the iter. Now &self needs to be valid as long
as the
 // Iter is around.
 pub fn iter<'a>(&'a self) -> Iter<'a, T> {
 Iter { next: self.head.map(|node| &node) }
 }
}

// We *do* have a lifetime here, because Iter has one that we
need to define
impl<'a, T> Iterator for Iter<'a, T> {
 // Need it here too, this is a type declaration

 type Item = &'a T;

 // None of this needs to change, handled by the above.
 // Self continues to be incredibly hype and amazing
 fn next(&mut self) -> Option<Self::Item> {
 self.next.map(|node| {
 self.next = node.next.map(|node| &node);
 &node.elem
 })
 }
}

Alright, I think we got it this time y'all.
cargo build

error[E0308]: mismatched types
 --> src/second.rs:77:22
 |
77 | Iter { next: self.head.map(|node| &node) }
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^ expected
struct `second::Node`, found struct `std::boxed::Box`
 |
 = note: expected type
`std::option::Option<&second::Node<T>>`
 found type
`std::option::Option<&std::boxed::Box<second::Node<T>>>`

error[E0308]: mismatched types
 --> src/second.rs:85:25
 |
85 | self.next = node.next.map(|node| &node);
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^
expected struct `second::Node`, found struct `std::boxed::Box`
 |
 = note: expected type `std::option::Option<&'a
second::Node<T>>`

 found type
`std::option::Option<&std::boxed::Box<second::Node<T>>>`

(╯°□°)╯� ┻━┻
OK. SO. We fixed our lifetime errors but now we're getting some new

type errors.
We want to be storing &Node 's, but we're getting &Box<Node> s. Ok,

that's easy enough, we just need to dereference the Box before we take our
reference:
impl<T> List<T> {
 pub fn iter<'a>(&'a self) -> Iter<'a, T> {
 Iter { next: self.head.map(|node| &*node) }
 }
}

impl<'a, T> Iterator for Iter<'a, T> {
 type Item = &'a T;
 fn next(&mut self) -> Option<Self::Item> {
 self.next.map(|node| {
 self.next = node.next.map(|node| &*node);
 &node.elem
 })
 }
}

cargo build
 Compiling lists v0.1.0 (/Users/ADesires/dev/temp/lists)
error[E0515]: cannot return reference to local data `*node`
 --> src/second.rs:77:43
 |
77 | Iter { next: self.head.map(|node| &*node) }
 | ^^^^^^ returns
a reference to data owned by the current function

error[E0507]: cannot move out of borrowed content
 --> src/second.rs:77:22

 |
77 | Iter { next: self.head.map(|node| &*node) }
 | ^^^^^^^^^ cannot move out of
borrowed content

error[E0515]: cannot return reference to local data `*node`
 --> src/second.rs:85:46
 |
85 | self.next = node.next.map(|node| &*node);
 | ^^^^^^
returns a reference to data owned by the current function

error[E0507]: cannot move out of borrowed content
 --> src/second.rs:85:25
 |
85 | self.next = node.next.map(|node| &*node);
 | ^^^^^^^^^ cannot move out of
borrowed content

(������ ┻━┻
We forgot as_ref , so we're moving the box into map , which means it

would be dropped, which means our references would be dangling:
pub struct Iter<'a, T> {
 next: Option<&'a Node<T>>,
}

impl<T> List<T> {
 pub fn iter<'a>(&'a self) -> Iter<'a, T> {
 Iter { next: self.head.as_ref().map(|node| &*node) }
 }
}

impl<'a, T> Iterator for Iter<'a, T> {
 type Item = &'a T;

 fn next(&mut self) -> Option<Self::Item> {

 self.next.map(|node| {
 self.next = node.next.as_ref().map(|node| &*node);
 &node.elem
 })
 }
}

cargo build
 Compiling lists v0.1.0 (/Users/ADesires/dev/temp/lists)
error[E0308]: mismatched types
 --> src/second.rs:77:22
 |
77 | Iter { next: self.head.as_ref().map(|node|
&*node) }
 |
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ expected struct
`second::Node`, found struct `std::boxed::Box`
 |
 = note: expected type
`std::option::Option<&second::Node<T>>`
 found type
`std::option::Option<&std::boxed::Box<second::Node<T>>>`

error[E0308]: mismatched types
 --> src/second.rs:85:25
 |
85 | self.next = node.next.as_ref().map(|node|
&*node);
 |
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ expected struct
`second::Node`, found struct `std::boxed::Box`
 |
 = note: expected type `std::option::Option<&'a
second::Node<T>>`
 found type

`std::option::Option<&std::boxed::Box<second::Node<T>>>`

😭
as_ref added another layer of indirection we need to remove:

pub struct Iter<'a, T> {
 next: Option<&'a Node<T>>,
}

impl<T> List<T> {
 pub fn iter<'a>(&'a self) -> Iter<'a, T> {
 Iter { next: self.head.as_deref() }
 }
}

impl<'a, T> Iterator for Iter<'a, T> {
 type Item = &'a T;

 fn next(&mut self) -> Option<Self::Item> {
 self.next.map(|node| {
 self.next = node.next.as_deref();
 &node.elem
 })
 }
}

cargo build

🎉 🎉 🎉
The as_deref and as_deref_mut functions are stable as of Rust 1.40.

Before that you would need to do map(|node| &**node) and map(|node|
&mut**node) . You may be thinking "wow that &** thing is really janky",
and you're not wrong, but like a fine wine Rust gets better over time and we
no longer need to do such. Normally Rust is very good at doing this kind of
conversion implicitly, through a process called deref coercion, where
basically it can insert *'s throughout your code to make it type-check. It can

do this because we have the borrow checker to ensure we never mess up
pointers!

But in this case the closure in conjunction with the fact that we have an
Option<&T> instead of &T is a bit too complicated for it to work out, so we
need to help it by being explicit. Thankfully this is pretty rare, in my
experience.

Just for completeness' sake, we could give it a different hint with the
turbofish:
 self.next = node.next.as_ref().map::<&Node<T>, _>(|node|
&node);

See, map is a generic function:
pub fn map<U, F>(self, f: F) -> Option<U>

The turbofish, ::<> , lets us tell the compiler what we think the types of
those generics should be. In this case ::<&Node<T>, _> says "it should
return a &Node<T> , and I don't know/care about that other type".

This in turn lets the compiler know that &node should have deref
coercion applied to it, so we don't need to manually apply all those *'s!

But in this case I don't think it's really an improvement, this was just a
thinly veiled excuse to show off deref coercion and the sometimes-useful
turbofish. 😅

Let's write a test to be sure we didn't no-op it or anything:
#[test]
fn iter() {
 let mut list = List::new();
 list.push(1); list.push(2); list.push(3);

 let mut iter = list.iter();
 assert_eq!(iter.next(), Some(&3));
 assert_eq!(iter.next(), Some(&2));
 assert_eq!(iter.next(), Some(&1));
}

> cargo test

 Running target/debug/lists-5c71138492ad4b4a

running 5 tests
test first::test::basics ... ok
test second::test::basics ... ok
test second::test::into_iter ... ok
test second::test::iter ... ok
test second::test::peek ... ok

test result: ok. 4 passed; 0 failed; 0 ignored; 0 measured

Heck yeah.
Finally, it should be noted that we can actually apply lifetime elision

here:
impl<T> List<T> {
 pub fn iter<'a>(&'a self) -> Iter<'a, T> {
 Iter { next: self.head.as_deref() }
 }
}

is equivalent to:
impl<T> List<T> {
 pub fn iter(&self) -> Iter<T> {
 Iter { next: self.head.as_deref() }
 }
}

Yay fewer lifetimes!
Or, if you're not comfortable "hiding" that a struct contains a lifetime,

you can use the Rust 2018 "explicitly elided lifetime" syntax, '_ :
impl<T> List<T> {
 pub fn iter(&self) -> Iter<'_, T> {
 Iter { next: self.head.as_deref() }

 }
}

IterMut
I'm gonna be honest, IterMut is WILD. Which in itself seems like a wild

thing to say; surely it's identical to Iter!
Semantically, yes, but the nature of shared and mutable references means

that Iter is "trivial" while IterMut is Legit Wizard Magic.
The key insight comes from our implementation of Iterator for Iter:

impl<'a, T> Iterator for Iter<'a, T> {
 type Item = &'a T;

 fn next(&mut self) -> Option<Self::Item> { /* stuff */ }
}

Which can be desugared to:
impl<'a, T> Iterator for Iter<'a, T> {
 type Item = &'a T;

 fn next<'b>(&'b mut self) -> Option<&'a T> { /* stuff */ }
}

The signature of next establishes no constraint between the lifetime of
the input and the output! Why do we care? It means we can call next over
and over unconditionally!
let mut list = List::new();
list.push(1); list.push(2); list.push(3);

let mut iter = list.iter();
let x = iter.next().unwrap();
let y = iter.next().unwrap();
let z = iter.next().unwrap();

Cool!
This is definitely fine for shared references because the whole point is

that you can have tons of them at once. However mutable references can't
coexist. The whole point is that they're exclusive.

The end result is that it's notably harder to write IterMut using safe code
(and we haven't gotten into what that even means yet...). Surprisingly,
IterMut can actually be implemented for many structures completely safely!

We'll start by just taking the Iter code and changing everything to be
mutable:
pub struct IterMut<'a, T> {
 next: Option<&'a mut Node<T>>,
}

impl<T> List<T> {
 pub fn iter_mut(&self) -> IterMut<'_, T> {
 IterMut { next: self.head.as_deref_mut() }
 }
}

impl<'a, T> Iterator for IterMut<'a, T> {
 type Item = &'a mut T;

 fn next(&mut self) -> Option<Self::Item> {
 self.next.map(|node| {
 self.next = node.next.as_deref_mut();
 &mut node.elem
 })
 }
}

> cargo build
error[E0596]: cannot borrow `self.head` as mutable, as it is
behind a `&` reference
 --> src/second.rs:95:25
 |
94 | pub fn iter_mut(&self) -> IterMut<'_, T> {
 | ----- help: consider changing this to
be a mutable reference: `&mut self`
95 | IterMut { next: self.head.as_deref_mut() }
 | ^^^^^^^^^ `self` is a `&`

reference, so the data it refers to cannot be borrowed as
mutable

error[E0507]: cannot move out of borrowed content
 --> src/second.rs:103:9
 |
103 | self.next.map(|node| {
 | ^^^^^^^^^ cannot move out of borrowed content

Ok looks like we've got two different errors here. The first one looks
really clear though, it even tells us how to fix it! You can't upgrade a shared
reference to a mutable one, so iter_mut needs to take &mut self . Just a
silly copy-paste error.
pub fn iter_mut(&mut self) -> IterMut<'_, T> {
 IterMut { next: self.head.as_deref_mut() }
}

What about the other one?
Oops! I actually accidentally made an error when writing the iter impl

in the previous section, and we were just getting lucky that it worked!
We have just had our first run in with the magic of Copy. When we

introduced ownership we said that when you move stuff, you can't use it
anymore. For some types, this makes perfect sense. Our good friend Box
manages an allocation on the heap for us, and we certainly don't want two
pieces of code to think that they need to free its memory.

However for other types this is garbage. Integers have no ownership
semantics; they're just meaningless numbers! This is why integers are
marked as Copy. Copy types are known to be perfectly copyable by a
bitwise copy. As such, they have a super power: when moved, the old value
is still usable. As a consequence, you can even move a Copy type out of a
reference without replacement!

All numeric primitives in Rust (i32, u64, bool, f32, char, etc...) are Copy.
You can also declare any user-defined type to be Copy as well, as long as
all its components are Copy.

clbr://internal.invalid/book/OEBPS/first-ownership.md

Critically to why this code was working, shared references are also
Copy! Because & is copy, Option<&> is also Copy. So when we did
self.next.map it was fine because the Option was just copied. Now we
can't do that, because &mut isn't Copy (if you copied an &mut, you'd have
two &mut's to the same location in memory, which is forbidden). Instead,
we should properly take the Option to get it.
fn next(&mut self) -> Option<Self::Item> {
 self.next.take().map(|node| {
 self.next = node.next.as_deref_mut();
 &mut node.elem
 })
}

> cargo build

Uh... wow. Holy shit! IterMut Just Works!
Let's test this:

#[test]
fn iter_mut() {
 let mut list = List::new();
 list.push(1); list.push(2); list.push(3);

 let mut iter = list.iter_mut();
 assert_eq!(iter.next(), Some(&mut 3));
 assert_eq!(iter.next(), Some(&mut 2));
 assert_eq!(iter.next(), Some(&mut 1));
}

> cargo test

 Running target/debug/lists-5c71138492ad4b4a

running 6 tests
test first::test::basics ... ok
test second::test::basics ... ok

test second::test::iter_mut ... ok
test second::test::into_iter ... ok
test second::test::iter ... ok
test second::test::peek ... ok

test result: ok. 7 passed; 0 failed; 0 ignored; 0 measured

Yep. It works.
Holy shit.
What.
Ok I mean it actually is supposed to work, but there's usually something

stupid that gets in the way! Let's be clear here:
We have just implemented a piece of code that takes a singly-linked list,

and returns a mutable reference to every single element in the list at most
once. And it's statically verified to do that. And it's totally safe. And we
didn't have to do anything wild.

That's kind of a big deal, if you ask me. There are a couple reasons why
this works:

We take the Option<&mut> so we have exclusive access to the
mutable reference. No need to worry about someone looking at it
again.
Rust understands that it's ok to shard a mutable reference into the
subfields of the pointed-to struct, because there's no way to "go back
up", and they're definitely disjoint.

It turns out that you can apply this basic logic to get a safe IterMut for an
array or a tree as well! You can even make the iterator DoubleEnded, so that
you can consume the iterator from the front and the back at once! Woah!

Final Code
Alright, that's it for the second list; here's the final code!

pub struct List<T> {
 head: Link<T>,
}

type Link<T> = Option<Box<Node<T>>>;

struct Node<T> {
 elem: T,
 next: Link<T>,
}

impl<T> List<T> {
 pub fn new() -> Self {
 List { head: None }
 }

 pub fn push(&mut self, elem: T) {
 let new_node = Box::new(Node {
 elem: elem,
 next: self.head.take(),
 });

 self.head = Some(new_node);
 }

 pub fn pop(&mut self) -> Option<T> {
 self.head.take().map(|node| {
 self.head = node.next;
 node.elem
 })
 }

 pub fn peek(&self) -> Option<&T> {
 self.head.as_ref().map(|node| {
 &node.elem
 })
 }

 pub fn peek_mut(&mut self) -> Option<&mut T> {
 self.head.as_mut().map(|node| {
 &mut node.elem
 })
 }

 pub fn into_iter(self) -> IntoIter<T> {
 IntoIter(self)
 }

 pub fn iter(&self) -> Iter<'_, T> {
 Iter { next: self.head.as_deref() }
 }

 pub fn iter_mut(&mut self) -> IterMut<'_, T> {
 IterMut { next: self.head.as_deref_mut() }
 }
}

impl<T> Drop for List<T> {
 fn drop(&mut self) {
 let mut cur_link = self.head.take();
 while let Some(mut boxed_node) = cur_link {
 cur_link = boxed_node.next.take();
 }
 }
}

pub struct IntoIter<T>(List<T>);

impl<T> Iterator for IntoIter<T> {
 type Item = T;
 fn next(&mut self) -> Option<Self::Item> {
 // access fields of a tuple struct numerically
 self.0.pop()
 }
}

pub struct Iter<'a, T> {
 next: Option<&'a Node<T>>,
}

impl<'a, T> Iterator for Iter<'a, T> {
 type Item = &'a T;
 fn next(&mut self) -> Option<Self::Item> {
 self.next.map(|node| {
 self.next = node.next.as_deref();
 &node.elem
 })
 }
}

pub struct IterMut<'a, T> {
 next: Option<&'a mut Node<T>>,
}

impl<'a, T> Iterator for IterMut<'a, T> {
 type Item = &'a mut T;

 fn next(&mut self) -> Option<Self::Item> {
 self.next.take().map(|node| {
 self.next = node.next.as_deref_mut();
 &mut node.elem
 })
 }

}

#[cfg(test)]
mod test {
 use super::List;

 #[test]
 fn basics() {
 let mut list = List::new();

 // Check empty list behaves right
 assert_eq!(list.pop(), None);

 // Populate list
 list.push(1);
 list.push(2);
 list.push(3);

 // Check normal removal
 assert_eq!(list.pop(), Some(3));
 assert_eq!(list.pop(), Some(2));

 // Push some more just to make sure nothing's
corrupted
 list.push(4);
 list.push(5);

 // Check normal removal
 assert_eq!(list.pop(), Some(5));
 assert_eq!(list.pop(), Some(4));

 // Check exhaustion
 assert_eq!(list.pop(), Some(1));
 assert_eq!(list.pop(), None);
 }

 #[test]
 fn peek() {
 let mut list = List::new();
 assert_eq!(list.peek(), None);
 assert_eq!(list.peek_mut(), None);
 list.push(1); list.push(2); list.push(3);

 assert_eq!(list.peek(), Some(&3));
 assert_eq!(list.peek_mut(), Some(&mut 3));

 list.peek_mut().map(|value| {
 *value = 42
 });

 assert_eq!(list.peek(), Some(&42));
 assert_eq!(list.pop(), Some(42));
 }

 #[test]
 fn into_iter() {
 let mut list = List::new();
 list.push(1); list.push(2); list.push(3);

 let mut iter = list.into_iter();
 assert_eq!(iter.next(), Some(3));
 assert_eq!(iter.next(), Some(2));
 assert_eq!(iter.next(), Some(1));
 assert_eq!(iter.next(), None);
 }

 #[test]
 fn iter() {
 let mut list = List::new();
 list.push(1); list.push(2); list.push(3);

 let mut iter = list.iter();

 assert_eq!(iter.next(), Some(&3));
 assert_eq!(iter.next(), Some(&2));
 assert_eq!(iter.next(), Some(&1));
 }

 #[test]
 fn iter_mut() {
 let mut list = List::new();
 list.push(1); list.push(2); list.push(3);

 let mut iter = list.iter_mut();
 assert_eq!(iter.next(), Some(&mut 3));
 assert_eq!(iter.next(), Some(&mut 2));
 assert_eq!(iter.next(), Some(&mut 1));
 }
}

Getting beefier!

A Persistent Singly-Linked Stack
Alright, we've mastered the art of mutable singly-linked stacks.
Let's move from single ownership to shared ownership by writing a

persistent immutable singly-linked list. This will be exactly the list that
functional programmers have come to know and love. You can get the head
or the tail and put someone's head on someone else's tail... and... that's
basically it. Immutability is a hell of a drug.

In the process we'll largely just become familiar with Rc and Arc, but
this will set us up for the next list which will change the game.

Let's add a new file called third.rs :
// in lib.rs

pub mod first;
pub mod second;
pub mod third;

No copy-pasta this time. This is a clean room operation.

Layout
Alright, back to the drawing board on layout.
The most important thing about a persistent list is that you can

manipulate the tails of lists basically for free:
For instance, this isn't an uncommon workload to see with a persistent

list:
list1 = A -> B -> C -> D
list2 = tail(list1) = B -> C -> D
list3 = push(list2, X) = X -> B -> C -> D

But at the end we want the memory to look like this:
list1 -> A ---+
 |
 v
list2 ------> B -> C -> D
 ^
 |
list3 -> X ---+

This just can't work with Boxes, because ownership of B is shared. Who
should free it? If I drop list2, does it free B? With boxes we certainly would
expect so!

Functional languages — and indeed almost every other language — get
away with this by using garbage collection. With the magic of garbage
collection, B will be freed only after everyone stops looking at it. Hooray!

Rust doesn't have anything like the garbage collectors these languages
have. They have tracing GC, which will dig through all the memory that's
sitting around at runtime and figure out what's garbage automatically.
Instead, all Rust has today is reference counting. Reference counting can be
thought of as a very simple GC. For many workloads, it has significantly
less throughput than a tracing collector, and it completely falls over if you
manage to build cycles. But hey, it's all we've got! Thankfully, for our
usecase we'll never run into cycles (feel free to try to prove this to yourself
— I sure won't).

So how do we do reference-counted garbage collection? Rc ! Rc is just
like Box, but we can duplicate it, and its memory will only be freed when
all the Rc's derived from it are dropped. Unfortunately, this flexibility
comes at a serious cost: we can only take a shared reference to its internals.
This means we can't ever really get data out of one of our lists, nor can we
mutate them.

So what's our layout gonna look like? Well, previously we had:
pub struct List<T> {
 head: Link<T>,
}

type Link<T> = Option<Box<Node<T>>>;

struct Node<T> {
 elem: T,
 next: Link<T>,
}

Can we just change Box to Rc?
// in third.rs

pub struct List<T> {
 head: Link<T>,
}

type Link<T> = Option<Rc<Node<T>>>;

struct Node<T> {
 elem: T,
 next: Link<T>,
}

cargo build

error[E0412]: cannot find type `Rc` in this scope
 --> src/third.rs:5:23

 |
5 | type Link<T> = Option<Rc<Node<T>>>;
 | ^^ not found in this scope
help: possible candidate is found in another module, you can
import it into scope
 |
1 | use std::rc::Rc;
 |

Oh dang, sick burn. Unlike everything we used for our mutable lists, Rc
is so lame that it's not even implicitly imported into every single Rust
program. What a loser.
use std::rc::Rc;

cargo build

warning: field is never used: `head`
 --> src/third.rs:4:5
 |
4 | head: Link<T>,
 | ^^^^^^^^^^^^^
 |
 = note: #[warn(dead_code)] on by default

warning: field is never used: `elem`
 --> src/third.rs:10:5
 |
10 | elem: T,
 | ^^^^^^^

warning: field is never used: `next`
 --> src/third.rs:11:5
 |
11 | next: Link<T>,
 | ^^^^^^^^^^^^^

Seems legit. Rust continues to be completely trivial to write. I bet we can
just find-and-replace Box with Rc and call it a day!

...
No. No we can't.

Basics
We already know a lot of the basics of Rust now, so we can do a lot of

the simple stuff again.
For the constructor, we can again just copy-paste:

impl<T> List<T> {
 pub fn new() -> Self {
 List { head: None }
 }
}

push and pop don't really make sense anymore. Instead we can provide
prepend and tail , which provide approximately the same thing.

Let's start with prepending. It takes a list and an element, and returns a
List. Like the mutable list case, we want to make a new node, that has the
old list as its next value. The only novel thing is how to get that next
value, because we're not allowed to mutate anything.

The answer to our prayers is the Clone trait. Clone is implemented by
almost every type, and provides a generic way to get "another one like this
one" that is logically disjoint, given only a shared reference. It's like a copy
constructor in C++, but it's never implicitly invoked.

Rc in particular uses Clone as the way to increment the reference count.
So rather than moving a Box to be in the sublist, we just clone the head of
the old list. We don't even need to match on the head, because Option
exposes a Clone implementation that does exactly the thing we want.

Alright, let's give it a shot:
pub fn prepend(&self, elem: T) -> List<T> {
 List { head: Some(Rc::new(Node {
 elem: elem,
 next: self.head.clone(),
 }))}
}

> cargo build

warning: field is never used: `elem`
 --> src/third.rs:10:5
 |
10 | elem: T,
 | ^^^^^^^
 |
 = note: #[warn(dead_code)] on by default

warning: field is never used: `next`
 --> src/third.rs:11:5
 |
11 | next: Link<T>,
 | ^^^^^^^^^^^^^

Wow, Rust is really hard-nosed about actually using fields. It can tell no
consumer can ever actually observe the use of these fields! Still, we seem
good so far.

tail is the logical inverse of this operation. It takes a list and returns
the whole list with the first element removed. All that is is cloning the
second element in the list (if it exists). Let's try this:
pub fn tail(&self) -> List<T> {
 List { head: self.head.as_ref().map(|node|
node.next.clone()) }
}

cargo build

error[E0308]: mismatched types
 --> src/third.rs:27:22
 |
27 | List { head: self.head.as_ref().map(|node|
node.next.clone()) }
 |
^^ expected

struct `std::rc::Rc`, found enum `std::option::Option`
 |
 = note: expected type `std::option::Option<std::rc::Rc<_>>`
 found type
`std::option::Option<std::option::Option<std::rc::Rc<_>>>`

Hrm, we messed up. map expects us to return a Y, but here we're
returning an Option<Y> . Thankfully, this is another common Option
pattern, and we can just use and_then to let us return an Option.
pub fn tail(&self) -> List<T> {
 List { head: self.head.as_ref().and_then(|node|
node.next.clone()) }
}

> cargo build

Great.
Now that we have tail , we should probably provide head , which

returns a reference to the first element. That's just peek from the mutable
list:
pub fn head(&self) -> Option<&T> {
 self.head.as_ref().map(|node| &node.elem)
}

> cargo build

Nice.
That's enough functionality that we can test it:

#[cfg(test)]
mod test {
 use super::List;

 #[test]
 fn basics() {
 let list = List::new();

 assert_eq!(list.head(), None);

 let list = list.prepend(1).prepend(2).prepend(3);
 assert_eq!(list.head(), Some(&3));

 let list = list.tail();
 assert_eq!(list.head(), Some(&2));

 let list = list.tail();
 assert_eq!(list.head(), Some(&1));

 let list = list.tail();
 assert_eq!(list.head(), None);

 // Make sure empty tail works
 let list = list.tail();
 assert_eq!(list.head(), None);

 }
}

> cargo test

 Running target/debug/lists-5c71138492ad4b4a

running 5 tests
test first::test::basics ... ok
test second::test::into_iter ... ok
test second::test::basics ... ok
test second::test::iter ... ok
test third::test::basics ... ok

test result: ok. 5 passed; 0 failed; 0 ignored; 0 measured

Perfect!
Iter is also identical to how it was for our mutable list:

pub struct Iter<'a, T> {
 next: Option<&'a Node<T>>,
}

impl<T> List<T> {
 pub fn iter(&self) -> Iter<'_, T> {
 Iter { next: self.head.as_deref() }
 }
}

impl<'a, T> Iterator for Iter<'a, T> {
 type Item = &'a T;

 fn next(&mut self) -> Option<Self::Item> {
 self.next.map(|node| {
 self.next = node.next.as_deref();
 &node.elem
 })
 }
}

#[test]
fn iter() {
 let list = List::new().prepend(1).prepend(2).prepend(3);

 let mut iter = list.iter();
 assert_eq!(iter.next(), Some(&3));
 assert_eq!(iter.next(), Some(&2));
 assert_eq!(iter.next(), Some(&1));
}

cargo test

 Running target/debug/lists-5c71138492ad4b4a

running 7 tests
test first::test::basics ... ok

test second::test::basics ... ok
test second::test::iter ... ok
test second::test::into_iter ... ok
test second::test::peek ... ok
test third::test::basics ... ok
test third::test::iter ... ok

test result: ok. 6 passed; 0 failed; 0 ignored; 0 measured

Who ever said dynamic typing was easier?
(chumps did)
Note that we can't implement IntoIter or IterMut for this type. We only

have shared access to elements.

Drop
Like the mutable lists, we have a recursive destructor problem.

Admittedly, this isn't as bad of a problem for the immutable list: if we ever
hit another node that's the head of another list somewhere, we won't
recursively drop it. However it's still a thing we should care about, and how
to deal with isn't as clear. Here's how we solved it before:
impl<T> Drop for List<T> {
 fn drop(&mut self) {
 let mut cur_link = self.head.take();
 while let Some(mut boxed_node) = cur_link {
 cur_link = boxed_node.next.take();
 }
 }
}

The problem is the body of the loop:
cur_link = boxed_node.next.take();

This is mutating the Node inside the Box, but we can't do that with Rc; it
only gives us shared access, because any number of other Rc's could be
pointing at it.

But if we know that we're the last list that knows about this node, it
would actually be fine to move the Node out of the Rc. Then we could also
know when to stop: whenever we can't hoist out the Node.

And look at that, Rc has a method that does exactly this: try_unwrap :
impl<T> Drop for List<T> {
 fn drop(&mut self) {
 let mut head = self.head.take();
 while let Some(node) = head {
 if let Ok(mut node) = Rc::try_unwrap(node) {
 head = node.next.take();
 } else {
 break;
 }

 }
 }
}

cargo test
 Compiling lists v0.1.0 (/Users/ADesires/dev/too-many-
lists/lists)
 Finished dev [unoptimized + debuginfo] target(s) in 1.10s
 Running /Users/ADesires/dev/too-many-
lists/lists/target/debug/deps/lists-86544f1d97438f1f

running 8 tests
test first::test::basics ... ok
test second::test::basics ... ok
test second::test::into_iter ... ok
test second::test::iter ... ok
test second::test::iter_mut ... ok
test second::test::peek ... ok
test third::test::basics ... ok
test third::test::iter ... ok

test result: ok. 8 passed; 0 failed; 0 ignored; 0 measured; 0
filtered out

Great! Nice.

Arc
One reason to use an immutable linked list is to share data across

threads. After all, shared mutable state is the root of all evil, and one way to
solve that is to kill the mutable part forever.

Except our list isn't thread-safe at all. In order to be thread-safe, we need
to fiddle with reference counts atomically. Otherwise, two threads could try
to increment the reference count, and only one would happen. Then the list
could get freed too soon!

In order to get thread safety, we have to use Arc. Arc is completely
identical to Rc except for the fact that reference counts are modified
atomically. This has a bit of overhead if you don't need it, so Rust exposes
both. All we need to do to make our list is replace every reference to Rc
with std::sync::Arc . That's it. We're thread safe. Done!

But this raises an interesting question: how do we know if a type is
thread-safe or not? Can we accidentally mess up?

No! You can't mess up thread-safety in Rust!
The reason this is the case is because Rust models thread-safety in a

first-class way with two traits: Send and Sync .
A type is Send if it's safe to move to another thread. A type is Sync if it's

safe to share between multiple threads. That is, if T is Sync, &T is Send.
Safe in this case means it's impossible to cause data races, (not to be
mistaken with the more general issue of race conditions).

These are marker traits, which is a fancy way of saying they're traits that
provide absolutely no interface. You either are Send, or you aren't. It's just a
property other APIs can require. If you aren't appropriately Send, then it's
statically impossible to be sent to a different thread! Sweet!

Send and Sync are also automatically derived traits based on whether
you are totally composed of Send and Sync types. It's similar to how you
can only implement Copy if you're only made of Copy types, but then we
just go ahead and implement it automatically if you are.

Almost every type is Send and Sync. Most types are Send because they
totally own their data. Most types are Sync because the only way to share

data across threads is to put them behind a shared reference, which makes
them immutable!

However there are special types that violate these properties: those that
have interior mutability. So far we've only really interacted with inherited
mutability (AKA external mutability): the mutability of a value is inherited
from the mutability of its container. That is, you can't just randomly mutate
some field of a non-mutable value because you feel like it.

Interior mutability types violate this: they let you mutate through a
shared reference. There are two major classes of interior mutability: cells,
which only work in a single-threaded context; and locks, which work in a
multi-threaded context. For obvious reasons, cells are cheaper when you
can use them. There's also atomics, which are primitives that act like a lock.

So what does all of this have to do with Rc and Arc? Well, they both use
interior mutability for their reference count. Worse, this reference count is
shared between every instance! Rc just uses a cell, which means it's not
thread safe. Arc uses an atomic, which means it is thread safe. Of course,
you can't magically make a type thread safe by putting it in Arc. Arc can
only derive thread-safety like any other type.

I really really really don't want to get into the finer details of atomic
memory models or non-derived Send implementations. Needless to say, as
you get deeper into Rust's thread-safety story, stuff gets more complicated.
As a high-level consumer, it all just works and you don't really need to think
about it.

Final Code
That's all I really have to say on the immutable stack. We're getting

pretty good at implementing lists now!
use std::rc::Rc;

pub struct List<T> {
 head: Link<T>,
}

type Link<T> = Option<Rc<Node<T>>>;

struct Node<T> {
 elem: T,
 next: Link<T>,
}

impl<T> List<T> {
 pub fn new() -> Self {
 List { head: None }
 }

 pub fn prepend(&self, elem: T) -> List<T> {
 List { head: Some(Rc::new(Node {
 elem: elem,
 next: self.head.clone(),
 }))}
 }

 pub fn tail(&self) -> List<T> {
 List { head: self.head.as_ref().and_then(|node|
node.next.clone()) }
 }

 pub fn head(&self) -> Option<&T> {
 self.head.as_ref().map(|node| &node.elem)
 }

 pub fn iter(&self) -> Iter<'_, T> {
 Iter { next: self.head.as_deref() }
 }
}

impl<T> Drop for List<T> {
 fn drop(&mut self) {
 let mut head = self.head.take();
 while let Some(node) = head {
 if let Ok(mut node) = Rc::try_unwrap(node) {
 head = node.next.take();
 } else {
 break;
 }
 }
 }
}

pub struct Iter<'a, T> {
 next: Option<&'a Node<T>>,
}

impl<'a, T> Iterator for Iter<'a, T> {
 type Item = &'a T;

 fn next(&mut self) -> Option<Self::Item> {
 self.next.map(|node| {
 self.next = node.next.as_deref();
 &node.elem
 })
 }
}

#[cfg(test)]
mod test {
 use super::List;

 #[test]
 fn basics() {
 let list = List::new();
 assert_eq!(list.head(), None);

 let list = list.prepend(1).prepend(2).prepend(3);
 assert_eq!(list.head(), Some(&3));

 let list = list.tail();
 assert_eq!(list.head(), Some(&2));

 let list = list.tail();
 assert_eq!(list.head(), Some(&1));

 let list = list.tail();
 assert_eq!(list.head(), None);

 // Make sure empty tail works
 let list = list.tail();
 assert_eq!(list.head(), None);
 }

 #[test]
 fn iter() {
 let list =
List::new().prepend(1).prepend(2).prepend(3);

 let mut iter = list.iter();
 assert_eq!(iter.next(), Some(&3));
 assert_eq!(iter.next(), Some(&2));
 assert_eq!(iter.next(), Some(&1));

 }
}

A Bad but Safe Doubly-Linked
Deque

Now that we've seen Rc and heard about interior mutability, this gives an
interesting thought... maybe we can mutate through an Rc. And if that's the
case, maybe we can implement a doubly-linked list totally safely!

In the process we'll become familiar with interior mutability, and
probably learn the hard way that safe doesn't mean correct. Doubly-linked
lists are hard, and I always make a mistake somewhere.

Let's add a new file called fourth.rs :
// in lib.rs

pub mod first;
pub mod second;
pub mod third;
pub mod fourth;

This will be another clean-room operation, though as usual we'll
probably find some logic that applies verbatim again.

Disclaimer: this chapter is basically a demonstration that this is a very
bad idea.

Layout
The key to our design is the RefCell type. The heart of RefCell is a pair

of methods:
fn borrow(&self) -> Ref<'_, T>;
fn borrow_mut(&self) -> RefMut<'_, T>;

The rules for borrow and borrow_mut are exactly those of & and &mut :
you can call borrow as many times as you want, but borrow_mut requires
exclusivity.

Rather than enforcing this statically, RefCell enforces them at runtime. If
you break the rules, RefCell will just panic and crash the program. Why
does it return these Ref and RefMut things? Well, they basically behave like
Rc s but for borrowing. They also keep the RefCell borrowed until they go
out of scope. We'll get to that later.

Now with Rc and RefCell we can become... an incredibly verbose
pervasively mutable garbage collected language that can't collect cycles! Y-
yaaaaay...

Alright, we want to be doubly-linked. This means each node has a
pointer to the previous and next node. Also, the list itself has a pointer to
the first and last node. This gives us fast insertion and removal on both ends
of the list.

So we probably want something like:
use std::rc::Rc;
use std::cell::RefCell;

pub struct List<T> {
 head: Link<T>,
 tail: Link<T>,
}

type Link<T> = Option<Rc<RefCell<Node<T>>>>;

struct Node<T> {
 elem: T,
 next: Link<T>,
 prev: Link<T>,
}

> cargo build

warning: field is never used: `head`
 --> src/fourth.rs:5:5
 |
5 | head: Link<T>,
 | ^^^^^^^^^^^^^
 |
 = note: #[warn(dead_code)] on by default

warning: field is never used: `tail`
 --> src/fourth.rs:6:5
 |
6 | tail: Link<T>,
 | ^^^^^^^^^^^^^

warning: field is never used: `elem`
 --> src/fourth.rs:12:5
 |
12 | elem: T,
 | ^^^^^^^

warning: field is never used: `next`
 --> src/fourth.rs:13:5
 |
13 | next: Link<T>,
 | ^^^^^^^^^^^^^

warning: field is never used: `prev`
 --> src/fourth.rs:14:5

 |
14 | prev: Link<T>,
 | ^^^^^^^^^^^^^

Hey, it built! Lots of dead code warnings, but it built! Let's try to use it.

Building Up
Alright, we'll start with building the list. That's pretty straight-forward

with this new system. new is still trivial, just None out all the fields. Also
because it's getting a bit unwieldy, let's break out a Node constructor too:
impl<T> Node<T> {
 fn new(elem: T) -> Rc<RefCell<Self>> {
 Rc::new(RefCell::new(Node {
 elem: elem,
 prev: None,
 next: None,
 }))
 }
}

impl<T> List<T> {
 pub fn new() -> Self {
 List { head: None, tail: None }
 }
}

> cargo build

A BUNCH OF DEAD CODE WARNINGS BUT IT BUILT

Yay!
Now let's try to write pushing onto the front of the list. Because doubly-

linked lists are significantly more complicated, we're going to need to do a
fair bit more work. Where singly-linked list operations could be reduced to
an easy one-liner, doubly-linked list ops are fairly complicated.

In particular we now need to specially handle some boundary cases
around empty lists. Most operations will only touch the head or tail
pointer. However when transitioning to or from the empty list, we need to
edit both at once.

An easy way for us to validate if our methods make sense is if we
maintain the following invariant: each node should have exactly two
pointers to it. Each node in the middle of the list is pointed at by its
predecessor and successor, while the nodes on the ends are pointed to by the
list itself.

Let's take a crack at it:
pub fn push_front(&mut self, elem: T) {
 // new node needs +2 links, everything else should be +0
 let new_head = Node::new(elem);
 match self.head.take() {
 Some(old_head) => {
 // non-empty list, need to connect the old_head
 old_head.prev = Some(new_head.clone()); // +1
new_head
 new_head.next = Some(old_head); // +1
old_head
 self.head = Some(new_head); // +1
new_head, -1 old_head
 // total: +2 new_head, +0 old_head -- OK!
 }
 None => {
 // empty list, need to set the tail
 self.tail = Some(new_head.clone()); // +1
new_head
 self.head = Some(new_head); // +1
new_head
 // total: +2 new_head -- OK!
 }
 }
}

cargo build

error[E0609]: no field `prev` on type
`std::rc::Rc<std::cell::RefCell<fourth::Node<T>>>`
 --> src/fourth.rs:39:26

 |
39 | old_head.prev = Some(new_head.clone());
// +1 new_head
 | ^^^^ unknown field

error[E0609]: no field `next` on type
`std::rc::Rc<std::cell::RefCell<fourth::Node<T>>>`
 --> src/fourth.rs:40:26
 |
40 | new_head.next = Some(old_head);
// +1 old_head
 | ^^^^ unknown field

Alright. Compiler error. Good start. Good start.
Why can't we access the prev and next fields on our nodes? It worked

before when we just had an Rc<Node> . Seems like the RefCell is getting
in the way.

We should probably check the docs.
Google's "rust refcell"
clicks first link

A mutable memory location with dynamically checked borrow
rules

See the module-level documentation for more.

clicks link

Shareable mutable containers.
Values of the Cell<T> and RefCell<T> types may be mutated

through shared references (i.e. the common &T type), whereas most
Rust types can only be mutated through unique (&mut T) references.
We say that Cell<T> and RefCell<T> provide 'interior mutability', in
contrast with typical Rust types that exhibit 'inherited mutability'.

Cell types come in two flavors: Cell<T> and RefCell<T> .
Cell<T> provides get and set methods that change the interior
value with a single method call. Cell<T> though is only compatible

https://doc.rust-lang.org/std/cell/struct.RefCell.html
https://doc.rust-lang.org/std/cell/index.html

with types that implement Copy . For other types, one must use the
RefCell<T> type, acquiring a write lock before mutating.

RefCell<T> uses Rust's lifetimes to implement 'dynamic
borrowing', a process whereby one can claim temporary, exclusive,
mutable access to the inner value. Borrows for RefCell<T> s are
tracked 'at runtime', unlike Rust's native reference types which are
entirely tracked statically, at compile time. Because RefCell<T>

borrows are dynamic it is possible to attempt to borrow a value that is
already mutably borrowed; when this happens it results in thread
panic.

When to choose interior
mutability

The more common inherited mutability, where one must have
unique access to mutate a value, is one of the key language elements
that enables Rust to reason strongly about pointer aliasing, statically
preventing crash bugs. Because of that, inherited mutability is
preferred, and interior mutability is something of a last resort. Since
cell types enable mutation where it would otherwise be disallowed
though, there are occasions when interior mutability might be
appropriate, or even must be used, e.g.

Introducing inherited mutability roots to shared types.
Implementation details of logically-immutable methods.
Mutating implementations of Clone .

Introducing inherited mutability roots to
shared types

Shared smart pointer types, including Rc<T> and Arc<T> , provide
containers that can be cloned and shared between multiple parties.
Because the contained values may be multiply-aliased, they can only
be borrowed as shared references, not mutable references. Without
cells it would be impossible to mutate data inside of shared boxes at
all!

It's very common then to put a RefCell<T> inside shared pointer
types to reintroduce mutability:
use std::collections::HashMap;
use std::cell::RefCell;
use std::rc::Rc;

fn main() {
 let shared_map: Rc<RefCell<_>> =
Rc::new(RefCell::new(HashMap::new()));
 shared_map.borrow_mut().insert("africa", 92388);
 shared_map.borrow_mut().insert("kyoto", 11837);
 shared_map.borrow_mut().insert("piccadilly", 11826);
 shared_map.borrow_mut().insert("marbles", 38);
}

Note that this example uses Rc<T> and not Arc<T> . RefCell<T> s
are for single-threaded scenarios. Consider using Mutex<T> if you
need shared mutability in a multi-threaded situation.

Hey, Rust's docs continue to be incredibly awesome.
The meaty bit we care about is this line:

shared_map.borrow_mut().insert("africa", 92388);

In particular, the borrow_mut thing. Seems we need to explicitly borrow
a RefCell. The . operator's not going to do it for us. Weird. Let's try:

pub fn push_front(&mut self, elem: T) {
 let new_head = Node::new(elem);
 match self.head.take() {
 Some(old_head) => {
 old_head.borrow_mut().prev =
Some(new_head.clone());
 new_head.borrow_mut().next = Some(old_head);
 self.head = Some(new_head);
 }
 None => {
 self.tail = Some(new_head.clone());
 self.head = Some(new_head);
 }
 }
}

> cargo build

warning: field is never used: `elem`
 --> src/fourth.rs:12:5
 |
12 | elem: T,
 | ^^^^^^^
 |
 = note: #[warn(dead_code)] on by default

Hey, it built! Docs win again.

Breaking Down
pop_front should be the same basic logic as push_front , but

backwards. Let's try:
pub fn pop_front(&mut self) -> Option<T> {
 // need to take the old head, ensuring it's -2
 self.head.take().map(|old_head| {
// -1 old
 match old_head.borrow_mut().next.take() {
 Some(new_head) => {
// -1 new
 // not emptying list
 new_head.borrow_mut().prev.take();
// -1 old
 self.head = Some(new_head);
// +1 new
 // total: -2 old, +0 new
 }
 None => {
 // emptying list
 self.tail.take();
// -1 old
 // total: -2 old, (no new)
 }
 }
 old_head.elem
 })
}

> cargo build

error[E0609]: no field `elem` on type
`std::rc::Rc<std::cell::RefCell<fourth::Node<T>>>`
 --> src/fourth.rs:64:22
 |

64 | old_head.elem
 | ^^^^ unknown field

ACK. RefCells. Gotta borrow_mut again I guess...
pub fn pop_front(&mut self) -> Option<T> {
 self.head.take().map(|old_head| {
 match old_head.borrow_mut().next.take() {
 Some(new_head) => {
 new_head.borrow_mut().prev.take();
 self.head = Some(new_head);
 }
 None => {
 self.tail.take();
 }
 }
 old_head.borrow_mut().elem
 })
}

cargo build

error[E0507]: cannot move out of borrowed content
 --> src/fourth.rs:64:13
 |
64 | old_head.borrow_mut().elem
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^ cannot move out of
borrowed content

sigh

cannot move out of borrowed content

Hrm... It seems that Box was really spoiling us. borrow_mut only gets
us an &mut Node<T> , but we can't move out of that!

We need something that takes a RefCell<T> and gives us a T . Let's
check the docs for something like that:

fn into_inner(self) -> T

https://doc.rust-lang.org/std/cell/struct.RefCell.html

Consumes the RefCell, returning the wrapped value.

That looks promising!
old_head.into_inner().elem

> cargo build

error[E0507]: cannot move out of an `Rc`
 --> src/fourth.rs:64:13
 |
64 | old_head.into_inner().elem
 | ^^^^^^^^ cannot move out of an `Rc`

Ah dang. into_inner wants to move out the RefCell, but we can't,
because it's in an Rc . As we saw in the previous chapter, Rc<T> only lets us
get shared references into its internals. That makes sense, because that's the
whole point of reference counted pointers: they're shared!

This was a problem for us when we wanted to implement Drop for our
reference counted list, and the solution is the same: Rc::try_unwrap ,
which moves out the contents of an Rc if its refcount is 1.
Rc::try_unwrap(old_head).unwrap().into_inner().elem

Rc::try_unwrap returns a Result<T, Rc<T>> . Results are basically a
generalized Option , where the None case has data associated with it. In
this case, the Rc you tried to unwrap. Since we don't care about the case
where it fails (if we wrote our program correctly, it has to succeed), we just
call unwrap on it.

Anyway, let's see what compiler error we get next (let's face it, there's
going to be one).
> cargo build

error[E0599]: no method named `unwrap` found for type
`std::result::Result<std::cell::RefCell<fourth::Node<T>>,
std::rc::Rc<std::cell::RefCell<fourth::Node<T>>>>` in the
current scope
 --> src/fourth.rs:64:38

 |
64 |
Rc::try_unwrap(old_head).unwrap().into_inner().elem
 | ^^^^^^
 |
 = note: the method `unwrap` exists but the following trait
bounds were not satisfied:
 `std::rc::Rc<std::cell::RefCell<fourth::Node<T>>> :
std::fmt::Debug`

UGH. unwrap on Result requires that you can debug-print the error
case. RefCell<T> only implements Debug if T does. Node doesn't
implement Debug.

Rather than doing that, let's just work around it by converting the Result
to an Option with ok :
Rc::try_unwrap(old_head).ok().unwrap().into_inner().elem

PLEASE.
cargo build

YES.
phew
We did it.
We implemented push and pop .
Let's test by stealing the old stack basic test (because that's all that

we've implemented so far):
#[cfg(test)]
mod test {
 use super::List;

 #[test]
 fn basics() {
 let mut list = List::new();

 // Check empty list behaves right
 assert_eq!(list.pop_front(), None);

 // Populate list
 list.push_front(1);
 list.push_front(2);
 list.push_front(3);

 // Check normal removal
 assert_eq!(list.pop_front(), Some(3));
 assert_eq!(list.pop_front(), Some(2));

 // Push some more just to make sure nothing's
corrupted
 list.push_front(4);
 list.push_front(5);

 // Check normal removal
 assert_eq!(list.pop_front(), Some(5));
 assert_eq!(list.pop_front(), Some(4));

 // Check exhaustion
 assert_eq!(list.pop_front(), Some(1));
 assert_eq!(list.pop_front(), None);
 }
}

cargo test

 Running target/debug/lists-5c71138492ad4b4a

running 9 tests
test first::test::basics ... ok
test fourth::test::basics ... ok
test second::test::iter_mut ... ok
test second::test::basics ... ok

test fifth::test::iter_mut ... ok
test third::test::basics ... ok
test second::test::iter ... ok
test third::test::iter ... ok
test second::test::into_iter ... ok

test result: ok. 9 passed; 0 failed; 0 ignored; 0 measured

Nailed it.
Now that we can properly remove things from the list, we can

implement Drop. Drop is a little more conceptually interesting this time
around. Where previously we bothered to implement Drop for our stacks
just to avoid unbounded recursion, now we need to implement Drop to get
anything to happen at all.

Rc can't deal with cycles. If there's a cycle, everything will keep
everything else alive. A doubly-linked list, as it turns out, is just a big chain
of tiny cycles! So when we drop our list, the two end nodes will have their
refcounts decremented down to 1... and then nothing else will happen. Well,
if our list contains exactly one node we're good to go. But ideally a list
should work right if it contains multiple elements. Maybe that's just me.

As we saw, removing elements was a bit painful. So the easiest thing for
us to do is just pop until we get None:
impl<T> Drop for List<T> {
 fn drop(&mut self) {
 while self.pop_front().is_some() {}
 }
}

cargo build

(We actually could have done this with our mutable stacks, but shortcuts
are for people who understand things!)

We could look at implementing the _back versions of push and pop ,
but they're just copy-paste jobs which we'll defer to later in the chapter. For

now let's look at more interesting things!

Peeking
Alright, we made it through push and pop . I'm not gonna lie, it got a bit

emotional there. Compile-time correctness is a hell of a drug.
Let's cool off by doing something simple: let's just implement

peek_front . That was always really easy before. Gotta still be easy, right?
Right?
In fact, I think I can just copy-paste it!

pub fn peek_front(&self) -> Option<&T> {
 self.head.as_ref().map(|node| {
 &node.elem
 })
}

Wait. Not this time.
pub fn peek_front(&self) -> Option<&T> {
 self.head.as_ref().map(|node| {
 // BORROW!!!!
 &node.borrow().elem
 })
}

HAH.
cargo build

error[E0515]: cannot return value referencing temporary value
 --> src/fourth.rs:66:13
 |
66 | &node.borrow().elem
 | ^ ----------^^^^^
 | | |
 | | temporary value created here
 | |

 | returns a value referencing data owned by the
current function

Ok I'm just burning my computer.
This is exactly the same logic as our singly-linked stack. Why are things

different. WHY.
The answer is really the whole moral of this chapter: RefCells make

everything sadness. Up until now, RefCells have just been a nuisance. Now
they're going to become a nightmare.

So what's going on? To understand that, we need to go back to the
definition of borrow :
fn borrow<'a>(&'a self) -> Ref<'a, T>
fn borrow_mut<'a>(&'a self) -> RefMut<'a, T>

In the layout section we said:

Rather than enforcing this statically, RefCell enforces them at
runtime. If you break the rules, RefCell will just panic and crash the
program. Why does it return these Ref and RefMut things? Well, they
basically behave like Rc s but for borrowing. Also they keep the
RefCell borrowed until they go out of scope. We'll get to that later.

It's later.
Ref and RefMut implement Deref and DerefMut respectively. So for

most intents and purposes they behave exactly like &T and &mut T .
However, because of how those traits work, the reference that's returned is
connected to the lifetime of the Ref, and not the actual RefCell. This means
that the Ref has to be sitting around as long as we keep the reference
around.

This is in fact necessary for correctness. When a Ref gets dropped, it
tells the RefCell that it's not borrowed anymore. So if we did manage to
hold onto our reference longer than the Ref existed, we could get a RefMut
while a reference was kicking around and totally break Rust's type system
in half.

So where does that leave us? We only want to return a reference, but we
need to keep this Ref thing around. But as soon as we return the reference

from peek , the function is over and the Ref goes out of scope.
😖
As far as I know, we're actually totally dead in the water here. You can't

totally encapsulate the use of RefCells like that.
But... what if we just give up on totally hiding our implementation

details? What if we returns Refs?
pub fn peek_front(&self) -> Option<Ref<T>> {
 self.head.as_ref().map(|node| {
 node.borrow()
 })
}

> cargo build

error[E0412]: cannot find type `Ref` in this scope
 --> src/fourth.rs:63:40
 |
63 | pub fn peek_front(&self) -> Option<Ref<T>> {
 | ^^^ not found in
this scope
help: possible candidates are found in other modules, you can
import them into scope
 |
1 | use core::cell::Ref;
 |
1 | use std::cell::Ref;
 |

Blurp. Gotta import some stuff.
use std::cell::{Ref, RefCell};

> cargo build

error[E0308]: mismatched types
 --> src/fourth.rs:64:9
 |

64 | / self.head.as_ref().map(|node| {
65 | | node.borrow()
66 | | })
 | |__________^ expected type parameter, found struct
`fourth::Node`
 |
 = note: expected type
`std::option::Option<std::cell::Ref<'_, T>>`
 found type
`std::option::Option<std::cell::Ref<'_, fourth::Node<T>>>`

Hmm... that's right. We have a Ref<Node<T>> , but we want a Ref<T> .
We could abandon all hope of encapsulation and just return that. We could
also make things even more complicated and wrap Ref<Node<T>> in a new
type to only expose access to an &T .

Both of those options are kinda lame.
Instead, we're going to go deeper down. Let's have some fun. Our source

of fun is this beast:
map<U, F>(orig: Ref<'b, T>, f: F) -> Ref<'b, U>
 where F: FnOnce(&T) -> &U,
 U: ?Sized

Make a new Ref for a component of the borrowed data.

Yes: just like you can map over an Option, you can map over a Ref.
I'm sure someone somewhere is really excited because monads or

whatever but I don't care about any of that. Also I don't think it's a proper
monad since there's no None-like case, but I digress.

It's cool and that's all that matters to me. I need this.
pub fn peek_front(&self) -> Option<Ref<T>> {
 self.head.as_ref().map(|node| {
 Ref::map(node.borrow(), |node| &node.elem)
 })
}

> cargo build

Awww yissss
Let's make sure this is working by munging up the test from our stack.

We need to do some munging to deal with the fact that Refs don't
implement comparisons.
#[test]
fn peek() {
 let mut list = List::new();
 assert!(list.peek_front().is_none());
 list.push_front(1); list.push_front(2);
list.push_front(3);

 assert_eq!(&*list.peek_front().unwrap(), &3);
}

> cargo test

 Running target/debug/lists-5c71138492ad4b4a

running 10 tests
test first::test::basics ... ok
test fourth::test::basics ... ok
test second::test::basics ... ok
test fourth::test::peek ... ok
test second::test::iter_mut ... ok
test second::test::into_iter ... ok
test third::test::basics ... ok
test second::test::peek ... ok
test second::test::iter ... ok
test third::test::iter ... ok

test result: ok. 10 passed; 0 failed; 0 ignored; 0 measured

Great!

Symmetric Junk
Alright let's get all that combinatoric symmetry over with.
All we have to do is some basic text replacement:

tail <-> head
next <-> prev
front -> back

Oh, also we need to add _mut variants for peeking.
use std::cell::{Ref, RefCell, RefMut};

//..

pub fn push_back(&mut self, elem: T) {
 let new_tail = Node::new(elem);
 match self.tail.take() {
 Some(old_tail) => {
 old_tail.borrow_mut().next =
Some(new_tail.clone());
 new_tail.borrow_mut().prev = Some(old_tail);
 self.tail = Some(new_tail);
 }
 None => {
 self.head = Some(new_tail.clone());
 self.tail = Some(new_tail);
 }
 }
}

pub fn pop_back(&mut self) -> Option<T> {
 self.tail.take().map(|old_tail| {
 match old_tail.borrow_mut().prev.take() {
 Some(new_tail) => {
 new_tail.borrow_mut().next.take();

 self.tail = Some(new_tail);
 }
 None => {
 self.head.take();
 }
 }

Rc::try_unwrap(old_tail).ok().unwrap().into_inner().elem
 })
}

pub fn peek_back(&self) -> Option<Ref<T>> {
 self.tail.as_ref().map(|node| {
 Ref::map(node.borrow(), |node| &node.elem)
 })
}

pub fn peek_back_mut(&mut self) -> Option<RefMut<T>> {
 self.tail.as_ref().map(|node| {
 RefMut::map(node.borrow_mut(), |node| &mut node.elem)
 })
}

pub fn peek_front_mut(&mut self) -> Option<RefMut<T>> {
 self.head.as_ref().map(|node| {
 RefMut::map(node.borrow_mut(), |node| &mut node.elem)
 })
}

And massively flesh out our tests:
#[test]
fn basics() {
 let mut list = List::new();

 // Check empty list behaves right
 assert_eq!(list.pop_front(), None);

 // Populate list
 list.push_front(1);
 list.push_front(2);
 list.push_front(3);

 // Check normal removal
 assert_eq!(list.pop_front(), Some(3));
 assert_eq!(list.pop_front(), Some(2));

 // Push some more just to make sure nothing's corrupted
 list.push_front(4);
 list.push_front(5);

 // Check normal removal
 assert_eq!(list.pop_front(), Some(5));
 assert_eq!(list.pop_front(), Some(4));

 // Check exhaustion
 assert_eq!(list.pop_front(), Some(1));
 assert_eq!(list.pop_front(), None);

 // ---- back -----

 // Check empty list behaves right
 assert_eq!(list.pop_back(), None);

 // Populate list
 list.push_back(1);
 list.push_back(2);
 list.push_back(3);

 // Check normal removal
 assert_eq!(list.pop_back(), Some(3));
 assert_eq!(list.pop_back(), Some(2));

 // Push some more just to make sure nothing's corrupted
 list.push_back(4);
 list.push_back(5);

 // Check normal removal
 assert_eq!(list.pop_back(), Some(5));
 assert_eq!(list.pop_back(), Some(4));

 // Check exhaustion
 assert_eq!(list.pop_back(), Some(1));
 assert_eq!(list.pop_back(), None);
}

#[test]
fn peek() {
 let mut list = List::new();
 assert!(list.peek_front().is_none());
 assert!(list.peek_back().is_none());
 assert!(list.peek_front_mut().is_none());
 assert!(list.peek_back_mut().is_none());

 list.push_front(1); list.push_front(2);
list.push_front(3);

 assert_eq!(&*list.peek_front().unwrap(), &3);
 assert_eq!(&mut *list.peek_front_mut().unwrap(), &mut 3);
 assert_eq!(&*list.peek_back().unwrap(), &1);
 assert_eq!(&mut *list.peek_back_mut().unwrap(), &mut 1);
}

Are there some cases we're not testing? Probably. The combinatoric
space has really blown up here. Our code is at very least not obviously
wrong.
> cargo test

 Running target/debug/lists-5c71138492ad4b4a

running 10 tests
test first::test::basics ... ok
test fourth::test::basics ... ok
test second::test::basics ... ok
test fourth::test::peek ... ok
test second::test::iter ... ok
test third::test::iter ... ok
test second::test::into_iter ... ok
test second::test::iter_mut ... ok
test second::test::peek ... ok
test third::test::basics ... ok

test result: ok. 10 passed; 0 failed; 0 ignored; 0 measured

Nice. Copy-pasting is the best kind of programming.

Iteration
Let's take a crack at iterating this bad-boy.

IntoIter
IntoIter, as always, is going to be the easiest. Just wrap the stack and call

pop :
pub struct IntoIter<T>(List<T>);

impl<T> List<T> {
 pub fn into_iter(self) -> IntoIter<T> {
 IntoIter(self)
 }
}

impl<T> Iterator for IntoIter<T> {
 type Item = T;
 fn next(&mut self) -> Option<Self::Item> {
 self.0.pop_front()
 }
}

But we have an interesting new development. Where previously there
was only ever one "natural" iteration order for our lists, a Deque is
inherently bi-directional. What's so special about front-to-back? What if
someone wants to iterate in the other direction?

Rust actually has an answer to this: DoubleEndedIterator .
DoubleEndedIterator inherits from Iterator (meaning all
DoubleEndedIterator are Iterators) and requires one new method:
next_back . It has the exact same signature as next , but it's supposed to
yield elements from the other end. The semantics of DoubleEndedIterator
are super convenient for us: the iterator becomes a deque. You can consume
elements from the front and back until the two ends converge, at which
point the iterator is empty.

Much like Iterator and next , it turns out that next_back isn't really
something consumers of the DoubleEndedIterator really care about. Rather,
the best part of this interface is that it exposes the rev method, which
wraps up the iterator to make a new one that yields the elements in reverse

order. The semantics of this are fairly straight-forward: calls to next on the
reversed iterator are just calls to next_back .

Anyway, because we're already a deque providing this API is pretty
easy:
impl<T> DoubleEndedIterator for IntoIter<T> {
 fn next_back(&mut self) -> Option<T> {
 self.0.pop_back()
 }
}

And let's test it out:
#[test]
fn into_iter() {
 let mut list = List::new();
 list.push_front(1); list.push_front(2);
list.push_front(3);

 let mut iter = list.into_iter();
 assert_eq!(iter.next(), Some(3));
 assert_eq!(iter.next_back(), Some(1));
 assert_eq!(iter.next(), Some(2));
 assert_eq!(iter.next_back(), None);
 assert_eq!(iter.next(), None);
}

cargo test

 Running target/debug/lists-5c71138492ad4b4a

running 11 tests
test fourth::test::basics ... ok
test fourth::test::peek ... ok
test fourth::test::into_iter ... ok
test first::test::basics ... ok
test second::test::basics ... ok
test second::test::iter ... ok

test second::test::iter_mut ... ok
test third::test::iter ... ok
test third::test::basics ... ok
test second::test::into_iter ... ok
test second::test::peek ... ok

test result: ok. 11 passed; 0 failed; 0 ignored; 0 measured

Nice.

Iter
Iter will be a bit less forgiving. We'll have to deal with those awful Ref

things again! Because of Refs, we can't store &Node s like we did before.
Instead, let's try to store Ref<Node> s:
pub struct Iter<'a, T>(Option<Ref<'a, Node<T>>>);

impl<T> List<T> {
 pub fn iter(&self) -> Iter<T> {
 Iter(self.head.as_ref().map(|head| head.borrow()))
 }
}

> cargo build

So far so good. Implementing next is going to be a bit hairy, but I think
it's the same basic logic as the old stack IterMut but with extra RefCell
madness:
impl<'a, T> Iterator for Iter<'a, T> {
 type Item = Ref<'a, T>;
 fn next(&mut self) -> Option<Self::Item> {
 self.0.take().map(|node_ref| {
 self.0 = node_ref.next.as_ref().map(|head|
head.borrow());
 Ref::map(node_ref, |node| &node.elem)
 })
 }
}

cargo build

error[E0521]: borrowed data escapes outside of closure
 --> src/fourth.rs:155:13
 |
153 | fn next(&mut self) -> Option<Self::Item> {

 | --------- `self` is declared here, outside
of the closure body
154 | self.0.take().map(|node_ref| {
155 | self.0 = node_ref.next.as_ref().map(|head|
head.borrow());
 | ^^^^^^ -------- borrow is only valid in
the closure body
 | |
 | reference to `node_ref` escapes the closure
body here

error[E0505]: cannot move out of `node_ref` because it is
borrowed
 --> src/fourth.rs:156:22
 |
153 | fn next(&mut self) -> Option<Self::Item> {
 | --------- lifetime `'1` appears in the type
of `self`
154 | self.0.take().map(|node_ref| {
155 | self.0 = node_ref.next.as_ref().map(|head|
head.borrow());
 | ------ -------- borrow of `node_ref`
occurs here
 | |
 | assignment requires that `node_ref` is
borrowed for `'1`
156 | Ref::map(node_ref, |node| &node.elem)
 | ^^^^^^^^ move out of `node_ref`
occurs here

Shoot.
node_ref doesn't live long enough. Unlike normal references, Rust

doesn't let us just split Refs up like that. The Ref we get out of
head.borrow() is only allowed to live as long as node_ref , but we end up
trashing that in our Ref::map call.

The function we want exists, and it's called [map_split][]:
pub fn map_split<U, V, F>(orig: Ref<'b, T>, f: F) -> (Ref<'b,
U>, Ref<'b, V>) where
 F: FnOnce(&T) -> (&U, &V),
 U: ?Sized,
 V: ?Sized,

Woof. Let's give it a try...
fn next(&mut self) -> Option<Self::Item> {
 self.0.take().map(|node_ref| {
 let (next, elem) = Ref::map_split(node_ref, |node| {
 (&node.next, &node.elem)
 });

 self.0 = next.as_ref().map(|head| head.borrow());

 elem
 })
}

cargo build
 Compiling lists v0.1.0 (/Users/ADesires/dev/temp/lists)
error[E0521]: borrowed data escapes outside of closure
 --> src/fourth.rs:159:13
 |
153 | fn next(&mut self) -> Option<Self::Item> {
 | --------- `self` is declared here, outside
of the closure body
...
159 | self.0 = next.as_ref().map(|head|
head.borrow());
 | ^^^^^^ ---- borrow is only valid in the
closure body
 | |
 | reference to `next` escapes the closure body
here

Ergh. We need to Ref::Map again to get our lifetimes right. But
Ref::Map returns a Ref and we need an Option<Ref> , but we need to go
through the Ref to map over our Option...

stares into distance for a long time
??????

fn next(&mut self) -> Option<Self::Item> {
 self.0.take().map(|node_ref| {
 let (next, elem) = Ref::map_split(node_ref, |node| {
 (&node.next, &node.elem)
 });

 self.0 = if next.is_some() {
 Some(Ref::map(next, |next|
&**next.as_ref().unwrap()))
 } else {
 None
 };

 elem
 })
}

error[E0308]: mismatched types
 --> src/fourth.rs:162:22
 |
162 | Some(Ref::map(next, |next|
&**next.as_ref().unwrap()))
 |
^^ expected
struct `fourth::Node`, found struct `std::cell::RefCell`
 |
 = note: expected type `std::cell::Ref<'_,
fourth::Node<_>>`
 found type `std::cell::Ref<'_,
std::cell::RefCell<fourth::Node<_>>>`

Oh. Right. There's multiple RefCells. The deeper we walk into the list,
the more nested we become under each RefCell. We would need to
maintain, like, a stack of Refs to represent all the outstanding loans we're
holding, because if we stop looking at an element we need to decrement the
borrow-count on every RefCell that comes before it.................

I don't think there's anything we can do here. It's a dead end. Let's try
getting out of the RefCells.

What about our Rc s. Who said we even needed to store references? Why
can't we just Clone the whole Rc to get a nice owning handle into the
middle of the list?
pub struct Iter<T>(Option<Rc<Node<T>>>);

impl<T> List<T> {
 pub fn iter(&self) -> Iter<T> {
 Iter(self.head.as_ref().map(|head| head.clone()))
 }
}

impl<T> Iterator for Iter<T> {
 type Item =

Uh... Wait what do we return now? &T ? Ref<T> ?
No, none of those work... our Iter doesn't have a lifetime anymore! Both

&T and Ref<T> require us to declare some lifetime up front before we get
into next . But anything we manage to get out of our Rc would be
borrowing the Iterator... brain... hurt... aaaaaahhhhhh

Maybe we can... map... the Rc... to get an Rc<T> ? Is that a thing? Rc's
docs don't seem to have anything like that. Actually someone made a crate
that lets you do that.

But wait, even if we do that then we've got an even bigger problem: the
dreaded spectre of iterator invalidation. Previously we've been totally
immune to iterator invalidation, because the Iter borrowed the list, leaving it
totally immutable. However if our Iter was yielding Rcs, they wouldn't

https://crates.io/crates/owning_ref

borrow the list at all! That means people can start calling push and pop on
the list while they hold pointers into it!

Oh lord, what will that do?!
Well, pushing is actually fine. We've got a view into some sub-range of

the list, and the list will just grow beyond our sights. No biggie.
However pop is another story. If they're popping elements outside of our

range, it should still be fine. We can't see those nodes so nothing will
happen. However if they try to pop off the node we're pointing at...
everything will blow up! In particular when they go to unwrap the result of
the try_unwrap , it will actually fail, and the whole program will panic.

That's actually pretty cool. We can get tons of interior owning pointers
into the list and mutate it at the same time and it will just work until they try
to remove the nodes that we're pointing at. And even then we don't get
dangling pointers or anything, the program will deterministically panic!

But having to deal with iterator invalidation on top of mapping Rcs just
seems... bad. Rc<RefCell> has really truly finally failed us. Interestingly,
we've experienced an inversion of the persistent stack case. Where the
persistent stack struggled to ever reclaim ownership of the data but could
get references all day every day, our list had no problem gaining ownership,
but really struggled to loan our references.

Although to be fair, most of our struggles revolved around wanting to
hide the implementation details and have a decent API. We could do
everything fine if we wanted to just pass around Nodes all over the place.

Heck, we could make multiple concurrent IterMuts that were runtime
checked to not be mutable accessing the same element!

Really, this design is more appropriate for an internal data structure that
never makes it out to consumers of the API. Interior mutability is great for
writing safe applications. Not so much safe libraries.

Anyway, that's me giving up on Iter and IterMut. We could do them, but
ugh.

Final Code
Alright, so that's implementing a 100% safe doubly-linked list in Rust. It

was a nightmare to implement, leaks implementation details, and doesn't
support several fundamental operations.

But, it exists.
Oh, I guess it's also riddled with tons of "unnecessary" runtime checks

for correctness between Rc and RefCell . I put unnecessary in quotes
because they're actually necessary to guarantee the whole actually being
safe thing. We encountered a few places where those checks actually were
necessary. Doubly-linked lists have a horribly tangled aliasing and
ownership story!

Still, it's a thing we can do. Especially if we don't care about exposing
internal data structures to our consumers.

From here on out, we're going to be focusing on other side of this coin:
getting back all the control by making our implementation unsafe.
use std::rc::Rc;
use std::cell::{Ref, RefMut, RefCell};

pub struct List<T> {
 head: Link<T>,
 tail: Link<T>,
}

type Link<T> = Option<Rc<RefCell<Node<T>>>>;

struct Node<T> {
 elem: T,
 next: Link<T>,
 prev: Link<T>,
}

impl<T> Node<T> {
 fn new(elem: T) -> Rc<RefCell<Self>> {
 Rc::new(RefCell::new(Node {
 elem: elem,
 prev: None,
 next: None,
 }))
 }
}

impl<T> List<T> {
 pub fn new() -> Self {
 List { head: None, tail: None }
 }

 pub fn push_front(&mut self, elem: T) {
 let new_head = Node::new(elem);
 match self.head.take() {
 Some(old_head) => {
 old_head.borrow_mut().prev =
Some(new_head.clone());
 new_head.borrow_mut().next = Some(old_head);
 self.head = Some(new_head);
 }
 None => {
 self.tail = Some(new_head.clone());
 self.head = Some(new_head);
 }
 }
 }

 pub fn push_back(&mut self, elem: T) {
 let new_tail = Node::new(elem);
 match self.tail.take() {
 Some(old_tail) => {
 old_tail.borrow_mut().next =

Some(new_tail.clone());
 new_tail.borrow_mut().prev = Some(old_tail);
 self.tail = Some(new_tail);
 }
 None => {
 self.head = Some(new_tail.clone());
 self.tail = Some(new_tail);
 }
 }
 }

 pub fn pop_back(&mut self) -> Option<T> {
 self.tail.take().map(|old_tail| {
 match old_tail.borrow_mut().prev.take() {
 Some(new_tail) => {
 new_tail.borrow_mut().next.take();
 self.tail = Some(new_tail);
 }
 None => {
 self.head.take();
 }
 }

Rc::try_unwrap(old_tail).ok().unwrap().into_inner().elem
 })
 }

 pub fn pop_front(&mut self) -> Option<T> {
 self.head.take().map(|old_head| {
 match old_head.borrow_mut().next.take() {
 Some(new_head) => {
 new_head.borrow_mut().prev.take();
 self.head = Some(new_head);
 }
 None => {
 self.tail.take();

 }
 }

Rc::try_unwrap(old_head).ok().unwrap().into_inner().elem
 })
 }

 pub fn peek_front(&self) -> Option<Ref<T>> {
 self.head.as_ref().map(|node| {
 Ref::map(node.borrow(), |node| &node.elem)
 })
 }

 pub fn peek_back(&self) -> Option<Ref<T>> {
 self.tail.as_ref().map(|node| {
 Ref::map(node.borrow(), |node| &node.elem)
 })
 }

 pub fn peek_back_mut(&mut self) -> Option<RefMut<T>> {
 self.tail.as_ref().map(|node| {
 RefMut::map(node.borrow_mut(), |node| &mut
node.elem)
 })
 }

 pub fn peek_front_mut(&mut self) -> Option<RefMut<T>> {
 self.head.as_ref().map(|node| {
 RefMut::map(node.borrow_mut(), |node| &mut
node.elem)
 })
 }

 pub fn into_iter(self) -> IntoIter<T> {
 IntoIter(self)
 }

}

impl<T> Drop for List<T> {
 fn drop(&mut self) {
 while self.pop_front().is_some() {}
 }
}

pub struct IntoIter<T>(List<T>);

impl<T> Iterator for IntoIter<T> {
 type Item = T;

 fn next(&mut self) -> Option<T> {
 self.0.pop_front()
 }
}

impl<T> DoubleEndedIterator for IntoIter<T> {
 fn next_back(&mut self) -> Option<T> {
 self.0.pop_back()
 }
}

#[cfg(test)]
mod test {
 use super::List;

 #[test]
 fn basics() {
 let mut list = List::new();

 // Check empty list behaves right
 assert_eq!(list.pop_front(), None);

 // Populate list

 list.push_front(1);
 list.push_front(2);
 list.push_front(3);

 // Check normal removal
 assert_eq!(list.pop_front(), Some(3));
 assert_eq!(list.pop_front(), Some(2));

 // Push some more just to make sure nothing's
corrupted
 list.push_front(4);
 list.push_front(5);

 // Check normal removal
 assert_eq!(list.pop_front(), Some(5));
 assert_eq!(list.pop_front(), Some(4));

 // Check exhaustion
 assert_eq!(list.pop_front(), Some(1));
 assert_eq!(list.pop_front(), None);

 // ---- back -----

 // Check empty list behaves right
 assert_eq!(list.pop_back(), None);

 // Populate list
 list.push_back(1);
 list.push_back(2);
 list.push_back(3);

 // Check normal removal
 assert_eq!(list.pop_back(), Some(3));
 assert_eq!(list.pop_back(), Some(2));

 // Push some more just to make sure nothing's

corrupted
 list.push_back(4);
 list.push_back(5);

 // Check normal removal
 assert_eq!(list.pop_back(), Some(5));
 assert_eq!(list.pop_back(), Some(4));

 // Check exhaustion
 assert_eq!(list.pop_back(), Some(1));
 assert_eq!(list.pop_back(), None);
 }

 #[test]
 fn peek() {
 let mut list = List::new();
 assert!(list.peek_front().is_none());
 assert!(list.peek_back().is_none());
 assert!(list.peek_front_mut().is_none());
 assert!(list.peek_back_mut().is_none());

 list.push_front(1); list.push_front(2);
list.push_front(3);

 assert_eq!(&*list.peek_front().unwrap(), &3);
 assert_eq!(&mut *list.peek_front_mut().unwrap(), &mut
3);
 assert_eq!(&*list.peek_back().unwrap(), &1);
 assert_eq!(&mut *list.peek_back_mut().unwrap(), &mut
1);
 }

 #[test]
 fn into_iter() {
 let mut list = List::new();
 list.push_front(1); list.push_front(2);

list.push_front(3);

 let mut iter = list.into_iter();
 assert_eq!(iter.next(), Some(3));
 assert_eq!(iter.next_back(), Some(1));
 assert_eq!(iter.next(), Some(2));
 assert_eq!(iter.next_back(), None);
 assert_eq!(iter.next(), None);
 }
}

An Ok Unsafe Singly-Linked
Queue

Ok that reference-counted interior mutability stuff got a little out of
control. Surely Rust doesn't really expect you to do that sort of thing in
general? Well, yes and no. Rc and Refcell can be great for handling simple
cases, but they can get unwieldy. Especially if you want to hide that it's
happening. There's gotta be a better way!

In this chapter we're going to roll back to singly-linked lists and
implement a singly-linked queue to dip our toes into raw pointers and
Unsafe Rust.

NARRATOR: And I will point out the mistakes.

And we won't make any mistakes.
Let's add a new file called fifth.rs :

// in lib.rs

pub mod first;
pub mod second;
pub mod third;
pub mod fourth;
pub mod fifth;

Our code is largely going to be derived from second.rs, since a queue is
mostly an augmentation of a stack in the world of linked lists. Still, we're
going to go from scratch because there's some fundamental issues we want
to address with layout and what-not.

Layout
So what's a singly-linked queue like? Well, when we had a singly-linked

stack we pushed onto one end of the list, and then popped off the same end.
The only difference between a stack and a queue is that a queue pops off the
other end. So from our stack implementation we have:
input list:
[Some(ptr)] -> (A, Some(ptr)) -> (B, None)

stack push X:
[Some(ptr)] -> (X, Some(ptr)) -> (A, Some(ptr)) -> (B, None)

stack pop:
[Some(ptr)] -> (A, Some(ptr)) -> (B, None)

To make a queue, we just need to decide which operation to move to the
end of the list: push, or pop? Since our list is singly-linked, we can actually
move either operation to the end with the same amount of effort.

To move push to the end, we just walk all the way to the None and set it
to Some with the new element.
input list:
[Some(ptr)] -> (A, Some(ptr)) -> (B, None)

flipped push X:
[Some(ptr)] -> (A, Some(ptr)) -> (B, Some(ptr)) -> (X, None)

To move pop to the end, we just walk all the way to the node before the
None, and take it:
input list:
[Some(ptr)] -> (A, Some(ptr)) -> (B, Some(ptr)) -> (X, None)

flipped pop:
[Some(ptr)] -> (A, Some(ptr)) -> (B, None)

We could do this today and call it quits, but that would stink! Both of
these operations walk over the entire list. Some would argue that such a
queue implementation is indeed a queue because it exposes the right
interface. However I believe that performance guarantees are part of the
interface. I don't care about precise asymptotic bounds, just "fast" vs
"slow". Queues guarantee that push and pop are fast, and walking over the
whole list is definitely not fast.

One key observation is that we're wasting a ton of work doing the same
thing over and over. Can we "cache" all that work and reuse it? Why, yes!
We can store a pointer to the end of the list, and just jump straight to there!

It turns out that only one inversion of push and pop works with this. To
invert pop we would have to move the "tail" pointer backwards, but
because our list is singly-linked, we can't do that efficiently. If we instead
invert push we only have to move the "head" pointer forward, which is
easy.

Let's try that:
use std::mem;

pub struct List<T> {
 head: Link<T>,
 tail: Link<T>, // NEW!
}

type Link<T> = Option<Box<Node<T>>>;

struct Node<T> {
 elem: T,
 next: Link<T>,
}

impl<T> List<T> {
 pub fn new() -> Self {
 List { head: None, tail: None }
 }

 pub fn push(&mut self, elem: T) {
 let new_tail = Box::new(Node {
 elem: elem,
 // When you push onto the tail, your next is
always None
 next: None,
 });

 // swap the old tail to point to the new tail
 let old_tail = mem::replace(&mut self.tail,
Some(new_tail));

 match old_tail {
 Some(mut old_tail) => {
 // If the old tail existed, update it to point
to the new tail
 old_tail.next = Some(new_tail);
 }
 None => {
 // Otherwise, update the head to point to it
 self.head = Some(new_tail);
 }
 }
 }
}

I'm going a bit faster with the impl details now since we should be pretty
comfortable with this sort of thing. Not that you should necessarily expect
to produce this code on the first try. I'm just skipping over some of the trial-
and-error we've had to deal with before. I actually made a ton of mistakes
writing this code that I'm not showing, but you can only see me leave off a
mut or ; so many times before it stops being instructive. Don't worry, we'll
see plenty of other error messages!
> cargo build

error[E0382]: use of moved value: `new_tail`
 --> src/fifth.rs:38:38
 |
26 | let new_tail = Box::new(Node {
 | -------- move occurs because `new_tail` has
type `std::boxed::Box<fifth::Node<T>>`, which does not
implement the `Copy` trait
...
33 | let old_tail = mem::replace(&mut self.tail,
Some(new_tail));
 |
-------- value moved here
...
38 | old_tail.next = Some(new_tail);
 | ^^^^^^^^ value used
here after move

Shoot!

use of moved value: new_tail

Box doesn't implement Copy, so we can't just assign it to two locations.
More importantly, Box owns the thing it points to, and will try to free it
when it's dropped. If our push implementation compiled, we'd double-free
the tail of our list! Actually, as written, our code would free the old_tail on
every push. Yikes! 🙀

Alright, well we know how to make a non-owning pointer. That's just a
reference!
pub struct List<T> {
 head: Link<T>,
 tail: Option<&mut Node<T>>, // NEW!
}

type Link<T> = Option<Box<Node<T>>>;

struct Node<T> {
 elem: T,

 next: Link<T>,
}

impl<T> List<T> {
 pub fn new() -> Self {
 List { head: None, tail: None }
 }

 pub fn push(&mut self, elem: T) {
 let new_tail = Box::new(Node {
 elem: elem,
 // When you push onto the tail, your next is
always None
 next: None,
 });

 // Put the box in the right place, and then grab a
reference to its Node
 let new_tail = match self.tail.take() {
 Some(old_tail) => {
 // If the old tail existed, update it to point
to the new tail
 old_tail.next = Some(new_tail);
 old_tail.next.as_deref_mut()
 }
 None => {
 // Otherwise, update the head to point to it
 self.head = Some(new_tail);
 self.head.as_deref_mut()
 }
 };

 self.tail = new_tail;
 }
}

Nothing too tricky here. Same basic idea as the previous code, except
we're using some of that implicit return goodness to extract the tail
reference from wherever we stuff the actual Box.
> cargo build

error[E0106]: missing lifetime specifier
 --> src/fifth.rs:3:18
 |
3 | tail: Option<&mut Node<T>>, // NEW!
 | ^ expected lifetime parameter

Oh right, we need to give lifetimes to references in types. Hmm... what's
the lifetime of this reference? Well, this seems like IterMut, right? Let's try
what we did for IterMut, and just add a generic 'a :
pub struct List<'a, T> {
 head: Link<T>,
 tail: Option<&'a mut Node<T>>, // NEW!
}

type Link<T> = Option<Box<Node<T>>>;

struct Node<T> {
 elem: T,
 next: Link<T>,
}

impl<'a, T> List<'a, T> {
 pub fn new() -> Self {
 List { head: None, tail: None }
 }

 pub fn push(&mut self, elem: T) {
 let new_tail = Box::new(Node {
 elem: elem,
 // When you push onto the tail, your next is

always None
 next: None,
 });

 // Put the box in the right place, and then grab a
reference to its Node
 let new_tail = match self.tail.take() {
 Some(old_tail) => {
 // If the old tail existed, update it to point
to the new tail
 old_tail.next = Some(new_tail);
 old_tail.next.as_deref_mut()
 }
 None => {
 // Otherwise, update the head to point to it
 self.head = Some(new_tail);
 self.head.as_deref_mut()
 }
 };

 self.tail = new_tail;
 }
}

cargo build

error[E0495]: cannot infer an appropriate lifetime for autoref
due to conflicting requirements
 --> src/fifth.rs:35:27
 |
35 | self.head.as_deref_mut()
 | ^^^^^^^^^^^^
 |
note: first, the lifetime cannot outlive the anonymous
lifetime #1 defined on the method body at 18:5...
 --> src/fifth.rs:18:5

 |
18 | / pub fn push(&mut self, elem: T) {
19 | | let new_tail = Box::new(Node {
20 | | elem: elem,
21 | | // When you push onto the tail, your next
is always None
... |
39 | | self.tail = new_tail;
40 | | }
 | |_____^
note: ...so that reference does not outlive borrowed content
 --> src/fifth.rs:35:17
 |
35 | self.head.as_deref_mut()
 | ^^^^^^^^^
note: but, the lifetime must be valid for the lifetime 'a as
defined on the impl at 13:6...
 --> src/fifth.rs:13:6
 |
13 | impl<'a, T> List<'a, T> {
 | ^^
 = note: ...so that the expression is assignable:
 expected std::option::Option<&'a mut
fifth::Node<T>>
 found std::option::Option<&mut fifth::Node<T>>

Woah, that's a really detailed error message. That's a bit concerning,
because it suggests we're doing something really messed up. Here's an
interesting part:

the lifetime must be valid for the lifetime 'a as defined on the impl

We're borrowing from self , but the compiler wants us to last as long as
'a , what if we tell it self does last that long..?
 pub fn push(&'a mut self, elem: T) {

cargo build

warning: field is never used: `elem`
 --> src/fifth.rs:9:5
 |
9 | elem: T,
 | ^^^^^^^
 |
 = note: #[warn(dead_code)] on by default

Oh, hey, that worked! Great!
Let's just do pop too:

pub fn pop(&'a mut self) -> Option<T> {
 // Grab the list's current head
 self.head.take().map(|head| {
 let head = *head;
 self.head = head.next;

 // If we're out of `head`, make sure to set the tail
to `None`.
 if self.head.is_none() {
 self.tail = None;
 }

 head.elem
 })
}

And write a quick test for that:
#[cfg(test)]
mod test {
 use super::List;
 #[test]
 fn basics() {
 let mut list = List::new();

 // Check empty list behaves right
 assert_eq!(list.pop(), None);

 // Populate list
 list.push(1);
 list.push(2);
 list.push(3);

 // Check normal removal
 assert_eq!(list.pop(), Some(1));
 assert_eq!(list.pop(), Some(2));

 // Push some more just to make sure nothing's
corrupted
 list.push(4);
 list.push(5);

 // Check normal removal
 assert_eq!(list.pop(), Some(3));
 assert_eq!(list.pop(), Some(4));

 // Check exhaustion
 assert_eq!(list.pop(), Some(5));
 assert_eq!(list.pop(), None);
 }
}

cargo test

error[E0499]: cannot borrow `list` as mutable more than once
at a time
 --> src/fifth.rs:68:9
 |
65 | assert_eq!(list.pop(), None);
 | ---- first mutable borrow occurs here
...

68 | list.push(1);
 | ^^^^
 | |
 | second mutable borrow occurs here
 | first borrow later used here

error[E0499]: cannot borrow `list` as mutable more than once
at a time
 --> src/fifth.rs:69:9
 |
65 | assert_eq!(list.pop(), None);
 | ---- first mutable borrow occurs here
...
69 | list.push(2);
 | ^^^^
 | |
 | second mutable borrow occurs here
 | first borrow later used here

error[E0499]: cannot borrow `list` as mutable more than once
at a time
 --> src/fifth.rs:70:9
 |
65 | assert_eq!(list.pop(), None);
 | ---- first mutable borrow occurs here
...
70 | list.push(3);
 | ^^^^
 | |
 | second mutable borrow occurs here
 | first borrow later used here

....

** WAY MORE LINES OF ERRORS **

....

error: aborting due to 11 previous errors

🙀🙀🙀🙀🙀🙀🙀🙀🙀🙀🙀🙀🙀🙀🙀🙀🙀🙀🙀🙀🙀🙀🙀
Oh my goodness.
The compiler's not wrong for vomiting all over us. We just committed a

cardinal Rust sin: we stored a reference to ourselves inside ourselves.
Somehow, we managed to convince Rust that this totally made sense in our
push and pop implementations (I was legitimately shocked we did).

The reason this sort of works is that Rust doesn't really have the notion
of a pointer into yourself at all. Each part of the code is technically correct
in isolation (we can call push and pop once) but then the absurdity of what
we created takes affect and everything just locks up.

I'm sure there is some use for what we've written, but as far as I'm
concerned it's just syntatically valid gibberish. We're saying we contain
something with lifetime 'a , and that push and pop borrows self for that
lifetime. That's weird but Rust can look at each part of our code individually
and it doesn't see any rules being broken.

But as soon as we try to actually use the list, the compiler quickly goes
"yep you've borrowed self mutably for 'a , so you can't use self

anymore until the end of 'a " but also "because you contain 'a , it must be
valid for the entire list's existence".

It's nearly a contradiction but there is one solution: as soon as you push
or pop , the list "pins" itself in place and can't be accessed anymore. It has
swallowed its own proverbial tail, and ascended to a world of dreams.

NARRATOR: it didn't exist when this book was first written, but
Rust actually formalized the notion of a pin into something useful!
This was probably the most complex addition to the language since the
borrowchecker. We don't want our list to be pinned though!

Pins are necessary and useful for async-await/futures/coroutines
because the compiler needs to be able to bundle up all the local
variables of a function into some kind of struct and store them

https://doc.rust-lang.org/std/pin/index.html

somewhere until the future/coroutine is ready to be resumed. Since
local variables can reference other local variables, and we want that to
work, these structs can end up containing references to themselves!

So to await or yield Rust needs a way to be able to properly
describe and manipulate pinned values. Thankfully all of this stuff is
largely just hidden away in automatic compiler machinery and no one
actually has to think about Pin (or even Futures) under normal
circumstances. The main exception is that this stuff is very important
for the folks building and designing async runtimes like tokio.

We will not be implementing an async runtime in this book. I know
my friends know all sorts of "cool" (messed up) tricks you can do with
Pin , but from what I can tell, I'd be happier to just not know them. I
will continue to tell myself that Pinned types aren't real and they can't
hurt me.

Our pop implementation hints at why storing a reference to ourselves
inside ourselves could be really dangerous:
// ...
if self.head.is_none() {
 self.tail = None;
}

What if we forgot to do this? Then our tail would point to some node
that had been removed from the list. Such a node would be instantly freed,
and we'd have a dangling pointer which Rust was supposed to protect us
from!

And indeed Rust is protecting us from that kind of danger. Just in a
very... roundabout way.

So what can we do? Go back to Rc<RefCell>> hell?
Please. No.
No, instead we're going to go off the rails and use raw pointers. Our

layout is going to look like this:
pub struct List<T> {
 head: Link<T>,
 tail: *mut Node<T>, // DANGER DANGER

}

type Link<T> = Option<Box<Node<T>>>;

struct Node<T> {
 elem: T,
 next: Link<T>,
}

And that's that. None of this wimpy reference-counted-dynamic-borrow-
checking nonsense! Real. Hard. Unchecked. Pointers.

NARRATOR: This implementation was in fact still dangerously
wrong, but it wasn't yet time to learn that lesson. The next section will
learn that the hard way, as usual.

Let's be C everyone. Let's be C all day.
I'm home. I'm ready.
Hello unsafe .

NARRATOR: Wow, just incredible hubris from the author here.

Unsafe Rust
This is a serious, big, complicated, and dangerous topic. It's so serious

that I wrote an entire other book on it.
The long and the short of it is that every language is actually unsafe as

soon as you allow calling into other languages, because you can just have C
do arbitrarily bad things. Yes: Java, Python, Ruby, Haskell... everyone is
wildly unsafe in the face of Foreign Function Interfaces (FFI).

Rust embraces this truth by splitting itself into two languages: Safe Rust,
and Unsafe Rust. So far we've only worked with Safe Rust. It's completely
100% safe... except that it can FFI into Unsafe Rust.

Unsafe Rust is a superset of Safe Rust. It's completely the same as Safe
Rust in all its semantics and rules, you're just allowed to do a few extra
things that are wildly unsafe and can cause the dreaded Undefined
Behaviour that haunts C.

Again, this is a really huge topic that has a lot of interesting corner cases.
I really don't want to go really deep into it (well, I do. I did. Read that
book). That's ok, because with linked lists we can actually ignore almost all
of it.

NARRATOR: This was a lie, but it did seem true in 2015.

The main Unsafe tool we'll be using are raw pointers. Raw pointers are
basically C's pointers. They have no inherent aliasing rules. They have no
lifetimes. They can be null. They can be misaligned. They can be dangling.
They can point to uninitialized memory. They can be cast to and from
integers. They can be cast to point to a different type. Mutability? Cast it.
Pretty much everything goes, and that means pretty much anything can go
wrong.

NARRATOR: no inherent aliasing rules, eh? Ah, the innocence of
youth.

This is some bad stuff and honestly you'll live a happier life never
having to touch these. Unfortunately, we want to write linked lists, and

https://doc.rust-lang.org/nightly/nomicon/
https://doc.rust-lang.org/nightly/nomicon/

linked lists are awful. That means we're going to have to use unsafe
pointers.

There are two kinds of raw pointer: *const T and *mut T . These are
meant to be const T* and T* from C, but we really don't care about what
C thinks they mean that much. You can only dereference a *const T to an
&T , but much like the mutability of a variable, this is just a lint against
incorrect usage. At most it just means you have to cast the *const to a
*mut first. Although if you don't actually have permission to mutate the
referent of the pointer, you're gonna have a bad time.

Anyway, we'll get a better feel for this as we write some code. For now,
*mut T == &unchecked mut T !

Basics
NARRATOR: This section has a looming fundamental error in it,

because that's the whole point of the book. However once we start
using unsafe it's possible to do things wrong and still have everything
compile and seemingly work. The fundamental mistake will be
identified in the next section. Don't actually use the contents of this
section in production code!

Alright, back to basics. How do we construct our list?
Before we just did:

impl<T> List<T> {
 pub fn new() -> Self {
 List { head: None, tail: None }
 }
}

But we're not using Option for the tail anymore:
> cargo build

error[E0308]: mismatched types
 --> src/fifth.rs:15:34
 |
15 | List { head: None, tail: None }
 | ^^^^ expected *-ptr,
found
 | enum
`std::option::Option`
 |
 = note: expected type `*mut fifth::Node<T>`
 found type `std::option::Option<_>`

We could use an Option, but unlike Box, *mut is nullable. This means it
can't benefit from the null pointer optimization. Instead, we'll be using
null to represent None.

So how do we get a null pointer? There's a few ways, but I prefer to use
std::ptr::null_mut() . If you want, you can also use 0 as *mut _ , but
that just seems so messy.
use std::ptr;

// defns...

impl<T> List<T> {
 pub fn new() -> Self {
 List { head: None, tail: ptr::null_mut() }
 }
}

cargo build

warning: field is never used: `head`
 --> src/fifth.rs:4:5
 |
4 | head: Link<T>,
 | ^^^^^^^^^^^^^
 |
 = note: #[warn(dead_code)] on by default

warning: field is never used: `tail`
 --> src/fifth.rs:5:5
 |
5 | tail: *mut Node<T>,
 | ^^^^^^^^^^^^^^^^^^

warning: field is never used: `elem`
 --> src/fifth.rs:11:5
 |
11 | elem: T,
 | ^^^^^^^

warning: field is never used: `head`

 --> src/fifth.rs:12:5
 |
12 | head: Link<T>,
 | ^^^^^^^^^^^^^

shush compiler, we will use them soon.
Alright, let's move on to writing push again. This time, instead of

grabbing an Option<&mut Node<T>> after we insert, we're just going to
grab a *mut Node<T> to the insides of the Box right away. We know we
can soundly do this because the contents of a Box has a stable address, even
if we move the Box around. Of course, this isn't safe, because if we just
drop the Box we'll have a pointer to freed memory.

How do we make a raw pointer from a normal pointer? Coercions! If a
variable is declared to be a raw pointer, a normal reference will coerce into
it:
let raw_tail: *mut _ = &mut *new_tail;

We have all the info we need. We can translate our code into,
approximately, the previous reference version:
pub fn push(&mut self, elem: T) {
 let mut new_tail = Box::new(Node {
 elem: elem,
 next: None,
 });

 let raw_tail: *mut _ = &mut *new_tail;

 // .is_null checks for null, equivalent to checking for
None
 if !self.tail.is_null() {
 // If the old tail existed, update it to point to the
new tail
 self.tail.next = Some(new_tail);
 } else {
 // Otherwise, update the head to point to it
 self.head = Some(new_tail);

 }

 self.tail = raw_tail;
}

> cargo build

error[E0609]: no field `next` on type `*mut fifth::Node<T>`
 --> src/fifth.rs:31:23
 |
31 | self.tail.next = Some(new_tail);
 | ----------^^^^
 | |
 | help: `self.tail` is a raw pointer;
 | try dereferencing it: `(*self.tail).next`

Huh? We have a pointer to a Node, why can't we get the next field?
Rust is kinda a jerk when you use raw pointers. To access the contents of

a raw pointer, it insists that we manually deref them, because it's such an
unsafe operation. So let's do that:
*self.tail.next = Some(new_tail);

> cargo build

error[E0609]: no field `next` on type `*mut fifth::Node<T>`
 --> src/fifth.rs:31:23
 |
31 | *self.tail.next = Some(new_tail);
 | -----------^^^^
 | |
 | help: `self.tail` is a raw pointer;
 | try dereferencing it: `(*self.tail).next`

Uuuugh operator precedence.
(*self.tail).next = Some(new_tail);

> cargo build

error[E0133]: dereference of raw pointer is unsafe and
requires
 unsafe function or block

 --> src/fifth.rs:31:13
 |
31 | (*self.tail).next = Some(new_tail);
 | ^^^^^^^^^^^^^^^^^ dereference of raw pointer
 |
 = note: raw pointers may be NULL, dangling or unaligned;
 they can violate aliasing rules and cause data races:
 all of these are undefined behavior

THIS. SHOULDN'T. BE. THIS. HARD.
Remember how I said Unsafe Rust is like an FFI language for Safe

Rust? Well, the compiler wants us to explicitly delimit where we're doing
this FFI-ing. We have two options. First, we can mark our entire function as
unsafe, in which case it becomes an Unsafe Rust function and can only be
called in an unsafe context. This isn't great, because we want our list to be
safe to use. Second, we can write an unsafe block inside our function, to
delimit the FFI boundary. This declares the overall function to be safe. Let's
do that one:
pub fn push(&mut self, elem: T) {
 let mut new_tail = Box::new(Node {
 elem: elem,
 next: None,
 });

 let raw_tail: *mut _ = &mut *new_tail;

 if !self.tail.is_null() {
 // Hello Compiler, I Know I Am Doing Something
Dangerous And
 // I Promise To Be A Good Programmer Who Never Makes
Mistakes.

 unsafe {
 (*self.tail).next = Some(new_tail);
 }
 } else {
 self.head = Some(new_tail);
 }

 self.tail = raw_tail;
}

> cargo build
warning: field is never used: `elem`
 --> src/fifth.rs:11:5
 |
11 | elem: T,
 | ^^^^^^^
 |
 = note: #[warn(dead_code)] on by default

Yay!
It's kind've interesting that that's the only place we've had to write an

unsafe block so far. We do raw pointer stuff all over the place, what's up
with that?

It turns out that Rust is a massive rules-lawyer pedant when it comes to
unsafe . We quite reasonably want to maximize the set of Safe Rust
programs, because those are programs we can be much more confident in.
To accomplish this, Rust carefully carves out a minimal surface area for
unsafety. Note that all the other places we've worked with raw pointers has
been assigning them, or just observing whether they're null or not.

If you never actually dereference a raw pointer those are totally safe
things to do. You're just reading and writing an integer! The only time you
can actually get into trouble with a raw pointer is if you actually
dereference it. So Rust says only that operation is unsafe, and everything
else is totally safe.

Super. Pedantic. But technically correct.

NARRATOR: Somewhere on the other side of the world, a
hardware engineer feels a shiver down her spine — someone must be
insisting pointers are just integers again. She looks down at her
proposal for a new hardware pointer authentication scheme and sheds
a single tear. The compiler engineer next door feels nothing — they
long ago learned to always wear a heavy sweater.

Having only some of the pointer operations be actually unsafe raises an
interesting problem: although we're supposed to delimit the scope of the
unsafety with the unsafe block, it actually depends on state that was
established outside of the block. Outside of the function, even!

This is what I call unsafe taint. As soon as you use unsafe in a module,
that whole module is tainted with unsafety. Everything has to be correctly
written in order to make sure all invariants are upheld for the unsafe code.

This taint is manageable because of privacy. Outside of our module, all
of our struct fields are totally private, so no one else can mess with our state
in arbitrary ways. As long as no combination of the APIs we expose causes
bad stuff to happen, as far as an outside observer is concerned, all of our
code is safe! And really, this is no different from the FFI case. No one needs
to care if some python math library shells out to C as long as it exposes a
safe interface.

Anyway, let's move on to pop , which is pretty much verbatim the
reference version:
pub fn pop(&mut self) -> Option<T> {
 self.head.take().map(|head| {
 let head = *head;
 self.head = head.next;

 if self.head.is_none() {
 self.tail = ptr::null_mut();
 }

 head.elem
 })
}

Again we see another case where safety is stateful. If we fail to null out
the tail pointer in this function, we'll see no problems at all. However
subsequent calls to push will start writing to the dangling tail!

Let's test it out:
#[cfg(test)]
mod test {
 use super::List;
 #[test]
 fn basics() {
 let mut list = List::new();

 // Check empty list behaves right
 assert_eq!(list.pop(), None);

 // Populate list
 list.push(1);
 list.push(2);
 list.push(3);

 // Check normal removal
 assert_eq!(list.pop(), Some(1));
 assert_eq!(list.pop(), Some(2));

 // Push some more just to make sure nothing's
corrupted
 list.push(4);
 list.push(5);

 // Check normal removal
 assert_eq!(list.pop(), Some(3));
 assert_eq!(list.pop(), Some(4));

 // Check exhaustion
 assert_eq!(list.pop(), Some(5));
 assert_eq!(list.pop(), None);

 // Check the exhaustion case fixed the pointer right
 list.push(6);
 list.push(7);

 // Check normal removal
 assert_eq!(list.pop(), Some(6));
 assert_eq!(list.pop(), Some(7));
 assert_eq!(list.pop(), None);
 }
}

This is just the stack test, but with the expected pop results flipped
around. I also added some extra steps at the end to make sure that tail-
pointer corruption case in pop doesn't occur.
cargo test

running 12 tests
test fifth::test::basics ... ok
test first::test::basics ... ok
test fourth::test::basics ... ok
test fourth::test::peek ... ok
test second::test::basics ... ok
test fourth::test::into_iter ... ok
test second::test::into_iter ... ok
test second::test::iter ... ok
test second::test::iter_mut ... ok
test second::test::peek ... ok
test third::test::basics ... ok
test third::test::iter ... ok

test result: ok. 12 passed; 0 failed; 0 ignored; 0 measured

Gold Star!

NARRATOR: Here it comes...

Miri
nervously laughs This unsafe stuff is so easy, I don't know why everyone

says otherwise. Our program works perfectly.

NARRATOR: 🙂

...right?

NARRATOR: 🙂

Well, we're writing unsafe code now, so the compiler can't help us
catch mistakes as well. It could be that the tests happened to work, but were
actually doing something non-deterministic. Something Undefined
Behavioury.

But what can we do? We've pried open the windows and snuck out of
rustc's classroom. No one can help us now.

...Wait, who's that sketchy looking person in the alleyway?
"Hey kid, you wanna interpret some Rust code?"
Wh- no? Why,
"It's wild man, it can validate that the actual dynamic execution of your

program conforms to the semantics of Rust's memory model. Blows your
mind..."

What?
"It checks if you Do An Undefined Behaviour."
I guess I could try interpretters just once.
"You've got rustup installed right?"
Of course I do, it's the tool for having an up to date Rust toolchain!

> rustup +nightly-2022-01-21 component add miri

info: syncing channel updates for 'nightly-2022-01-21-x86_64-
pc-windows-msvc'
info: latest update on 2022-01-21, rust version 1.60.0-nightly
(777bb86bc 2022-01-20)
info: downloading component 'cargo'

info: downloading component 'clippy'
info: downloading component 'rust-docs'
info: downloading component 'rust-std'
info: downloading component 'rustc'
info: downloading component 'rustfmt'
info: installing component 'cargo'
info: installing component 'clippy'
info: installing component 'rust-docs'
info: installing component 'rust-std'
info: installing component 'rustc'
info: installing component 'rustfmt'
info: downloading component 'miri'
info: installing component 'miri'

What did you just install on my computer!?
"The Good Stuff"

NARRATOR: Some weird stuff going on with toolchain versions:
The tool we're installing, miri , works closely with rustc's internals,

so it's only available for nightly toolchains.
+nightly-2022-01-21 tells rustup we want to install miri with

the rust nightly toolchain for that date. I'm giving a specific date
because sometimes miri falls behind and can't be built for a few
nightlies. rustup will automatically download whatever toolchain we
specify with + if we don't have it installed yet.

2022-01-21 is just a nightly I know has miri support, which you can
check on this status page. You can just use +nightly if you're feeling
lucky.

Whenever we invoke miri via cargo miri we will also use this +
syntax to specify the toolchain we installed miri on. If you don't want
to have to specify it every time, you can use rustup override set .

> cargo +nightly-2022-01-21 miri test

I will run `"cargo.exe" "install" "xargo"` to install
a recent enough xargo. Proceed? [Y/n]

https://rust-lang.github.io/rustup-components-history/
https://rust-lang.github.io/rustup/overrides.html

UH WHAT ON EARTH IS XARGO?
"It's fine, don't worry about it."

> y

 Updating crates.io index
 Installing xargo v0.3.24
...
 Finished release [optimized] target(s) in 10.65s
 Installing C:\Users\ninte\.cargo\bin\xargo-check.exe
 Installing C:\Users\ninte\.cargo\bin\xargo.exe
 Installed package `xargo v0.3.24` (executables `xargo-
check.exe`, `xargo.exe`)

I will run `"rustup" "component" "add" "rust-src"` to install
the `rust-src` component for the selected toolchain. Proceed?
[Y/n]

UH???
"Who doesn't love having a copy of Rust's source code?"

> y

info: downloading component 'rust-src'
info: installing component 'rust-src'

"Aw yeah it's ready, here's the good part."
 Compiling lists v0.1.0 (C:\Users\ninte\dev\tmp\lists)
 Finished test [unoptimized + debuginfo] target(s) in 0.25s
 Running unittests (lists-5cc11d9ee5c3e924.exe)

error: Undefined Behavior: trying to reborrow for Unique at
alloc84055,
 but parent tag <209678> does not have an appropriate
item in
 the borrow stack

 --> \lib\rustlib\src\rust\library\core\src\option.rs:846:18

 |
846 | Some(x) => Some(f(x)),
 | ^ trying to reborrow for Unique at
alloc84055,
 | but parent tag <209678> does not have
an
 | appropriate item in the borrow stack
 |
 = help: this indicates a potential bug in the program:
 it performed an invalid operation, but the rules it
 violated are still experimental
 = help: see https://github.com/rust-lang/unsafe-code-
guidelines/blob/master/wip/stacked-borrows.md
 for further information

 = note: inside `std::option::Option::
<std::boxed::Box<fifth::Node<i32>>>::map::<i32,
[closure@src\fifth.rs:31:30: 40:10]>` at
\lib\rustlib\src\rust\library\core\src\option.rs:846:18

note: inside `fifth::List::<i32>::pop` at src\fifth.rs:31:9
 --> src\fifth.rs:31:9
 |
31 | / self.head.take().map(|head| {
32 | | let head = *head;
33 | | self.head = head.next;
34 | |
... |
39 | | head.elem
40 | | })
 | |__________^
note: inside `fifth::test::basics` at src\fifth.rs:74:20
 --> src\fifth.rs:74:20
 |
74 | assert_eq!(list.pop(), Some(1));
 | ^^^^^^^^^^

note: inside closure at src\fifth.rs:62:5
 --> src\fifth.rs:62:5
 |
61 | #[test]
 | ------- in this procedural macro expansion
62 | / fn basics() {
63 | | let mut list = List::new();
64 | |
65 | | // Check empty list behaves right
... |
96 | | assert_eq!(list.pop(), None);
97 | | }
 | |_____^
 ...
error: aborting due to previous error

Woah. That's one heck of an error.
"Yeah, look at that shit. You love to see it."
Thank you?
"Here take the bottle of estradiol too, you're gonna need it later."
Wait why?
"You're about to think about memory models, trust me."

NARRATOR: The mysterious person then proceeded to transform
into a fox and scampered through a hole in the wall. The author then
stared into the middle distance for several minutes while they tried to
process everything that just happened.

The mysterious fox in the alleyway was right about more than just my
gender: miri really is The Good Shit.

Ok so what is miri?

An experimental interpreter for Rust's mid-level intermediate
representation (MIR). It can run binaries and test suites of cargo
projects and detect certain classes of undefined behavior, for example:

Out-of-bounds memory accesses and use-after-free

https://github.com/rust-lang/miri

Invalid use of uninitialized data
Violation of intrinsic preconditions (an unreachable_unchecked
being reached, calling copy_nonoverlapping with overlapping
ranges, ...)
Not sufficiently aligned memory accesses and references
Violation of some basic type invariants (a bool that is not 0 or 1,
for example, or an invalid enum discriminant)
Experimental: Violations of the Stacked Borrows rules governing
aliasing for reference types
Experimental: Data races (but no weak memory effects)

On top of that, Miri will also tell you about memory leaks: when
there is memory still allocated at the end of the execution, and that
memory is not reachable from a global static, Miri will raise an error.

...
However, be aware that Miri will not catch all cases of undefined

behavior in your program, and cannot run all programs

TL;DR: it interprets your program and notices if you break the rules at
runtime and Do An Undefined Behaviour. This is necessary because
Undefined Behaviour is generally a thing that happens at runtime. If the
issue could be found at compile time, the compiler would just make it an
error!

If you're familiar with tools like ubsan and tsan: it's basically that but all
together and more extreme.

Miri is now hanging outside the classroom window with a knife. A
learning knife.

If we ever want miri to check our work, we can ask them to interpret our
test suite with
> cargo +nightly-2022-01-21 miri test

Now let's take a closer look at what they carved into our desk:
error: Undefined Behavior: trying to reborrow for Unique at
alloc84055, but parent tag <209678> does not have an
appropriate item in the borrow stack

 --> \lib\rustlib\src\rust\library\core\src\option.rs:846:18
 |
846 | Some(x) => Some(f(x)),
 | ^ trying to reborrow for Unique at
alloc84055,
 | but parent tag <209678> does not have
an
 | appropriate item in the borrow stack
 |

 = help: this indicates a potential bug in the program: it
 performed an invalid operation, but the rules it
 violated are still experimental

 = help: see
 https://github.com/rust-lang/unsafe-code-
guidelines/blob/master/wip/stacked-borrows.md
 for further information

Well I can see we made an error, but that's a confusing error message.
What's the "borrow stack"?

We'll try to figure that out in the next section.

Attempting To Understand Stacked
Borrows

In the previous section we tried running our unsafe singly-linked queue
under miri, and it said we had broken the rules of stacked borrows, and
linked us some documentation.

Normally I'd give a guided tour of the docs, but we're not really the
target audience of that documentation. It's more designed for compiler
developers and academics who are working on the semantics of Rust.

So I'm going to just give you the high level idea of "stacked borrows",
and then give you a simple strategy for following the rules.

NARRATOR: Stacked borrows are still "experimental" as a
semantic model for Rust, so breaking these rules may not actually
mean your program is "wrong". But unless you literally work on the
compiler, you should just fix your program when miri complains.
Better safe than sorry when it comes to Undefined Behaviour.

The Motivation: Pointer Aliasing
Before we get into what rules we've broken, it will help to understand

why the rules exist in the first place. There are a few different motivating
problems, but I think the most important one is pointer aliasing.

We say two pointers alias when the pieces of memory they point to
overlap. Just as someone who "goes by an alias" can be referred to by two
different names, that overlapping piece of memory can be referred to by
two different pointers. This can lead to problems.

The compiler uses information about pointer aliasing to optimize
accesses to memory, so if the information it has is wrong then the program
will be miscompiled and do random garbage.

NARRATOR: Practically speaking, aliasing is more concerned
with memory accesses than the pointers themselves, and only really
matters when one of the accesses is mutating. Pointers are emphasized
because they're a convenient thing to attach rules to.

To understand why pointer aliasing information is important, let's
consider The Parable of the Tiny Angry Man.

Michiel was looking through their bookshelf one day when they saw a
book they didn't remember. They pulled it from the bookcase and looked at
the cover.

"Oh yes, my old copy of War and Peace, a book I definitely have read. I
loved the part with all the Peace."

Suddenly there was a knock at the door. Michiel returned the book to its
shelf and opened the door -- it was their sworn nemesis Hamslaw. As
Hamslaw prepared a devastating remark about Michiel's clearly inferior
codegolfing skills, they sensed an opening:

"Hey Hamslaw, have you ever read War and Peace?"
"Pfft, no one's actually read War and Peace."
"Well I have, look it's right there in my bookcase, which obviously

means I've read it."

Hamslaw couldn't believe it. Her face shifted from its usual smug
demeanor to an iron mask of rage and determination. Hamslaw pushed
Michiel aside and power-walked to the book shelf, cleaving the tome from
its resting place with the fury of a thousand Valkyries. She turned the
ancient text over in her hands, and the instant she saw the cover she began
to shake.

Michiel prepared to boast of their clearly unparalleled brilliance, but was
interrupted by the sudden laughter of Hamslaw.

"This isn't War and Peace, this is War and Feet!"
Tears were rolling down Hamslaw's face. This was clearly the greatest

moment of her life.
"N-no! I just looked at it!"
They grabbed the book from Hamslaw and checked the cover. Indeed,

the word "Peace" had been scratched out and replaced with "Feet". Michiel
was mortified. This was clearly the worst moment of their life.

They fell to their knees and stared blankly at the bookcase. How could
this have happened? They had checked the cover only a moment ago!

And then they saw a bit of motion in the bookcase. It was a tiny man. A
tiny many with the angriest scowl Michiel had ever seen. The tiny man
flipped Michiel off and mouthed the words "no one will believe you" and
disappeared back between the books.

Michiel's plan had been perfect, but they had failed to account for the
possibility of a tiny angry man with a sharpie and the desire for destruction.
They thought they knew what the cover of the book said, and they thought
that no one could have possibly changed it. But alas, they were wrong.

Hamslaw was already working on a zine commemorating her incredible
victory — Michiel's reputation at the local Internet Cafe would never
recover.

No one wants to be like Michiel, but no one wants to live in constant
fear of the tiny angry man either. We want to know when the tiny angry
man could be playing tricks on us. When he is, we will be very careful and
paranoid about checking everything before we use it. But when the tiny
angry man is gone, we want to be able to remember things.

That's the (very simplified) crux of pointer aliasing: when can the
compiler assume it's safe to "remember" (cache) values instead of loading
them over and over? To know that, the compiler needs to know whenever
there could be little angry men mutating the memory behind your back.

NARRATOR: the compiler also uses this information to cache
stores, which just means it can avoid committing things to memory if it
thinks no one will notice. In this case the problem is still tiny angry
men, but they only need to read the memory for it to be a problem.

Safe Stacked Borrows
Ok so we want the compiler to have good pointer aliasing information,

can we do that? Well, seemingly Rust is designed for it. Mutable references
aren't aliased by definition, and although shared references can alias
eachother, they can't mutate. Perfect! Ship it!

Except it's more complicated than that. We can "reborrow" mutable
pointers like this:
let mut data = 10;
let ref1 = &mut data;
let ref2 = &mut *ref1;

*ref2 += 2;
*ref1 += 1;

println!("{}", data);

The compiles and runs fine. What's the deal?
Well we can see what's going on by swapping the two uses:

let mut data = 10;
let ref1 = &mut data;
let ref2 = &mut *ref1;

// ORDER SWAPPED!
*ref1 += 1;
*ref2 += 2;

println!("{}", data);

error[E0503]: cannot use `*ref1` because it was mutably
borrowed
 --> src/main.rs:6:5
 |
4 | let ref2 = &mut *ref1;
 | ---------- borrow of `*ref1` occurs here

5 |
6 | *ref1 += 1;
 | ^^^^^^^^^^ use of borrowed `*ref1`
7 | *ref2 += 2;
 | ---------- borrow later used here

For more information about this error, try `rustc --explain
E0503`.
error: could not compile `playground` due to previous error

It's suddenly a compiler error!
When we reborrow a mutable pointer, the original pointer can't be used

anymore until the borrower is done with it (no more uses).
In the code that works, there's a nice little nesting of the uses. We

reborrow the pointer, use the new pointer for a while, and then stop using it
before using the older pointer again. In the code that doesn't work, that
doesn't happen. We just interleave the uses arbitrarily.

This is how we can have reborrows and still have aliasing information:
all of our reborrows clearly nest, so we can consider only one of them "live"
at any given time.

Hey, you know what's a great way to represent cleanly nested things? A
stack. A stack of borrows.

Oh hey it's Stacked Borrows!
Whatever's at the top of the borrow stack is "live" and knows it's

effectively unaliased. When you reborrow a pointer, the new pointer is
pushed onto the stack, becoming the live pointer. When you use an older
pointer it's brought back to life by popping everything on the borrow stack
above it. At this point the pointer "knows" it was reborrowed and that the
memory might have been modified, but that it once more has exclusive
access -- no need to worry about little angry men.

So it's actually always ok to access a reborrowed pointer, because we can
always pop everything above it. The real trouble is accessing a pointer that
has already been popped off of the borrow stack -- then you've messed up.

Thankfully the design of the borrowchecker ensures that safe Rust
programs follow these rules, as we saw in the above example, but the

compiler generally views this problem "backwards" from the stacked
borrows perspective. Instead of saying using ref1 invalidates ref2 , it
insists that ref2 must be valid for all its uses, and that ref1 is the one
messing things up by going out of turn.

Hence "cannot use *ref1 because it was mutably borrowed". It's the
same result (especially with non-lexical lifetimes), but framed in a way
that's probably more intuitive.

But the borrowchecker can't help us when we start using unsafe pointers!

Unsafe Stacked Borrows
So we want to somehow have a way for unsafe pointers to participate in

this stacked borrows system, even though the compiler can't track them
properly. And we also want the system to be fairly permissive so that it's not
too easy to mess it up and cause UB.

That's a hard problem, and I don't know how to solve it, but the folks
who worked on Stacked Borrows came up with something plausible, and
miri tries to implement it.

The very high-level concept is that when you convert a reference (or any
other safe pointer) into an raw pointer it's basically like taking a reborrow.
So now the raw pointer is allowed to do whatever it wants with that
memory, and when the reborrow expires it's just like when that happens
with normal reborrows.

But the question is, when does that reborrow expire? Well, probably a
good time to expire it is when you start using the original reference again.
Otherwise things aren't a nice nested stack.

But wait, you can turn a raw pointer into a reference! And you can copy
raw pointers! What if you go &mut -> *mut -> &mut -> *mut and then
access the first *mut ? How the heck do the stacked borrows work then?

I genuinely don't know! That's why things are complicated. In fact
they're extra complicated because stacked borrows are trying to be more
permissive and let more unsafe code work the way you'd expect it to. This
is why I run things under miri to try to help me catch mistakes.

In fact, this messiness is why there is an extra-experimental extra-strict
mode of miri: -Zmiri-tag-raw-pointers .

To enable it, we need to pass it via a MIRIFLAGS environment variable
like this:
MIRIFLAGS="-Zmiri-tag-raw-pointers" cargo +nightly-2022-01-21
miri test

Or like this on Windows, where you need to just set the variable
globally:

$env:MIRIFLAGS="-Zmiri-tag-raw-pointers"
cargo +nightly-2022-01-21 miri test

We'll generally be trying to conform to this extra-strict mode just to be
extra confident in our work. It's also in some sense "simpler", so it's
actually better for messing around and getting an intuition for stacked
borrows.

Managing Stacked Borrows
So when using raw pointers we're going to try to stick to a heuristic

that's simple and blunt and will hopefully have a large margin of error:
Once you start using raw pointers, try to ONLY use raw pointers.
This makes it as unlikely as possible to accidentally lose the raw

pointer's "permission" to access the memory.

NARRATOR: this is oversimplified in two regards:

1. Safe pointers often assert more properties than just aliasing:
the memory is allocated, it's aligned, it's large enough to fit the
type of the pointee, the pointee is properly initialized, etc. So it's
even more dangerous to wildly throw them around when things
are in a dubious state.

2. Even if you stay in raw pointer land, you can't just wildly alias
any memory. Pointers are conceptually tied to specific
"allocations" (which can be as granular as a local variable on the
stack), and you're not supposed to take a pointer from one
allocation, offset it, and then access memory in a different
allocation. If this was allowed, there would always be the threat
of tiny angry men everywhere. This is part of the reason "pointers
are just integers" is a problematic viewpoint.

Now, we still want safe references in our interface, because we want to
build a nice safe abstraction so the user of our list doesn't have to know or
worry about.

So what we're going to do is:

1. At the start of a method, use the input references to get our raw
pointers

2. Do our best to only use unsafe pointers from this point on
3. Convert our raw pointers back to safe pointers at the end if needed
But the fields of our types are private so we're going to keep those

entirely as raw pointers.

In fact, part of the big mistake we made was continuing to use Box! Box
has a special annotation in it that tells the compiler "hey this is a lot like
&mut , because it uniquely owns that pointer". Which is true!

But the raw pointer we were keeping to the end of the list was pointing
into a Box, so whenever we access the Box normally we're probably
invalidating that raw pointer's "reborrow"! ☠

In the next section we'll return to our true form and hit our heads against
a bunch of examples.

Testing Stacked Borrows
TL;DR of the previous section's (simplified) memory model for

Rust:

Rust conceptually handles reborrows by maintaining a "borrow
stack"
Only the one on the top of the stack is "live" (has exclusive
access)
When you access a lower one it becomes "live" and the ones
above it get popped
You're not allowed to use pointers that have been popped from the
borrow stack
The borrowchecker ensures safe code code obeys this
Miri theoretically checks that raw pointers obey this at runtime

That was a lot of theory and ideas -- let's move on to the true heart and
soul of this book: writing some bad code and getting our tools to scream at
us. We're going to go through a ton of examples to try to see if our mental
model makes sense, and to try to get an intuitive feel for stacked borrows.

NARRATOR: Catching Undefined Behaviour in practice is a hairy
business. After all, you're dealing with situations that the compiler
literally assumes don't happen.

If you're lucky, things will "seem to work" today, but they'll be a
ticking time bomb for a Smarter Compiler or slight change to the code.
If you're really lucky things will reliably crash so you can just catch
the mistake and fix it. But if you're unlucky, then things will be broken
in weird and baffling ways.

Miri tries to work around this by getting rustc's most naive and
unoptimized view of the program and tracking extra state as it
interprets. As far as "sanitizers" go, this is a fairly deterministic and
robust approach but it will never be perfect. You need your test
program to actually have an execution with that UB, and for a large

enough program it's very easy to introduce all sorts of non-
determinism (HashMaps use RNG by default!).

We can never take miri approving of our program's execution as an
absolute certain statement there's no UB. It's also possible for miri to
think something's UB when it really isn't. But if we have a mental
model of how things work, and miri seems to agree with us, that's a
good sign that we're on the right track.

Basic Borrows
In previous sections we saw that the borrowchecker didn't like this code:

let mut data = 10;
let ref1 = &mut data;
let ref2 = &mut *ref1;

// ORDER SWAPPED!
*ref1 += 1;
*ref2 += 2;

println!("{}", data);

Let's see what happens when we replace ref2 with *mut :
unsafe {
 let mut data = 10;
 let ref1 = &mut data;
 let ptr2 = ref1 as *mut _;

 // ORDER SWAPPED!
 *ref1 += 1;
 *ptr2 += 2;

 println!("{}", data);
}

cargo run
 Compiling miri-sandbox v0.1.0
 Finished dev [unoptimized + debuginfo] target(s) in 0.71s
 Running `target\debug\miri-sandbox.exe`
13

Rustc seems perfectly happy with this: no warnings and the program
produced the result we expected! Now let's look at what miri (in strict
mode) thinks of it:

MIRIFLAGS="-Zmiri-tag-raw-pointers" cargo +nightly-2022-01-21
miri run

 Finished dev [unoptimized + debuginfo] target(s) in 0.00s
 Running cargo-miri.exe target\miri

error: Undefined Behavior: no item granting read access
to tag <untagged> at alloc748 found in borrow stack.

 --> src\main.rs:9:9
 |
9 | *ptr2 += 2;
 | ^^^^^^^^^^ no item granting read access to tag
<untagged>
 | at alloc748 found in borrow stack.
 |
 = help: this indicates a potential bug in the program:
 it performed an invalid operation, but the rules it
 violated are still experimental

Nice! Our intuitive model of how things work held up: although the
compiler couldn't catch the issue for us, miri did.

Let's try something more complicated, the &mut -> *mut -> &mut ->
*mut case we alluded to before:
unsafe {
 let mut data = 10;
 let ref1 = &mut data;
 let ptr2 = ref1 as *mut _;
 let ref3 = &mut *ptr2;
 let ptr4 = ref3 as *mut _;

 // Access the first raw pointer first
 *ptr2 += 2;

 // Then access things in "borrow stack" order
 *ptr4 += 4;
 *ref3 += 3;
 *ptr2 += 2;
 *ref1 += 1;

 println!("{}", data);
}

cargo run
22

MIRIFLAGS="-Zmiri-tag-raw-pointers" cargo +nightly-2022-01-21
miri run

error: Undefined Behavior: no item granting read access
to tag <1621> at alloc748 found in borrow stack.

 --> src\main.rs:13:5
 |
13 | *ptr4 += 4;
 | ^^^^^^^^^^ no item granting read access to tag <1621>
 | at alloc748 found in borrow stack.
 |

Wow yep! In strict mode miri can "tell apart" the two raw pointers and
have using the second one invalidate the first one. Let's see if everything
works when we remove the first use that messes everything up:
unsafe {
 let mut data = 10;
 let ref1 = &mut data;
 let ptr2 = ref1 as *mut _;
 let ref3 = &mut *ptr2;
 let ptr4 = ref3 as *mut _;

 // Access things in "borrow stack" order

 *ptr4 += 4;
 *ref3 += 3;
 *ptr2 += 2;
 *ref1 += 1;

 println!("{}", data);
}

cargo run
20

MIRIFLAGS="-Zmiri-tag-raw-pointers" cargo +nightly-2022-01-21
miri run
20

NICE.
Yeah I'm pretty sure at this point we can all get PhD's in programming

language memory model design and implementation. Who even needs
compilers, this stuff is easy.

NARRATOR: it was not, but I'm proud of you nonetheless.

Testing Arrays
Let's mess with some arrays and pointer offsets (add and sub). This

should work, right?
unsafe {
 let mut data = [0; 10];
 let ref1_at_0 = &mut data[0]; // Reference to
0th element
 let ptr2_at_0 = ref1_at_0 as *mut i32; // Ptr to 0th
element
 let ptr3_at_1 = ptr2_at_0.add(1); // Ptr to 1st
element

 *ptr3_at_1 += 3;
 *ptr2_at_0 += 2;
 *ref1_at_0 += 1;

 // Should be [3, 3, 0, ...]
 println!("{:?}", &data[..]);
}

cargo run
[3, 3, 0, 0, 0, 0, 0, 0, 0, 0]

MIRIFLAGS="-Zmiri-tag-raw-pointers" cargo +nightly-2022-01-21
miri run

error: Undefined Behavior: no item granting read access
to tag <1619> at alloc748+0x4 found in borrow stack.
 --> src\main.rs:8:5
 |
8 | *ptr3_at_1 += 3;
 | ^^^^^^^^^^^^^^^ no item granting read access to tag
<1619>
 | at alloc748+0x4 found in borrow stack.

Rips up gradschool application
What happened? We're using the borrow stack perfectly fine! Does

something weird happen when we go ptr -> ptr ? What if we just copy
the pointer so they all go to the same location:
unsafe {
 let mut data = [0; 10];
 let ref1_at_0 = &mut data[0]; // Reference to
0th element
 let ptr2_at_0 = ref1_at_0 as *mut i32; // Ptr to 0th
element
 let ptr3_at_0 = ptr2_at_0; // Ptr to 0th
element

 *ptr3_at_0 += 3;
 *ptr2_at_0 += 2;
 *ref1_at_0 += 1;

 // Should be [6, 0, 0, ...]
 println!("{:?}", &data[..]);
}

cargo run
[6, 0, 0, 0, 0, 0, 0, 0, 0, 0]

MIRIFLAGS="-Zmiri-tag-raw-pointers" cargo +nightly-2022-01-21
miri run
[6, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Nope, that works fine. Maybe we're getting lucky, let's just make a real
big mess of pointers:
unsafe {
 let mut data = [0; 10];
 let ref1_at_0 = &mut data[0]; // Reference to
0th element
 let ptr2_at_0 = ref1_at_0 as *mut i32; // Ptr to 0th
element

 let ptr3_at_0 = ptr2_at_0; // Ptr to 0th
element
 let ptr4_at_0 = ptr2_at_0.add(0); // Ptr to 0th
element
 let ptr5_at_0 = ptr3_at_0.add(1).sub(1); // Ptr to 0th
element

 // An absolute jumbled hash of ptr usages
 *ptr3_at_0 += 3;
 *ptr2_at_0 += 2;
 *ptr4_at_0 += 4;
 *ptr5_at_0 += 5;
 *ptr3_at_0 += 3;
 *ptr2_at_0 += 2;
 *ref1_at_0 += 1;

 // Should be [20, 0, 0, ...]
 println!("{:?}", &data[..]);
}

cargo run
[20, 0, 0, 0, 0, 0, 0, 0, 0, 0]

MIRIFLAGS="-Zmiri-tag-raw-pointers" cargo +nightly-2022-01-21
miri run
[20, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Nope! Miri is actually way more permissive when it comes to raw
pointers that are derived from other raw pointers. They all share the same
"borrow" (or miri calls it, a tag).

Once you start using raw pointers they can freely split into their own
tiny angry men and mess with themselves. This is ok because the compiler
understands that and won't optimize the reads and writes the same it does
with references.

NARRATOR: If the code is simple enough, the compiler can keep
track of all the derived pointers and still optimize things where

possible, but it's going to be a lot more brittle than the reasoning it can
use for references.

So what's the real problem?
Even though data is one "allocation" (local variable), ref1_at_0 is

only borrowing the first element. Rust allows borrows to be broken up so
that they only apply to particular parts of the allocation! Let's try it out:
unsafe {
 let mut data = [0; 10];
 let ref1_at_0 = &mut data[0]; // Reference to
0th element
 let ref2_at_1 = &mut data[1]; // Reference to
1th element
 let ptr3_at_0 = ref1_at_0 as *mut i32; // Ptr to 0th
element
 let ptr4_at_1 = ref2_at_1 as *mut i32; // Ptr to 1th
element

 *ptr4_at_1 += 4;
 *ptr3_at_0 += 3;
 *ref2_at_1 += 2;
 *ref1_at_0 += 1;

 // Should be [3, 3, 0, ...]
 println!("{:?}", &data[..]);
}

error[E0499]: cannot borrow `data[_]` as mutable more than
once at a time
 --> src\main.rs:5:21
 |
4 | let ref1_at_0 = &mut data[0]; // Reference
to 0th element
 | ------------ first mutable borrow
occurs here
5 | let ref2_at_1 = &mut data[1]; // Reference

to 1th element
 | ^^^^^^^^^^^^ second mutable borrow
occurs here
6 | let ptr3_at_0 = ref1_at_0 as *mut i32; // Ptr to 0th
element
 | --------- first borrow later used here
 |
 = help: consider using `.split_at_mut(position)` or similar
method
 to obtain two mutable non-overlapping sub-slices

Shoot! Rust doesn't track array indices to prove these borrows are
disjoint, but it does give us split_at_mut to break a slice into multiple
parts in a way that is safe to assume works:
unsafe {
 let mut data = [0; 10];

 let slice1 = &mut data[..];
 let (slice2_at_0, slice3_at_1) = slice1.split_at_mut(1);

 let ref4_at_0 = &mut slice2_at_0[0]; // Reference to
0th element
 let ref5_at_1 = &mut slice3_at_1[0]; // Reference to
1th element
 let ptr6_at_0 = ref4_at_0 as *mut i32; // Ptr to 0th
element
 let ptr7_at_1 = ref5_at_1 as *mut i32; // Ptr to 1th
element

 *ptr7_at_1 += 7;
 *ptr6_at_0 += 6;
 *ref5_at_1 += 5;
 *ref4_at_0 += 4;

 // Should be [10, 12, 0, ...]

 println!("{:?}", &data[..]);
}

cargo run
[10, 12, 0, 0, 0, 0, 0, 0, 0, 0]

MIRIFLAGS="-Zmiri-tag-raw-pointers" cargo +nightly-2022-01-21
miri run
[10, 12, 0, 0, 0, 0, 0, 0, 0, 0]

Hey, that works! Slices properly tell the compiler and miri "hey I'm
taking a huge loan on all of the memory in my range", so they know all of
the elements can be mutated.

Also note that operations like split_at_mut being allowed tells us that
borrows can be less of a stack and more of a tree, because we can break one
big borrow into a bunch of disjoint smaller ones, and everything still works.

(I think in the actual stacked borrows model everything's still stacks
because the stacks are conceptually tracking permissions for each byte of
the program..?)

What if we directly turn a slice into a pointer? Will that pointer have
access to the full slice?
unsafe {
 let mut data = [0; 10];

 let slice1_all = &mut data[..]; // Slice for the
entire array
 let ptr2_all = slice1_all.as_mut_ptr(); // Pointer for the
entire array

 let ptr3_at_0 = ptr2_all; // Pointer to 0th
elem (the same)
 let ptr4_at_1 = ptr2_all.add(1); // Pointer to 1th
elem
 let ref5_at_0 = &mut *ptr3_at_0; // Reference to
0th elem
 let ref6_at_1 = &mut *ptr4_at_1; // Reference to

1th elem

 *ref6_at_1 += 6;
 *ref5_at_0 += 5;
 *ptr4_at_1 += 4;
 *ptr3_at_0 += 3;

 // Just for fun, modify all the elements in a loop
 // (Could use any of the raw pointers for this, they share
a borrow!)
 for idx in 0..10 {
 *ptr2_all.add(idx) += idx;
 }

 // Safe version of this same code for fun
 for (idx, elem_ref) in slice1_all.iter_mut().enumerate() {
 *elem_ref += idx;
 }

 // Should be [8, 12, 4, 6, 8, 10, 12, 14, 16, 18]
 println!("{:?}", &data[..]);
}

cargo run
[8, 12, 4, 6, 8, 10, 12, 14, 16, 18]

MIRIFLAGS="-Zmiri-tag-raw-pointers" cargo +nightly-2022-01-21
miri run
[8, 12, 4, 6, 8, 10, 12, 14, 16, 18]

Nice! Pointers aren't just integers: they have a range of memory
associated with them, and with Rust we're allowed to narrow that range!

Testing Shared References
In all of these examples I have been very carefully only using mutable

references and doing read-modify-write operations (+=) to keep things as
simple as possible.

But Rust has shared references that are read-only and can be freely
copied, how should those work? Well we've seen that raw pointers can be
freely copied and we can handle that by saying they "share" a single
borrow. Maybe we think of shared references the same way?

Let's test that out with a function that reads a value (println! can be a
little magical with auto-ref/deref stuff, so I'm wrapping it in a function to
make sure we're testing what we want to be):
fn opaque_read(val: &i32) {
 println!("{}", val);
}

unsafe {
 let mut data = 10;
 let mref1 = &mut data;
 let sref2 = &mref1;
 let sref3 = sref2;
 let sref4 = &*sref2;

 // Random hash of shared reference reads
 opaque_read(sref3);
 opaque_read(sref2);
 opaque_read(sref4);
 opaque_read(sref2);
 opaque_read(sref3);

 *mref1 += 1;

 opaque_read(&data);
}

cargo run

warning: unnecessary `unsafe` block
 --> src\main.rs:6:1
 |
6 | unsafe {
 | ^^^^^^ unnecessary `unsafe` block
 |
 = note: `#[warn(unused_unsafe)]` on by default

warning: `miri-sandbox` (bin "miri-sandbox") generated 1
warning

10
10
10
10
10
11

Oh yeah we forgot to do anything with raw pointers, but at least we can
see that it's fine for all the shared references to be used interchangeably.
Now let's mix in some raw pointers:
fn opaque_read(val: &i32) {
 println!("{}", val);
}

unsafe {
 let mut data = 10;
 let mref1 = &mut data;
 let ptr2 = mref1 as *mut i32;
 let sref3 = &mref1;
 let ptr4 = sref3 as *mut i32;

 *ptr4 += 4;
 opaque_read(sref3);

 *ptr2 += 2;
 *mref1 += 1;

 opaque_read(&data);
}

cargo run

error[E0606]: casting `&&mut i32` as `*mut i32` is invalid
 --> src\main.rs:11:16
 |
11 | let ptr4 = sref3 as *mut i32;
 | ^^^^^^^^^^^^^^^^^

Oh whoops, we were actually messing around with & &mut instead of
& ! Rust is very good at papering over that when it doesn't matter. Let's
properly reborrow it with let sref3 = &*mref1 :
cargo run

error[E0606]: casting `&i32` as `*mut i32` is invalid
 --> src\main.rs:11:16
 |
11 | let ptr4 = sref3 as *mut i32;
 | ^^^^^^^^^^^^^^^^^

Nope, Rust still doesn't like that! You can only cast a shared reference to
a *const which can only read. But what if we just... do... this...?
 let ptr4 = sref3 as *const i32 as *mut i32;

cargo run

14
17

WHAT. OK SURE FINE? Great cast system there Rust. It's almost like
the *const is a pretty useless type that only really exists to describe C APIs
and to vaguely suggest correct usage (it is, it does). What does miri think?

MIRIFLAGS="-Zmiri-tag-raw-pointers" cargo +nightly-2022-01-21
miri run

error: Undefined Behavior: no item granting write access to
tag <1621> at alloc742 found in borrow stack.
 --> src\main.rs:13:5
 |
13 | *ptr4 += 4;
 | ^^^^^^^^^^ no item granting write access to tag
<1621>
 | at alloc742 found in borrow stack.

Alas, though we can get around the compiler complaining with a double
cast, it doesn't actually make this operation allowed. When we take the
shared reference, we're promising not to modify the value.

This is important because that means when the shared borrow is popped
off the borrow stack, the mutable pointers below it can assume the memory
hasn't changed. There may have been some tiny angry men reading the
memory (so writes had to be comitted) but they weren't able to modify it
and the mutable pointers can assume the last value they wrote is still there!

Once a shared reference is on the borrow-stack, everything that gets
pushed on top of it only has read permissions.

We can however do this:
fn opaque_read(val: &i32) {
 println!("{}", val);
}

unsafe {
 let mut data = 10;
 let mref1 = &mut data;
 let ptr2 = mref1 as *mut i32;
 let sref3 = &*mref1;
 let ptr4 = sref3 as *const i32 as *mut i32;

 opaque_read(&*ptr4);

 opaque_read(sref3);
 *ptr2 += 2;
 *mref1 += 1;

 opaque_read(&data);
}

Note how it was still "fine" to create a mutable raw pointer as long as we
only actually read from it!
cargo run
10
10
13

MIRIFLAGS="-Zmiri-tag-raw-pointers" cargo +nightly-2022-01-21
miri run
10
10
13

And just to be sure, let's check that a shared reference gets popped like
normal:
fn opaque_read(val: &i32) {
 println!("{}", val);
}

unsafe {
 let mut data = 10;
 let mref1 = &mut data;
 let ptr2 = mref1 as *mut i32;
 let sref3 = &*mref1;

 *ptr2 += 2;
 opaque_read(sref3); // Read in the wrong order?
 *mref1 += 1;

 opaque_read(&data);
}

cargo run
12
13

MIRIFLAGS="-Zmiri-tag-raw-pointers" cargo +nightly-2022-01-21
miri run

error: Undefined Behavior: trying to reborrow for
SharedReadOnly
at alloc742, but parent tag <1620> does not have an
appropriate
item in the borrow stack

 --> src\main.rs:13:17
 |
13 | opaque_read(sref3); // Read in the wrong order?
 | ^^^^^ trying to reborrow for
SharedReadOnly
 | at alloc742, but parent tag <1620>
 | does not have an appropriate item
 | in the borrow stack
 |

Hey, we even got a slightly different error message about
SharedReadOnly instead of some specific tag. That makes sense: once
there's any shared references, basically everything else is just a big
SharedReadOnly soup so there's no need to distinguish any of them!

Testing Interior Mutability
Remember that really horrible chapter of the book where we tried to

make a linked list with RefCell and Rc and everything was even worse than
usual when trying to write this godforsaken linked lists?

We've been insisting shared references can't be used for mutation but
that chapter was all about how you could actually mutate through shared
references with interior mutability. Let's try the nice and simple
std::cell::Cell type:
use std::cell::Cell;

unsafe {
 let mut data = Cell::new(10);
 let mref1 = &mut data;
 let ptr2 = mref1 as *mut Cell<i32>;
 let sref3 = &*mref1;

 sref3.set(sref3.get() + 3);
 (*ptr2).set((*ptr2).get() + 2);
 mref1.set(mref1.get() + 1);

 println!("{}", data.get());
}

Ah, such a beautiful mess. It will be lovely to see miri spit on it.
cargo run
16

MIRIFLAGS="-Zmiri-tag-raw-pointers" cargo +nightly-2022-01-21
miri run
16

Wait, really? That's fine? Why? How? What even is a Cell?
Smashes the padlock on the stdlib

https://doc.rust-lang.org/std/cell/struct.Cell.html

pub struct Cell<T: ?Sized> {
 value: UnsafeCell<T>,
}

What the heck is UnsafeCell ?
Smashes another padlock just to really show the stdlib we mean business

#[lang = "unsafe_cell"]
#[repr(transparent)]
#[repr(no_niche)]
pub struct UnsafeCell<T: ?Sized> {
 value: T,
}

Oh it's wizard magic. Ok. I guess. #[lang = "unsafe_cell"] is
literally just saying UnsafeCell is UnsafeCell. Let's stop breaking locks and
check the actual documentation of std::cell::UnsafeCell.

The core primitive for interior mutability in Rust.
If you have a reference &T , then normally in Rust the compiler

performs optimizations based on the knowledge that &T points to
immutable data. Mutating that data, for example through an alias or by
transmuting an &T into an &mut T , is considered undefined behavior.
UnsafeCell<T> opts-out of the immutability guarantee for &T : a
shared reference &UnsafeCell<T> may point to data that is being
mutated. This is called “interior mutability”.

Oh it really is just wizard magic.
UnsafeCell basically tells the compiler "hey listen, we're gonna get

goofy with this memory, don't make any of the usual aliasing assumptions
about it". Like putting up a big "CAUTION: TINY ANGRY MEN
CROSSING" sign.

Let's see how adding UnsafeCell makes miri happy:
use std::cell::UnsafeCell;

fn opaque_read(val: &i32) {
 println!("{}", val);

https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html

}

unsafe {
 let mut data = UnsafeCell::new(10);
 let mref1 = data.get_mut(); // Get a mutable ref to
the contents
 let ptr2 = mref1 as *mut i32;
 let sref3 = &*ptr2;

 *ptr2 += 2;
 opaque_read(sref3);
 *mref1 += 1;

 println!("{}", *data.get());
}

cargo run
12
13

MIRIFLAGS="-Zmiri-tag-raw-pointers" cargo +nightly-2022-01-21
miri run

error: Undefined Behavior: trying to reborrow for
SharedReadOnly
at alloc748, but parent tag <1629> does not have an
appropriate
item in the borrow stack

 --> src\main.rs:15:17
 |
15 | opaque_read(sref3);
 | ^^^^^ trying to reborrow for
SharedReadOnly
 | at alloc748, but parent tag <1629>
does

 | not have an appropriate item in the
 | borrow stack
 |

Wait, what? We spoke the magic words! What am I going to do with all
this federally approved ritual-enhancing goat blood?

Well, we did, but then we completely discarded the spell by using
get_mut which peeks inside the UnsafeCell and makes a proper &mut i32
to it anyway!

Think about it: if the compiler had to assume &mut i32 could be
looking inside an UnsafeCell , then it would never be able to make any
assumptions about aliasing at all! Everything could be full of tiny angry
men.

So what we need to do is keep the UnsafeCell in our pointer types so
that the compiler understands what we're doing.
use std::cell::UnsafeCell;

fn opaque_read(val: &i32) {
 println!("{}", val);
}

unsafe {
 let mut data = UnsafeCell::new(10);
 let mref1 = &mut data; // Mutable ref to the
outside
 let ptr2 = mref1.get(); // Get a raw pointer
to the insides
 let sref3 = &*mref1; // Get a shared ref to
the *outside*

 *ptr2 += 2; // Mutate with the raw
pointer
 opaque_read(&*sref3.get()); // Read from the
shared ref

 *sref3.get() += 3; // Write through the
shared ref
 *mref1.get() += 1; // Mutate with the
mutable ref

 println!("{}", *data.get());
}

cargo run
12
16

MIRIFLAGS="-Zmiri-tag-raw-pointers" cargo +nightly-2022-01-21
miri run
12
16

It works! I won't have to throw out all this blood after all.
Actually, hey wait. We're still being a bit goofy with the order here. We

made ptr2 first, and then made sref3 from the mutable pointer. And then we
used the raw pointer before the shared pointer. That all seems... wrong.

Actually wait we did that with the Cell example too. HMMM.
We're forced to conclude one of two things:

Miri is imperfect and this is actually still UB.
Our simplified model is in fact an oversimplication.

I'd put my money on the second one, but just to be safe let's make a
version that's definitely airtight in our simplified model of stacked borrows:
use std::cell::UnsafeCell;

fn opaque_read(val: &i32) {
 println!("{}", val);
}

unsafe {
 let mut data = UnsafeCell::new(10);

 let mref1 = &mut data;
 // These two are swapped so the borrows are *definitely*
totally stacked
 let sref2 = &*mref1;
 // Derive the ptr from the shared ref to be super safe!
 let ptr3 = sref2.get();

 *ptr3 += 3;
 opaque_read(&*sref2.get());
 *sref2.get() += 2;
 *mref1.get() += 1;

 println!("{}", *data.get());
}

cargo run
13
16

MIRIFLAGS="-Zmiri-tag-raw-pointers" cargo +nightly-2022-01-21
miri run
13
16

Now, one reason why the first implementation we had might actually be
correct is because if you really think about it &UnsafeCell<T> really is no
different from *mut T as far as aliasing is concerned. You can infinitely
copy it and mutate through it!

So in some sense we just created two raw pointers and used them
interchangeably like normal. It's a little sketchy that both were derived from
the mutable reference, so maybe the second one's creation should still pop
the first one off the borrow stack, but that's not really necessary since we're
not actually accessing the contents of the mutable reference, just copying its
address.

A line like let sref2 = &*mref1 is a tricksy thing. Syntactically it
looks like we're dereferencing it, but dereferencing on it's own isn't actually

a thing? Consider &my_tuple.0 : you aren't actually doing anything to
my_tuple or .0 , you're just using them to refer to a location in memory
and putting & in front of it that says "don't load this, just write the address
down".

&* is the same thing: the * is just saying "hey let's talk about the
location this pointer points to" and the & is just saying "now write that
address down". Which is of course the same value the original pointer had.
But the type of the pointer has changed, because, uh, types!

That said, if you do &** then you are in fact loading a value with the
first * ! * is weird!

NARRATOR: No one cares that you know the word "lvalue",
Jonathan. In Rust we call them places, which is totally different and so
much cooler?

Testing Box
Hey remember why we started this extremely long aside? You don't?

Weird.
Well it was because we mixed Box and raw pointers. Box is kind of like

&mut , because it claims unique ownership of the memory it points to. Let's
test that claim out:
unsafe {
 let mut data = Box::new(10);
 let ptr1 = (&mut *data) as *mut i32;

 *data += 10;
 *ptr1 += 1;

 // Should be 21
 println!("{}", data);
}

cargo run
21

MIRIFLAGS="-Zmiri-tag-raw-pointers" cargo +nightly-2022-01-21
miri run

error: Undefined Behavior: no item granting read access
 to tag <1707> at alloc763 found in borrow stack.

 --> src\main.rs:7:5
 |
7 | *ptr1 += 1;
 | ^^^^^^^^^^ no item granting read access to tag <1707>
 | at alloc763 found in borrow stack.
 |

Yep, miri hates that. Let's check that doing things in the right order is ok:

unsafe {
 let mut data = Box::new(10);
 let ptr1 = (&mut *data) as *mut i32;

 *ptr1 += 1;
 *data += 10;

 // Should be 21
 println!("{}", data);
}

cargo run
21

MIRIFLAGS="-Zmiri-tag-raw-pointers" cargo +nightly-2022-01-21
miri run
21

Yep!
Whelp that's all folks, we're finally done talking and thinking about

stacked borrows!
...wait how do we solve this problem with Box? Like, sure we can write

toy programs like this but we need to store the Box somewhere and hold
onto our raw pointers for a potentially long time. Surely stuff will get mixed
up and invalidated?

Great question! To answer that we'll finally be returning to our true
calling: writing some god damn linked lists.

Wait, I need to write linked lists again? Let's not be hasty folks. Be
reasonable. Just hold on I'm sure there's some other interesting issues for
me to discu—

Layout and Basics 2: Getting Raw
TL;DR on the previous three sections: randomly mixing safe

pointers like & , &mut , and Box with unsafe pointers like *mut and
*const is a recipe for Undefined Behaviour because the safe pointers
introduce extra constraints that we aren't obeying with the raw
pointers.

Oh god I need to write linked lists again. Fine. FINE. It's Fine. We're
fine.

We're gonna knock a lot of this section out real quick since we already
discussed the design in the first try around, and everything we did was
basically correct except for how we mixed together safe and unsafe
pointers.

Layout
So in the new layout we're only going to only use raw pointers and

everything will be perfect and we'll never make mistakes again.
Here's our old broken layout:

pub struct List<T> {
 head: Link<T>,
 tail: *mut Node<T>, // INNOCENT AND KIND
}

type Link<T> = Option<Box<Node<T>>>; // THE REAL EVIL

struct Node<T> {
 elem: T,
 next: Link<T>,
}

And here's our new layout:
pub struct List<T> {
 head: Link<T>,
 tail: *mut Node<T>,
}

type Link<T> = *mut Node<T>; // MUCH BETTER

struct Node<T> {
 elem: T,
 next: Link<T>,
}

Remember: Option isn't as nice or useful when we're using raw pointers,
so we're not using that anymore. In later sections we'll look at the NonNull
type, but don't worry about that for now.

Basics
List::new is basically the same.

use ptr;

impl<T> List<T> {
 pub fn new() -> Self {
 List { head: ptr::null_mut(), tail: ptr::null_mut() }
 }
}

Push is basically the s-
pub fn push(&mut self, elem: T) {
 let mut new_tail = Box::new(

Wait we're not using Box anymore. How do we allocate memory without
Box?

Well, we could with std::alloc::alloc , but that's like bringing a
katana into the kitchen. It'll get the job done but it's kinda overkill and
unwieldy.

We want to have boxes, but, not. One completely wild but maybe viable
option would be to do something like this:
struct Node<T> {
 elem: T,
 real_next: Option<Box<Node<T>>>,
 next: *mut Node<T>,
}

With the idea that we create the Boxes and store them in our node, but
then we take a raw pointer into them and only use that raw pointer until
we're done with the Node and want to destroy it. Then we can take the
Box out of real_next and drop it. I think that would conform to our very
simplified stacked borrows model?

If you wanna try to make that, have "fun", but that just looks awful
right? This isn't the chapter on Rc and RefCell, we're not gonna play this

game anymore. We're gonna just make simple and clean stuff.
So instead we're going to use the very nice Box::into_raw function:

 pub fn into_raw(b: Box<T>) -> *mut T

Consumes the Box, returning a wrapped raw pointer.
The pointer will be properly aligned and non-null.
After calling this function, the caller is responsible for the memory

previously managed by the Box. In particular, the caller should
properly destroy T and release the memory, taking into account the
memory layout used by Box. The easiest way to do this is to convert
the raw pointer back into a Box with the Box::from_raw function,
allowing the Box destructor to perform the cleanup.

Note: this is an associated function, which means that you have to
call it as Box::into_raw(b) instead of b.into_raw() . This is so that
there is no conflict with a method on the inner type.

Examples
Converting the raw pointer back into a Box with Box::from_raw for

automatic cleanup:
 let x = Box::new(String::from("Hello"));
 let ptr = Box::into_raw(x);
 let x = unsafe { Box::from_raw(ptr) };

Nice, that looks literally designed for our use case. It also matches the
rules we're trying to follow: start with safe stuff, turn into into raw pointers,
and then only convert back to safe stuff at the end (when we want to Drop
it).

This is basically exactly like doing the weird real_next thing but
without having to faff around storing the Box when it's the exact same
pointer as the raw pointer anyway.

Also now that we're just using raw pointers everywhere, let's not worry
about keeping those unsafe blocks narrow: it's all unsafe now. (It always
was, but it's nice to lie to yourself sometimes.)
pub fn push(&mut self, elem: T) {
 unsafe {

https://doc.rust-lang.org/std/boxed/struct.Box.html#method.into_raw

 // Immediately convert the Box into a raw pointer
 let new_tail = Box::into_raw(Box::new(Node {
 elem: elem,
 next: ptr::null_mut(),
 }));

 if !self.tail.is_null() {
 (*self.tail).next = new_tail;
 } else {
 self.head = new_tail;
 }

 self.tail = new_tail;
 }
}

Hey that code's actually looking a lot cleaner now that we're sticking to
raw pointers!

On to pop, which is also pretty similar to how we left it, although we've
got to remember to use Box::from_raw to clean up the allocation:
pub fn pop(&mut self) -> Option<T> {
 unsafe {
 if self.head.is_null() {
 None
 } else {
 // RISE FROM THE GRAVE
 let head = Box::from_raw(self.head);
 self.head = head.next;

 if self.head.is_null() {
 self.tail = ptr::null_mut();
 }

 Some(head.elem)
 }

 }
}

Our nice little take s and map s are dead, gotta just check and set null
manually now.

And while we're here, let's slap in the destructor. This time we'll
implement it as just repeatedly popping, because it's cute and simple:
impl<T> Drop for List<T> {
 fn drop(&mut self) {
 while let Some(_) = self.pop() { }
 }
}

Now, for the moment of truth:
#[cfg(test)]
mod test {
 use super::List;
 #[test]
 fn basics() {
 let mut list = List::new();

 // Check empty list behaves right
 assert_eq!(list.pop(), None);

 // Populate list
 list.push(1);
 list.push(2);
 list.push(3);

 // Check normal removal
 assert_eq!(list.pop(), Some(1));
 assert_eq!(list.pop(), Some(2));

 // Push some more just to make sure nothing's
corrupted
 list.push(4);

 list.push(5);

 // Check normal removal
 assert_eq!(list.pop(), Some(3));
 assert_eq!(list.pop(), Some(4));

 // Check exhaustion
 assert_eq!(list.pop(), Some(5));
 assert_eq!(list.pop(), None);

 // Check the exhaustion case fixed the pointer right
 list.push(6);
 list.push(7);

 // Check normal removal
 assert_eq!(list.pop(), Some(6));
 assert_eq!(list.pop(), Some(7));
 assert_eq!(list.pop(), None);
 }
}

cargo test

running 12 tests
test fifth::test::basics ... ok
test first::test::basics ... ok
test fourth::test::basics ... ok
test fourth::test::peek ... ok
test second::test::basics ... ok
test fourth::test::into_iter ... ok
test second::test::into_iter ... ok
test second::test::iter ... ok
test second::test::iter_mut ... ok
test second::test::peek ... ok
test third::test::basics ... ok
test third::test::iter ... ok

test result: ok. 12 passed; 0 failed; 0 ignored; 0 measured

Good, but does miri agree?
MIRIFLAGS="-Zmiri-tag-raw-pointers" cargo +nightly-2022-01-21
miri test

running 12 tests
test fifth::test::basics ... ok
test first::test::basics ... ok
test fourth::test::basics ... ok
test fourth::test::peek ... ok
test second::test::basics ... ok
test fourth::test::into_iter ... ok
test second::test::into_iter ... ok
test second::test::iter ... ok
test second::test::iter_mut ... ok
test second::test::peek ... ok
test third::test::basics ... ok
test third::test::iter ... ok

test result: ok. 12 passed; 0 failed; 0 ignored; 0 measured

EYYYY!!!!!
IT FRIGGIN WORKED!
PROBABLY!
FAILING TO FIND UNDEFINED BEHAVIOUR IS NOT A PROOF

THAT IT ISN'T THERE WAITING TO CAUSE PROBLEMS BUT
THERE IS A LIMIT TO HOW RIGOROUS I AM WILLING TO BE FOR
A JOKE BOOK ABOUT LINKED LISTS SO WE'RE GONNA CALL
THIS A 100% MACHINE VERIFIED PROOF AND ANYONE WHO
SAYS OTHERWISE CAN SUCK MY COQ!

∴ QED □

Extra Junk
Now that push and pop are written, everything else is acutally exactly

the same as the stack case, weirdly. Only operations that change the length
of the list need to touch the tail pointer.

But of course, now that everything's unsafe pointers we need to rewrite
the code to use those! And if we're going to be touching all the code, we
might as well take the chance to make sure we aren't missing something.

But anyway, let's start copy-pasting code from the stack implementation:
// ...

pub struct IntoIter<T>(List<T>);

pub struct Iter<'a, T> {
 next: Option<&'a Node<T>>,
}

pub struct IterMut<'a, T> {
 next: Option<&'a mut Node<T>>,
}

IntoIter looks fine, but Iter and IterMut are breaking our simple rule
of never using safe pointers in our types anymore. Let's be safe and change
those to use raw pointers:
pub struct IntoIter<T>(List<T>);

pub struct Iter<'a, T> {
 next: *mut Node<T>,
}

pub struct IterMut<'a, T> {
 next: *mut Node<T>,
}

impl<T> List<T> {
 pub fn into_iter(self) -> IntoIter<T> {
 IntoIter(self)
 }

 pub fn iter(&self) -> Iter<'_, T> {
 Iter { next: self.head }
 }

 pub fn iter_mut(&mut self) -> IterMut<'_, T> {
 IterMut { next: self.head }
 }
}

Looks good!
error[E0392]: parameter `'a` is never used
 --> src\fifth.rs:17:17
 |
17 | pub struct Iter<'a, T> {
 | ^^ unused parameter
 |
 = help: consider removing `'a`, referring to it in a field,
 or using a marker such as `PhantomData`

error[E0392]: parameter `'a` is never used
 --> src\fifth.rs:21:20
 |
21 | pub struct IterMut<'a, T> {
 | ^^ unused parameter
 |
 = help: consider removing `'a`, referring to it in a field,
 or using a marker such as `PhantomData`

Doesn't look good! What's this PhantomData they're on about?

Zero-sized type used to mark things that “act like” they own a T .

https://doc.rust-lang.org/std/marker/struct.PhantomData.html

Adding a PhantomData<T> field to your type tells the compiler that
your type acts as though it stores a value of type T , even though it
doesn’t really. This information is used when computing certain safety
properties.

For a more in-depth explanation of how to use PhantomData<T> ,
please see the Nomicon.

Hey don't get hasty there, we're reading the book that I wrote. Not that
other book that some huge nerd probably wrote! I bet if they write a data
structure in there it's something lame like an Array Stack and not a Linked
List.

Unused lifetime parameters
Perhaps the most common use case for PhantomData is a struct that

has an unused lifetime parameter, typically as part of some unsafe
code.

Ah so we're naming a lifetime in our type but not actually using it. We
could go down the PhantomData path, but I want to save that for the
doubly-linked list in the next chapter that will really need it.

We're in an interesting situation where we actually don't need
PhantomData. I think. I'm just going to claim that and trust that it's true, and
if miri yells at us at the end I'll concede the point and we'll do the
PhantomData thing.

What we're actually going to do is put the references back in these
Iterator types and be happy we get to use references in some places still. I
think that's sound because there's still a kind of proper nesting when you
use an iterator: you create the iterator, use safe references for a while, and
then discard the iterator.

Only once the iterator is gone can you access the list and call things like
push and pop which need to mess with the tail pointer and Boxes. Now,
during the iteration we are going to be dereferencing a bunch of raw
pointers, so there is a kind of mixing there, but we should be able to think
of those references as reborrows of the unsafe pointers.

I'm not even 100% convinced but I just wanna give it a try and see!

https://doc.rust-lang.org/nightly/nomicon/

pub struct IntoIter<T>(List<T>);

pub struct Iter<'a, T> {
 next: Option<&'a Node<T>>,
}

pub struct IterMut<'a, T> {
 next: Option<&'a mut Node<T>>,
}

impl<T> List<T> {
 pub fn into_iter(self) -> IntoIter<T> {
 IntoIter(self)
 }

 pub fn iter(&self) -> Iter<'_, T> {
 unsafe {
 Iter { next: self.head.as_ref() }
 }
 }

 pub fn iter_mut(&mut self) -> IterMut<'_, T> {
 unsafe {
 IterMut { next: self.head.as_mut() }
 }
 }
}

If we're going to be storing references, we need to upgrade our raw
pointers to options-of-references. We could check if the pointer is null, but
this is one of the incredibly narrow cases where I think it's ok to use the
nasty ptr::as_ref and ptr::as_mut methods.

I usually recommend avoiding these methods like the plague because
they do some surprising and nasty stuff and they're inherently reintroducing
references when my whole "easy rule" is to avoid doing that!

https://doc.rust-lang.org/std/primitive.pointer.html#method.as_ref-1
https://doc.rust-lang.org/std/primitive.pointer.html#method.as_mut

Those methods come with a lot of warnings, but the most interesting is
this:

You must enforce Rust’s aliasing rules, since the returned lifetime
'a is arbitrarily chosen and does not necessarily reflect the actual
lifetime of the data. In particular, for the duration of this lifetime, the
memory the pointer points to must not get accessed (read or written)
through any other pointer.

Hey look it's the thing we talked about for 25 pages! I have already
asserted we're definitely going to be fine to use references here, so aliasing
solved! The other evil part is the signature:
pub unsafe fn as_mut<'a>(self) -> Option<&'a mut T>

Do you see how that lifetime isn't attached to the input at all, because
self is by-value? Yeah that's what we call an "unbounded lifetime" and it's
nasty stuff. It's willing to pretend to be as large as we ask it to be, even
'static ! The way you deal with that is by putting it somewhere that is
bounded, which usually just means "return this from a function as soon as
possible so that the function signature limits it".

Boy I'm nervous about this but we're gonna keep pushing through! Let's
steal some iterator impls from the stack:
impl<T> Iterator for IntoIter<T> {
 type Item = T;
 fn next(&mut self) -> Option<Self::Item> {
 self.0.pop()
 }
}

impl<'a, T> Iterator for Iter<'a, T> {
 type Item = &'a T;

 fn next(&mut self) -> Option<Self::Item> {
 unsafe {
 self.next.map(|node| {
 self.next = node.next.as_ref();

 &node.elem
 })
 }
 }
}

impl<'a, T> Iterator for IterMut<'a, T> {
 type Item = &'a mut T;

 fn next(&mut self) -> Option<Self::Item> {
 unsafe {
 self.next.take().map(|node| {
 self.next = node.next.as_mut();
 &mut node.elem
 })
 }
 }
}

Moment of truth time...
cargo test

running 15 tests
test fifth::test::basics ... ok
test fifth::test::into_iter ... ok
test fifth::test::iter ... ok
test fifth::test::iter_mut ... ok
test first::test::basics ... ok
test fourth::test::basics ... ok
test fourth::test::into_iter ... ok
test fourth::test::peek ... ok
test second::test::basics ... ok
test second::test::into_iter ... ok
test second::test::iter ... ok
test second::test::iter_mut ... ok
test second::test::peek ... ok

test third::test::iter ... ok
test third::test::basics ... ok

test result: ok. 15 passed; 0 failed; 0 ignored; 0 measured; 0
filtered out;

MIRIFLAGS="-Zmiri-tag-raw-pointers" cargo +nightly-2022-01-21
miri test

running 15 tests
test fifth::test::basics ... ok
test fifth::test::into_iter ... ok
test fifth::test::iter ... ok
test fifth::test::iter_mut ... ok
test first::test::basics ... ok
test fourth::test::basics ... ok
test fourth::test::into_iter ... ok
test fourth::test::peek ... ok
test second::test::basics ... ok
test second::test::into_iter ... ok
test second::test::iter ... ok
test second::test::iter_mut ... ok
test second::test::peek ... ok
test third::test::basics ... ok
test third::test::iter ... ok

test result: ok. 15 passed; 0 failed; 0 ignored; 0 measured; 0
filtered out

YES!!! Take that NARRATOR! Sometimes I don't make mistakes!

NARRATOR: but wasn't the whole point that the mistakes are
there to teach the reader.

YEAH WELL SOMETIMES THE LESSON IS THAT I'M RIGHT
AND EVERYONE SHOULD LISTEN TO ME WHEN I SAY THINGS
ABOUT UNSAFE CODE BECAUSE I HAVE SPENT FAR TOO MUCH

TIME THINKING ABOUT THE SOUNDNESS OF ITERATOR
IMPLEMENTATIONS?! OK?! OK.

Anyway here's peek and peek_mut .
pub fn peek(&self) -> Option<&T> {
 unsafe {
 self.head.as_ref()
 }
}

pub fn peek_mut(&mut self) -> Option<&mut T> {
 unsafe {
 self.head.as_mut()
 }
}

I'm not even gonna test them because I never make mistakes anymore.

NARRATOR: cargo build

error[E0308]: mismatched types
 --> src\fifth.rs:66:13
 |
25 | impl<T> List<T> {
 | - this type parameter
...
64 | pub fn peek(&self) -> Option<&T> {
 | ---------- expected
`Option<&T>`
 | because of return
type
65 | unsafe {
66 | self.head.as_ref()
 | ^^^^^^^^^^^^^^^^^^ expected type parameter
`T`,
 | found struct `fifth::Node`
 |
 = note: expected enum `Option<&T>`

 found enum `Option<&fifth::Node<T>>`

FINE.
pub fn peek(&self) -> Option<&T> {
 unsafe {
 self.head.as_ref().map(|node| &node.elem)
 }
}

pub fn peek_mut(&mut self) -> Option<&mut T> {
 unsafe {
 self.head.as_mut().map(|node| &mut node.elem)
 }
}

I guess I am going to continue to make mistakes, so we're going to be
extra careful and add a new test I'm going to call "miri food": something
that just messes around and mixes up our APIs a bunch to help miri catch
our mistakes.
#[test]
fn miri_food() {
 let mut list = List::new();

 list.push(1);
 list.push(2);
 list.push(3);

 assert!(list.pop() == Some(1));
 list.push(4);
 assert!(list.pop() == Some(2));
 list.push(5);

 assert!(list.peek() == Some(&3));
 list.push(6);
 list.peek_mut().map(|x| *x *= 10);

 assert!(list.peek() == Some(&30));
 assert!(list.pop() == Some(30));

 for elem in list.iter_mut() {
 *elem *= 100;
 }

 let mut iter = list.iter();
 assert_eq!(iter.next(), Some(&400));
 assert_eq!(iter.next(), Some(&500));
 assert_eq!(iter.next(), Some(&600));
 assert_eq!(iter.next(), None);
 assert_eq!(iter.next(), None);

 assert!(list.pop() == Some(400));
 list.peek_mut().map(|x| *x *= 10);
 assert!(list.peek() == Some(&5000));
 list.push(7);

 // Drop it on the ground and let the dtor exercise itself
}

cargo test

running 16 tests
test fifth::test::basics ... ok
test fifth::test::into_iter ... ok
test fifth::test::iter ... ok
test fifth::test::iter_mut ... ok
test fifth::test::miri_food ... ok
test first::test::basics ... ok
test fourth::test::basics ... ok
test fourth::test::into_iter ... ok
test fourth::test::peek ... ok
test second::test::into_iter ... ok
test second::test::basics ... ok

test second::test::iter_mut ... ok
test second::test::peek ... ok
test third::test::iter ... ok
test second::test::iter ... ok
test third::test::basics ... ok

test result: ok. 16 passed; 0 failed; 0 ignored; 0 measured; 0
filtered out

MIRIFLAGS="-Zmiri-tag-raw-pointers" cargo +nightly-2022-01-21
miri test

running 16 tests
test fifth::test::basics ... ok
test fifth::test::into_iter ... ok
test fifth::test::iter ... ok
test fifth::test::iter_mut ... ok
test fifth::test::miri_food ... ok
test first::test::basics ... ok
test fourth::test::basics ... ok
test fourth::test::into_iter ... ok
test fourth::test::peek ... ok
test second::test::into_iter ... ok
test second::test::basics ... ok
test second::test::iter_mut ... ok
test second::test::peek ... ok
test third::test::iter ... ok
test second::test::iter ... ok
test third::test::basics ... ok

test result: ok. 16 passed; 0 failed; 0 ignored; 0 measured; 0
filtered out

Perfect.

Final Code
Alright, so with a teeny-tiny dash of unsafety we managed to get a linear

time improvement over the naive safe queue, and we managed to reuse
almost all of the logic from the safe stack!

You know, except for that part where miri completely dunked on us and
we had to write a short master's thesis on rust's memory model. You know,
as you do.

But on the bright side we didn't have to write any jank Rc or RefCell
stuff.
use std::ptr;

pub struct List<T> {
 head: Link<T>,
 tail: *mut Node<T>,
}

type Link<T> = *mut Node<T>;

struct Node<T> {
 elem: T,
 next: Link<T>,
}

pub struct IntoIter<T>(List<T>);

pub struct Iter<'a, T> {
 next: Option<&'a Node<T>>,
}

pub struct IterMut<'a, T> {
 next: Option<&'a mut Node<T>>,
}

impl<T> List<T> {
 pub fn new() -> Self {
 List { head: ptr::null_mut(), tail: ptr::null_mut() }
 }
 pub fn push(&mut self, elem: T) {
 unsafe {
 let new_tail = Box::into_raw(Box::new(Node {
 elem: elem,
 next: ptr::null_mut(),
 }));

 if !self.tail.is_null() {
 (*self.tail).next = new_tail;
 } else {
 self.head = new_tail;
 }

 self.tail = new_tail;
 }
 }
 pub fn pop(&mut self) -> Option<T> {
 unsafe {
 if self.head.is_null() {
 None
 } else {
 let head = Box::from_raw(self.head);
 self.head = head.next;

 if self.head.is_null() {
 self.tail = ptr::null_mut();
 }

 Some(head.elem)
 }
 }
 }

 pub fn peek(&self) -> Option<&T> {
 unsafe {
 self.head.as_ref().map(|node| &node.elem)
 }
 }

 pub fn peek_mut(&mut self) -> Option<&mut T> {
 unsafe {
 self.head.as_mut().map(|node| &mut node.elem)
 }
 }

 pub fn into_iter(self) -> IntoIter<T> {
 IntoIter(self)
 }

 pub fn iter(&self) -> Iter<'_, T> {
 unsafe {
 Iter { next: self.head.as_ref() }
 }
 }

 pub fn iter_mut(&mut self) -> IterMut<'_, T> {
 unsafe {
 IterMut { next: self.head.as_mut() }
 }
 }
}

impl<T> Drop for List<T> {
 fn drop(&mut self) {
 while let Some(_) = self.pop() { }
 }
}

impl<T> Iterator for IntoIter<T> {
 type Item = T;
 fn next(&mut self) -> Option<Self::Item> {
 self.0.pop()
 }
}

impl<'a, T> Iterator for Iter<'a, T> {
 type Item = &'a T;

 fn next(&mut self) -> Option<Self::Item> {
 unsafe {
 self.next.map(|node| {
 self.next = node.next.as_ref();
 &node.elem
 })
 }
 }
}

impl<'a, T> Iterator for IterMut<'a, T> {
 type Item = &'a mut T;

 fn next(&mut self) -> Option<Self::Item> {
 unsafe {
 self.next.take().map(|node| {
 self.next = node.next.as_mut();
 &mut node.elem
 })
 }
 }
}

#[cfg(test)]
mod test {
 use super::List;

 #[test]
 fn basics() {
 let mut list = List::new();

 // Check empty list behaves right
 assert_eq!(list.pop(), None);

 // Populate list
 list.push(1);
 list.push(2);
 list.push(3);

 // Check normal removal
 assert_eq!(list.pop(), Some(1));
 assert_eq!(list.pop(), Some(2));

 // Push some more just to make sure nothing's
corrupted
 list.push(4);
 list.push(5);

 // Check normal removal
 assert_eq!(list.pop(), Some(3));
 assert_eq!(list.pop(), Some(4));

 // Check exhaustion
 assert_eq!(list.pop(), Some(5));
 assert_eq!(list.pop(), None);

 // Check the exhaustion case fixed the pointer right
 list.push(6);
 list.push(7);

 // Check normal removal
 assert_eq!(list.pop(), Some(6));
 assert_eq!(list.pop(), Some(7));

 assert_eq!(list.pop(), None);
 }

 #[test]
 fn into_iter() {
 let mut list = List::new();
 list.push(1); list.push(2); list.push(3);

 let mut iter = list.into_iter();
 assert_eq!(iter.next(), Some(1));
 assert_eq!(iter.next(), Some(2));
 assert_eq!(iter.next(), Some(3));
 assert_eq!(iter.next(), None);
 }

 #[test]
 fn iter() {
 let mut list = List::new();
 list.push(1); list.push(2); list.push(3);

 let mut iter = list.iter();
 assert_eq!(iter.next(), Some(&1));
 assert_eq!(iter.next(), Some(&2));
 assert_eq!(iter.next(), Some(&3));
 assert_eq!(iter.next(), None);
 }

 #[test]
 fn iter_mut() {
 let mut list = List::new();
 list.push(1); list.push(2); list.push(3);

 let mut iter = list.iter_mut();
 assert_eq!(iter.next(), Some(&mut 1));
 assert_eq!(iter.next(), Some(&mut 2));
 assert_eq!(iter.next(), Some(&mut 3));

 assert_eq!(iter.next(), None);
 }

 #[test]
 fn miri_food() {
 let mut list = List::new();

 list.push(1);
 list.push(2);
 list.push(3);

 assert!(list.pop() == Some(1));
 list.push(4);
 assert!(list.pop() == Some(2));
 list.push(5);

 assert!(list.peek() == Some(&3));
 list.push(6);
 list.peek_mut().map(|x| *x *= 10);
 assert!(list.peek() == Some(&30));
 assert!(list.pop() == Some(30));

 for elem in list.iter_mut() {
 *elem *= 100;
 }

 let mut iter = list.iter();
 assert_eq!(iter.next(), Some(&400));
 assert_eq!(iter.next(), Some(&500));
 assert_eq!(iter.next(), Some(&600));
 assert_eq!(iter.next(), None);
 assert_eq!(iter.next(), None);

 assert!(list.pop() == Some(400));
 list.peek_mut().map(|x| *x *= 10);
 assert!(list.peek() == Some(&5000));

 list.push(7);

 // Drop it on the ground and let the dtor exercise
itself
 }
}

A Production-Quality Unsafe
Doubly-Linked Deque

We finally made it. My greatests nemesis: std::collections::LinkedList,
the Doubly-Linked Deque.

The one that I tried and failed to destroy.
Our story begins as 2014 was coming to a close and we were rapidly

approaching the release of Rust 1.0, Rust's first stable release. I had found
myself in the role of caring for std::collections , or as we affectionately
called it in those times, libcollections.

libcollections had spent years as a dumping ground for everyone's Cute
Ideas and Vaguely Useful Things. This was all well and good when Rust
was a fledgling experimental language, but if my children were going to
escape the nest and be stabilized, they would have to prove their worth.

Until then I had encouraged and nurtured them all, but it was now time
for them to face judgement for their failings.

I sunk my claws into the bedrock and carved tombstones for my most
foolish children. A grisly monument that I placed in the town square for all
to see:

Kill TreeMap, TreeSet, TrieMap, TrieSet, LruCache and EnumSet
Their fates were sealed, for my word was absolute. The other collections

were horrified by my brutality, but they were not yet safe from their
mother's wrath. I soon returned with two more tombstones:

Deprecate BitSet and BitVec
The Bit twins were more cunning than their fallen comrades, but they

lacked the strength to escape me. Most thought my work done, but I soon
took one more:

Deprecate VecMap
VecMap had tried to survive through stealth — it was so small and

inoffensive! But that wasn't enough for the libcollections I saw in my vision
of the future.

https://github.com/rust-lang/rust/blob/master/library/alloc/src/collections/linked_list.rs
https://github.com/rust-lang/rust/pull/19955
https://github.com/rust-lang/rust/pull/26034
https://github.com/rust-lang/rust/pull/26734

I surveyed the land and saw what remained:

Vec and VecDeque - hearty and simple, the heart of computing.
HashMap and HashSet - powerful and wise, the brain of computing.
BTreeMap and BTreeSet - awkward but necessary, the liver of
computing.
BinaryHeap - crafty and dextrous, the ankle of computing.

I nodded in contentment. Simple and effective. My work was don—
No, DList, it can't be! I thought you died in that tragic garbage collection

incident! The one which was definitely an accident and not intentional at
all!

They had faked their death and taken on a new name, but it was still
them: LinkedList, the shadowy and untrustworthy schemer of computing.

I spread word of their misdeeds to all that would hear me, but hearts
were unmoved. LinkedList was a silver-tongued devil who had convinced
everyone around me that it was some sort of fundamental and natural
datastructure of computing. It had even convinced C++ that it was the list!

"How could you have a standard library without a LinkedList?"
Easily! Trivially!
"It's non-trivial unsafe code, so it makes sense to have it in the standard

library!"
So are GPU drivers and video codecs, libcollections is minimalist!
But alas, LinkedList had gathered too many allies and grown too strong

while I was distracted with its kin.
I fled to my laboratory and tried to devise some sort of evil clone or

enhanced cyborg replicant that could rival and destroy it, but my grant
funding ran out because my research was "too murderously evil" or
somesuch nonsense.

LinkedList had won. I was defeated and forced into exile.
But you're here now. You've come this far. Surely now you can

understand the depths of LinkedList's debauchery! Come, I will you show
you everything you need to know to help me destroy it once and for all —
everything you need to know to implement an unsafe production-quality
Doubly-Linked Deque.

https://github.com/rust-lang/rust/blob/0a84308ebaaafb8fd89b2fd7c235198e3ec21384/src/libcollections/dlist.rs
https://en.cppreference.com/w/cpp/container/list
https://github.com/contain-rs/linked-list
https://github.com/contain-rs/blist

How production-quality? Well we're going to completely rewrite my
ancient Rust 1.0 linked-list crate, the one that is objectively better than the
one in std. The one with Cursors on stable Rust, from 2015! Something the
2022 stdlib still doesn't have!

Layout
Let us begin by first studying the structure of our enemy. A Doubly-

Linked List is conceptually simple, but that's how it decieves and
manipulates you. It's the same kind of linked list we've looked at over and
over, but the links go both ways. Double the links, double the evil.

So rather than this (gonna drop the Some/None stuff to keep it cleaner):
... -> (A, ptr) -> (B, ptr) -> ...

We have this:
... <-> (ptr, A, ptr) <-> (ptr, B, ptr) <-> ...

This lets you traverse the list from either direction, or seek back and
forth with a cursor.

In exchange for this flexibility, every node has to store twice as many
pointers, and every operation has to fix up way more pointers. It's a
significant enough complication that it's a lot easier to make a mistake, so
we're going to be doing a lot of testing.

You might have also noticed that I intentionally haven't drawn the ends
of the list. This is because this is one of the places where there are
genuinely defensible options for our implementation. We definitely need our
implementation to have two pointers: one to the start of the list, and one to
the end of the list.

There are two notable ways to do this in my mind: "traditional" and
"dummy node".

The traditional approach is the simple extension of how we did a Stack
— just store the head and tail pointers on the stack:
[ptr, ptr] <-> (ptr, A, ptr) <-> (ptr, B, ptr)
 ^ ^
 +--+

This is fine, but it has one downside: corner cases. There are now two
edges to our list, which means twice as many corner cases. It's easy to
forget one and have a serious bug.

https://doc.rust-lang.org/std/collections/struct.LinkedList.html#method.cursor_back_mut

The dummy node approach attempts to smooth out these corner cases by
adding an extra node to our list which contains no data but links the two
ends together into a ring:
[ptr] -> (ptr, ?DUMMY?, ptr) <-> (ptr, A, ptr) <-> (ptr, B,
ptr)
 ^ ^
 +---+

By doing this, every node always has actual pointers to a previous and
next node in the list. Even when you remove the last element from the list,
you just end up stitching the dummy node to point at itself:
[ptr] -> (ptr, ?DUMMY?, ptr)
 ^ ^
 +-------------+

There is a part of me that finds this very satisfying and elegant.
Unfortunately, it has a couple practical problems:

Problem 1: An extra indirection and allocation, especially for the empty
list, which must include the dummy node. Potential solutions include:

Don't allocate the dummy node until something is inserted: simple
and effective, but it adds back some of the corner cases we were trying
to avoid by using dummy pointers!

Use a static copy-on-write empty singleton dummy node, with
some really clever scheme that lets the Copy-On-Write checks piggy-
back on normal checks: look I'm really tempted, I really do love that
shit, but we can't go down that dark path in this book. Read ThinVec's
sourcecode if you want to see that kind of perverted stuff.

Store the dummy node on the stack - not practical in a language
without C++-style move-constructors. I'm sure there's something weird
thing we could do here with pinning but we're not gonna.

Problem 2: What value is stored in the dummy node? Sure if it's an
integer it's fine, but what if we're storing a list full of Box ? It may be
impossible for us to initialized this value! Potential solutions include:

https://docs.rs/thin-vec/0.2.4/src/thin_vec/lib.rs.html#319-325
https://doc.rust-lang.org/std/pin/index.html

Make every node store Option<T> : simple and effective, but also
bloated and annoying.

Make every node store MaybeUninit<T> . Horrifying and annoying.
Really careful and clever inheritance-style type punning so the

dummy node doesn't include the data field. This is also tempting but
it's extremely dangerous and annoying. Read BTreeMap's source if
you want to see that kind of perverted stuff.

The problems really outweigh the convenience for a language like Rust,
so we're going to stick to the traditional layout. We'll be using the same
basic design as we did for the unsafe queue in the previous chapter:
pub struct LinkedList<T> {
 front: Link<T>,
 back: Link<T>,
 len: usize,
}

type Link<T> = *mut Node<T>;

struct Node<T> {
 front: Link<T>,
 back: Link<T>,
 elem: T,
}

(Now that we have reached the doubly-linked-deque, we have finally
earned the right to call ourselves LinkedList, for this is the True Linked
List.)

This isn't quite a true production-quality layout yet. It's fine but there's
magic tricks we can do to tell Rust what we're doing a bit better. To do that
we're going to need to go... deeper.

https://doc.rust-lang.org/std/mem/union.MaybeUninit.html
https://doc.rust-lang.org/1.55.0/src/alloc/collections/btree/node.rs.html#49-104

Variance and PhantomData
It's going to be annoying to punt on this now and fix it later, so we're

going to do the Hardcore Layout stuff now.
There are five terrible horsemen of making unsafe Rust collections:

1. Variance
2. Drop Check
3. NonNull Optimizations
4. The isize::MAX Allocation Rule
5. Zero-Sized Types
Mercifully, the last 2 aren't going to be a problem for us.
The third we could make into our problem but it's more trouble than it's

worth -- if you've opted into a LinkedList you've already given up the battle
on memory-effeciency 100-fold already.

The second is something that I used to insist was really important and
that std messes around with, but the defaults are safe, the ways to mess with
it are unstable, and you need to try so very hard to ever notice the
limitations of the defaults, so, don't worry about it.

That just leaves us with Variance. To be honest, you can probably punt
on this one too, but I still have my pride as a Collections Person, so we're
going to Do The Variance Thing.

So, surprise: Rust has subtyping. In particular, &'big T is a subtype of
&'small T . Why? Well because if some code needs a reference that lives
for some particular region of the program, it's usually perfectly fine to give
it a reference that lives for longer. Like, intuitively that's just true, right?

Why is this important? Well imagine some code that takes two values
with the same type:
fn take_two<T>(_val1: T, _val2: T) { }

This is some deeply boring code, and so we should expect it to work
with T=&u32 fine, right?

https://doc.rust-lang.org/nightly/nomicon/subtyping.html
https://doc.rust-lang.org/nightly/nomicon/dropck.html
https://doc.rust-lang.org/nightly/std/ptr/struct.NonNull.html
https://doc.rust-lang.org/nightly/nomicon/vec/vec-alloc.html
https://doc.rust-lang.org/nightly/nomicon/vec/vec-zsts.html

fn two_refs<'big: 'small, 'small>(
 big: &'big u32,
 small: &'small u32,
) {
 take_two(big, small);
}

fn take_two<T>(_val1: T, _val2: T) { }

Yep, that compiles fine!
Now let's have some fun and wrap it in, oh, I don't know,

std::cell::Cell :
use std::cell::Cell;

fn two_refs<'big: 'small, 'small>(
 // NOTE: these two lines changed
 big: Cell<&'big u32>,
 small: Cell<&'small u32>,
) {
 take_two(big, small);
}

fn take_two<T>(_val1: T, _val2: T) { }

error[E0623]: lifetime mismatch
 --> src/main.rs:7:19
 |
4 | big: Cell<&'big u32>,
 | ---------
5 | small: Cell<&'small u32>,
 | ----------- these two types are declared
with different lifetimes...
6 |) {
7 | take_two(big, small);
 | ^^^^^ ...but data from `small` flows
into `big` here

Huh??? We didn't touch the lifetimes, why's the compiler angry now!?
Ah well, the lifetime "subtyping" stuff must be really simple, so it falls

over if you wrap the references in anything, see look it breaks with Vec too:
fn two_refs<'big: 'small, 'small>(
 big: Vec<&'big u32>,
 small: Vec<&'small u32>,
) {
 take_two(big, small);
}

fn take_two<T>(_val1: T, _val2: T) { }

 Finished dev [unoptimized + debuginfo] target(s) in 1.07s
 Running `target/debug/playground`

See it doesn't compile eith-- wait what??? Vec is magic??????
Well, yes. But also, no. The magic was inside us all along, and that

magic is ✨Variance✨.
Read the nomicon's chapter on subtyping if you want all the gorey

details, but basically subtyping isn't always safe. In particular it's not safe
when mutable references are involved because you can use things like
mem::swap and suddenly oops dangling pointers!

Things that are "like mutable references" are invariant which means they
block subtyping from happening on their generic parameters. So for safety,
&mut T is invariant over T, and Cell<T> is invariant over T because
&Cell<T> is basically just &mut T (because of interior mutability).

Almost everything that isn't invariant is covariant, and that just means
that subtyping "passes through" it and continues to work normally (there are
also contravariant types that make subtyping go backwards but they are
really rare and no one likes them so I won't mention them again).

Collections generally contain a mutable pointer to their data, so you
might expect them to be invariant too, but in fact, they don't need to be!
Because of Rust's ownership system, Vec<T> is semantically equivalent to
T , and that means it's safe for it to be covariant!

Unfortunately, this definition is invariant:

https://doc.rust-lang.org/nightly/nomicon/subtyping.html

pub struct LinkedList<T> {
 front: Link<T>,
 back: Link<T>,
 len: usize,
}

type Link<T> = *mut Node<T>;

struct Node<T> {
 front: Link<T>,
 back: Link<T>,
 elem: T,
}

But how is Rust actually deciding the variance of things? Well in the
good-old-days before 1.0 we messed around with just letting people specify
the variance they wanted and... it was an absolute train-wreck! Subtyping
and variance is really hard to wrap your head around, and core developers
genuinely disagreed on basic terminology! So we moved to a "variance by
example" approach: the compiler just looks at your fields and copies their
variances. If there's any kind of disagreement, then invariance always wins,
because that's safe.

So what's in our type definitions that Rust is getting mad about? *mut !
Raw pointers in Rust really just try to let you do whatever, but they have

exactly one safety feature: because most people have no idea that variance
and subtyping are a thing in Rust, and being incorrectly covariant would be
horribly dangerous, *mut T is invariant, because there's a good chance it's
being used "as" &mut T .

This is extremely annoying for Exactly Me as a person who has spent a
lot of time writing collections in Rust. This is why when I made
std::ptr::NonNull, I added this little piece of magic:

Unlike *mut T , NonNull<T> was chosen to be covariant over T .
This makes it possible to use NonNull<T> when building covariant
types, but introduces the risk of unsoundness if used in a type that
shouldn’t actually be covariant.

https://doc.rust-lang.org/std/ptr/struct.NonNull.html

But hey, it's interface is built around *mut T , what's the deal! Is it just
magic?! Let's look:
pub struct NonNull<T> {
 pointer: *const T,
}

impl<T> NonNull<T> {
 pub unsafe fn new_unchecked(ptr: *mut T) -> Self {
 // SAFETY: the caller must guarantee that `ptr` is
non-null.
 unsafe { NonNull { pointer: ptr as *const T } }
 }
}

NOPE. NO MAGIC HERE! NonNull just abuses the fact that *const T
is covariant and stores that instead, casting back and forth between *mut T
at the API boundary to make it "look like" it's storing a *mut T . That's the
whole trick! That's how collections in Rust are covariant! And it's
miserable! So I made the Good Pointer Type do it for you! You're welcome!
Enjoy your subtyping footgun!

The solution to all your problems is to use NonNull, and then if you
want to have nullable pointers again, use Option<NonNull<T>> . Are we
really going to bother doing that..?

Yep! It sucks, but we're making production grade linked lists so we're
going to eat all our vegetables and do things the hard way (we could just
use bare *const T and cast everywhere, but I genuinely want to see how
painful this is... for Ergonomics Science).

So here's our final type definitions:
use std::ptr::NonNull;

// !!!This changed!!!
pub struct LinkedList<T> {
 front: Link<T>,

 back: Link<T>,
 len: usize,
}

type Link<T> = Option<NonNull<Node<T>>>;

struct Node<T> {
 front: Link<T>,
 back: Link<T>,
 elem: T,
}

...wait nope, one last thing. Any time you do raw pointer stuff, you
should add a Ghost to protect your pointers:
use std::marker::PhantomData;

pub struct LinkedList<T> {
 front: Link<T>,
 back: Link<T>,
 len: usize,
 /// We semantically store values of T by-value.
 _boo: PhantomData<T>,
}

In this case I don't think we actually need PhantomData, but any time
you do use NonNull (or just raw pointers in general), you should always
add it to be safe and make it clear to the compiler and others what you think
you're doing.

PhantomData is a way for us to give the compiler an extra "example"
field that conceptually exists in your type but for various reasons
(indirection, type erasure, ...) doesn't. In this case we're using NonNull
because we're claiming our type behaves "as if" it stored a value T, so we
add a PhantomData to make that explicit.

The stdlib actually has other reasons to do this because it has access to
the accursed Drop Check overrides, but that feature has been reworked so
many times that I don't actually know if the PhantomData thing is a thing

https://doc.rust-lang.org/std/marker/struct.PhantomData.html
https://doc.rust-lang.org/nightly/nomicon/dropck.html

for it anymore. I'm still going to cargo-cult it for all eternity, because Drop
Check Magic is burned into my brain!

(Node literally stores a T, so it doesn't have to do this, yay!)
...ok for real we're done with layout now! On to actual basic

functionality!

Basics
Alright, this is the part of the book that sucks, and why it took me 7

years to write this chapter! Time to just burn through a whole lot of really
boring stuff we've done 5 times already, but extra verbose and long because
we have to do everything twice and with Option<NonNull<Node<T>>> !
impl<T> LinkedList<T> {
 pub fn new() -> Self {
 Self {
 front: None,
 back: None,
 len: 0,
 _boo: PhantomData,
 }
 }
}

PhantomData is a weird type with no fields so you just make one by,
saying its type name. shrug
pub fn push_front(&mut self, elem: T) {
 // SAFETY: it's a linked-list, what do you want?
 unsafe {
 let new =
NonNull::new_unchecked(Box::into_raw(Box::new(Node {
 front: None,
 back: None,
 elem,
 })));
 if let Some(old) = self.front {
 // Put the new front before the old one
 (*old).front = Some(new);
 (*new).back = Some(old);
 } else {
 // If there's no front, then we're the empty list

and need
 // to set the back too. Also here's some integrity
checks
 // for testing, in case we mess up.
 debug_assert!(self.back.is_none());
 debug_assert!(self.front.is_none());
 debug_assert!(self.len == 0);
 self.back = Some(new);
 }
 self.front = Some(new);
 self.len += 1;
 }
}

error[E0614]: type `NonNull<Node<T>>` cannot be dereferenced
 --> src\lib.rs:39:17
 |
39 | (*old).front = Some(new);
 | ^^^^^^

Ah yes, I truly hate my pointer-y children. We need to explicitly get the
raw pointer out of NonNull with as_ptr , because DerefMut is defined in
terms of &mut and we don't want to randomly introduce safe references into
our unsafe code!
 (*old.as_ptr()).front = Some(new);
 (*new.as_ptr()).back = Some(old);

 Compiling linked-list v0.0.3
warning: field is never read: `elem`
 --> src\lib.rs:16:5
 |
16 | elem: T,
 | ^^^^^^^
 |
 = note: `#[warn(dead_code)]` on by default

warning: `linked-list` (lib) generated 1 warning (1 duplicate)

warning: `linked-list` (lib test) generated 1 warning
 Finished test [unoptimized + debuginfo] target(s) in 0.33s

Nice, now for pop (and len):
pub fn pop_front(&mut self) -> Option<T> {
 unsafe {
 // Only have to do stuff if there is a front node to
pop.
 // Note that we don't need to mess around with `take`
anymore
 // because everything is Copy and there are no dtors
that will
 // run if we mess up... right? :) Riiiight? :)))
 self.front.map(|node| {
 // Bring the Box back to life so we can move out
its value and
 // Drop it (Box continues to magically understand
this for us).
 let boxed_node = Box::from_raw(node.as_ptr());
 let result = boxed_node.elem;

 // Make the next node into the new front.
 self.front = boxed_node.back;
 if let Some(new) = self.front {
 // Cleanup its reference to the removed node
 (*new.as_ptr()).front = None;
 } else {
 // If the front is now null, then this list is
now empty!
 debug_assert!(self.len == 1);
 self.back = None;
 }

 self.len -= 1;
 result
 // Box gets implicitly freed here, knows there is

no T.
 })
 }
}

pub fn len(&self) -> usize {
 self.len
}

 Compiling linked-list v0.0.3
 Finished dev [unoptimized + debuginfo] target(s) in 0.37s

Seems legit to me, time to write a test!
#[cfg(test)]
mod test {
 use super::LinkedList;

 #[test]
 fn test_basic_front() {
 let mut list = LinkedList::new();

 // Try to break an empty list
 assert_eq!(list.len(), 0);
 assert_eq!(list.pop_front(), None);
 assert_eq!(list.len(), 0);

 // Try to break a one item list
 list.push_front(10);
 assert_eq!(list.len(), 1);
 assert_eq!(list.pop_front(), Some(10));
 assert_eq!(list.len(), 0);
 assert_eq!(list.pop_front(), None);
 assert_eq!(list.len(), 0);

 // Mess around
 list.push_front(10);
 assert_eq!(list.len(), 1);

 list.push_front(20);
 assert_eq!(list.len(), 2);
 list.push_front(30);
 assert_eq!(list.len(), 3);
 assert_eq!(list.pop_front(), Some(30));
 assert_eq!(list.len(), 2);
 list.push_front(40);
 assert_eq!(list.len(), 3);
 assert_eq!(list.pop_front(), Some(40));
 assert_eq!(list.len(), 2);
 assert_eq!(list.pop_front(), Some(20));
 assert_eq!(list.len(), 1);
 assert_eq!(list.pop_front(), Some(10));
 assert_eq!(list.len(), 0);
 assert_eq!(list.pop_front(), None);
 assert_eq!(list.len(), 0);
 assert_eq!(list.pop_front(), None);
 assert_eq!(list.len(), 0);
 }
}

 Compiling linked-list v0.0.3
 Finished test [unoptimized + debuginfo] target(s) in 0.40s
 Running unittests src\lib.rs

running 1 test
test test::test_basic_front ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0
filtered out; finished in 0.00s

Hooray, we're perfect!
...Right?

Drop and Panic Safety
So hey, did you notice this comment:

// Note that we don't need to mess around with `take` anymore
// because everything is Copy and there are no dtors that will
// run if we mess up... right? :) Riiiight? :)))

Is it right?
Sorry did you forget the book you're reading? Of course it's wrong! (Sort

Of.)
Let's look at the inner body of pop_front again:

// Bring the Box back to life so we can move out its value and
// Drop it (Box continues to magically understand this for
us).
let boxed_node = Box::from_raw(node.as_ptr());
let result = boxed_node.elem;

// Make the next node into the new front.
self.front = boxed_node.back;
if let Some(new) = self.front {
 // Cleanup its reference to the removed node
 (*new.as_ptr()).front = None;
} else {
 // If the front is now null, then this list is now empty!
 debug_assert!(self.len == 1);
 self.back = None;
}

self.len -= 1;
result
// Box gets implicitly freed here, knows there is no T.

Do you see the bug? Horrifyingly, it's actually this line:
debug_assert!(self.len == 1);

Really? Our friggin' integrity check for tests is a bug?? Yes!!! Well, if we
implement our collection right it shouldn't be, but it can turn something
benign like "oh we are doing a bad job of keeping len up to date" into An
Exploitable Memory Safety Bug! Why? Because it can panic! Most of the
time you don't have to think or worry about panics, but once you start
writing really unsafe code and playing fast and loose with "invariants", you
need to become hyper-vigilant about panics!

We've gotta talk about exception safety (AKA panic safety, AKA unwind
safety, ...).

So here's the deal: by default, panics are unwinding. Unwinding is just a
fancy way to say "make every single function immediately return". You
might think "well, if everyone returns then the program is about to die, so
why care about it?", but you'd be wrong!

We have to care for two reasons: destructors run when a function returns,
and the unwind can be caught. In both cases, code can keep running after a
panic, so we need to be very careful and make sure our unsafe collections
are always in some kind of coherent state whenever a panic could occur,
because each panic is an implicit early return!

Let's think about what state our collection is in when we get to that line:
We have our boxed_node on the stack, and we've extracted the element

from it. If we were to return at this point, the Box would be dropped, and
the node would be freed. Do you see it now..? self.back is still pointing at
that freed node! Once we implement the rest of our collection and start
using self.back for things, this could result in a use-after-free! Yikes!

Interestingly, this line has similar problems, but it's much safer:
self.len -= 1;

By default in debug builds Rust checks for underflows and overflows
and will panic when they happen. Yes, every arithmetic operation is a
panic-safety hazard! This one is better because it happens after we've
repaired all of our invariants, so it won't cause memory-safety issues... as
long as we don't trust len to be right, but then, if we underflow it's definitely
wrong, so we were dead either way! The debug assert is in some sense
worse because it can escalate a minor issue into a critical one!

https://doc.rust-lang.org/nightly/nomicon/exception-safety.html

I've brought up the term "invariants" a few times, and that's because it's a
really useful concept for panic-safety! Basically, to an outside observer of
our collection, there are certain property we're always upholding. For a
LinkedList, one of those is that any node that is reachable in our list is still
allocated and initialized.

Inside the implementation we have a bit more flexibility to break
invariants temporarily as long as we make sure to repair them before
anyone notices. This is actually one of the "killer apps" of Rust's ownership
and borrowing system for collections: if an operation requires an &mut
Self , then we are guaranteed that we have exclusive access to our
collection and that it's fine for us to temporarily break invariants, safe in the
knowledge that no one can sneakily mess with it.

Perhaps the greatest expression of this is Vec::drain, which actually lets
you completely smash a core invariant of Vec and start moving values out
from the front or even middle of a Vec. The reason this is sound is because
the Drain iterator that we return holds an &mut to the Vec, and so all access
is gated behind it! No one can observe the Vec until the Drain iterator goes
away, and then it's destructor can "repair" the Vec before anyone can notice,
it's perfe--

It's not perfect. Unfortunately, you can't rely on destructors in code you
don't control to run, and so even with Drain we need to do a little extra
work to make our type always preserved invariants, but in a kind of goofy
way: we just set the Vec's len to 0 at the start, so if anyone leaks the Drain,
then they will have a safe Vec... but they will have also lost a bunch of data.
You leak me? I leak you! An eye for an eye! True justice!

For a situation where you can actually use destructors for panic-safety,
check out the BinaryHeap::sift_up case study.

Anyway, we won't be needing all of this fancy stuff for our LinkedLists,
we just need to be a bit more vigilant about where we break our invariants,
what we trust/require to be correct, and to avoid introducing unnecessary
unwinds in the middle of hairy tasks.

In this case, we have two options to make our code a bit more robust:

https://doc.rust-lang.org/std/vec/struct.Vec.html#method.drain
https://doc.rust-lang.org/nightly/nomicon/leaking.html#drain
https://doc.rust-lang.org/std/mem/fn.forget.html
https://doc.rust-lang.org/std/mem/fn.forget.html
https://doc.rust-lang.org/nightly/nomicon/exception-safety.html#binaryheapsift_up

Use operations like Option::take a lot more aggressively, because
they are more "transactional" and have a tendency to preserve
invariants.

Kill the debug_asserts and trust ourselves to write better tests with
dedicated "integrity check" functions that won't run in user code ever.

In principle I like the first option, but it doesn't actually work great for a
doubly-linked list, because everything is doubly-redundantly encoded.
Option::take wouldn't fix the problem here, but moving the debug_assert
down a line would. But really, why make things harder for ourselves? Let's
just remove those debug_asserts, and make sure anything can panic is at the
start or end of our methods, where our invariants should be known to hold.

(In this way it's perhaps more accurate to think of them as preconditions
and postconditions but you really should endeavour to treat them as
invariants as much as possible!)

Here's our full implementation now:
use std::ptr::NonNull;
use std::marker::PhantomData;

pub struct LinkedList<T> {
 front: Link<T>,
 back: Link<T>,
 len: usize,
 _boo: PhantomData<T>,
}

type Link<T> = Option<NonNull<Node<T>>>;

struct Node<T> {
 front: Link<T>,
 back: Link<T>,
 elem: T,
}

impl<T> LinkedList<T> {
 pub fn new() -> Self {

 Self {
 front: None,
 back: None,
 len: 0,
 _boo: PhantomData,
 }
 }

 pub fn push_front(&mut self, elem: T) {
 // SAFETY: it's a linked-list, what do you want?
 unsafe {
 let new =
NonNull::new_unchecked(Box::into_raw(Box::new(Node {
 front: None,
 back: None,
 elem,
 })));
 if let Some(old) = self.front {
 // Put the new front before the old one
 (*old.as_ptr()).front = Some(new);
 (*new.as_ptr()).back = Some(old);
 } else {
 // If there's no front, then we're the empty
list and need
 // to set the back too.
 self.back = Some(new);
 }
 // These things always happen!
 self.front = Some(new);
 self.len += 1;
 }
 }

 pub fn pop_front(&mut self) -> Option<T> {
 unsafe {
 // Only have to do stuff if there is a front node

to pop.
 self.front.map(|node| {
 // Bring the Box back to life so we can move
out its value and
 // Drop it (Box continues to magically
understand this for us).
 let boxed_node = Box::from_raw(node.as_ptr());
 let result = boxed_node.elem;

 // Make the next node into the new front.
 self.front = boxed_node.back;
 if let Some(new) = self.front {
 // Cleanup its reference to the removed
node
 (*new.as_ptr()).front = None;
 } else {
 // If the front is now null, then this
list is now empty!
 self.back = None;
 }

 self.len -= 1;
 result
 // Box gets implicitly freed here, knows there
is no T.
 })
 }
 }

 pub fn len(&self) -> usize {
 self.len
 }
}

What can panic here? Well, knowing that honestly requires you to be a
bit of a Rust expert, but thankfully, I am!

The only places I can see in this code that possibly can panic (barring
some absolute fuckery where someone recompiles the stdlib with
debug_asserts enabled, but this is not something you should ever do) are
Box::new (for out-of-memory conditions) and the len arithmetic. All of
that stuff is at the very end or very start of our methods, so yep, we're being
nice and safe!

...were you surprised by Box::new being able to panic? Panics will get
you like that! Try to preserve those invariants so you don't need to worry
about it!

Boring Combinatorics
Ok, back to our regularly scheduled linked lists!
First let's knock out Drop which is trivial with pop:

impl<T> Drop for LinkedList<T> {
 fn drop(&mut self) {
 // Pop until we have to stop
 while let Some(_) = self.pop_front() { }
 }
}

We've got to fill in a bunch of really boring combinatoric
implementations like front, front_mut, back, back_mut, iter, iter_mut,
into_iter, ...

You could do them with macros or whatever but honestly, that's a worse
fate than copy-pasting. We're just going to do a lot of copy-pasting. I have
very carefully crafted the previous push/pop implementations so that we
should be able to literally just swap front and back and the code does/says
the right thing! Hooray for painful experience! (It's so tempting to talk
about "prev and next" for nodes, but I find it's really worth it to just
consistently talk about "front" and "back" as much as possible to avoid
mistakes.)

Alright, first up, front :
pub fn front(&self) -> Option<&T> {
 unsafe {
 self.front.map(|node| &(*node.as_ptr()).elem)
 }
}

Hey actually, this book is really old and some nice new things have been
added like the ? operator which does an early return on Option::None, does
that make our code nicer?
pub fn front(&self) -> Option<&T> {
 unsafe {

 Some(&(*self.front?.as_ptr()).elem)
 }
}

Maybe? It's kind of a wash for something this simple, and the previous
section was all about how early returns are kinda spooky for us, so maybe
we should prefer being a bit more explicit here (I'm sticking to the map
implementation). On to front_mut:
pub fn front_mut(&mut self) -> Option<&mut T> {
 unsafe {
 self.front.map(|node| &mut (*node.as_ptr()).elem)
 }
}

I'll just dump all the back versions at the end.
Next up, iterators. Unlike all of our previous lists we've finally unlocked

the ability to do DoubleEndedIterator, and if we're going for production
quality we're gonna do ExactSizeIterator too.

So in addition to next and size_hint , we're going to support
next_back and len .

The vigilant among you might notice that IterMut seems a lot more
sketchy with double-ended iteration, but it's actually still sound!

... god this is gonna be a lot of boilerplate. Maybe I should really write a
macro... no, no, that's still a worse fate.
pub struct Iter<'a, T> {
 front: Link<T>,
 back: Link<T>,
 len: usize,
 _boo: PhantomData<&'a T>,
}

impl<T> LinkedList<T> {
 pub fn iter(&self) -> Iter<T> {
 Iter {
 front: self.front,

https://doc.rust-lang.org/std/iter/trait.DoubleEndedIterator.html
https://doc.rust-lang.org/std/iter/trait.ExactSizeIterator.html

 back: self.back,
 len: self.len,
 _boo: PhantomData,
 }
 }
}

impl<'a, T> IntoIterator for &'a LinkedList<T> {
 type IntoIter = Iter<'a, T>;
 type Item = &'a T;

 fn into_iter(self) -> Self::IntoIter {
 self.iter()
 }
}

impl<'a, T> Iterator for Iter<'a, T> {
 type Item = &'a T;

 fn next(&mut self) -> Option<Self::Item> {
 // While self.front == self.back is a tempting
condition to check here,
 // it won't do the right for yielding the last
element! That sort of
 // thing only works for arrays because of "one-past-
the-end" pointers.
 if self.len > 0 {
 // We could unwrap front, but this is safer and
easier
 self.front.map(|node| unsafe {
 self.len -= 1;
 self.front = (*node.as_ptr()).back;
 &(*node.as_ptr()).elem
 })
 } else {

 None
 }
 }

 fn size_hint(&self) -> (usize, Option<usize>) {
 (self.len, Some(self.len))
 }
}

impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
 fn next_back(&mut self) -> Option<Self::Item> {
 if self.len > 0 {
 self.back.map(|node| unsafe {
 self.len -= 1;
 self.back = (*node.as_ptr()).front;
 &(*node.as_ptr()).elem
 })
 } else {
 None
 }
 }
}

impl<'a, T> ExactSizeIterator for Iter<'a, T> {
 fn len(&self) -> usize {
 self.len
 }
}

...that's just .iter() ...
we'll paste IterMut at the end, it's literally the exact same code with mut

in a lot of places, let's just knock out into_iter first. We can mercifully
still lean on our tried-and-true solution of just making it wrap our collection
and using pop for next:

pub struct IntoIter<T> {
 list: LinkedList<T>,
}

impl<T> LinkedList<T> {
 pub fn into_iter(self) -> IntoIter<T> {
 IntoIter {
 list: self
 }
 }
}

impl<T> IntoIterator for LinkedList<T> {
 type IntoIter = IntoIter<T>;
 type Item = T;

 fn into_iter(self) -> Self::IntoIter {
 self.into_iter()
 }
}

impl<T> Iterator for IntoIter<T> {
 type Item = T;

 fn next(&mut self) -> Option<Self::Item> {
 self.list.pop_front()
 }

 fn size_hint(&self) -> (usize, Option<usize>) {
 (self.list.len, Some(self.list.len))
 }
}

impl<T> DoubleEndedIterator for IntoIter<T> {

 fn next_back(&mut self) -> Option<Self::Item> {
 self.list.pop_back()
 }
}

impl<T> ExactSizeIterator for IntoIter<T> {
 fn len(&self) -> usize {
 self.list.len
 }
}

Still a crapload of boiler plate, but at least it's satisfying boilerplate.
Alright, here's all of our code with all the combinatorics filled in:

use std::ptr::NonNull;
use std::marker::PhantomData;

pub struct LinkedList<T> {
 front: Link<T>,
 back: Link<T>,
 len: usize,
 _boo: PhantomData<T>,
}

type Link<T> = Option<NonNull<Node<T>>>;

struct Node<T> {
 front: Link<T>,
 back: Link<T>,
 elem: T,
}

pub struct Iter<'a, T> {
 front: Link<T>,
 back: Link<T>,
 len: usize,
 _boo: PhantomData<&'a T>,

}

pub struct IterMut<'a, T> {
 front: Link<T>,
 back: Link<T>,
 len: usize,
 _boo: PhantomData<&'a mut T>,
}

pub struct IntoIter<T> {
 list: LinkedList<T>,
}

impl<T> LinkedList<T> {
 pub fn new() -> Self {
 Self {
 front: None,
 back: None,
 len: 0,
 _boo: PhantomData,
 }
 }

 pub fn push_front(&mut self, elem: T) {
 // SAFETY: it's a linked-list, what do you want?
 unsafe {
 let new =
NonNull::new_unchecked(Box::into_raw(Box::new(Node {
 front: None,
 back: None,
 elem,
 })));
 if let Some(old) = self.front {
 // Put the new front before the old one
 (*old.as_ptr()).front = Some(new);
 (*new.as_ptr()).back = Some(old);

 } else {
 // If there's no front, then we're the empty
list and need
 // to set the back too.
 self.back = Some(new);
 }
 // These things always happen!
 self.front = Some(new);
 self.len += 1;
 }
 }

 pub fn push_back(&mut self, elem: T) {
 // SAFETY: it's a linked-list, what do you want?
 unsafe {
 let new =
NonNull::new_unchecked(Box::into_raw(Box::new(Node {
 back: None,
 front: None,
 elem,
 })));
 if let Some(old) = self.back {
 // Put the new back before the old one
 (*old.as_ptr()).back = Some(new);
 (*new.as_ptr()).front = Some(old);
 } else {
 // If there's no back, then we're the empty
list and need
 // to set the front too.
 self.front = Some(new);
 }
 // These things always happen!
 self.back = Some(new);
 self.len += 1;
 }
 }

 pub fn pop_front(&mut self) -> Option<T> {
 unsafe {
 // Only have to do stuff if there is a front node
to pop.
 self.front.map(|node| {
 // Bring the Box back to life so we can move
out its value and
 // Drop it (Box continues to magically
understand this for us).
 let boxed_node = Box::from_raw(node.as_ptr());
 let result = boxed_node.elem;

 // Make the next node into the new front.
 self.front = boxed_node.back;
 if let Some(new) = self.front {
 // Cleanup its reference to the removed
node
 (*new.as_ptr()).front = None;
 } else {
 // If the front is now null, then this
list is now empty!
 self.back = None;
 }

 self.len -= 1;
 result
 // Box gets implicitly freed here, knows there
is no T.
 })
 }
 }

 pub fn pop_back(&mut self) -> Option<T> {
 unsafe {
 // Only have to do stuff if there is a back node

to pop.
 self.back.map(|node| {
 // Bring the Box front to life so we can move
out its value and
 // Drop it (Box continues to magically
understand this for us).
 let boxed_node = Box::from_raw(node.as_ptr());
 let result = boxed_node.elem;

 // Make the next node into the new back.
 self.back = boxed_node.front;
 if let Some(new) = self.back {
 // Cleanup its reference to the removed
node
 (*new.as_ptr()).back = None;
 } else {
 // If the back is now null, then this list
is now empty!
 self.front = None;
 }

 self.len -= 1;
 result
 // Box gets implicitly freed here, knows there
is no T.
 })
 }
 }

 pub fn front(&self) -> Option<&T> {
 unsafe {
 self.front.map(|node| &(*node.as_ptr()).elem)
 }
 }

 pub fn front_mut(&mut self) -> Option<&mut T> {

 unsafe {
 self.front.map(|node| &mut (*node.as_ptr()).elem)
 }
 }

 pub fn back(&self) -> Option<&T> {
 unsafe {
 self.back.map(|node| &(*node.as_ptr()).elem)
 }
 }

 pub fn back_mut(&mut self) -> Option<&mut T> {
 unsafe {
 self.back.map(|node| &mut (*node.as_ptr()).elem)
 }
 }

 pub fn len(&self) -> usize {
 self.len
 }

 pub fn iter(&self) -> Iter<T> {
 Iter {
 front: self.front,
 back: self.back,
 len: self.len,
 _boo: PhantomData,
 }
 }

 pub fn iter_mut(&mut self) -> IterMut<T> {
 IterMut {
 front: self.front,
 back: self.back,
 len: self.len,
 _boo: PhantomData,

 }
 }

 pub fn into_iter(self) -> IntoIter<T> {
 IntoIter {
 list: self
 }
 }
}

impl<T> Drop for LinkedList<T> {
 fn drop(&mut self) {
 // Pop until we have to stop
 while let Some(_) = self.pop_front() { }
 }
}

impl<'a, T> IntoIterator for &'a LinkedList<T> {
 type IntoIter = Iter<'a, T>;
 type Item = &'a T;

 fn into_iter(self) -> Self::IntoIter {
 self.iter()
 }
}

impl<'a, T> Iterator for Iter<'a, T> {
 type Item = &'a T;

 fn next(&mut self) -> Option<Self::Item> {
 // While self.front == self.back is a tempting
condition to check here,
 // it won't do the right for yielding the last
element! That sort of
 // thing only works for arrays because of "one-past-
the-end" pointers.

 if self.len > 0 {
 // We could unwrap front, but this is safer and
easier
 self.front.map(|node| unsafe {
 self.len -= 1;
 self.front = (*node.as_ptr()).back;
 &(*node.as_ptr()).elem
 })
 } else {
 None
 }
 }

 fn size_hint(&self) -> (usize, Option<usize>) {
 (self.len, Some(self.len))
 }
}

impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
 fn next_back(&mut self) -> Option<Self::Item> {
 if self.len > 0 {
 self.back.map(|node| unsafe {
 self.len -= 1;
 self.back = (*node.as_ptr()).front;
 &(*node.as_ptr()).elem
 })
 } else {
 None
 }
 }
}

impl<'a, T> ExactSizeIterator for Iter<'a, T> {
 fn len(&self) -> usize {
 self.len
 }

}

impl<'a, T> IntoIterator for &'a mut LinkedList<T> {
 type IntoIter = IterMut<'a, T>;
 type Item = &'a mut T;

 fn into_iter(self) -> Self::IntoIter {
 self.iter_mut()
 }
}

impl<'a, T> Iterator for IterMut<'a, T> {
 type Item = &'a mut T;

 fn next(&mut self) -> Option<Self::Item> {
 // While self.front == self.back is a tempting
condition to check here,
 // it won't do the right for yielding the last
element! That sort of
 // thing only works for arrays because of "one-past-
the-end" pointers.
 if self.len > 0 {
 // We could unwrap front, but this is safer and
easier
 self.front.map(|node| unsafe {
 self.len -= 1;
 self.front = (*node.as_ptr()).back;
 &mut (*node.as_ptr()).elem
 })
 } else {
 None
 }
 }

 fn size_hint(&self) -> (usize, Option<usize>) {
 (self.len, Some(self.len))

 }
}

impl<'a, T> DoubleEndedIterator for IterMut<'a, T> {
 fn next_back(&mut self) -> Option<Self::Item> {
 if self.len > 0 {
 self.back.map(|node| unsafe {
 self.len -= 1;
 self.back = (*node.as_ptr()).front;
 &mut (*node.as_ptr()).elem
 })
 } else {
 None
 }
 }
}

impl<'a, T> ExactSizeIterator for IterMut<'a, T> {
 fn len(&self) -> usize {
 self.len
 }
}

impl<T> IntoIterator for LinkedList<T> {
 type IntoIter = IntoIter<T>;
 type Item = T;

 fn into_iter(self) -> Self::IntoIter {
 self.into_iter()
 }
}

impl<T> Iterator for IntoIter<T> {
 type Item = T;

 fn next(&mut self) -> Option<Self::Item> {

 self.list.pop_front()
 }

 fn size_hint(&self) -> (usize, Option<usize>) {
 (self.list.len, Some(self.list.len))
 }
}

impl<T> DoubleEndedIterator for IntoIter<T> {
 fn next_back(&mut self) -> Option<Self::Item> {
 self.list.pop_back()
 }
}

impl<T> ExactSizeIterator for IntoIter<T> {
 fn len(&self) -> usize {
 self.list.len
 }
}

#[cfg(test)]
mod test {
 use super::LinkedList;

 #[test]
 fn test_basic_front() {
 let mut list = LinkedList::new();

 // Try to break an empty list
 assert_eq!(list.len(), 0);
 assert_eq!(list.pop_front(), None);
 assert_eq!(list.len(), 0);

 // Try to break a one item list
 list.push_front(10);

 assert_eq!(list.len(), 1);
 assert_eq!(list.pop_front(), Some(10));
 assert_eq!(list.len(), 0);
 assert_eq!(list.pop_front(), None);
 assert_eq!(list.len(), 0);

 // Mess around
 list.push_front(10);
 assert_eq!(list.len(), 1);
 list.push_front(20);
 assert_eq!(list.len(), 2);
 list.push_front(30);
 assert_eq!(list.len(), 3);
 assert_eq!(list.pop_front(), Some(30));
 assert_eq!(list.len(), 2);
 list.push_front(40);
 assert_eq!(list.len(), 3);
 assert_eq!(list.pop_front(), Some(40));
 assert_eq!(list.len(), 2);
 assert_eq!(list.pop_front(), Some(20));
 assert_eq!(list.len(), 1);
 assert_eq!(list.pop_front(), Some(10));
 assert_eq!(list.len(), 0);
 assert_eq!(list.pop_front(), None);
 assert_eq!(list.len(), 0);
 assert_eq!(list.pop_front(), None);
 assert_eq!(list.len(), 0);
 }
}

Filling In Random Bits
Hey you said you wanted to be production-quality, didn't you?
Here's some more random gunk to toss in to be a "good" collection:

impl<T> LinkedList<T> {
 pub fn is_empty(&self) -> bool {
 self.len == 0
 }

 pub fn clear(&mut self) {
 // Oh look it's drop again
 while let Some(_) = self.pop_front() { }
 }
}

And now we've got a bunch of traits to implement that everyone expects:
impl<T> Default for LinkedList<T> {
 fn default() -> Self {
 Self::new()
 }
}

impl<T: Clone> Clone for LinkedList<T> {
 fn clone(&self) -> Self {
 let mut new_list = Self::new();
 for item in self {
 new_list.push_back(item.clone());
 }
 new_list
 }
}

impl<T> Extend<T> for LinkedList<T> {
 fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {

 for item in iter {
 self.push_back(item);
 }
 }
}

impl<T> FromIterator<T> for LinkedList<T> {
 fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
 let mut list = Self::new();
 list.extend(iter);
 list
 }
}

impl<T: Debug> Debug for LinkedList<T> {
 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
 f.debug_list().entries(self).finish()
 }
}

impl<T: PartialEq> PartialEq for LinkedList<T> {
 fn eq(&self, other: &Self) -> bool {
 self.len() == other.len() && self.iter().eq(other)
 }

 fn ne(&self, other: &Self) -> bool {
 self.len() != other.len() || self.iter().ne(other)
 }
}

impl<T: Eq> Eq for LinkedList<T> { }

impl<T: PartialOrd> PartialOrd for LinkedList<T> {
 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
 self.iter().partial_cmp(other)
 }

}

impl<T: Ord> Ord for LinkedList<T> {
 fn cmp(&self, other: &Self) -> Ordering {
 self.iter().cmp(other)
 }
}

impl<T: Hash> Hash for LinkedList<T> {
 fn hash<H: Hasher>(&self, state: &mut H) {
 self.len().hash(state);
 for item in self {
 item.hash(state);
 }
 }
}

I definitely wrote all of these from scratch, and didn't just copy the std
impls. Because they're so interesting, and I definitely remember the
subtleties of manually implementing Hash. Yeah, that's something I think
about All The Time...

Ok there's actually a few things worth noting here.
First, a nasty namespace clash. For whatever reason std now has macros

named Hash and Debug, and so if you don't have the traits imported, you'll
get really cryptic errors about macros instead of the proper "missing trait".

The other intersting thing to talk about is Hash itself. Do you see how
we hash in len ? That's actually really important! If collections don't hash
in lengths, they can accidentally make themselves vulnerable to prefix
collisions. For instance, what distinguishes ["he", "llo"] from
["hello"] ? If no one is hashing lengths or some other "separator",
nothing! Making it too easy for hash collisions to accidentally or
maliciously happen can result in serious sadness, so just do it!

Alright, here's our current code:
use std::cmp::Ordering;
use std::fmt::{self, Debug};

https://doc.rust-lang.org/std/hash/trait.Hash.html#prefix-collisions

use std::hash::{Hash, Hasher};
use std::iter::FromIterator;
use std::ptr::NonNull;
use std::marker::PhantomData;

pub struct LinkedList<T> {
 front: Link<T>,
 back: Link<T>,
 len: usize,
 _boo: PhantomData<T>,
}

type Link<T> = Option<NonNull<Node<T>>>;

struct Node<T> {
 front: Link<T>,
 back: Link<T>,
 elem: T,
}

pub struct Iter<'a, T> {
 front: Link<T>,
 back: Link<T>,
 len: usize,
 _boo: PhantomData<&'a T>,
}

pub struct IterMut<'a, T> {
 front: Link<T>,
 back: Link<T>,
 len: usize,
 _boo: PhantomData<&'a mut T>,
}

pub struct IntoIter<T> {
 list: LinkedList<T>,

}

impl<T> LinkedList<T> {
 pub fn new() -> Self {
 Self {
 front: None,
 back: None,
 len: 0,
 _boo: PhantomData,
 }
 }

 pub fn push_front(&mut self, elem: T) {
 // SAFETY: it's a linked-list, what do you want?
 unsafe {
 let new =
NonNull::new_unchecked(Box::into_raw(Box::new(Node {
 front: None,
 back: None,
 elem,
 })));
 if let Some(old) = self.front {
 // Put the new front before the old one
 (*old.as_ptr()).front = Some(new);
 (*new.as_ptr()).back = Some(old);
 } else {
 // If there's no front, then we're the empty
list and need
 // to set the back too.
 self.back = Some(new);
 }
 // These things always happen!
 self.front = Some(new);
 self.len += 1;
 }
 }

 pub fn push_back(&mut self, elem: T) {
 // SAFETY: it's a linked-list, what do you want?
 unsafe {
 let new =
NonNull::new_unchecked(Box::into_raw(Box::new(Node {
 back: None,
 front: None,
 elem,
 })));
 if let Some(old) = self.back {
 // Put the new back before the old one
 (*old.as_ptr()).back = Some(new);
 (*new.as_ptr()).front = Some(old);
 } else {
 // If there's no back, then we're the empty
list and need
 // to set the front too.
 self.front = Some(new);
 }
 // These things always happen!
 self.back = Some(new);
 self.len += 1;
 }
 }

 pub fn pop_front(&mut self) -> Option<T> {
 unsafe {
 // Only have to do stuff if there is a front node
to pop.
 self.front.map(|node| {
 // Bring the Box back to life so we can move
out its value and
 // Drop it (Box continues to magically
understand this for us).
 let boxed_node = Box::from_raw(node.as_ptr());

 let result = boxed_node.elem;

 // Make the next node into the new front.
 self.front = boxed_node.back;
 if let Some(new) = self.front {
 // Cleanup its reference to the removed
node
 (*new.as_ptr()).front = None;
 } else {
 // If the front is now null, then this
list is now empty!
 self.back = None;
 }

 self.len -= 1;
 result
 // Box gets implicitly freed here, knows there
is no T.
 })
 }
 }

 pub fn pop_back(&mut self) -> Option<T> {
 unsafe {
 // Only have to do stuff if there is a back node
to pop.
 self.back.map(|node| {
 // Bring the Box front to life so we can move
out its value and
 // Drop it (Box continues to magically
understand this for us).
 let boxed_node = Box::from_raw(node.as_ptr());
 let result = boxed_node.elem;

 // Make the next node into the new back.
 self.back = boxed_node.front;

 if let Some(new) = self.back {
 // Cleanup its reference to the removed
node
 (*new.as_ptr()).back = None;
 } else {
 // If the back is now null, then this list
is now empty!
 self.front = None;
 }

 self.len -= 1;
 result
 // Box gets implicitly freed here, knows there
is no T.
 })
 }
 }

 pub fn front(&self) -> Option<&T> {
 unsafe {
 self.front.map(|node| &(*node.as_ptr()).elem)
 }
 }

 pub fn front_mut(&mut self) -> Option<&mut T> {
 unsafe {
 self.front.map(|node| &mut (*node.as_ptr()).elem)
 }
 }

 pub fn back(&self) -> Option<&T> {
 unsafe {
 self.back.map(|node| &(*node.as_ptr()).elem)
 }
 }

 pub fn back_mut(&mut self) -> Option<&mut T> {
 unsafe {
 self.back.map(|node| &mut (*node.as_ptr()).elem)
 }
 }

 pub fn len(&self) -> usize {
 self.len
 }

 pub fn is_empty(&self) -> bool {
 self.len == 0
 }

 pub fn clear(&mut self) {
 // Oh look it's drop again
 while let Some(_) = self.pop_front() { }
 }

 pub fn iter(&self) -> Iter<T> {
 Iter {
 front: self.front,
 back: self.back,
 len: self.len,
 _boo: PhantomData,
 }
 }

 pub fn iter_mut(&mut self) -> IterMut<T> {
 IterMut {
 front: self.front,
 back: self.back,
 len: self.len,
 _boo: PhantomData,
 }
 }

 pub fn into_iter(self) -> IntoIter<T> {
 IntoIter {
 list: self
 }
 }
}

impl<T> Drop for LinkedList<T> {
 fn drop(&mut self) {
 // Pop until we have to stop
 while let Some(_) = self.pop_front() { }
 }
}

impl<T> Default for LinkedList<T> {
 fn default() -> Self {
 Self::new()
 }
}

impl<T: Clone> Clone for LinkedList<T> {
 fn clone(&self) -> Self {
 let mut new_list = Self::new();
 for item in self {
 new_list.push_back(item.clone());
 }
 new_list
 }
}

impl<T> Extend<T> for LinkedList<T> {
 fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
 for item in iter {
 self.push_back(item);
 }

 }
}

impl<T> FromIterator<T> for LinkedList<T> {
 fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
 let mut list = Self::new();
 list.extend(iter);
 list
 }
}

impl<T: Debug> Debug for LinkedList<T> {
 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
 f.debug_list().entries(self).finish()
 }
}

impl<T: PartialEq> PartialEq for LinkedList<T> {
 fn eq(&self, other: &Self) -> bool {
 self.len() == other.len() && self.iter().eq(other)
 }

 fn ne(&self, other: &Self) -> bool {
 self.len() != other.len() || self.iter().ne(other)
 }
}

impl<T: Eq> Eq for LinkedList<T> { }

impl<T: PartialOrd> PartialOrd for LinkedList<T> {
 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
 self.iter().partial_cmp(other)
 }
}

impl<T: Ord> Ord for LinkedList<T> {

 fn cmp(&self, other: &Self) -> Ordering {
 self.iter().cmp(other)
 }
}

impl<T: Hash> Hash for LinkedList<T> {
 fn hash<H: Hasher>(&self, state: &mut H) {
 self.len().hash(state);
 for item in self {
 item.hash(state);
 }
 }
}

impl<'a, T> IntoIterator for &'a LinkedList<T> {
 type IntoIter = Iter<'a, T>;
 type Item = &'a T;

 fn into_iter(self) -> Self::IntoIter {
 self.iter()
 }
}

impl<'a, T> Iterator for Iter<'a, T> {
 type Item = &'a T;

 fn next(&mut self) -> Option<Self::Item> {
 // While self.front == self.back is a tempting
condition to check here,
 // it won't do the right for yielding the last
element! That sort of
 // thing only works for arrays because of "one-past-
the-end" pointers.
 if self.len > 0 {
 // We could unwrap front, but this is safer and
easier

 self.front.map(|node| unsafe {
 self.len -= 1;
 self.front = (*node.as_ptr()).back;
 &(*node.as_ptr()).elem
 })
 } else {
 None
 }
 }

 fn size_hint(&self) -> (usize, Option<usize>) {
 (self.len, Some(self.len))
 }
}

impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
 fn next_back(&mut self) -> Option<Self::Item> {
 if self.len > 0 {
 self.back.map(|node| unsafe {
 self.len -= 1;
 self.back = (*node.as_ptr()).front;
 &(*node.as_ptr()).elem
 })
 } else {
 None
 }
 }
}

impl<'a, T> ExactSizeIterator for Iter<'a, T> {
 fn len(&self) -> usize {
 self.len
 }
}

impl<'a, T> IntoIterator for &'a mut LinkedList<T> {

 type IntoIter = IterMut<'a, T>;
 type Item = &'a mut T;

 fn into_iter(self) -> Self::IntoIter {
 self.iter_mut()
 }
}

impl<'a, T> Iterator for IterMut<'a, T> {
 type Item = &'a mut T;

 fn next(&mut self) -> Option<Self::Item> {
 // While self.front == self.back is a tempting
condition to check here,
 // it won't do the right for yielding the last
element! That sort of
 // thing only works for arrays because of "one-past-
the-end" pointers.
 if self.len > 0 {
 // We could unwrap front, but this is safer and
easier
 self.front.map(|node| unsafe {
 self.len -= 1;
 self.front = (*node.as_ptr()).back;
 &mut (*node.as_ptr()).elem
 })
 } else {
 None
 }
 }

 fn size_hint(&self) -> (usize, Option<usize>) {
 (self.len, Some(self.len))
 }
}

impl<'a, T> DoubleEndedIterator for IterMut<'a, T> {
 fn next_back(&mut self) -> Option<Self::Item> {
 if self.len > 0 {
 self.back.map(|node| unsafe {
 self.len -= 1;
 self.back = (*node.as_ptr()).front;
 &mut (*node.as_ptr()).elem
 })
 } else {
 None
 }
 }
}

impl<'a, T> ExactSizeIterator for IterMut<'a, T> {
 fn len(&self) -> usize {
 self.len
 }
}

impl<T> IntoIterator for LinkedList<T> {
 type IntoIter = IntoIter<T>;
 type Item = T;

 fn into_iter(self) -> Self::IntoIter {
 self.into_iter()
 }
}

impl<T> Iterator for IntoIter<T> {
 type Item = T;

 fn next(&mut self) -> Option<Self::Item> {
 self.list.pop_front()
 }

 fn size_hint(&self) -> (usize, Option<usize>) {
 (self.list.len, Some(self.list.len))
 }
}

impl<T> DoubleEndedIterator for IntoIter<T> {
 fn next_back(&mut self) -> Option<Self::Item> {
 self.list.pop_back()
 }
}

impl<T> ExactSizeIterator for IntoIter<T> {
 fn len(&self) -> usize {
 self.list.len
 }
}

#[cfg(test)]
mod test {
 use super::LinkedList;

 #[test]
 fn test_basic_front() {
 let mut list = LinkedList::new();

 // Try to break an empty list
 assert_eq!(list.len(), 0);
 assert_eq!(list.pop_front(), None);
 assert_eq!(list.len(), 0);

 // Try to break a one item list
 list.push_front(10);
 assert_eq!(list.len(), 1);
 assert_eq!(list.pop_front(), Some(10));
 assert_eq!(list.len(), 0);

 assert_eq!(list.pop_front(), None);
 assert_eq!(list.len(), 0);

 // Mess around
 list.push_front(10);
 assert_eq!(list.len(), 1);
 list.push_front(20);
 assert_eq!(list.len(), 2);
 list.push_front(30);
 assert_eq!(list.len(), 3);
 assert_eq!(list.pop_front(), Some(30));
 assert_eq!(list.len(), 2);
 list.push_front(40);
 assert_eq!(list.len(), 3);
 assert_eq!(list.pop_front(), Some(40));
 assert_eq!(list.len(), 2);
 assert_eq!(list.pop_front(), Some(20));
 assert_eq!(list.len(), 1);
 assert_eq!(list.pop_front(), Some(10));
 assert_eq!(list.len(), 0);
 assert_eq!(list.pop_front(), None);
 assert_eq!(list.len(), 0);
 assert_eq!(list.pop_front(), None);
 assert_eq!(list.len(), 0);
 }
}

Testing
Alright I put off testing for a while because well, we both know that

we're now masters of Rust and we don't make mistakes anymore! Also just,
this is a rewrite of an old crate, so I just have all the tests already. They're
tests, you've seen tests a lot already. Here they are:
#[cfg(test)]
mod test {
 use super::LinkedList;

 fn generate_test() -> LinkedList<i32> {
 list_from(&[0, 1, 2, 3, 4, 5, 6])
 }

 fn list_from<T: Clone>(v: &[T]) -> LinkedList<T> {
 v.iter().map(|x| (*x).clone()).collect()
 }

 #[test]
 fn test_basic_front() {
 let mut list = LinkedList::new();

 // Try to break an empty list
 assert_eq!(list.len(), 0);
 assert_eq!(list.pop_front(), None);
 assert_eq!(list.len(), 0);

 // Try to break a one item list
 list.push_front(10);
 assert_eq!(list.len(), 1);
 assert_eq!(list.pop_front(), Some(10));
 assert_eq!(list.len(), 0);
 assert_eq!(list.pop_front(), None);
 assert_eq!(list.len(), 0);

 // Mess around
 list.push_front(10);
 assert_eq!(list.len(), 1);
 list.push_front(20);
 assert_eq!(list.len(), 2);
 list.push_front(30);
 assert_eq!(list.len(), 3);
 assert_eq!(list.pop_front(), Some(30));
 assert_eq!(list.len(), 2);
 list.push_front(40);
 assert_eq!(list.len(), 3);
 assert_eq!(list.pop_front(), Some(40));
 assert_eq!(list.len(), 2);
 assert_eq!(list.pop_front(), Some(20));
 assert_eq!(list.len(), 1);
 assert_eq!(list.pop_front(), Some(10));
 assert_eq!(list.len(), 0);
 assert_eq!(list.pop_front(), None);
 assert_eq!(list.len(), 0);
 assert_eq!(list.pop_front(), None);
 assert_eq!(list.len(), 0);
 }

 #[test]
 fn test_basic() {
 let mut m = LinkedList::new();
 assert_eq!(m.pop_front(), None);
 assert_eq!(m.pop_back(), None);
 assert_eq!(m.pop_front(), None);
 m.push_front(1);
 assert_eq!(m.pop_front(), Some(1));
 m.push_back(2);
 m.push_back(3);
 assert_eq!(m.len(), 2);
 assert_eq!(m.pop_front(), Some(2));

 assert_eq!(m.pop_front(), Some(3));
 assert_eq!(m.len(), 0);
 assert_eq!(m.pop_front(), None);
 m.push_back(1);
 m.push_back(3);
 m.push_back(5);
 m.push_back(7);
 assert_eq!(m.pop_front(), Some(1));

 let mut n = LinkedList::new();
 n.push_front(2);
 n.push_front(3);
 {
 assert_eq!(n.front().unwrap(), &3);
 let x = n.front_mut().unwrap();
 assert_eq!(*x, 3);
 *x = 0;
 }
 {
 assert_eq!(n.back().unwrap(), &2);
 let y = n.back_mut().unwrap();
 assert_eq!(*y, 2);
 *y = 1;
 }
 assert_eq!(n.pop_front(), Some(0));
 assert_eq!(n.pop_front(), Some(1));
 }

 #[test]
 fn test_iterator() {
 let m = generate_test();
 for (i, elt) in m.iter().enumerate() {
 assert_eq!(i as i32, *elt);
 }
 let mut n = LinkedList::new();
 assert_eq!(n.iter().next(), None);

 n.push_front(4);
 let mut it = n.iter();
 assert_eq!(it.size_hint(), (1, Some(1)));
 assert_eq!(it.next().unwrap(), &4);
 assert_eq!(it.size_hint(), (0, Some(0)));
 assert_eq!(it.next(), None);
 }

 #[test]
 fn test_iterator_double_end() {
 let mut n = LinkedList::new();
 assert_eq!(n.iter().next(), None);
 n.push_front(4);
 n.push_front(5);
 n.push_front(6);
 let mut it = n.iter();
 assert_eq!(it.size_hint(), (3, Some(3)));
 assert_eq!(it.next().unwrap(), &6);
 assert_eq!(it.size_hint(), (2, Some(2)));
 assert_eq!(it.next_back().unwrap(), &4);
 assert_eq!(it.size_hint(), (1, Some(1)));
 assert_eq!(it.next_back().unwrap(), &5);
 assert_eq!(it.next_back(), None);
 assert_eq!(it.next(), None);
 }

 #[test]
 fn test_rev_iter() {
 let m = generate_test();
 for (i, elt) in m.iter().rev().enumerate() {
 assert_eq!(6 - i as i32, *elt);
 }
 let mut n = LinkedList::new();
 assert_eq!(n.iter().rev().next(), None);
 n.push_front(4);
 let mut it = n.iter().rev();

 assert_eq!(it.size_hint(), (1, Some(1)));
 assert_eq!(it.next().unwrap(), &4);
 assert_eq!(it.size_hint(), (0, Some(0)));
 assert_eq!(it.next(), None);
 }

 #[test]
 fn test_mut_iter() {
 let mut m = generate_test();
 let mut len = m.len();
 for (i, elt) in m.iter_mut().enumerate() {
 assert_eq!(i as i32, *elt);
 len -= 1;
 }
 assert_eq!(len, 0);
 let mut n = LinkedList::new();
 assert!(n.iter_mut().next().is_none());
 n.push_front(4);
 n.push_back(5);
 let mut it = n.iter_mut();
 assert_eq!(it.size_hint(), (2, Some(2)));
 assert!(it.next().is_some());
 assert!(it.next().is_some());
 assert_eq!(it.size_hint(), (0, Some(0)));
 assert!(it.next().is_none());
 }

 #[test]
 fn test_iterator_mut_double_end() {
 let mut n = LinkedList::new();
 assert!(n.iter_mut().next_back().is_none());
 n.push_front(4);
 n.push_front(5);
 n.push_front(6);
 let mut it = n.iter_mut();
 assert_eq!(it.size_hint(), (3, Some(3)));

 assert_eq!(*it.next().unwrap(), 6);
 assert_eq!(it.size_hint(), (2, Some(2)));
 assert_eq!(*it.next_back().unwrap(), 4);
 assert_eq!(it.size_hint(), (1, Some(1)));
 assert_eq!(*it.next_back().unwrap(), 5);
 assert!(it.next_back().is_none());
 assert!(it.next().is_none());
 }

 #[test]
 fn test_eq() {
 let mut n: LinkedList<u8> = list_from(&[]);
 let mut m = list_from(&[]);
 assert!(n == m);
 n.push_front(1);
 assert!(n != m);
 m.push_back(1);
 assert!(n == m);

 let n = list_from(&[2, 3, 4]);
 let m = list_from(&[1, 2, 3]);
 assert!(n != m);
 }

 #[test]
 fn test_ord() {
 let n = list_from(&[]);
 let m = list_from(&[1, 2, 3]);
 assert!(n < m);
 assert!(m > n);
 assert!(n <= n);
 assert!(n >= n);
 }

 #[test]
 fn test_ord_nan() {

 let nan = 0.0f64 / 0.0;
 let n = list_from(&[nan]);
 let m = list_from(&[nan]);
 assert!(!(n < m));
 assert!(!(n > m));
 assert!(!(n <= m));
 assert!(!(n >= m));

 let n = list_from(&[nan]);
 let one = list_from(&[1.0f64]);
 assert!(!(n < one));
 assert!(!(n > one));
 assert!(!(n <= one));
 assert!(!(n >= one));

 let u = list_from(&[1.0f64, 2.0, nan]);
 let v = list_from(&[1.0f64, 2.0, 3.0]);
 assert!(!(u < v));
 assert!(!(u > v));
 assert!(!(u <= v));
 assert!(!(u >= v));

 let s = list_from(&[1.0f64, 2.0, 4.0, 2.0]);
 let t = list_from(&[1.0f64, 2.0, 3.0, 2.0]);
 assert!(!(s < t));
 assert!(s > one);
 assert!(!(s <= one));
 assert!(s >= one);
 }

 #[test]
 fn test_debug() {
 let list: LinkedList<i32> = (0..10).collect();
 assert_eq!(format!("{:?}", list), "[0, 1, 2, 3, 4, 5,
6, 7, 8, 9]");

 let list: LinkedList<&str> = vec!["just", "one",
"test", "more"]
 .iter().copied()
 .collect();
 assert_eq!(format!("{:?}", list), r#"["just", "one",
"test", "more"]"#);
 }

 #[test]
 fn test_hashmap() {
 // Check that HashMap works with this as a key

 let list1: LinkedList<i32> = (0..10).collect();
 let list2: LinkedList<i32> = (1..11).collect();
 let mut map = std::collections::HashMap::new();

 assert_eq!(map.insert(list1.clone(), "list1"), None);
 assert_eq!(map.insert(list2.clone(), "list2"), None);

 assert_eq!(map.len(), 2);

 assert_eq!(map.get(&list1), Some(&"list1"));
 assert_eq!(map.get(&list2), Some(&"list2"));

 assert_eq!(map.remove(&list1), Some("list1"));
 assert_eq!(map.remove(&list2), Some("list2"));

 assert!(map.is_empty());
 }
}

And now for the moments of truth:
cargo test
 Finished test [unoptimized + debuginfo] target(s) in 0.00s
 Running unittests src\lib.rs

running 12 tests
test test::test_basic ... ok
test test::test_basic_front ... ok
test test::test_eq ... ok
test test::test_iterator ... ok
test test::test_iterator_mut_double_end ... ok
test test::test_ord_nan ... ok
test test::test_iterator_double_end ... ok
test test::test_mut_iter ... ok
test test::test_rev_iter ... ok
test test::test_hashmap ... ok
test test::test_ord ... ok
test test::test_debug ... ok

test result: ok. 12 passed; 0 failed; 0 ignored; 0 measured; 0
filtered out; finished in 0.00s

$env:MIRIFLAGS="-Zmiri-tag-raw-pointers"
cargo miri test
 Compiling linked-list v0.0.3
 Finished test [unoptimized + debuginfo] target(s) in 0.35s
 Running unittests src\lib.rs

running 12 tests
test test::test_basic ... ok
test test::test_basic_front ... ok
test test::test_debug ... ok
test test::test_eq ... ok
test test::test_hashmap ... ok
test test::test_iterator ... ok
test test::test_iterator_double_end ... ok
test test::test_iterator_mut_double_end ... ok
test test::test_mut_iter ... ok
test test::test_ord ... ok
test test::test_ord_nan ... ok
test test::test_rev_iter ... ok

test result: ok. 12 passed; 0 failed; 0 ignored; 0 measured; 0
filtered out

😭
We did it, we actually didn't screw up. This isn't a trick! All of our

practice and training was finally worth it, we've finally written good code!!!
Now with all that gunk out of the way, we can get back to the Interesting

Stuff!

Send, Sync, and Compile Tests
Ok actually we do have one more pair of traits to think about, but they're

special. We have to deal with Rust's Holy Roman Empire: The Unsafe Opt-
In Built-In Traits (OIBITs): Send and Sync, which are in fact opt-out and
built-out (1 out of 3 is pretty good!).

Like Copy, these traits have absolutely no code associated with them,
and are just markers that your type has a particular property. Send says that
your type is safe to send to another thread. Sync says your type is safe to
share between threads (&Self: Send).

The same argument for LinkedList being covariant applies here:
generally normal collections which don't use fancy interior mutability tricks
are safe to make Send and Sync.

But I said they're opt out. So actually, are we already? How would we
know?

Let's add some new magic to our code: random private garbage that
won't compile unless our types have the properties we expect:
#[allow(dead_code)]
fn assert_properties() {
 fn is_send<T: Send>() {}
 fn is_sync<T: Sync>() {}

 is_send::<LinkedList<i32>>();
 is_sync::<LinkedList<i32>>();

 is_send::<IntoIter<i32>>();
 is_sync::<IntoIter<i32>>();

 is_send::<Iter<i32>>();
 is_sync::<Iter<i32>>();

 is_send::<IterMut<i32>>();
 is_sync::<IterMut<i32>>();

https://doc.rust-lang.org/nomicon/send-and-sync.html

 is_send::<Cursor<i32>>();
 is_sync::<Cursor<i32>>();

 fn linked_list_covariant<'a, T>(x: LinkedList<&'static T>)
-> LinkedList<&'a T> { x }
 fn iter_covariant<'i, 'a, T>(x: Iter<'i, &'static T>) ->
Iter<'i, &'a T> { x }
 fn into_iter_covariant<'a, T>(x: IntoIter<&'static T>) ->
IntoIter<&'a T> { x }
}

cargo build
 Compiling linked-list v0.0.3
error[E0277]: `NonNull<Node<i32>>` cannot be sent between
threads safely
 --> src\lib.rs:433:5
 |
433 | is_send::<LinkedList<i32>>();
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^ `NonNull<Node<i32>>`
cannot be sent between threads safely
 |
 = help: within `LinkedList<i32>`, the trait `Send` is not
implemented for `NonNull<Node<i32>>`
 = note: required because it appears within the type
`Option<NonNull<Node<i32>>>`
note: required because it appears within the type
`LinkedList<i32>`
 --> src\lib.rs:8:12
 |
8 | pub struct LinkedList<T> {
 | ^^^^^^^^^^
note: required by a bound in `is_send`
 --> src\lib.rs:430:19
 |
430 | fn is_send<T: Send>() {}
 | ^^^^ required by this bound in

`is_send`

<a million more errors>

Oh geez, what gives! I had that great Holy Roman Empire joke!
Well, I lied to you when I said raw pointers have only one safety guard:

this is the other. *const AND *mut explicitly opt out of Send and Sync to
be safe, so we do actually have to opt back in:
unsafe impl<T: Send> Send for LinkedList<T> {}
unsafe impl<T: Sync> Sync for LinkedList<T> {}

unsafe impl<'a, T: Send> Send for Iter<'a, T> {}
unsafe impl<'a, T: Sync> Sync for Iter<'a, T> {}

unsafe impl<'a, T: Send> Send for IterMut<'a, T> {}
unsafe impl<'a, T: Sync> Sync for IterMut<'a, T> {}

Note that we have to write unsafe impl here: these are unsafe traits!
Unsafe code (like concurrency libraries) gets to rely on us only
implementing these traits correctly! Since there's no actual code, the
guarantee we're making is just that, yes, we are indeed safe to Send or Share
between threads!

Don't just slap these on lightly, but I am a Certified Professional here to
say: yep there's are totally fine. Note how we don't need to implement Send
and Sync for IntoIter: it just contains LinkedList, so it auto-derives Send
and Sync — I told you they were actually opt out! (You opt out with the
hillarious syntax of impl !Send for MyType {} .)
cargo build
 Compiling linked-list v0.0.3
 Finished dev [unoptimized + debuginfo] target(s) in 0.18s

Ok nice!
...Wait, actually it would be really dangerous if stuff that shouldn't be

these things wasn't. In particular, IterMut definitely shouldn't be covariant,
because it's "like" &mut T . But how can we check that?

With Magic! Well, actually, with rustdoc! Ok well we don't have to use
rustdoc for this, but it's the funniest way to do it. See, if you write a
doccomment and include a code block, then rustdoc will try to compile and
run it, so we can use that to make fresh anonymous "programs" that don't
affect the main one:
 /// ```
 /// use linked_list::IterMut;
 ///
 /// fn iter_mut_covariant<'i, 'a, T>(x: IterMut<'i,
&'static T>) -> IterMut<'i, &'a T> { x }
 /// ```
 fn iter_mut_invariant() {}

cargo test

...

 Doc-tests linked-list

running 1 test
test src\lib.rs - assert_properties::iter_mut_invariant (line
458) ... FAILED

failures:

---- src\lib.rs - assert_properties::iter_mut_invariant (line
458) stdout ----
error[E0308]: mismatched types
 --> src\lib.rs:461:86
 |
6 | fn iter_mut_covariant<'i, 'a, T>(x: IterMut<'i, &'static
T>) -> IterMut<'i, &'a T> { x }
 |
^ lifetime mismatch
 |
 = note: expected struct `linked_list::IterMut<'_, &'a T>`

 found struct `linked_list::IterMut<'_, &'static
T>`

Ok cool, we've proved it's invariant, but uh, now our tests fail. No
worries, rustdoc lets you say that's expected by annotating the fence with
compile_fail!

(Actually we only proved it's "not covariant" but honestly if you manage
to make a type "accidentaly and incorrectly contravariant" then, congrats?)
 /// ```compile_fail
 /// use linked_list::IterMut;
 ///
 /// fn iter_mut_covariant<'i, 'a, T>(x: IterMut<'i,
&'static T>) -> IterMut<'i, &'a T> { x }
 /// ```
 fn iter_mut_invariant() {}

cargo test
 Compiling linked-list v0.0.3
 Finished test [unoptimized + debuginfo] target(s) in 0.49s
 Running unittests src\lib.rs

...

 Doc-tests linked-list

running 1 test
test src\lib.rs - assert_properties::iter_mut_invariant (line
458) - compile fail ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0
filtered out; finished in 0.12s

Yay! I recommend always making the test without compile_fail so that
you can confirm that it fails to compile for the right reason. For instance,
that test will also fail (and therefore pass) if you forget the use , which, is
not what we want! While it's conceptually appealing to be able to "require"
a specific error from the compiler, this would be an absolute nightmare that

would effectively make it a breaking change for the compiler to produce
better errors. We want the compiler to get better, so, no you don't get to
have that.

(Oh wait, we can actually just specify the error code we want next to the
compile_fail but this only works on nightly and is a bad idea to rely on
for the reasons state above. It will be silently ignored on not-nightly.)
 /// ```compile_fail,E0308
 /// use linked_list::IterMut;
 ///
 /// fn iter_mut_covariant<'i, 'a, T>(x: IterMut<'i,
&'static T>) -> IterMut<'i, &'a T> { x }
 /// ```
 fn iter_mut_invariant() {}

...also, did you notice the part where we actually made IterMut
invariant? It was easy to miss, since I "just" copy-pasted Iter and dumped it
at the end. It's the last line here:
pub struct IterMut<'a, T> {
 front: Link<T>,
 back: Link<T>,
 len: usize,
 _boo: PhantomData<&'a mut T>,
}

Let's try removing that PhantomData:
 cargo build
 Compiling linked-list v0.0.3
(C:\Users\ninte\dev\contain\linked-list)
error[E0392]: parameter `'a` is never used
 --> src\lib.rs:30:20
 |
30 | pub struct IterMut<'a, T> {
 | ^^ unused parameter
 |
 = help: consider removing `'a`, referring to it in a field,
or using a marker such as `PhantomData`

Ha! The compiler has our back and won't just let us not use the lifetime.
Let's try using the wrong example instead:
 _boo: PhantomData<&'a T>,

cargo build
 Compiling linked-list v0.0.3
(C:\Users\ninte\dev\contain\linked-list)
 Finished dev [unoptimized + debuginfo] target(s) in 0.17s

It builds! Do our tests catch a problem now?
cargo test

...

 Doc-tests linked-list

running 1 test
test src\lib.rs - assert_properties::iter_mut_invariant (line
458) - compile fail ... FAILED

failures:

---- src\lib.rs - assert_properties::iter_mut_invariant (line
458) stdout ----
Test compiled successfully, but it's marked `compile_fail`.

failures:
 src\lib.rs - assert_properties::iter_mut_invariant (line
458)

test result: FAILED. 0 passed; 1 failed; 0 ignored; 0
measured; 0 filtered out; finished in 0.15s

Eyyy!!! The system works! I love having tests that actually do their job,
so that I don't have to be quite so horrified of looming mistakes!

An Introduction To Cursors
OK!!! We now have a LinkedList that's on par with std's 1.0

implementation! Which of course means that our LinkedList is still
completely useless. We've taken the enormous performance penalty of
implementing a Deque as a linked list, and we don't have any of the APIs
that make it actually useful.

Here's how we do against the "killer apps" of linked lists:

🚫 Getting to do weird intrusive stuff
🚫 Getting to do weird lockfree stuff
🚫 Getting to store Dynamically Sized Types
🌟 O(1) push/pop without amortization (if you are willing to believe
that malloc is O(1))
🚫 O(1) list splitting
🚫 O(1) list splicing

Well... 1 out of 6 is... better than nothing! Do you see why I wanted to
rip this thing out of std?

We're not going to make our list support "weird" stuff, because that's all
adhoc and domain-specific. But the splitting and splicing thing, now that's
something we can do!

But here's the problem: actually reaching the kth element in a LinkedList
takes O(k) time, so how can we possibly do arbitrary splits and merges in
O(1)? Well, the trick is that you don't have an API like split_at(index) --
you make a system where the user can statefully iterate to a position in the
list and make O(1) modifications at that point!

Hey, we already have iterators! Can we use them for this? Kind of... but
one of their super-powers gets in the way. You may recall that the way that
we write out the lifetimes for by-ref iterators means that the references they
return aren't tied to the iterator. This lets us repeatedly call next and hold
onto the elements:
let mut list = ...;
let iter = list.iter_mut();

https://docs.rs/linked-hash-map/latest/linked_hash_map/
https://doc.rust-lang.org/std/sync/mpsc/
https://doc.rust-lang.org/nomicon/exotic-sizes.html#dynamically-sized-types-dsts
https://en.wikipedia.org/wiki/Amortized_analysis

let elem1 = list.next();
let elem2 = list.next();

if elem1 == elem2 { ... }

If the returned references borrowed the iterator, then this code wouldn't
work at all. The compiler would just complain about the second call to
next ! This flexibility is great, but it puts some implicit constraints on us:

By-Mutable-Ref Iterators can never go backwards and yield an
element again, because the user would be able to get two &mut 's to the
same element, breaking fundamental rules of the language.

By-Ref Iterators can't have extra methods which could possibly
modify the underlying collection in a way that would invalidate any
reference that has already been yielded.

Unfortunately, both of these things are exactly what we want our
LinkedList API to do! So we can't just use iterators, we need something
new: Cursors.

Cursors are exactly like the little blinking | you get when you're editing
some text on a computer. It's a position in a sequence (the text) that you can
move around (with the arrow keys), and whenever you type the edits
happen at that point.

See if I just
press
enter
the whole
text
gets broken in half.
Sorry you're standing behind me and watching me type this right? So

that totally makes sense, right? Right.
Now if you've ever had the misfortune of having a keyboard with an

"insert" key and actually pressed it, you know that there's actually
technically two interpretations of cursors: they can either lie between
elements (characters) or on elements. I'm pretty sure no one has ever

pressed "insert" on purpose in their life, and that it exists purely as a
Suffering Button, so it's pretty obvious which one is Better and Right:
cursors go between elements!

Pretty rock-solid logic right there, I don't think anyone can disagree with
me.

Sorry what? There was an RFC in 2018 to add Cursors to Rust's
LinkedList?

With a Cursor one can seek back and forth through a list and get the
current element. With a CursorMut One can seek back and forth and
get mutable references to elements, and it can insert and delete
elements before and behind the current element (along with
performing several list operations such as splitting and splicing).

Current element? This cursor is on elements, not between them! I can't
believe they didn't accept my totally rock-solid argument! So yeah you can
just go use the Cursor in std... wait, it's 2022, and Rust 1.60 still has Cursor
marked as unstable?

Hey wait:

Cursors always rest between two elements in the list, and index in a
logically circular way. To accommodate this, there is a "ghost" non-
element that yields None between the head and tail of the list.

HEY WAIT. This is the opposite of what the RFC says??? But wait all
the docs on the methods still refer to "current" elements... wait hold on,
where have I seen this ghost stuff before. Oh wait, didn't I do that in my old
linked-list fork where I prototyped?

Cursors always rest between two elements in the list, and index in a
logically circular way. To accomadate this, there is a "ghost" non-
element that yields None between the head and tail of the List.

Hold up what the fuck. This isn't a gag, I am actually trying to Read The
Docs right now. Did std actually RFC a different design from the one I
proposed in 2015, but then copy-paste the docs from my prototype??? Is std
meta-shitposting me for writing a book about how much I hate
LinkedList????? Like yeah I built that prototype to demonstrate the concept

https://github.com/rust-lang/rfcs/blob/master/text/2570-linked-list-cursors.md
https://doc.rust-lang.org/1.60.0/std/collections/linked_list/struct.CursorMut.html
https://docs.rs/linked-list/0.0.3/linked_list/struct.Cursor.html

so that people would let me add it to std and make LinkedList not useless
but, qu'est-ce que le fuck??????????????

Ok you know what, clearly std is blessing my design as the objectively
superior one, so we're going to do my design. Also that's nice because this
entire chapter is me actually literally rewriting that library from scratch, so
not changing the API sounds Good To Me!

Here's the full top-level docs I wrote:

A Cursor is like an iterator, except that it can freely seek back-and-
forth, and can safely mutate the list during iteration. This is because
the lifetime of its yielded references are tied to its own lifetime, instead
of just the underlying list. This means cursors cannot yield multiple
elements at once.

Cursors always rest between two elements in the list, and index in a
logically circular way. To accomadate this, there is a "ghost" non-
element that yields None between the head and tail of the List.

When created, cursors start between the ghost and the front of the
list. That is, next will yield the front of the list, and prev will yield
None. Calling prev again will yield the tail.

Cute, even though we concluded that the whole "sentinel-node" thing
was more trouble than it's worth, we're still going to end up with semantics
that "pretend" there's a sentinel node so that the cursor can wrap around to
the other side of the list.

Skims over my old APIs some more
fn splice(&mut self, other: &mut LinkedList<T>)

Inserts the entire list's contents right after the cursor.

Oh yeah, this is coming back to me. I wrote this when I was really mad
about combinatoric explosion, and was trying to come up with a way for
there to only be one copy of each operation. Unfortunately this is...
semantically problematic. See, when the user wants to splice one list into
another, they might want the cursor to end up before the splice or after it.
The inserted list can be arbitrarily large, so it's a genuine issue for us to only
allow for one and expect the user to walk over the entire inserted list!

We're gonna have to rework this design from the ground up after all.
What does our Cursor type need? Well it needs to:

point "between" two elements
as a nice little feature, keep track of what "index" is next
update the list itself to modify front/back/len.

How do you point between two elements? Well, you don't. You just point
at the "next" element. So, yeah even though we're exposing "cursor goes in-
between" semantics, we're really implementing it as "cursor is on", and just
pretending everything happens before or after that point.

But there's a reason! The splice use-case wants to let the user choose
whether they end up before or after the list, but this is... horribly
complicated to express with the std API! They have splice_after and
splice_before, but neither changes the cursor's position, so really you'd need
splice_after_before and splice_after_after...

Wait no I'm being silly. In the std API you can just choose the node you
want to end up on, and then use splice_after/before as appropriate.

squints
Wait is the std API actually good.
skims through the code
Ok the std API is actually good.
Alright screw it, we're going to implement the RFC. Or at least the

interesting parts of it.
I have my quibbles with some of the terminology std uses, but cursors

are always going to be a bit brain-melty: iter().next_back() gets you
back() , so that's good, but then each subsequent next_back() is actually
bringing you closer to the front and indeed, every pointer we follow is a
"front" pointer! If I think about this seeming-paradox too much it hurts my
brain, so, I can certainly respect going for different terminology to avoid
this.

The std API talks about operations before "before" (towards the front)
and "after" (towards the back), and instead of next and next_back , it...
calls things move_next and move_prev . HRM. Ok so they're getting into a

https://github.com/rust-lang/rfcs/blob/master/text/2570-linked-list-cursors.md

bit of the iterator terminology, but at least next doesn't evoke front/back,
and helps you orient how things behave compared to the iterators.

We can work with this.

Implementing Cursors
Ok so we're only going to bother with std's CursorMut because the

immutable version isn't actually interesting. Just like my original design, it
has a "ghost" element that contains None to indicate the start/end of the list,
and you can "walk over it" to wrap around to the other side of the list. To
implement it, we're going to need:

A pointer to the current node
A pointer to the list
The current index

Wait what's the index when we point at the "ghost"?
furrows brow ... checks std ... dislikes std's answer
Ok so quite reasonably index on a Cursor returns an Option<usize> .

The std implementation does a bunch of junk to avoid storing it as an
Option but... we're a linked list, it's fine. Also std has the
cursor_front/cursor_back stuff which starts the cursor on the front/back
elements, which feels intuitive, but then has to do something weird when
the list is empty.

You can implement that stuff if you want, but I'm going to cut down on
all the repetitive gunk and corner cases and just make a bare cursor_mut
method that starts at the ghost, and people can use move_next/move_prev
to get the one they want (and then you can wrap that up as cursor_front if
you really want).

Let's get cracking:
pub struct CursorMut<'a, T> {
 cur: Link<T>,
 list: &'a mut LinkedList<T>,
 index: Option<usize>,
}

Pretty straight-forward, one field for each item of our bulleted list! Now
the cursor_mut method:

impl<T> LinkedList<T> {
 pub fn cursor_mut(&mut self) -> CursorMut<T> {
 CursorMut {
 list: self,
 cur: None,
 index: None,
 }
 }
}

Since we're starting at the ghost, we can just start with everything as
None, nice and simple! Next, movement:
impl<'a, T> CursorMut<'a, T> {
 pub fn index(&self) -> Option<usize> {
 self.index
 }

 pub fn move_next(&mut self) {
 if let Some(cur) = self.cur {
 unsafe {
 // We're on a real element, go to its next
(back)
 self.cur = (*cur.as_ptr()).back;
 if self.cur.is_some() {
 *self.index.as_mut().unwrap() += 1;
 } else {
 // We just walked to the ghost, no more
index
 self.index = None;
 }
 }
 } else if !self.list.is_empty() {
 // We're at the ghost, and there is a real front,
so move to it!
 self.cur = self.list.front;
 self.index = Some(0)

 } else {
 // We're at the ghost, but that's the only
element... do nothing.
 }
 }
}

So there's 4 interesting cases:

The normal case
The normal case, but we reach the ghost
The ghost case, where we go to the front of the list
The ghost case, but the list is empty, so do nothing

move_prev is the exact same logic, but with front/back inverted and the
indexing changes inverted:
pub fn move_prev(&mut self) {
 if let Some(cur) = self.cur {
 unsafe {
 // We're on a real element, go to its previous
(front)
 self.cur = (*cur.as_ptr()).front;
 if self.cur.is_some() {
 *self.index.as_mut().unwrap() -= 1;
 } else {
 // We just walked to the ghost, no more index
 self.index = None;
 }
 }
 } else if !self.list.is_empty() {
 // We're at the ghost, and there is a real back, so
move to it!
 self.cur = self.list.back;
 self.index = Some(self.list.len - 1)
 } else {
 // We're at the ghost, but that's the only element...
do nothing.

 }
}

Next let's add some methods to look at the elements around the cursor:
current, peek_next, and peek_prev. A Very Important Note: these methods
must borrow our cursor by &mut self , and the results must be tied to that
borrow. We cannot let the user get multiple copies of a mutable reference,
and we cannot let them use any of our insert/remove/split/splice APIs while
holding onto such a reference!

Thankfully, this is the default assumption rust makes when you use
lifetime elision, so, we will just do the right thing by default!
pub fn current(&mut self) -> Option<&mut T> {
 unsafe {
 self.cur.map(|node| &mut (*node.as_ptr()).elem)
 }
}

pub fn peek_next(&mut self) -> Option<&mut T> {
 unsafe {
 self.cur
 .and_then(|node| (*node.as_ptr()).back)
 .map(|node| &mut (*node.as_ptr()).elem)
 }
}

pub fn peek_prev(&mut self) -> Option<&mut T> {
 unsafe {
 self.cur
 .and_then(|node| (*node.as_ptr()).front)
 .map(|node| &mut (*node.as_ptr()).elem)
 }
}

Head empty, Option methods and (omitted) compiler errors do all
thinking now. I was skeptical about the Option<NonNull> stuff, but, god
damn it really just lets me autopilot this code. I've spent way too much time

writing array-based collections where you never get to use Option, wow
this is nice! ((*node.as_ptr()) is still miserable but, that's just Rust's raw
pointers for you...)

Next we have a choice: we can either jump right to split and splice, the
entire point of these APIs, or we can take a baby-step with single element
insert/remove. I have a feeling we're just going to want to implement
insert/remove in terms of split and splice so... let's just do those first and see
where the cards fall (genuinely have no idea as I type this).

Split
First up, split_before and split_after, which return everything

before/after the current element as a LinkedList (stopping at the ghost
element, unless you're at the ghost, in which case we just return the whole
List and the cursor now points to an empty list):

squints ok this one is actually some non-trivial logic so we're going to
have to talk it out one step at a time.

I see 4 potentially interesting cases for split_before:

The normal case
The normal case, but prev is the ghost
The ghost case, where we return the whole list and become empty
The ghost case, but the list is empty, so do nothing and return the
empty list

Let's start with the corner cases. The third case I believe is just
mem::replace(self.list, LinkedList::new())

Right? We become empty, we return the whole list, and our fields were
already None, so nothing to update. Nice. Oh hey, this also Does The Right
Thing on the fourth case too!

So now the normal cases... ok I'm going to need some ASCII diagrams
for this. In the most general case, we have something like this:
list.front -> A <-> B <-> C <-> D <- list.back
 ^
 cur

And we want to produce this:
list.front -> C <-> D <- list.back
 ^
 cur

return.front -> A <-> B <- return.back

So we need to break the link between cur and prev, and... god so much
needs to change. Ok I just need to break this up into steps so I can convince
myself it makes sense. This will be a bit over-verbose but I can at least
make sense of it:
pub fn split_before(&mut self) -> LinkedList<T> {
 if let Some(cur) = self.cur {
 // We are pointing at a real element, so the list is
non-empty.
 unsafe {
 // Current state
 let old_len = self.list.len;
 let old_idx = self.index.unwrap();
 let prev = (*cur.as_ptr()).front;

 // What self will become
 let new_len = old_len - old_idx;
 let new_front = self.cur;
 let new_back = self.list.back;
 let new_idx = Some(0);

 // What the output will become
 let output_len = old_len - new_len;
 let output_front = self.list.front;
 let output_back = prev;

 // Break the links between cur and prev
 if let Some(prev) = prev {
 (*cur.as_ptr()).front = None;
 (*prev.as_ptr()).back = None;
 }

 // Produce the result:
 self.list.len = new_len;
 self.list.front = new_front;
 self.list.back = new_back;

 self.index = new_idx;

 LinkedList {
 front: output_front,
 back: output_back,
 len: output_len,
 _boo: PhantomData,
 }
 }
 } else {
 // We're at the ghost, just replace our list with an
empty one.
 // No other state needs to be changed.
 std::mem::replace(self.list, LinkedList::new())
 }
}

Note that this if-let is handling the "normal case, but prev is the ghost"
situation:
if let Some(prev) = prev {
 (*cur.as_ptr()).front = None;
 (*prev.as_ptr()).back = None;
}

If you want to, you can squash that all together and apply optimizations
like:

fold the two accesses to (*cur.as_ptr()).front as just
(*cur.as_ptr()).front.take()

note that new_back is a noop, and just remove both
As far as I can tell, everything else just incidentally Does The Right

Thing otherwise. We'll see when we write tests! (copy-paste to make
split_after)

I am done Making Mistakes and I am just going to try to write the most
foolproof code I can. This is how I actually write collections: just break
things down into trivial steps and cases until it can fit in my head and seems

foolproof. Then write a ton of tests until I'm convinced I didn't manage to
mess it up still.

Because most of the collections work I've done is extremely unsafe I
don't generally get to rely on the compiler catching mistakes, and miri didn't
exist back in the day! So I just need to squint at a problem until my head
hurts and try my hardest to Never Ever Ever Make A Mistake.

Don't write Unsafe Rust Code! Safe Rust is so much better!!!!

Splice
Just one more boss to fight, splice_before and splice_after, which I

expect to be the corner-casiest one of them all. The two functions take in a
LinkedList and grafts its contents into outrs. Our list could be empty, their
list could be empty, we've got ghosts to deal with... sigh let's just take it one
step at a time with splice_before.

If their list is empty, we don't need to do anything.
If our list is empty, then our list just becomes their list.
If we're pointing at the ghost, then this appends to the back (change
list.back)
If we're pointing at the first element (0), this this appends to the front
(change list.front)
In the general case, we do a whole lot of pointer fuckery.

The general case is this:
input.front -> 1 <-> 2 <- input.back

 list.front -> A <-> B <-> C <- list.back
 ^
 cur

Becoming this:
list.front -> A <-> 1 <-> 2 <-> B <-> C <- list.back

Ok? Ok. Let's write that out... TAKES A HUGE BREATH AND
PLUNGES IN:
 pub fn splice_before(&mut self, mut input: LinkedList<T>)
{
 unsafe {
 if input.is_empty() {
 // Input is empty, do nothing.
 } else if let Some(cur) = self.cur {
 if let Some(0) = self.index {
 // We're appending to the front, see

append to back
 (*cur.as_ptr()).front = input.back.take();
 (*input.back.unwrap().as_ptr()).back =
Some(cur);
 self.list.front = input.front.take();

 // Index moves forward by input length
 *self.index.as_mut().unwrap() +=
input.len;
 self.list.len += input.len;
 input.len = 0;
 } else {
 // General Case, no boundaries, just
internal fixups
 let prev = (*cur.as_ptr()).front.unwrap();
 let in_front =
input.front.take().unwrap();
 let in_back = input.back.take().unwrap();

 (*prev.as_ptr()).back = Some(in_front);
 (*in_front.as_ptr()).front = Some(prev);
 (*cur.as_ptr()).front = Some(in_back);
 (*in_back.as_ptr()).back = Some(cur);

 // Index moves forward by input length
 *self.index.as_mut().unwrap() +=
input.len;
 self.list.len += input.len;
 input.len = 0;
 }
 } else if let Some(back) = self.list.back {
 // We're on the ghost but non-empty, append to
the back
 // We can either `take` the input's pointers
or `mem::forget`
 // it. Using take is more responsible in case

we do custom
 // allocators or something that also needs to
be cleaned up!
 (*back.as_ptr()).back = input.front.take();
 (*input.front.unwrap().as_ptr()).front =
Some(back);
 self.list.back = input.back.take();
 self.list.len += input.len;
 // Not necessary but Polite To Do
 input.len = 0;
 } else {
 // We're empty, become the input, remain on
the ghost
 *self.list = input;
 }
 }
 }

Ok this one is genuinely horrendous, and really is feeling that
Option<NonNull> pain now. But there's a lot of cleanups we can do. For
one, we can pull this code out to the very end, because we always want to
do it. I don't love (although sometimes it's a noop, and setting input.len is
more a matter of paranoia about future extensions to the code):
self.list.len += input.len;
input.len = 0;

Use of moved value: input

Ah, right, in the "we're empty" case we're moving the list. Let's replace
that with a swap:
// We're empty, become the input, remain on the ghost
std::mem::swap(self.list, &mut input);

In this case the writes will be pointless, but, they still work (we could
probably also early-return in this branch to appease the compiler).

This unwrap is just a consequence of me thinking about the cases
backwards, and can be fixed by making the if-let ask the right question:

if let Some(0) = self.index {

} else {
 let prev = (*cur.as_ptr()).front.unwrap();
}

Adjusting the index is duplicated inside the branches, so can also be
hoisted out:
*self.index.as_mut().unwrap() += input.len;

Ok, putting that all together we get this:
if input.is_empty() {
 // Input is empty, do nothing.
} else if let Some(cur) = self.cur {
 // Both lists are non-empty
 if let Some(prev) = (*cur.as_ptr()).front {
 // General Case, no boundaries, just internal fixups
 let in_front = input.front.take().unwrap();
 let in_back = input.back.take().unwrap();

 (*prev.as_ptr()).back = Some(in_front);
 (*in_front.as_ptr()).front = Some(prev);
 (*cur.as_ptr()).front = Some(in_back);
 (*in_back.as_ptr()).back = Some(cur);
 } else {
 // We're appending to the front, see append to back
below
 (*cur.as_ptr()).front = input.back.take();
 (*input.back.unwrap().as_ptr()).back = Some(cur);
 self.list.front = input.front.take();
 }
 // Index moves forward by input length
 *self.index.as_mut().unwrap() += input.len;
} else if let Some(back) = self.list.back {
 // We're on the ghost but non-empty, append to the back
 // We can either `take` the input's pointers or

`mem::forget`
 // it. Using take is more responsible in case we do custom
 // allocators or something that also needs to be cleaned
up!
 (*back.as_ptr()).back = input.front.take();
 (*input.front.unwrap().as_ptr()).front = Some(back);
 self.list.back = input.back.take();

} else {
 // We're empty, become the input, remain on the ghost
 std::mem::swap(self.list, &mut input);
}

self.list.len += input.len;
// Not necessary but Polite To Do
input.len = 0;

// Input dropped here

Alright this still sucks, but mostly because of -- nope ok just spotted a
bug:
 (*back.as_ptr()).back = input.front.take();
 (*input.front.unwrap().as_ptr()).front = Some(back);

We take input.front and then unwrap it on the next line! sigh and we do
the same thing in the equivalent mirror case. We would have caught this
instantly in tests, but, we're trying to be Perfect now, and I'm just kinda
doing this live, and this is the exact moment where I saw it. This is what I
get for not being my usual tedious self and doing things in phases. More
explicit!
// We can either `take` the input's pointers or `mem::forget`
// it. Using `take` is more responsible in case we ever do
custom
// allocators or something that also needs to be cleaned up!
if input.is_empty() {
 // Input is empty, do nothing.

} else if let Some(cur) = self.cur {
 // Both lists are non-empty
 let in_front = input.front.take().unwrap();
 let in_back = input.back.take().unwrap();

 if let Some(prev) = (*cur.as_ptr()).front {
 // General Case, no boundaries, just internal fixups
 (*prev.as_ptr()).back = Some(in_front);
 (*in_front.as_ptr()).front = Some(prev);
 (*cur.as_ptr()).front = Some(in_back);
 (*in_back.as_ptr()).back = Some(cur);
 } else {
 // No prev, we're appending to the front
 (*cur.as_ptr()).front = Some(in_back);
 (*in_back.as_ptr()).back = Some(cur);
 self.list.front = Some(in_front);
 }
 // Index moves forward by input length
 *self.index.as_mut().unwrap() += input.len;
} else if let Some(back) = self.list.back {
 // We're on the ghost but non-empty, append to the back
 let in_front = input.front.take().unwrap();
 let in_back = input.back.take().unwrap();

 (*back.as_ptr()).back = Some(in_front);
 (*in_front.as_ptr()).front = Some(back);
 self.list.back = Some(in_back);
} else {
 // We're empty, become the input, remain on the ghost
 std::mem::swap(self.list, &mut input);
}

self.list.len += input.len;
// Not necessary but Polite To Do
input.len = 0;

// Input dropped here

Alright now this, this I can tolerate. The only complaints I have are that
we don't dedupe in_front/in_back (probably we could rejig our conditions
but eh whatever). Really this is basically what you would write in C but
with Option<NonNull> gunk making it tedious. I can live with that. Well
no we should just make raw pointers better for this stuff. But, out of scope
for this book.

Anyway, I am absolutely exhausted after that, so, insert and remove
and all the other APIs can be left as an excercise to the reader.

Here's the final code for our Cursor with my attempt at copy-pasting the
combinatorics. Did I get it right? I'll only find out when I write the next
chapter and test this monstrosity!
pub struct CursorMut<'a, T> {
 list: &'a mut LinkedList<T>,
 cur: Link<T>,
 index: Option<usize>,
}

impl<T> LinkedList<T> {
 pub fn cursor_mut(&mut self) -> CursorMut<T> {
 CursorMut {
 list: self,
 cur: None,
 index: None,
 }
 }
}

impl<'a, T> CursorMut<'a, T> {
 pub fn index(&self) -> Option<usize> {
 self.index
 }

 pub fn move_next(&mut self) {
 if let Some(cur) = self.cur {
 unsafe {
 // We're on a real element, go to its next
(back)
 self.cur = (*cur.as_ptr()).back;
 if self.cur.is_some() {
 *self.index.as_mut().unwrap() += 1;
 } else {
 // We just walked to the ghost, no more
index
 self.index = None;
 }
 }
 } else if !self.list.is_empty() {
 // We're at the ghost, and there is a real front,
so move to it!
 self.cur = self.list.front;
 self.index = Some(0)
 } else {
 // We're at the ghost, but that's the only
element... do nothing.
 }
 }

 pub fn move_prev(&mut self) {
 if let Some(cur) = self.cur {
 unsafe {
 // We're on a real element, go to its previous
(front)
 self.cur = (*cur.as_ptr()).front;
 if self.cur.is_some() {
 *self.index.as_mut().unwrap() -= 1;
 } else {
 // We just walked to the ghost, no more
index

 self.index = None;
 }
 }
 } else if !self.list.is_empty() {
 // We're at the ghost, and there is a real back,
so move to it!
 self.cur = self.list.back;
 self.index = Some(self.list.len - 1)
 } else {
 // We're at the ghost, but that's the only
element... do nothing.
 }
 }

 pub fn current(&mut self) -> Option<&mut T> {
 unsafe {
 self.cur.map(|node| &mut (*node.as_ptr()).elem)
 }
 }

 pub fn peek_next(&mut self) -> Option<&mut T> {
 unsafe {
 self.cur
 .and_then(|node| (*node.as_ptr()).back)
 .map(|node| &mut (*node.as_ptr()).elem)
 }
 }

 pub fn peek_prev(&mut self) -> Option<&mut T> {
 unsafe {
 self.cur
 .and_then(|node| (*node.as_ptr()).front)
 .map(|node| &mut (*node.as_ptr()).elem)
 }
 }

 pub fn split_before(&mut self) -> LinkedList<T> {
 // We have this:
 //
 // list.front -> A <-> B <-> C <-> D <- list.back
 // ^
 // cur
 //
 //
 // And we want to produce this:
 //
 // list.front -> C <-> D <- list.back
 // ^
 // cur
 //
 //
 // return.front -> A <-> B <- return.back
 //
 if let Some(cur) = self.cur {
 // We are pointing at a real element, so the list
is non-empty.
 unsafe {
 // Current state
 let old_len = self.list.len;
 let old_idx = self.index.unwrap();
 let prev = (*cur.as_ptr()).front;

 // What self will become
 let new_len = old_len - old_idx;
 let new_front = self.cur;
 let new_back = self.list.back;
 let new_idx = Some(0);

 // What the output will become
 let output_len = old_len - new_len;
 let output_front = self.list.front;
 let output_back = prev;

 // Break the links between cur and prev
 if let Some(prev) = prev {
 (*cur.as_ptr()).front = None;
 (*prev.as_ptr()).back = None;
 }

 // Produce the result:
 self.list.len = new_len;
 self.list.front = new_front;
 self.list.back = new_back;
 self.index = new_idx;

 LinkedList {
 front: output_front,
 back: output_back,
 len: output_len,
 _boo: PhantomData,
 }
 }
 } else {
 // We're at the ghost, just replace our list with
an empty one.
 // No other state needs to be changed.
 std::mem::replace(self.list, LinkedList::new())
 }
 }

 pub fn split_after(&mut self) -> LinkedList<T> {
 // We have this:
 //
 // list.front -> A <-> B <-> C <-> D <- list.back
 // ^
 // cur
 //
 //

 // And we want to produce this:
 //
 // list.front -> A <-> B <- list.back
 // ^
 // cur
 //
 //
 // return.front -> C <-> D <- return.back
 //
 if let Some(cur) = self.cur {
 // We are pointing at a real element, so the list
is non-empty.
 unsafe {
 // Current state
 let old_len = self.list.len;
 let old_idx = self.index.unwrap();
 let next = (*cur.as_ptr()).back;

 // What self will become
 let new_len = old_idx + 1;
 let new_back = self.cur;
 let new_front = self.list.front;
 let new_idx = Some(old_idx);

 // What the output will become
 let output_len = old_len - new_len;
 let output_front = next;
 let output_back = self.list.back;

 // Break the links between cur and next
 if let Some(next) = next {
 (*cur.as_ptr()).back = None;
 (*next.as_ptr()).front = None;
 }

 // Produce the result:

 self.list.len = new_len;
 self.list.front = new_front;
 self.list.back = new_back;
 self.index = new_idx;

 LinkedList {
 front: output_front,
 back: output_back,
 len: output_len,
 _boo: PhantomData,
 }
 }
 } else {
 // We're at the ghost, just replace our list with
an empty one.
 // No other state needs to be changed.
 std::mem::replace(self.list, LinkedList::new())
 }
 }

 pub fn splice_before(&mut self, mut input: LinkedList<T>)
{
 // We have this:
 //
 // input.front -> 1 <-> 2 <- input.back
 //
 // list.front -> A <-> B <-> C <- list.back
 // ^
 // cur
 //
 //
 // Becoming this:
 //
 // list.front -> A <-> 1 <-> 2 <-> B <-> C <-
list.back
 // ^

 // cur
 //
 unsafe {
 // We can either `take` the input's pointers or
`mem::forget`
 // it. Using `take` is more responsible in case we
ever do custom
 // allocators or something that also needs to be
cleaned up!
 if input.is_empty() {
 // Input is empty, do nothing.
 } else if let Some(cur) = self.cur {
 // Both lists are non-empty
 let in_front = input.front.take().unwrap();
 let in_back = input.back.take().unwrap();

 if let Some(prev) = (*cur.as_ptr()).front {
 // General Case, no boundaries, just
internal fixups
 (*prev.as_ptr()).back = Some(in_front);
 (*in_front.as_ptr()).front = Some(prev);
 (*cur.as_ptr()).front = Some(in_back);
 (*in_back.as_ptr()).back = Some(cur);
 } else {
 // No prev, we're appending to the front
 (*cur.as_ptr()).front = Some(in_back);
 (*in_back.as_ptr()).back = Some(cur);
 self.list.front = Some(in_front);
 }
 // Index moves forward by input length
 *self.index.as_mut().unwrap() += input.len;
 } else if let Some(back) = self.list.back {
 // We're on the ghost but non-empty, append to
the back
 let in_front = input.front.take().unwrap();
 let in_back = input.back.take().unwrap();

 (*back.as_ptr()).back = Some(in_front);
 (*in_front.as_ptr()).front = Some(back);
 self.list.back = Some(in_back);
 } else {
 // We're empty, become the input, remain on
the ghost
 std::mem::swap(self.list, &mut input);
 }

 self.list.len += input.len;
 // Not necessary but Polite To Do
 input.len = 0;

 // Input dropped here
 }
 }

 pub fn splice_after(&mut self, mut input: LinkedList<T>) {
 // We have this:
 //
 // input.front -> 1 <-> 2 <- input.back
 //
 // list.front -> A <-> B <-> C <- list.back
 // ^
 // cur
 //
 //
 // Becoming this:
 //
 // list.front -> A <-> B <-> 1 <-> 2 <-> C <-
list.back
 // ^
 // cur
 //
 unsafe {

 // We can either `take` the input's pointers or
`mem::forget`
 // it. Using `take` is more responsible in case we
ever do custom
 // allocators or something that also needs to be
cleaned up!
 if input.is_empty() {
 // Input is empty, do nothing.
 } else if let Some(cur) = self.cur {
 // Both lists are non-empty
 let in_front = input.front.take().unwrap();
 let in_back = input.back.take().unwrap();

 if let Some(next) = (*cur.as_ptr()).back {
 // General Case, no boundaries, just
internal fixups
 (*next.as_ptr()).front = Some(in_back);
 (*in_back.as_ptr()).back = Some(next);
 (*cur.as_ptr()).back = Some(in_front);
 (*in_front.as_ptr()).front = Some(cur);
 } else {
 // No next, we're appending to the back
 (*cur.as_ptr()).back = Some(in_front);
 (*in_front.as_ptr()).front = Some(cur);
 self.list.back = Some(in_back);
 }
 // Index doesn't change
 } else if let Some(front) = self.list.front {
 // We're on the ghost but non-empty, append to
the front
 let in_front = input.front.take().unwrap();
 let in_back = input.back.take().unwrap();

 (*front.as_ptr()).front = Some(in_back);
 (*in_back.as_ptr()).back = Some(front);
 self.list.front = Some(in_front);

 } else {
 // We're empty, become the input, remain on
the ghost
 std::mem::swap(self.list, &mut input);
 }

 self.list.len += input.len;
 // Not necessary but Polite To Do
 input.len = 0;

 // Input dropped here
 }
 }
}

Testing Cursors
Time to find out how many horribly embarassing mistakes I made in the

previous section!
Oh god we made our API unlike both std and the old impl. Alright well

I'm just gonna hastily cobble together something from both of them. Yeah
let's "borrow" these tests from std:
 #[test]
 fn test_cursor_move_peek() {
 let mut m: LinkedList<u32> = LinkedList::new();
 m.extend([1, 2, 3, 4, 5, 6]);
 let mut cursor = m.cursor_mut();
 cursor.move_next();
 assert_eq!(cursor.current(), Some(&mut 1));
 assert_eq!(cursor.peek_next(), Some(&mut 2));
 assert_eq!(cursor.peek_prev(), None);
 assert_eq!(cursor.index(), Some(0));
 cursor.move_prev();
 assert_eq!(cursor.current(), None);
 assert_eq!(cursor.peek_next(), Some(&mut 1));
 assert_eq!(cursor.peek_prev(), Some(&mut 6));
 assert_eq!(cursor.index(), None);
 cursor.move_next();
 cursor.move_next();
 assert_eq!(cursor.current(), Some(&mut 2));
 assert_eq!(cursor.peek_next(), Some(&mut 3));
 assert_eq!(cursor.peek_prev(), Some(&mut 1));
 assert_eq!(cursor.index(), Some(1));

 let mut cursor = m.cursor_mut();
 cursor.move_prev();
 assert_eq!(cursor.current(), Some(&mut 6));
 assert_eq!(cursor.peek_next(), None);
 assert_eq!(cursor.peek_prev(), Some(&mut 5));

 assert_eq!(cursor.index(), Some(5));
 cursor.move_next();
 assert_eq!(cursor.current(), None);
 assert_eq!(cursor.peek_next(), Some(&mut 1));
 assert_eq!(cursor.peek_prev(), Some(&mut 6));
 assert_eq!(cursor.index(), None);
 cursor.move_prev();
 cursor.move_prev();
 assert_eq!(cursor.current(), Some(&mut 5));
 assert_eq!(cursor.peek_next(), Some(&mut 6));
 assert_eq!(cursor.peek_prev(), Some(&mut 4));
 assert_eq!(cursor.index(), Some(4));
 }

 #[test]
 fn test_cursor_mut_insert() {
 let mut m: LinkedList<u32> = LinkedList::new();
 m.extend([1, 2, 3, 4, 5, 6]);
 let mut cursor = m.cursor_mut();
 cursor.move_next();
 cursor.splice_before(Some(7).into_iter().collect());
 cursor.splice_after(Some(8).into_iter().collect());
 // check_links(&m);
 assert_eq!(m.iter().cloned().collect::<Vec<_>>(), &[7,
1, 8, 2, 3, 4, 5, 6]);
 let mut cursor = m.cursor_mut();
 cursor.move_next();
 cursor.move_prev();
 cursor.splice_before(Some(9).into_iter().collect());
 cursor.splice_after(Some(10).into_iter().collect());
 check_links(&m);
 assert_eq!(m.iter().cloned().collect::<Vec<_>>(), &
[10, 7, 1, 8, 2, 3, 4, 5, 6, 9]);

 /* remove_current not impl'd
 let mut cursor = m.cursor_mut();

 cursor.move_next();
 cursor.move_prev();
 assert_eq!(cursor.remove_current(), None);
 cursor.move_next();
 cursor.move_next();
 assert_eq!(cursor.remove_current(), Some(7));
 cursor.move_prev();
 cursor.move_prev();
 cursor.move_prev();
 assert_eq!(cursor.remove_current(), Some(9));
 cursor.move_next();
 assert_eq!(cursor.remove_current(), Some(10));
 check_links(&m);
 assert_eq!(m.iter().cloned().collect::<Vec<_>>(), &[1,
8, 2, 3, 4, 5, 6]);
 */

 let mut cursor = m.cursor_mut();
 cursor.move_next();
 let mut p: LinkedList<u32> = LinkedList::new();
 p.extend([100, 101, 102, 103]);
 let mut q: LinkedList<u32> = LinkedList::new();
 q.extend([200, 201, 202, 203]);
 cursor.splice_after(p);
 cursor.splice_before(q);
 check_links(&m);
 assert_eq!(
 m.iter().cloned().collect::<Vec<_>>(),
 &[200, 201, 202, 203, 1, 100, 101, 102, 103, 8, 2,
3, 4, 5, 6]
);
 let mut cursor = m.cursor_mut();
 cursor.move_next();
 cursor.move_prev();
 let tmp = cursor.split_before();
 assert_eq!(m.into_iter().collect::<Vec<_>>(), &[]);

 m = tmp;
 let mut cursor = m.cursor_mut();
 cursor.move_next();
 cursor.move_next();
 cursor.move_next();
 cursor.move_next();
 cursor.move_next();
 cursor.move_next();
 cursor.move_next();
 let tmp = cursor.split_after();
 assert_eq!(tmp.into_iter().collect::<Vec<_>>(), &[102,
103, 8, 2, 3, 4, 5, 6]);
 check_links(&m);
 assert_eq!(m.iter().cloned().collect::<Vec<_>>(), &
[200, 201, 202, 203, 1, 100, 101]);
 }

 fn check_links<T>(_list: &LinkedList<T>) {
 // would be good to do this!
 }

Moment of truth!
cargo test

 Compiling linked-list v0.0.3
 Finished test [unoptimized + debuginfo] target(s) in 1.03s
 Running unittests src\lib.rs

running 14 tests
test test::test_basic_front ... ok
test test::test_basic ... ok
test test::test_debug ... ok
test test::test_iterator_mut_double_end ... ok
test test::test_ord ... ok
test test::test_cursor_move_peek ... FAILED
test test::test_cursor_mut_insert ... FAILED

test test::test_iterator ... ok
test test::test_mut_iter ... ok
test test::test_eq ... ok
test test::test_rev_iter ... ok
test test::test_iterator_double_end ... ok
test test::test_hashmap ... ok
test test::test_ord_nan ... ok

failures:

---- test::test_cursor_move_peek stdout ----
thread 'test::test_cursor_move_peek' panicked at 'assertion
failed: `(left == right)`
 left: `None`,
 right: `Some(1)`', src\lib.rs:1079:9
note: run with `RUST_BACKTRACE=1` environment variable to
display a backtrace

---- test::test_cursor_mut_insert stdout ----
thread 'test::test_cursor_mut_insert' panicked at 'assertion
failed: `(left == right)`
 left: `[200, 201, 202, 203, 10, 100, 101, 102, 103, 7, 1, 8,
2, 3, 4, 5, 6, 9]`,
 right: `[200, 201, 202, 203, 1, 100, 101, 102, 103, 8, 2, 3,
4, 5, 6]`', src\lib.rs:1153:9

failures:
 test::test_cursor_move_peek
 test::test_cursor_mut_insert

test result: FAILED. 12 passed; 2 failed; 0 ignored; 0
measured; 0 filtered out; finished in 0.00s

I'll admit, I had some hubris here and was hoping I nailed it. This is why
we write tests (but maybe I just did a bad job of porting the tests..?).

What's the first failure?
let mut m: LinkedList<u32> = LinkedList::new();
m.extend([1, 2, 3, 4, 5, 6]);
let mut cursor = m.cursor_mut();

cursor.move_next();
assert_eq!(cursor.current(), Some(&mut 1));
assert_eq!(cursor.peek_next(), Some(&mut 2));
assert_eq!(cursor.peek_prev(), None);
assert_eq!(cursor.index(), Some(0));

cursor.move_prev();
assert_eq!(cursor.current(), None);
assert_eq!(cursor.peek_next(), Some(&mut 1)); // DIES HERE

Geez I really messed up some basic functionality. Wait,

Head empty, Option methods and (omitted) compiler errors do all
thinking now.

Well I am nothing if not honest.
pub fn peek_next(&mut self) -> Option<&mut T> {
 unsafe {
 self.cur
 .and_then(|node| (*node.as_ptr()).back)
 .map(|node| &mut (*node.as_ptr()).elem)
 }
}

...Yeah this is just wrong. If self.cur is None, we aren't just supposed
to give up, we need to check self.list.front too, because we're on the
ghost! So we just need to add an or_else to the chain:
pub fn peek_next(&mut self) -> Option<&mut T> {
 unsafe {
 self.cur
 .and_then(|node| (*node.as_ptr()).back)
 .or_else(|| self.list.front)

 .map(|node| &mut (*node.as_ptr()).elem)
 }
}

pub fn peek_prev(&mut self) -> Option<&mut T> {
 unsafe {
 self.cur
 .and_then(|node| (*node.as_ptr()).front)
 .or_else(|| self.list.back)
 .map(|node| &mut (*node.as_ptr()).elem)
 }
}

Did that fix it?
---- test::test_cursor_move_peek stdout ----
thread 'test::test_cursor_move_peek' panicked at 'assertion
failed: `(left == right)`
 left: `Some(6)`,
 right: `None`', src\lib.rs:1078:9

Wait now it's wrong further back. Ok I need to stop head-emptying peek
because apparently it's a lot harder than I was willing to give it credit for.
Just trying to blindly chain these cases is a disaster, let's have a proper if for
the cases of ghost vs not:
pub fn peek_next(&mut self) -> Option<&mut T> {
 unsafe {
 let next = if let Some(cur) = self.cur {
 // Normal case, try to follow the cur node's back
pointer
 (*cur.as_ptr()).back
 } else {
 // Ghost case, try to use the list's front pointer
 self.list.front
 };

 // Yield the element if the next node exists

 next.map(|node| &mut (*node.as_ptr()).elem)
 }
}

pub fn peek_prev(&mut self) -> Option<&mut T> {
 unsafe {
 let prev = if let Some(cur) = self.cur {
 // Normal case, try to follow the cur node's front
pointer
 (*cur.as_ptr()).front
 } else {
 // Ghost case, try to use the list's back pointer
 self.list.back
 };

 // Yield the element if the prev node exists
 prev.map(|node| &mut (*node.as_ptr()).elem)
 }
}

Feelin' confident about this one!
failures:

---- test::test_cursor_mut_insert stdout ----
thread 'test::test_cursor_mut_insert' panicked at 'assertion
failed: `(left == right)`
 left: `[200, 201, 202, 203, 10, 100, 101, 102, 103, 7, 1, 8,
2, 3, 4, 5, 6, 9]`,
 right: `[200, 201, 202, 203, 1, 100, 101, 102, 103, 8, 2, 3,
4, 5, 6]`', src\lib.rs:1168:9
note: run with `RUST_BACKTRACE=1` environment variable to
display a backtrace

failures:
 test::test_cursor_mut_insert

test result: FAILED. 13 passed; 1 failed; 0 ignored; 0
measured; 0 filtered out; finished in 0.00s

Yesss. Ok one more failure to go... oh.
Did you notice the part where I commented out some code for testing

remove_current? Yeah I wasn't paying attention to the fact that this test is
stateful. Let's just create a new list with the state the remove_current part
would have left us in:
let mut m: LinkedList<u32> = LinkedList::new();
m.extend([1, 8, 2, 3, 4, 5, 6]);

 cargo test
 Compiling linked-list v0.0.3
 Finished test [unoptimized + debuginfo] target(s) in 0.70s
 Running unittests src\lib.rs

running 14 tests
test test::test_basic_front ... ok
test test::test_basic ... ok
test test::test_cursor_move_peek ... ok
test test::test_eq ... ok
test test::test_cursor_mut_insert ... ok
test test::test_iterator ... ok
test test::test_iterator_double_end ... ok
test test::test_ord_nan ... ok
test test::test_mut_iter ... ok
test test::test_hashmap ... ok
test test::test_debug ... ok
test test::test_ord ... ok
test test::test_iterator_mut_double_end ... ok
test test::test_rev_iter ... ok

test result: ok. 14 passed; 0 failed; 0 ignored; 0 measured; 0
filtered out; finished in 0.00s

 Doc-tests linked-list

running 1 test
test src\lib.rs - assert_properties::iter_mut_invariant (line
803) - compile fail ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0
filtered out; finished in 0.12s

Heyyyy look at thaaat... ok now I'm getting paranoid. Let's properly fill
in check_links and test it under miri:
fn check_links<T: Eq + std::fmt::Debug>(list: &LinkedList<T>)
{
 let from_front: Vec<_> = list.iter().collect();
 let from_back: Vec<_> = list.iter().rev().collect();
 let re_reved: Vec<_> =
from_back.into_iter().rev().collect();

 assert_eq!(from_front, re_reved);
}

Is this the best way to do this? No. Is it fine? Yes.
$env:MIRIFLAGS="-Zmiri-tag-raw-pointers"
cargo miri test
 Compiling linked-list v0.0.3
 Finished test [unoptimized + debuginfo] target(s) in 0.25s
 Running unittests src\lib.rs

running 14 tests
test test::test_basic ... ok
test test::test_basic_front ... ok
test test::test_cursor_move_peek ... ok
test test::test_cursor_mut_insert ... ok
test test::test_debug ... ok
test test::test_eq ... ok
test test::test_hashmap ... ok

test test::test_iterator ... ok
test test::test_iterator_double_end ... ok
test test::test_iterator_mut_double_end ... ok
test test::test_mut_iter ... ok
test test::test_ord ... ok
test test::test_ord_nan ... ok
test test::test_rev_iter ... ok

test result: ok. 14 passed; 0 failed; 0 ignored; 0 measured; 0
filtered out

 Doc-tests linked-list

running 1 test
test src\lib.rs - assert_properties::iter_mut_invariant (line
803) - compile fail ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0
filtered out; finished in 0.10s

DONE.
Done.
We did it. We made a god damn production-quality LinkedList, with

basically all the same functionality as the one in std. Are we missing little
convenience methods here and there? Absolutely. Will I add them into the
final published version of the crate? Probably!

But, I am, So Very Tired.
So. We win.
Wait fuck. We're being production quality. Ok one last final boss: clippy.

cargo clippy

cargo clippy
 Checking linked-list v0.0.3
(C:\Users\ninte\dev\contain\linked-list)
warning: redundant pattern matching, consider using

`is_some()`
 --> src\lib.rs:189:19
 |
189 | while let Some(_) = self.pop_front() { }
 | ----------^^^^^^^------------------- help: try
this: `while self.pop_front().is_some()`
 |
 = note: `#[warn(clippy::redundant_pattern_matching)]` on
by default
 = note: this will change drop order of the result, as well
as all temporaries
 = note: add `#[allow(clippy::redundant_pattern_matching)]`
if this is important
 = help: for further information visit https://rust-
lang.github.io/rust-
clippy/master/index.html#redundant_pattern_matching

warning: method `into_iter` can be confused for the standard
trait method `std::iter::IntoIterator::into_iter`
 --> src\lib.rs:210:5
 |
210 | / pub fn into_iter(self) -> IntoIter<T> {
211 | | IntoIter {
212 | | list: self
213 | | }
214 | | }
 | |_____^
 |
 = note: `#[warn(clippy::should_implement_trait)]` on by
default
 = help: consider implementing the trait
`std::iter::IntoIterator` or choosing a less ambiguous method
name
 = help: for further information visit https://rust-
lang.github.io/rust-
clippy/master/index.html#should_implement_trait

warning: redundant pattern matching, consider using
`is_some()`
 --> src\lib.rs:228:19
 |
228 | while let Some(_) = self.pop_front() { }
 | ----------^^^^^^^------------------- help: try
this: `while self.pop_front().is_some()`
 |
 = note: this will change drop order of the result, as well
as all temporaries
 = note: add `#[allow(clippy::redundant_pattern_matching)]`
if this is important
 = help: for further information visit https://rust-
lang.github.io/rust-
clippy/master/index.html#redundant_pattern_matching

warning: re-implementing `PartialEq::ne` is unnecessary
 --> src\lib.rs:275:5
 |
275 | / fn ne(&self, other: &Self) -> bool {
276 | | self.len() != other.len() ||
self.iter().ne(other)
277 | | }
 | |_____^
 |
 = note: `#[warn(clippy::partialeq_ne_impl)]` on by default
 = help: for further information visit https://rust-
lang.github.io/rust-clippy/master/index.html#partialeq_ne_impl

warning: `linked-list` (lib) generated 4 warnings
 Finished dev [unoptimized + debuginfo] target(s) in 0.29s

Alright clippy, let's do this.
Complaint 1 (and 3): we use while let Some(_) = instead of while

.is_some() . The loop is empty so this truly doesn't matter but ok fine,

clippy, I'll do things your way.
Complaint 2: We have an actual inherent into_iter method. Wait, what

checks std ok, point to clippy. IntoIterator is in the prelude (and basically a
lang item) so, we don't need an inherent version too.

Complaint 4: we copied a weird cargocult from std. shrug fine I'll
remove it.
cargo clippy
 Finished dev [unoptimized + debuginfo] target(s) in 0.00s

Nice. Just one last thing to do before calling it production quality: fmt.
cargo fmt

...yeah it added some newlines and removed some trailing whitespace.
Nothing interesting.

WE ARE NOW TRULY FINALLY DONE!!!!!!!!!!!!!!!!!!!!!

Final Code
I can't believe I actually just made you sit through me actually

reimplementing std::collections::LinkedList from scratch, with all the fiddly
little pedantry and mistakes I made along the way.

I did it, the book is done, I can finally rest.
Alright, here's all 1200 lines of our complete rewrite of in all of its glory.

This should be the same text as this commit.
I'll put some polish and docs back on and publish 0.1.0 later.

use std::cmp::Ordering;
use std::fmt::{self, Debug};
use std::hash::{Hash, Hasher};
use std::iter::FromIterator;
use std::marker::PhantomData;
use std::ptr::NonNull;

pub struct LinkedList<T> {
 front: Link<T>,
 back: Link<T>,
 len: usize,
 _boo: PhantomData<T>,
}

type Link<T> = Option<NonNull<Node<T>>>;

struct Node<T> {
 front: Link<T>,
 back: Link<T>,
 elem: T,
}

pub struct Iter<'a, T> {
 front: Link<T>,
 back: Link<T>,

https://github.com/contain-rs/linked-list/commit/5b69cc29454595172a5167a09277660342b78092

 len: usize,
 _boo: PhantomData<&'a T>,
}

pub struct IterMut<'a, T> {
 front: Link<T>,
 back: Link<T>,
 len: usize,
 _boo: PhantomData<&'a mut T>,
}

pub struct IntoIter<T> {
 list: LinkedList<T>,
}

pub struct CursorMut<'a, T> {
 list: &'a mut LinkedList<T>,
 cur: Link<T>,
 index: Option<usize>,
}

impl<T> LinkedList<T> {
 pub fn new() -> Self {
 Self {
 front: None,
 back: None,
 len: 0,
 _boo: PhantomData,
 }
 }

 pub fn push_front(&mut self, elem: T) {
 // SAFETY: it's a linked-list, what do you want?
 unsafe {
 let new =
NonNull::new_unchecked(Box::into_raw(Box::new(Node {

 front: None,
 back: None,
 elem,
 })));
 if let Some(old) = self.front {
 // Put the new front before the old one
 (*old.as_ptr()).front = Some(new);
 (*new.as_ptr()).back = Some(old);
 } else {
 // If there's no front, then we're the empty
list and need
 // to set the back too.
 self.back = Some(new);
 }
 // These things always happen!
 self.front = Some(new);
 self.len += 1;
 }
 }

 pub fn push_back(&mut self, elem: T) {
 // SAFETY: it's a linked-list, what do you want?
 unsafe {
 let new =
NonNull::new_unchecked(Box::into_raw(Box::new(Node {
 back: None,
 front: None,
 elem,
 })));
 if let Some(old) = self.back {
 // Put the new back before the old one
 (*old.as_ptr()).back = Some(new);
 (*new.as_ptr()).front = Some(old);
 } else {
 // If there's no back, then we're the empty
list and need

 // to set the front too.
 self.front = Some(new);
 }
 // These things always happen!
 self.back = Some(new);
 self.len += 1;
 }
 }

 pub fn pop_front(&mut self) -> Option<T> {
 unsafe {
 // Only have to do stuff if there is a front node
to pop.
 self.front.map(|node| {
 // Bring the Box back to life so we can move
out its value and
 // Drop it (Box continues to magically
understand this for us).
 let boxed_node = Box::from_raw(node.as_ptr());
 let result = boxed_node.elem;

 // Make the next node into the new front.
 self.front = boxed_node.back;
 if let Some(new) = self.front {
 // Cleanup its reference to the removed
node
 (*new.as_ptr()).front = None;
 } else {
 // If the front is now null, then this
list is now empty!
 self.back = None;
 }

 self.len -= 1;
 result
 // Box gets implicitly freed here, knows there

is no T.
 })
 }
 }

 pub fn pop_back(&mut self) -> Option<T> {
 unsafe {
 // Only have to do stuff if there is a back node
to pop.
 self.back.map(|node| {
 // Bring the Box front to life so we can move
out its value and
 // Drop it (Box continues to magically
understand this for us).
 let boxed_node = Box::from_raw(node.as_ptr());
 let result = boxed_node.elem;

 // Make the next node into the new back.
 self.back = boxed_node.front;
 if let Some(new) = self.back {
 // Cleanup its reference to the removed
node
 (*new.as_ptr()).back = None;
 } else {
 // If the back is now null, then this list
is now empty!
 self.front = None;
 }

 self.len -= 1;
 result
 // Box gets implicitly freed here, knows there
is no T.
 })
 }
 }

 pub fn front(&self) -> Option<&T> {
 unsafe { self.front.map(|node| &(*node.as_ptr()).elem)
}
 }

 pub fn front_mut(&mut self) -> Option<&mut T> {
 unsafe { self.front.map(|node| &mut
(*node.as_ptr()).elem) }
 }

 pub fn back(&self) -> Option<&T> {
 unsafe { self.back.map(|node| &(*node.as_ptr()).elem)
}
 }

 pub fn back_mut(&mut self) -> Option<&mut T> {
 unsafe { self.back.map(|node| &mut
(*node.as_ptr()).elem) }
 }

 pub fn len(&self) -> usize {
 self.len
 }

 pub fn is_empty(&self) -> bool {
 self.len == 0
 }

 pub fn clear(&mut self) {
 // Oh look it's drop again
 while self.pop_front().is_some() {}
 }

 pub fn iter(&self) -> Iter<T> {
 Iter {

 front: self.front,
 back: self.back,
 len: self.len,
 _boo: PhantomData,
 }
 }

 pub fn iter_mut(&mut self) -> IterMut<T> {
 IterMut {
 front: self.front,
 back: self.back,
 len: self.len,
 _boo: PhantomData,
 }
 }

 pub fn cursor_mut(&mut self) -> CursorMut<T> {
 CursorMut {
 list: self,
 cur: None,
 index: None,
 }
 }
}

impl<T> Drop for LinkedList<T> {
 fn drop(&mut self) {
 // Pop until we have to stop
 while self.pop_front().is_some() {}
 }
}

impl<T> Default for LinkedList<T> {
 fn default() -> Self {
 Self::new()
 }

}

impl<T: Clone> Clone for LinkedList<T> {
 fn clone(&self) -> Self {
 let mut new_list = Self::new();
 for item in self {
 new_list.push_back(item.clone());
 }
 new_list
 }
}

impl<T> Extend<T> for LinkedList<T> {
 fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
 for item in iter {
 self.push_back(item);
 }
 }
}

impl<T> FromIterator<T> for LinkedList<T> {
 fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
 let mut list = Self::new();
 list.extend(iter);
 list
 }
}

impl<T: Debug> Debug for LinkedList<T> {
 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
 f.debug_list().entries(self).finish()
 }
}

impl<T: PartialEq> PartialEq for LinkedList<T> {
 fn eq(&self, other: &Self) -> bool {

 self.len() == other.len() && self.iter().eq(other)
 }
}

impl<T: Eq> Eq for LinkedList<T> {}

impl<T: PartialOrd> PartialOrd for LinkedList<T> {
 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
 self.iter().partial_cmp(other)
 }
}

impl<T: Ord> Ord for LinkedList<T> {
 fn cmp(&self, other: &Self) -> Ordering {
 self.iter().cmp(other)
 }
}

impl<T: Hash> Hash for LinkedList<T> {
 fn hash<H: Hasher>(&self, state: &mut H) {
 self.len().hash(state);
 for item in self {
 item.hash(state);
 }
 }
}

impl<'a, T> IntoIterator for &'a LinkedList<T> {
 type IntoIter = Iter<'a, T>;
 type Item = &'a T;

 fn into_iter(self) -> Self::IntoIter {
 self.iter()
 }
}

impl<'a, T> Iterator for Iter<'a, T> {
 type Item = &'a T;

 fn next(&mut self) -> Option<Self::Item> {
 // While self.front == self.back is a tempting
condition to check here,
 // it won't do the right for yielding the last
element! That sort of
 // thing only works for arrays because of "one-past-
the-end" pointers.
 if self.len > 0 {
 // We could unwrap front, but this is safer and
easier
 self.front.map(|node| unsafe {
 self.len -= 1;
 self.front = (*node.as_ptr()).back;
 &(*node.as_ptr()).elem
 })
 } else {
 None
 }
 }

 fn size_hint(&self) -> (usize, Option<usize>) {
 (self.len, Some(self.len))
 }
}

impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
 fn next_back(&mut self) -> Option<Self::Item> {
 if self.len > 0 {
 self.back.map(|node| unsafe {
 self.len -= 1;
 self.back = (*node.as_ptr()).front;
 &(*node.as_ptr()).elem
 })

 } else {
 None
 }
 }
}

impl<'a, T> ExactSizeIterator for Iter<'a, T> {
 fn len(&self) -> usize {
 self.len
 }
}

impl<'a, T> IntoIterator for &'a mut LinkedList<T> {
 type IntoIter = IterMut<'a, T>;
 type Item = &'a mut T;

 fn into_iter(self) -> Self::IntoIter {
 self.iter_mut()
 }
}

impl<'a, T> Iterator for IterMut<'a, T> {
 type Item = &'a mut T;

 fn next(&mut self) -> Option<Self::Item> {
 // While self.front == self.back is a tempting
condition to check here,
 // it won't do the right for yielding the last
element! That sort of
 // thing only works for arrays because of "one-past-
the-end" pointers.
 if self.len > 0 {
 // We could unwrap front, but this is safer and
easier
 self.front.map(|node| unsafe {
 self.len -= 1;

 self.front = (*node.as_ptr()).back;
 &mut (*node.as_ptr()).elem
 })
 } else {
 None
 }
 }

 fn size_hint(&self) -> (usize, Option<usize>) {
 (self.len, Some(self.len))
 }
}

impl<'a, T> DoubleEndedIterator for IterMut<'a, T> {
 fn next_back(&mut self) -> Option<Self::Item> {
 if self.len > 0 {
 self.back.map(|node| unsafe {
 self.len -= 1;
 self.back = (*node.as_ptr()).front;
 &mut (*node.as_ptr()).elem
 })
 } else {
 None
 }
 }
}

impl<'a, T> ExactSizeIterator for IterMut<'a, T> {
 fn len(&self) -> usize {
 self.len
 }
}

impl<T> IntoIterator for LinkedList<T> {
 type IntoIter = IntoIter<T>;
 type Item = T;

 fn into_iter(self) -> Self::IntoIter {
 IntoIter { list: self }
 }
}

impl<T> Iterator for IntoIter<T> {
 type Item = T;

 fn next(&mut self) -> Option<Self::Item> {
 self.list.pop_front()
 }

 fn size_hint(&self) -> (usize, Option<usize>) {
 (self.list.len, Some(self.list.len))
 }
}

impl<T> DoubleEndedIterator for IntoIter<T> {
 fn next_back(&mut self) -> Option<Self::Item> {
 self.list.pop_back()
 }
}

impl<T> ExactSizeIterator for IntoIter<T> {
 fn len(&self) -> usize {
 self.list.len
 }
}

impl<'a, T> CursorMut<'a, T> {
 pub fn index(&self) -> Option<usize> {
 self.index
 }

 pub fn move_next(&mut self) {

 if let Some(cur) = self.cur {
 unsafe {
 // We're on a real element, go to its next
(back)
 self.cur = (*cur.as_ptr()).back;
 if self.cur.is_some() {
 *self.index.as_mut().unwrap() += 1;
 } else {
 // We just walked to the ghost, no more
index
 self.index = None;
 }
 }
 } else if !self.list.is_empty() {
 // We're at the ghost, and there is a real front,
so move to it!
 self.cur = self.list.front;
 self.index = Some(0)
 } else {
 // We're at the ghost, but that's the only
element... do nothing.
 }
 }

 pub fn move_prev(&mut self) {
 if let Some(cur) = self.cur {
 unsafe {
 // We're on a real element, go to its previous
(front)
 self.cur = (*cur.as_ptr()).front;
 if self.cur.is_some() {
 *self.index.as_mut().unwrap() -= 1;
 } else {
 // We just walked to the ghost, no more
index
 self.index = None;

 }
 }
 } else if !self.list.is_empty() {
 // We're at the ghost, and there is a real back,
so move to it!
 self.cur = self.list.back;
 self.index = Some(self.list.len - 1)
 } else {
 // We're at the ghost, but that's the only
element... do nothing.
 }
 }

 pub fn current(&mut self) -> Option<&mut T> {
 unsafe { self.cur.map(|node| &mut
(*node.as_ptr()).elem) }
 }

 pub fn peek_next(&mut self) -> Option<&mut T> {
 unsafe {
 let next = if let Some(cur) = self.cur {
 // Normal case, try to follow the cur node's
back pointer
 (*cur.as_ptr()).back
 } else {
 // Ghost case, try to use the list's front
pointer
 self.list.front
 };

 // Yield the element if the next node exists
 next.map(|node| &mut (*node.as_ptr()).elem)
 }
 }

 pub fn peek_prev(&mut self) -> Option<&mut T> {

 unsafe {
 let prev = if let Some(cur) = self.cur {
 // Normal case, try to follow the cur node's
front pointer
 (*cur.as_ptr()).front
 } else {
 // Ghost case, try to use the list's back
pointer
 self.list.back
 };

 // Yield the element if the prev node exists
 prev.map(|node| &mut (*node.as_ptr()).elem)
 }
 }

 pub fn split_before(&mut self) -> LinkedList<T> {
 // We have this:
 //
 // list.front -> A <-> B <-> C <-> D <- list.back
 // ^
 // cur
 //
 //
 // And we want to produce this:
 //
 // list.front -> C <-> D <- list.back
 // ^
 // cur
 //
 //
 // return.front -> A <-> B <- return.back
 //
 if let Some(cur) = self.cur {
 // We are pointing at a real element, so the list
is non-empty.

 unsafe {
 // Current state
 let old_len = self.list.len;
 let old_idx = self.index.unwrap();
 let prev = (*cur.as_ptr()).front;

 // What self will become
 let new_len = old_len - old_idx;
 let new_front = self.cur;
 let new_back = self.list.back;
 let new_idx = Some(0);

 // What the output will become
 let output_len = old_len - new_len;
 let output_front = self.list.front;
 let output_back = prev;

 // Break the links between cur and prev
 if let Some(prev) = prev {
 (*cur.as_ptr()).front = None;
 (*prev.as_ptr()).back = None;
 }

 // Produce the result:
 self.list.len = new_len;
 self.list.front = new_front;
 self.list.back = new_back;
 self.index = new_idx;

 LinkedList {
 front: output_front,
 back: output_back,
 len: output_len,
 _boo: PhantomData,
 }
 }

 } else {
 // We're at the ghost, just replace our list with
an empty one.
 // No other state needs to be changed.
 std::mem::replace(self.list, LinkedList::new())
 }
 }

 pub fn split_after(&mut self) -> LinkedList<T> {
 // We have this:
 //
 // list.front -> A <-> B <-> C <-> D <- list.back
 // ^
 // cur
 //
 //
 // And we want to produce this:
 //
 // list.front -> A <-> B <- list.back
 // ^
 // cur
 //
 //
 // return.front -> C <-> D <- return.back
 //
 if let Some(cur) = self.cur {
 // We are pointing at a real element, so the list
is non-empty.
 unsafe {
 // Current state
 let old_len = self.list.len;
 let old_idx = self.index.unwrap();
 let next = (*cur.as_ptr()).back;

 // What self will become
 let new_len = old_idx + 1;

 let new_back = self.cur;
 let new_front = self.list.front;
 let new_idx = Some(old_idx);

 // What the output will become
 let output_len = old_len - new_len;
 let output_front = next;
 let output_back = self.list.back;

 // Break the links between cur and next
 if let Some(next) = next {
 (*cur.as_ptr()).back = None;
 (*next.as_ptr()).front = None;
 }

 // Produce the result:
 self.list.len = new_len;
 self.list.front = new_front;
 self.list.back = new_back;
 self.index = new_idx;

 LinkedList {
 front: output_front,
 back: output_back,
 len: output_len,
 _boo: PhantomData,
 }
 }
 } else {
 // We're at the ghost, just replace our list with
an empty one.
 // No other state needs to be changed.
 std::mem::replace(self.list, LinkedList::new())
 }
 }

 pub fn splice_before(&mut self, mut input: LinkedList<T>)
{
 // We have this:
 //
 // input.front -> 1 <-> 2 <- input.back
 //
 // list.front -> A <-> B <-> C <- list.back
 // ^
 // cur
 //
 //
 // Becoming this:
 //
 // list.front -> A <-> 1 <-> 2 <-> B <-> C <-
list.back
 // ^
 // cur
 //
 unsafe {
 // We can either `take` the input's pointers or
`mem::forget`
 // it. Using `take` is more responsible in case we
ever do custom
 // allocators or something that also needs to be
cleaned up!
 if input.is_empty() {
 // Input is empty, do nothing.
 } else if let Some(cur) = self.cur {
 // Both lists are non-empty
 let in_front = input.front.take().unwrap();
 let in_back = input.back.take().unwrap();

 if let Some(prev) = (*cur.as_ptr()).front {
 // General Case, no boundaries, just
internal fixups
 (*prev.as_ptr()).back = Some(in_front);

 (*in_front.as_ptr()).front = Some(prev);
 (*cur.as_ptr()).front = Some(in_back);
 (*in_back.as_ptr()).back = Some(cur);
 } else {
 // No prev, we're appending to the front
 (*cur.as_ptr()).front = Some(in_back);
 (*in_back.as_ptr()).back = Some(cur);
 self.list.front = Some(in_front);
 }
 // Index moves forward by input length
 *self.index.as_mut().unwrap() += input.len;
 } else if let Some(back) = self.list.back {
 // We're on the ghost but non-empty, append to
the back
 let in_front = input.front.take().unwrap();
 let in_back = input.back.take().unwrap();

 (*back.as_ptr()).back = Some(in_front);
 (*in_front.as_ptr()).front = Some(back);
 self.list.back = Some(in_back);
 } else {
 // We're empty, become the input, remain on
the ghost
 std::mem::swap(self.list, &mut input);
 }

 self.list.len += input.len;
 // Not necessary but Polite To Do
 input.len = 0;

 // Input dropped here
 }
 }

 pub fn splice_after(&mut self, mut input: LinkedList<T>) {
 // We have this:

 //
 // input.front -> 1 <-> 2 <- input.back
 //
 // list.front -> A <-> B <-> C <- list.back
 // ^
 // cur
 //
 //
 // Becoming this:
 //
 // list.front -> A <-> B <-> 1 <-> 2 <-> C <-
list.back
 // ^
 // cur
 //
 unsafe {
 // We can either `take` the input's pointers or
`mem::forget`
 // it. Using `take` is more responsible in case we
ever do custom
 // allocators or something that also needs to be
cleaned up!
 if input.is_empty() {
 // Input is empty, do nothing.
 } else if let Some(cur) = self.cur {
 // Both lists are non-empty
 let in_front = input.front.take().unwrap();
 let in_back = input.back.take().unwrap();

 if let Some(next) = (*cur.as_ptr()).back {
 // General Case, no boundaries, just
internal fixups
 (*next.as_ptr()).front = Some(in_back);
 (*in_back.as_ptr()).back = Some(next);
 (*cur.as_ptr()).back = Some(in_front);
 (*in_front.as_ptr()).front = Some(cur);

 } else {
 // No next, we're appending to the back
 (*cur.as_ptr()).back = Some(in_front);
 (*in_front.as_ptr()).front = Some(cur);
 self.list.back = Some(in_back);
 }
 // Index doesn't change
 } else if let Some(front) = self.list.front {
 // We're on the ghost but non-empty, append to
the front
 let in_front = input.front.take().unwrap();
 let in_back = input.back.take().unwrap();

 (*front.as_ptr()).front = Some(in_back);
 (*in_back.as_ptr()).back = Some(front);
 self.list.front = Some(in_front);
 } else {
 // We're empty, become the input, remain on
the ghost
 std::mem::swap(self.list, &mut input);
 }

 self.list.len += input.len;
 // Not necessary but Polite To Do
 input.len = 0;

 // Input dropped here
 }
 }
}

unsafe impl<T: Send> Send for LinkedList<T> {}
unsafe impl<T: Sync> Sync for LinkedList<T> {}

unsafe impl<'a, T: Send> Send for Iter<'a, T> {}
unsafe impl<'a, T: Sync> Sync for Iter<'a, T> {}

unsafe impl<'a, T: Send> Send for IterMut<'a, T> {}
unsafe impl<'a, T: Sync> Sync for IterMut<'a, T> {}

#[allow(dead_code)]
fn assert_properties() {
 fn is_send<T: Send>() {}
 fn is_sync<T: Sync>() {}

 is_send::<LinkedList<i32>>();
 is_sync::<LinkedList<i32>>();

 is_send::<IntoIter<i32>>();
 is_sync::<IntoIter<i32>>();

 is_send::<Iter<i32>>();
 is_sync::<Iter<i32>>();

 is_send::<IterMut<i32>>();
 is_sync::<IterMut<i32>>();

 fn linked_list_covariant<'a, T>(x: LinkedList<&'static T>)
-> LinkedList<&'a T> {
 x
 }
 fn iter_covariant<'i, 'a, T>(x: Iter<'i, &'static T>) ->
Iter<'i, &'a T> {
 x
 }
 fn into_iter_covariant<'a, T>(x: IntoIter<&'static T>) ->
IntoIter<&'a T> {
 x
 }

 /// ```compile_fail,E0308
 /// use linked_list::IterMut;

 ///
 /// fn iter_mut_covariant<'i, 'a, T>(x: IterMut<'i,
&'static T>) -> IterMut<'i, &'a T> { x }
 /// ```
 fn iter_mut_invariant() {}
}

#[cfg(test)]
mod test {
 use super::LinkedList;

 fn generate_test() -> LinkedList<i32> {
 list_from(&[0, 1, 2, 3, 4, 5, 6])
 }

 fn list_from<T: Clone>(v: &[T]) -> LinkedList<T> {
 v.iter().map(|x| (*x).clone()).collect()
 }

 #[test]
 fn test_basic_front() {
 let mut list = LinkedList::new();

 // Try to break an empty list
 assert_eq!(list.len(), 0);
 assert_eq!(list.pop_front(), None);
 assert_eq!(list.len(), 0);

 // Try to break a one item list
 list.push_front(10);
 assert_eq!(list.len(), 1);
 assert_eq!(list.pop_front(), Some(10));
 assert_eq!(list.len(), 0);
 assert_eq!(list.pop_front(), None);
 assert_eq!(list.len(), 0);

 // Mess around
 list.push_front(10);
 assert_eq!(list.len(), 1);
 list.push_front(20);
 assert_eq!(list.len(), 2);
 list.push_front(30);
 assert_eq!(list.len(), 3);
 assert_eq!(list.pop_front(), Some(30));
 assert_eq!(list.len(), 2);
 list.push_front(40);
 assert_eq!(list.len(), 3);
 assert_eq!(list.pop_front(), Some(40));
 assert_eq!(list.len(), 2);
 assert_eq!(list.pop_front(), Some(20));
 assert_eq!(list.len(), 1);
 assert_eq!(list.pop_front(), Some(10));
 assert_eq!(list.len(), 0);
 assert_eq!(list.pop_front(), None);
 assert_eq!(list.len(), 0);
 assert_eq!(list.pop_front(), None);
 assert_eq!(list.len(), 0);
 }

 #[test]
 fn test_basic() {
 let mut m = LinkedList::new();
 assert_eq!(m.pop_front(), None);
 assert_eq!(m.pop_back(), None);
 assert_eq!(m.pop_front(), None);
 m.push_front(1);
 assert_eq!(m.pop_front(), Some(1));
 m.push_back(2);
 m.push_back(3);
 assert_eq!(m.len(), 2);
 assert_eq!(m.pop_front(), Some(2));
 assert_eq!(m.pop_front(), Some(3));

 assert_eq!(m.len(), 0);
 assert_eq!(m.pop_front(), None);
 m.push_back(1);
 m.push_back(3);
 m.push_back(5);
 m.push_back(7);
 assert_eq!(m.pop_front(), Some(1));

 let mut n = LinkedList::new();
 n.push_front(2);
 n.push_front(3);
 {
 assert_eq!(n.front().unwrap(), &3);
 let x = n.front_mut().unwrap();
 assert_eq!(*x, 3);
 *x = 0;
 }
 {
 assert_eq!(n.back().unwrap(), &2);
 let y = n.back_mut().unwrap();
 assert_eq!(*y, 2);
 *y = 1;
 }
 assert_eq!(n.pop_front(), Some(0));
 assert_eq!(n.pop_front(), Some(1));
 }

 #[test]
 fn test_iterator() {
 let m = generate_test();
 for (i, elt) in m.iter().enumerate() {
 assert_eq!(i as i32, *elt);
 }
 let mut n = LinkedList::new();
 assert_eq!(n.iter().next(), None);
 n.push_front(4);

 let mut it = n.iter();
 assert_eq!(it.size_hint(), (1, Some(1)));
 assert_eq!(it.next().unwrap(), &4);
 assert_eq!(it.size_hint(), (0, Some(0)));
 assert_eq!(it.next(), None);
 }

 #[test]
 fn test_iterator_double_end() {
 let mut n = LinkedList::new();
 assert_eq!(n.iter().next(), None);
 n.push_front(4);
 n.push_front(5);
 n.push_front(6);
 let mut it = n.iter();
 assert_eq!(it.size_hint(), (3, Some(3)));
 assert_eq!(it.next().unwrap(), &6);
 assert_eq!(it.size_hint(), (2, Some(2)));
 assert_eq!(it.next_back().unwrap(), &4);
 assert_eq!(it.size_hint(), (1, Some(1)));
 assert_eq!(it.next_back().unwrap(), &5);
 assert_eq!(it.next_back(), None);
 assert_eq!(it.next(), None);
 }

 #[test]
 fn test_rev_iter() {
 let m = generate_test();
 for (i, elt) in m.iter().rev().enumerate() {
 assert_eq!(6 - i as i32, *elt);
 }
 let mut n = LinkedList::new();
 assert_eq!(n.iter().rev().next(), None);
 n.push_front(4);
 let mut it = n.iter().rev();
 assert_eq!(it.size_hint(), (1, Some(1)));

 assert_eq!(it.next().unwrap(), &4);
 assert_eq!(it.size_hint(), (0, Some(0)));
 assert_eq!(it.next(), None);
 }

 #[test]
 fn test_mut_iter() {
 let mut m = generate_test();
 let mut len = m.len();
 for (i, elt) in m.iter_mut().enumerate() {
 assert_eq!(i as i32, *elt);
 len -= 1;
 }
 assert_eq!(len, 0);
 let mut n = LinkedList::new();
 assert!(n.iter_mut().next().is_none());
 n.push_front(4);
 n.push_back(5);
 let mut it = n.iter_mut();
 assert_eq!(it.size_hint(), (2, Some(2)));
 assert!(it.next().is_some());
 assert!(it.next().is_some());
 assert_eq!(it.size_hint(), (0, Some(0)));
 assert!(it.next().is_none());
 }

 #[test]
 fn test_iterator_mut_double_end() {
 let mut n = LinkedList::new();
 assert!(n.iter_mut().next_back().is_none());
 n.push_front(4);
 n.push_front(5);
 n.push_front(6);
 let mut it = n.iter_mut();
 assert_eq!(it.size_hint(), (3, Some(3)));
 assert_eq!(*it.next().unwrap(), 6);

 assert_eq!(it.size_hint(), (2, Some(2)));
 assert_eq!(*it.next_back().unwrap(), 4);
 assert_eq!(it.size_hint(), (1, Some(1)));
 assert_eq!(*it.next_back().unwrap(), 5);
 assert!(it.next_back().is_none());
 assert!(it.next().is_none());
 }

 #[test]
 fn test_eq() {
 let mut n: LinkedList<u8> = list_from(&[]);
 let mut m = list_from(&[]);
 assert!(n == m);
 n.push_front(1);
 assert!(n != m);
 m.push_back(1);
 assert!(n == m);

 let n = list_from(&[2, 3, 4]);
 let m = list_from(&[1, 2, 3]);
 assert!(n != m);
 }

 #[test]
 fn test_ord() {
 let n = list_from(&[]);
 let m = list_from(&[1, 2, 3]);
 assert!(n < m);
 assert!(m > n);
 assert!(n <= n);
 assert!(n >= n);
 }

 #[test]
 fn test_ord_nan() {
 let nan = 0.0f64 / 0.0;

 let n = list_from(&[nan]);
 let m = list_from(&[nan]);
 assert!(!(n < m));
 assert!(!(n > m));
 assert!(!(n <= m));
 assert!(!(n >= m));

 let n = list_from(&[nan]);
 let one = list_from(&[1.0f64]);
 assert!(!(n < one));
 assert!(!(n > one));
 assert!(!(n <= one));
 assert!(!(n >= one));

 let u = list_from(&[1.0f64, 2.0, nan]);
 let v = list_from(&[1.0f64, 2.0, 3.0]);
 assert!(!(u < v));
 assert!(!(u > v));
 assert!(!(u <= v));
 assert!(!(u >= v));

 let s = list_from(&[1.0f64, 2.0, 4.0, 2.0]);
 let t = list_from(&[1.0f64, 2.0, 3.0, 2.0]);
 assert!(!(s < t));
 assert!(s > one);
 assert!(!(s <= one));
 assert!(s >= one);
 }

 #[test]
 fn test_debug() {
 let list: LinkedList<i32> = (0..10).collect();
 assert_eq!(format!("{:?}", list), "[0, 1, 2, 3, 4, 5,
6, 7, 8, 9]");

 let list: LinkedList<&str> = vec!["just", "one",

"test", "more"]
 .iter()
 .copied()
 .collect();
 assert_eq!(format!("{:?}", list), r#"["just", "one",
"test", "more"]"#);
 }

 #[test]
 fn test_hashmap() {
 // Check that HashMap works with this as a key

 let list1: LinkedList<i32> = (0..10).collect();
 let list2: LinkedList<i32> = (1..11).collect();
 let mut map = std::collections::HashMap::new();

 assert_eq!(map.insert(list1.clone(), "list1"), None);
 assert_eq!(map.insert(list2.clone(), "list2"), None);

 assert_eq!(map.len(), 2);

 assert_eq!(map.get(&list1), Some(&"list1"));
 assert_eq!(map.get(&list2), Some(&"list2"));

 assert_eq!(map.remove(&list1), Some("list1"));
 assert_eq!(map.remove(&list2), Some("list2"));

 assert!(map.is_empty());
 }

 #[test]
 fn test_cursor_move_peek() {
 let mut m: LinkedList<u32> = LinkedList::new();
 m.extend([1, 2, 3, 4, 5, 6]);
 let mut cursor = m.cursor_mut();
 cursor.move_next();

 assert_eq!(cursor.current(), Some(&mut 1));
 assert_eq!(cursor.peek_next(), Some(&mut 2));
 assert_eq!(cursor.peek_prev(), None);
 assert_eq!(cursor.index(), Some(0));
 cursor.move_prev();
 assert_eq!(cursor.current(), None);
 assert_eq!(cursor.peek_next(), Some(&mut 1));
 assert_eq!(cursor.peek_prev(), Some(&mut 6));
 assert_eq!(cursor.index(), None);
 cursor.move_next();
 cursor.move_next();
 assert_eq!(cursor.current(), Some(&mut 2));
 assert_eq!(cursor.peek_next(), Some(&mut 3));
 assert_eq!(cursor.peek_prev(), Some(&mut 1));
 assert_eq!(cursor.index(), Some(1));

 let mut cursor = m.cursor_mut();
 cursor.move_prev();
 assert_eq!(cursor.current(), Some(&mut 6));
 assert_eq!(cursor.peek_next(), None);
 assert_eq!(cursor.peek_prev(), Some(&mut 5));
 assert_eq!(cursor.index(), Some(5));
 cursor.move_next();
 assert_eq!(cursor.current(), None);
 assert_eq!(cursor.peek_next(), Some(&mut 1));
 assert_eq!(cursor.peek_prev(), Some(&mut 6));
 assert_eq!(cursor.index(), None);
 cursor.move_prev();
 cursor.move_prev();
 assert_eq!(cursor.current(), Some(&mut 5));
 assert_eq!(cursor.peek_next(), Some(&mut 6));
 assert_eq!(cursor.peek_prev(), Some(&mut 4));
 assert_eq!(cursor.index(), Some(4));
 }

 #[test]

 fn test_cursor_mut_insert() {
 let mut m: LinkedList<u32> = LinkedList::new();
 m.extend([1, 2, 3, 4, 5, 6]);
 let mut cursor = m.cursor_mut();
 cursor.move_next();
 cursor.splice_before(Some(7).into_iter().collect());
 cursor.splice_after(Some(8).into_iter().collect());
 // check_links(&m);
 assert_eq!(
 m.iter().cloned().collect::<Vec<_>>(),
 &[7, 1, 8, 2, 3, 4, 5, 6]
);
 let mut cursor = m.cursor_mut();
 cursor.move_next();
 cursor.move_prev();
 cursor.splice_before(Some(9).into_iter().collect());
 cursor.splice_after(Some(10).into_iter().collect());
 check_links(&m);
 assert_eq!(
 m.iter().cloned().collect::<Vec<_>>(),
 &[10, 7, 1, 8, 2, 3, 4, 5, 6, 9]
);

 /* remove_current not impl'd
 let mut cursor = m.cursor_mut();
 cursor.move_next();
 cursor.move_prev();
 assert_eq!(cursor.remove_current(), None);
 cursor.move_next();
 cursor.move_next();
 assert_eq!(cursor.remove_current(), Some(7));
 cursor.move_prev();
 cursor.move_prev();
 cursor.move_prev();
 assert_eq!(cursor.remove_current(), Some(9));
 cursor.move_next();

 assert_eq!(cursor.remove_current(), Some(10));
 check_links(&m);
 assert_eq!(m.iter().cloned().collect::<Vec<_>>(), &[1,
8, 2, 3, 4, 5, 6]);
 */

 let mut m: LinkedList<u32> = LinkedList::new();
 m.extend([1, 8, 2, 3, 4, 5, 6]);
 let mut cursor = m.cursor_mut();
 cursor.move_next();
 let mut p: LinkedList<u32> = LinkedList::new();
 p.extend([100, 101, 102, 103]);
 let mut q: LinkedList<u32> = LinkedList::new();
 q.extend([200, 201, 202, 203]);
 cursor.splice_after(p);
 cursor.splice_before(q);
 check_links(&m);
 assert_eq!(
 m.iter().cloned().collect::<Vec<_>>(),
 &[200, 201, 202, 203, 1, 100, 101, 102, 103, 8, 2,
3, 4, 5, 6]
);
 let mut cursor = m.cursor_mut();
 cursor.move_next();
 cursor.move_prev();
 let tmp = cursor.split_before();
 assert_eq!(m.into_iter().collect::<Vec<_>>(), &[]);
 m = tmp;
 let mut cursor = m.cursor_mut();
 cursor.move_next();
 cursor.move_next();
 cursor.move_next();
 cursor.move_next();
 cursor.move_next();
 cursor.move_next();
 cursor.move_next();

 let tmp = cursor.split_after();
 assert_eq!(
 tmp.into_iter().collect::<Vec<_>>(),
 &[102, 103, 8, 2, 3, 4, 5, 6]
);
 check_links(&m);
 assert_eq!(
 m.iter().cloned().collect::<Vec<_>>(),
 &[200, 201, 202, 203, 1, 100, 101]
);
 }

 fn check_links<T: Eq + std::fmt::Debug>(list:
&LinkedList<T>) {
 let from_front: Vec<_> = list.iter().collect();
 let from_back: Vec<_> = list.iter().rev().collect();
 let re_reved: Vec<_> =
from_back.into_iter().rev().collect();

 assert_eq!(from_front, re_reved);
 }
}

A Bunch of Silly Lists
Alright. That's it. We made all the lists.
ahahahaha
No
There's always more lists.
This chapter is a living document of the more ridiculous linked lists and

how they interact with Rust.

1. The Double Single
2. The Stack Allocated List
3. The Self-Referential Arena List?
4. The GhostCell List?

clbr://internal.invalid/book/OEBPS/infinity-double-single.md
clbr://internal.invalid/book/OEBPS/infinity-stack-allocated.md

The Double Singly-Linked List
We struggled with doubly-linked lists because they have tangled

ownership semantics: no node strictly owns any other node. However we
struggled with this because we brought in our preconceived notions of what
a linked list is. Namely, we assumed that all the links go in the same
direction.

Instead, we can smash our list into two halves: one going to the left, and
one going to the right:
// lib.rs
// ...
pub mod silly1; // NEW!

// silly1.rs
use crate::second::List as Stack;

struct List<T> {
 left: Stack<T>,
 right: Stack<T>,
}

Now, rather than having a mere safe stack, we have a general purpose
list. We can grow the list leftwards or rightwards by pushing onto either
stack. We can also "walk" along the list by popping values off one end and
onto the other. To avoid needless allocations, we're going to copy the source
of our safe Stack to get access to its private details:
pub struct Stack<T> {
 head: Link<T>,
}

type Link<T> = Option<Box<Node<T>>>;

struct Node<T> {
 elem: T,
 next: Link<T>,

}

impl<T> Stack<T> {
 pub fn new() -> Self {
 Stack { head: None }
 }

 pub fn push(&mut self, elem: T) {
 let new_node = Box::new(Node {
 elem: elem,
 next: self.head.take(),
 });

 self.head = Some(new_node);
 }

 pub fn pop(&mut self) -> Option<T> {
 self.head.take().map(|node| {
 let node = *node;
 self.head = node.next;
 node.elem
 })
 }

 pub fn peek(&self) -> Option<&T> {
 self.head.as_ref().map(|node| {
 &node.elem
 })
 }

 pub fn peek_mut(&mut self) -> Option<&mut T> {
 self.head.as_mut().map(|node| {
 &mut node.elem
 })
 }
}

impl<T> Drop for Stack<T> {
 fn drop(&mut self) {
 let mut cur_link = self.head.take();
 while let Some(mut boxed_node) = cur_link {
 cur_link = boxed_node.next.take();
 }
 }
}

And just rework push and pop a bit:
pub fn push(&mut self, elem: T) {
 let new_node = Box::new(Node {
 elem: elem,
 next: None,
 });

 self.push_node(new_node);
}

fn push_node(&mut self, mut node: Box<Node<T>>) {
 node.next = self.head.take();
 self.head = Some(node);
}

pub fn pop(&mut self) -> Option<T> {
 self.pop_node().map(|node| {
 node.elem
 })
}

fn pop_node(&mut self) -> Option<Box<Node<T>>> {
 self.head.take().map(|mut node| {
 self.head = node.next.take();
 node

 })
}

Now we can make our List:
pub struct List<T> {
 left: Stack<T>,
 right: Stack<T>,
}

impl<T> List<T> {
 fn new() -> Self {
 List { left: Stack::new(), right: Stack::new() }
 }
}

And we can do the usual stuff:
pub fn push_left(&mut self, elem: T) { self.left.push(elem) }
pub fn push_right(&mut self, elem: T) { self.right.push(elem)
}
pub fn pop_left(&mut self) -> Option<T> { self.left.pop() }
pub fn pop_right(&mut self) -> Option<T> { self.right.pop() }
pub fn peek_left(&self) -> Option<&T> { self.left.peek() }
pub fn peek_right(&self) -> Option<&T> { self.right.peek() }
pub fn peek_left_mut(&mut self) -> Option<&mut T> {
self.left.peek_mut() }
pub fn peek_right_mut(&mut self) -> Option<&mut T> {
self.right.peek_mut() }

But most interestingly, we can walk around!
pub fn go_left(&mut self) -> bool {
 self.left.pop_node().map(|node| {
 self.right.push_node(node);
 }).is_some()
}

pub fn go_right(&mut self) -> bool {
 self.right.pop_node().map(|node| {

 self.left.push_node(node);
 }).is_some()
}

We return booleans here as just a convenience to indicate whether we
actually managed to move. Now let's test this baby out:
#[cfg(test)]
mod test {
 use super::List;

 #[test]
 fn walk_aboot() {
 let mut list = List::new(); // [_]

 list.push_left(0); // [0,_]
 list.push_right(1); // [0, _, 1]
 assert_eq!(list.peek_left(), Some(&0));
 assert_eq!(list.peek_right(), Some(&1));

 list.push_left(2); // [0, 2, _,
1]
 list.push_left(3); // [0, 2, 3,
_, 1]
 list.push_right(4); // [0, 2, 3,
_, 4, 1]

 while list.go_left() {} // [_, 0, 2,
3, 4, 1]

 assert_eq!(list.pop_left(), None);
 assert_eq!(list.pop_right(), Some(0)); // [_, 2, 3,
4, 1]
 assert_eq!(list.pop_right(), Some(2)); // [_, 3, 4,
1]

 list.push_left(5); // [5, _, 3,

4, 1]
 assert_eq!(list.pop_right(), Some(3)); // [5, _, 4,
1]
 assert_eq!(list.pop_left(), Some(5)); // [_, 4, 1]
 assert_eq!(list.pop_right(), Some(4)); // [_, 1]
 assert_eq!(list.pop_right(), Some(1)); // [_]

 assert_eq!(list.pop_right(), None);
 assert_eq!(list.pop_left(), None);

 }
}

> cargo test

 Running target/debug/lists-5c71138492ad4b4a

running 16 tests
test fifth::test::into_iter ... ok
test fifth::test::basics ... ok
test fifth::test::iter ... ok
test fifth::test::iter_mut ... ok
test fourth::test::into_iter ... ok
test fourth::test::basics ... ok
test fourth::test::peek ... ok
test first::test::basics ... ok
test second::test::into_iter ... ok
test second::test::basics ... ok
test second::test::iter ... ok
test second::test::iter_mut ... ok
test third::test::basics ... ok
test third::test::iter ... ok
test second::test::peek ... ok
test silly1::test::walk_aboot ... ok

test result: ok. 16 passed; 0 failed; 0 ignored; 0 measured

This is an extreme example of a finger data structure, where we maintain
some kind of finger into the structure, and as a consequence can support
operations on locations in time proportional to the distance from the finger.

We can make very fast changes to the list around our finger, but if we
want to make changes far away from our finger we have to walk all the way
over there. We can permanently walk over there by shifting the elements
from one stack to the other, or we could just walk along the links with an
&mut temporarily to do the changes. However the &mut can never go back
up the list, while our finger can!

The Stack-Allocated Linked List
This book is largely focused on heap-allocated linked lists, because

those are the most common and practical, but we don't have to use heap
allocation. Heap allocation is nice because it makes it easy to dynamically
allocate memory. Stack allocation is less friendly in this regard — things
like C's alloca are widely regarded as Very Cursed And Problematic.

So let's allocate memory on the stack the easy way: by calling a function
and getting a new stack frame with more space! This is a very silly solution
to our problem but also genuinely practical and useful. It's done all the time,
potentially without actually even thinking about it as a linked list!

Any time you're doing something recursively, you can just pass a pointer
to the current step's state to the next step. If that pointer itself is part of the
state, then you've created a linked list that's stack-allocated!

Now of course we're in the silly part of the book so we're going to do
this in a silly way: by making the linked list the star and forcing all the
user's code to live in a swamp of callbacks. Everybody loves nested
callbacks!

Our List type will just be a Node with a reference to another Node:
pub struct List<'a, T> {
 pub data: T,
 pub prev: Option<&'a List<'a, T>>,
}

And it will have only one operation, push , which will take the old list,
the state for the current node, and a callback. The new list will be produced
in the callback. We will also let callbacks return any value, which push will
return when it completes:
impl<'a, T> List<'a, T> {
 pub fn push<U>(
 prev: Option<&'a List<'a, T>>,
 data: T,
 callback: impl FnOnce(&List<'a, T>) -> U,
) -> U {

 let list = List { data, prev };
 callback(&list)
 }
}

That's it! We can use it like this:
List::push(None, 3, |list| {
 println!("{}", list.data);
 List::push(Some(list), 5, |list| {
 println!("{}", list.data);
 List::push(Some(list), 13, |list| {
 println!("{}", list.data);
 })
 })
})

It's beautiful. 😿
The user can already traverse this list by using while-let to walk over the

prev values, but just for fun, let's implement an iterator, which is the usual:
impl<'a, T> List<'a, T> {
 pub fn iter(&'a self) -> Iter<'a, T> {
 Iter { next: Some(self) }
 }
}

impl<'a, T> Iterator for Iter<'a, T> {
 type Item = &'a T;

 fn next(&mut self) -> Option<Self::Item> {
 self.next.map(|node| {
 self.next = node.prev;
 &node.data
 })
 }
}

Let's test it out:

#[cfg(test)]
mod test {
 use super::List;

 #[test]
 fn elegance() {
 List::push(None, 3, |list| {
 assert_eq!(list.iter().copied().sum::<i32>(), 3);
 List::push(Some(list), 5, |list| {
 assert_eq!(list.iter().copied().sum::<i32>(),
5 + 3);
 List::push(Some(list), 13, |list| {
 assert_eq!(list.iter().copied().sum::<i32>
(), 13 + 5 + 3);
 })
 })
 })
 }
}

> cargo test

running 18 tests
test fifth::test::into_iter ... ok
test fifth::test::iter ... ok
test fifth::test::iter_mut ... ok
test fifth::test::basics ... ok
test fifth::test::miri_food ... ok
test first::test::basics ... ok
test second::test::into_iter ... ok
test fourth::test::peek ... ok
test fourth::test::into_iter ... ok
test second::test::iter_mut ... ok
test fourth::test::basics ... ok
test second::test::basics ... ok
test second::test::iter ... ok

test third::test::basics ... ok
test silly1::test::walk_aboot ... ok
test silly2::test::elegance ... ok
test second::test::peek ... ok
test third::test::iter ... ok

test result: ok. 18 passed; 0 failed; 0 ignored; 0 measured; 0
filtered out;

Now at this point you might be wonder "hey can I mutate the data stored
in a node?". Maybe! Let's try to make the list use mutable references instead
of shared ones:
pub struct List<'a, T> {
 pub data: T,
 pub prev: Option<&'a mut List<'a, T>>,
}

pub struct Iter<'a, T> {
 next: Option<&'a List<'a, T>>,
}

impl<'a, T> List<'a, T> {
 pub fn push<U>(
 prev: Option<&'a mut List<'a, T>>,
 data: T,
 callback: impl FnOnce(&mut List<'a, T>) -> U,
) -> U {
 let mut list = List { data, prev };
 callback(&mut list)
 }

 pub fn iter(&'a self) -> Iter<'a, T> {
 Iter { next: Some(self) }
 }
}

impl<'a, T> Iterator for Iter<'a, T> {
 type Item = &'a T;

 fn next(&mut self) -> Option<Self::Item> {
 self.next.map(|node| {
 self.next = node.prev.as_ref().map(|prev|
&**prev);
 &node.data
 })
 }
}

> cargo test

error[E0521]: borrowed data escapes outside of closure
 --> src\silly2.rs:47:32
 |
46 | List::push(Some(list), 13, |list| {
 | ----
 | |
 | `list` declared here, outside of the closure
body
 | `list` is a reference that is only valid in
the closure body
47 | assert_eq!(list.iter().copied().sum::<i32>(), 13 + 5
+ 3);
 | ^^^^^^^^^^^ `list` escapes the closure
body here

error[E0521]: borrowed data escapes outside of closure
 --> src\silly2.rs:45:28
 |
44 | List::push(Some(list), 5, |list| {
 | ----
 | |

 | `list` declared here, outside of the closure
body
 | `list` is a reference that is only valid in
the closure body
45 | assert_eq!(list.iter().copied().sum::<i32>(), 5 +
3);
 | ^^^^^^^^^^^ `list` escapes the closure
body here

<ad infinitum>

Whelp. Seems like it doesn't like our iterator. Maybe we messed that up?
Let's simplify the test a bit to check:
#[test]
fn elegance() {
 List::push(None, 3, |list| {
 assert_eq!(list.data, 3);
 List::push(Some(list), 5, |list| {
 assert_eq!(list.data, 5);
 List::push(Some(list), 13, |list| {
 assert_eq!(list.data, 13);
 })
 })
 })
}

> cargo test

error[E0521]: borrowed data escapes outside of closure
 --> src\silly2.rs:46:17
 |
44 | List::push(Some(list), 5, |list| {
 | ----
 | |
 | `list` declared here, outside of the closure
body

 | `list` is a reference that is only valid in
the closure body
45 | assert_eq!(list.data, 5);
46 | / List::push(Some(list), 13, |list| {
47 | | assert_eq!(list.data, 13);
48 | | })
 | |______^ `list` escapes the closure body here

error[E0521]: borrowed data escapes outside of closure
 --> src\silly2.rs:44:13
 |
42 | List::push(None, 3, |list| {
 | ----
 | |
 | `list` declared here, outside of the closure
body
 | `list` is a reference that is only valid in
the closure body
43 | assert_eq!(list.data, 3);
44 | / List::push(Some(list), 5, |list| {
45 | | assert_eq!(list.data, 5);
46 | | List::push(Some(list), 13, |list| {
47 | | assert_eq!(list.data, 13);
48 | | })
49 | | })
 | |______________^ `list` escapes the closure body here

Hmm no that's still some hot garbage.
The problem is that our list is accidentally(😉) relying on variance.

Variance is a complicated subject but let's look at it in simplified terms here:
Each list contains a reference to a List with the exact same type as itself.

From the perspective of the inner-most list, that means all lists are using the
same lifetime as itself, but this is objectively false: each node in the list lives
strictly longer than the next one, because they are literally in nested scopes!

So... why did the code compile when we were using shared references?
Because in many cases, the compiler knows it's safe to have something that

https://doc.rust-lang.org/nomicon/subtyping.html

lives "too long"! When we stuff a reference to a list into the next one, the
compiler is quietly "shrinking" down the lifetimes to make them fit what the
new list expects. This lifetime shrinking is variance.

It's the exact same trick in languages with inheritance that let's you pass
a Cat where an Animal (a supertype of a Cat) is expected. Intuitively we
know it's fine to pass a Cat when an Animal is expected because a Cat is
just an Animal and more. It's fine to forget the "and more" part for a while,
right?

Similarly, a larger lifetime is just a smaller lifetime and more. So it's fine
to forget the "and more" here too!

But of course you are now wondering: then why doesn't the mutable
reference version work!?

Well, variance isn't always safe. If our code did compile, we could have
written a use-after-free like this:
List::push(None, 3, |list| {
 List::push(Some(list), 5, |list| {
 List::push(Some(list), 13, |list| {
 // HAHAHA all the lifetimes are the same, so the
compiler will
 // let me rewrite my parent to hold a mutable
reference to myself!
 // I will create all the use-after-frees!!
 *list.prev.as_mut().unwrap().prev = Some(list);
 })
 })
})

The problem with forgetting details is that somewhere else might
remember those details and expect them to remain true. That is a very big
problem once you introduce mutation. If you're not careful, the code that
doesn't remember the "and more" that we threw away might think it's fine to
write things to places that "remember" and expect the "and more" to still be
there.

Put in terms of inheritance: this code has to be illegal:

let mut my_kitty = Cat; // Make a Cat (long
lifetime)
let animal: &mut Animal = &mut my_kitty; // Forget it's a Cat
(shorten lifetime)
*animal = Dog; // Write a Dog (short
lifetime)
my_kitty.meow(); // Meowing Dog! (Use
After Free)

So while you can shorten the lifetime of a mutable reference, once you
start nesting them things become "invariant" and you're not allowed to
shorten lifetimes anymore.

Specifically &mut &'big mut T cannot be converted to &mut &'small
mut T , where 'big is bigger than 'small . Or more formally, &'a mut T
is covariant over 'a but invariant over T .

Fun fact: Java actually specifically lets you do this kind of thing, but it
does runtime checks to prevent meowing dogs.

So what can we do to mutate the data? Use interior mutability! This lets
us tell the compiler that we just want to be able to mutate the data but won't
touch the references.

We can just revert back to the previous version of our code with shared
references, and use Cell in a new test:
#[test]
fn cell() {
 use std::cell::Cell;

 List::push(None, Cell::new(3), |list| {
 List::push(Some(list), Cell::new(5), |list| {
 List::push(Some(list), Cell::new(13), |list| {
 // Multiply every value in the list by 10
 for val in list.iter() {
 val.set(val.get() * 10)
 }

https://docs.oracle.com/javase/7/docs/api/java/lang/ArrayStoreException.html

 let mut vals = list.iter();
 assert_eq!(vals.next().unwrap().get(), 130);
 assert_eq!(vals.next().unwrap().get(), 50);
 assert_eq!(vals.next().unwrap().get(), 30);
 assert_eq!(vals.next(), None);
 assert_eq!(vals.next(), None);
 })
 })
 })
}

> cargo test

running 19 tests
test fifth::test::into_iter ... ok
test fifth::test::basics ... ok
test fifth::test::iter_mut ... ok
test fifth::test::iter ... ok
test fourth::test::basics ... ok
test fourth::test::into_iter ... ok
test second::test::into_iter ... ok
test first::test::basics ... ok
test fourth::test::peek ... ok
test second::test::basics ... ok
test fifth::test::miri_food ... ok
test silly2::test::cell ... ok
test third::test::iter ... ok
test second::test::iter_mut ... ok
test second::test::peek ... ok
test silly1::test::walk_aboot ... ok
test silly2::test::elegance ... ok
test third::test::basics ... ok
test second::test::iter ... ok

test result: ok. 19 passed; 0 failed; 0 ignored; 0 measured; 0
filtered out;

Easy as recursive pie! ✨

	1. Introduction
	2. A Bad Stack
	2.1. Layout
	2.2. New
	2.3. Ownership 101
	2.4. Push
	2.5. Pop
	2.6. Testing
	2.7. Drop
	2.8. Final Code

	3. An Ok Stack
	3.1. Option
	3.2. Generic
	3.3. Peek
	3.4. IntoIter
	3.5. Iter
	3.6. IterMut
	3.7. Final Code

	4. A Persistent Stack
	4.1. Layout
	4.2. Basics
	4.3. Drop
	4.4. Arc
	4.5. Final Code

	5. A Bad Safe Deque
	5.1. Layout
	5.2. Building
	5.3. Breaking
	5.4. Peek
	5.5. Symmetric Cases
	5.6. Iteration
	5.7. Final Code

	6. An Ok Unsafe Queue
	6.1. Layout
	6.2. Unsafe
	6.3. Basics
	6.4. Miri
	6.5. Stacked Borrows
	6.6. Testing Stacked Borrows
	6.7. Layout + Basics Redux
	6.8. Extras
	6.9. Final Code

	7. A Production Unsafe Deque
	7.1. Layout
	7.2. Variance and Subtyping
	7.3. Basics
	7.4. Panic Safety
	7.5. Boring Combinatorics
	7.6. Filling In Random Bits
	7.7. Testing
	7.8. Send, Sync, and Compile Tests
	7.9. An Introduction To Cursors
	7.10. Implementing Cursors
	7.11. Testing Cursors
	7.12. Final Code

	8. A Bunch of Silly Lists
	8.1. The Double Single
	8.2. The Stack-Allocated Linked List

